3. Computer Buses

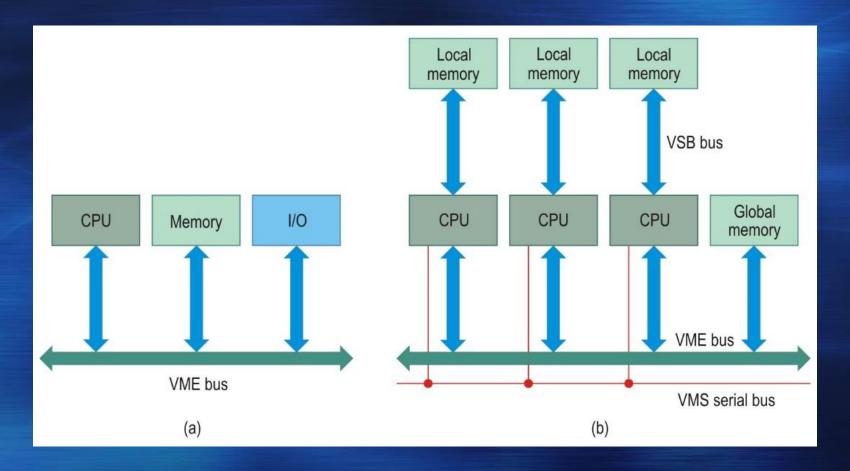
- Introduction
- Electrical Considerations
- Data Transfer Synchronization
- Parallel and Serial Buses
- Bus Arbitration
- PCI Bus
- PCI Express Bus
- Other Serial Buses
- VME Bus

VME Bus

- VME Bus
 - VME Bus Overview
 - Parallel VME Bus Variants
 - VXS Bus
 - VPX Bus

VME Bus Overview (1)

- VME (Versa Module Eurocard)
- Originates from VERSAbus (Motorola)
- VERSAbus has been adapted for the double Eurocard form factor (6U, 267×160 mm)
 - VMEbus, rev. A
- The VME specifications have been updated (revisions B, C, C.1)
- IEC, IEEE, and ANSI/VITA standards (VITA - VME International Trade Association, vita.com)


VME Bus Overview (2)

- Parallel bus
 - Used for industrial and embedded systems
- Asynchronous bus
 - Allows various components to operate at a speed appropriate to the technology used
- There are no proprietary rights
- The reliability of the bus is ensured by:
 - [●] Mechanical design → connectors with metallic pins
 - Logical protocol

VME Bus Overview (3)

- Family of three buses
 - VME: main bus
 - VSB: secondary bus
 - Bus for memory extension
 - Allows to increase performance by reducing the overall traffic on the main VME bus
 - VMS: serial bus
 - Used for communication and synchronization between multiple processors

VME Bus Overview (4)

(a) Minimal system; (b) Multiprocessor system

VME Bus Overview (5)

- Applications:
 - Industrial control
 - Military: radars, communications, avionics
 - Aerospace: spacecraft control, satellites
 - Transportation: railway control
 - Telecommunications: cellular telephone base stations, telephone switches
 - Medical: computed tomography scan, nuclear magnetic resonance imaging
 - High-energy physics: particle accelerators

VME Bus

- VME Bus
 - VME Bus Overview
 - Parallel VME Bus Variants
 - VXS Bus
 - VPX Bus

Parallel VME Bus Variants (1)

- Original VME Bus
 - Non-multiplexed data and address lines
 - Data size: 8 .. 32 bits
 - Address size: 16 .. 32 bits
 - Multiprocessing capability: M/S architecture
 - Centralized arbitration by daisy-chaining
 - A number of 7 interrupt request lines
 - Connectors with 3 rows x 32 pins (96 pins)
 - Up to 21 expansion boards in a backplane

Parallel VME Bus Variants (2)

VME64 Bus

- 64-bit data (double Eurocard)
- 64-bit addresses (double Eurocard)
- 32-bit or 40-bit addresses (single Eurocard)
- Lower-noise connectors
- "Plug and Play" features -> ROM memory

VME64x Bus

- 3.3-V power supply pins
- 141 user-defined I/O pins

Parallel VME Bus Variants (3)

- New connectors: 5 rows x 32 pins (160 pins)
 - Compatible with the 3-row connectors
- Additional 95-pin connector (5 rows x 19)
- Higher bandwidth (up to 160 MB/s)
- Modified protocol for data transfer cycles → 2eVME (Double-edge VME)
- Live-insertion (hot-swap) capability: insertion of modules during operation
- Front panels with guiding pins

Parallel VME Bus Variants (4)

- VME320 Bus (VME 2eSST)
 - Bandwidths of over 320 MB/s (peak bandwidths of over 500 MB/s)
 - Star-interconnection method
 - All the interconnections are joined together at the middle slot of the backplane
 - [▶] A new protocol → 2eSST (Double-edge Source Synchronous Transfer)
 - During the data phases, it is a sourcesynchronous protocol

VME Bus

- VME Bus
 - VME Bus Overview
 - Parallel VME Bus Variants
 - VXS Bus
 - VPX Bus

VXS Bus (1)

VXS – VMEbus Switched Serial

- Combines the parallel VME bus with highspeed switched serial interconnects
- ANSI/VITA standards
 - ANSI/VITA 41.0: Base specification
 - ANSI/VITA 41.1: InfiniBand technology
 - ANSI/VITA 41.2: Serial RapidIO technology
 - ANSI/VITA 41.3: Gigabit Ethernet technology
 - ANSI/VITA 41.4: PCI Express technology (4x)

VXS Bus (2)

- Switched serial interconnect
 - Point-to-point links between modules
 - Clock and data signals are combined into a single serial bitstream
 - Data rates of 3.125 or 6.25 Gbits/s
 - With 8b/10b encoding: 312.5 or 625 MB/s
 - With 64b/66b encoding: 378 or 756 MB/s
 - Switch boards (1-2): contain an active switch
 - Regular (payload) boards (up to 18): other boards that connect to the switch boards

VME Bus

- VME Bus
 - VME Bus Overview
 - Parallel VME Bus Variants
 - VXS Bus
 - VPX Bus

VPX Bus (1)

VPX – Virtual Path Cross-Connect

- Replaces the parallel VME bus with point-to-point serial interconnects
- ANSI/VITA 46 standard
 - ANSI/VITA 46.0: Base specification
 - ANSI/VITA 46.1: VMEbus signal mapping
 - ANSI/VITA 46.3: Serial RapidIO technology
 - ANSI/VITA 46.4: PCI Express technology
 - ANSI/VITA 46.7: 10 Gigabit Ethernet technology

VPX Bus (2)

- VPX generations
 - Gen 1 VPX: data rates of 2.5 .. 3.125 Gbits/s
 - Gen 2 VPX: 5 .. 6.25 Gbits/s
 - Gen 3 VPX: 8 .. 10.3 Gbits/s
 - Gen 4 VPX: 16 Gbits/s
 - Gen 5 VPX: 25 Gbits/s and higher
- VPX REDI (Ruggedized Enhanced Design Implementation)

- ANSI/VITA 48 standard
- Defines designs for enhanced cooling

VPX Bus (3)

- ANSI/VITA 66 standard
 - Specifies fiber optic interconnects for VPX modules
- ANSI/VITA 67 standard
 - Specifies analog coaxial interconnects with VPX modules for radio-frequency (RF) signals
- Applications of VPX-based systems
 - Military and aerospace
- Advantages: high performance; high reliability; scalability; resilience to shocks

Summary

- The VME bus is one of the most successful interconnect technologies
 - Mechanical, electrical, and software compatibility is ensured with all existing VME boards
 - The parallel VME bus has been significantly improved, but it has reached its limits
 - The VXS bus ensures the transition to highspeed serial interconnects
 - The VPX bus uses only serial interconnects
 - It has partially replaced the parallel bus

Concepts, Knowledge (2)

- Family of VME buses
- Original VME bus features
- VME64x bus features
- VME320 bus features
- VXS bus features
- VPX bus features