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ABSTRACT: Interface refinement is the task of generating buses and their protocols for 
the abstract channels of a digital system specification. The bus generation determines 
the width of the bus that will implement a group of channels. The protocol generation 
selects and generates the communication protocol that will implement the data transfer 
over the bus. In this paper we describe methods for interface refinement. We describe 
techniques for determining the buswidth for implementing a group of channels, and we 
present a method for protocol generation. 
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  11..  IInnttrroodduuccttiioonn  

 A system specification consists of functional objects such as processes, variables and 
communication channels. During system design, these functional objects in the specification 
are grouped into a set of system components such as processors, ASICs, memories and buses. 
While functional objects are devoid of any structure, system components have a well-defined 
structure, such as the number of pins on a chip, the number and size of words in a memory, or 
the number of wires in a bus. Updating the specification to reflect the transformation of the 
functional objects into system components is called specification refinement. 
 Concurrent processes in a specification communicate with one another by sending 
messages over abstract communication channels. To minimize interconnect cost, the channels 
in the system are grouped in such a way that each group of channels is implemented by a 
common physical medium called a bus. A bus consists of a set of wires over which the actual 
data transfer takes place under a bus protocol. The task of generating buses and their proto-
cols for each group of channels is called interface refinement. In this paper we describe meth-
ods for interface refinement. We shall begin by presenting the parameters that characterize the 
channels and buses. 
 For any channel, only one master process initiates and controls the data transfer and 
one or more slave processes respond to communication initiated by the master process. If the 
master process sends (or receives) data over the channel, then the direction associated with 
the channel is write (or read). Channels are usually unidirectional, which implies that if a pro-
cess both reads and writes to a variable in another process, distinct channels for each direction 
of data transfer are needed. 
 Channels are characterized by four parameters. Channel data size, bits(C), represents 
the number of bits in a single message transferred over channel C. The data size includes any 
address bits that may be required to access array variables over the channel. The number of 
accesses, access(P, C), represents the number of times that process P transfers data over 
channel C in its lifetime. The channel average rate, avg_rate(C), is the rate at which data is 
sent over channel C over the lifetime of the processes communicating over the channel. The 
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channel peak rate, peak_rate(C), is the rate at which a single message is transferred over the 
channel C. 
 Any bus implementation of a channel or a group of channels can be characterized by 
four parameters. The buswidth, buswidth(B), is the number of data lines in bus B over which 
the message can be transferred between the processes. Associated with each bus is a protocol 
that defines the exact sequence of operations that implement the message transfer over the set 
of data lines. The protocol delay, prot_delay(B), is the total delay of the protocol employed 
for a single transfer of data over the bus. The average bus rate, avg_rate(B), is the rate at 
which data can be transferred across the bus. The peak bus rate, peak_rate(B), is the maxi-
mum rate at which data can be transferred across the bus. The peak bus rate and the buswidth 
have the following relation with one another: 
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 Given a group of abstract communication channels, interface refinement determines 
the buswidth and the protocol for the bus that will implement the channels. Interface refine-
ment is driven by two conflicting goals. First, it attempts to minimize the interconnect cost 
between the system components that use a bus by reducing the buswidth, buswidth(B). Sec-
ond, it attempts to maximize the communication performance over the bus by increasing the 
peak rate of the bus, peak_rate(B), and consequently increasing the buswidth(B). 
 Interface refinement consists of two tasks: bus generation and protocol generation. 
Given a set of constraints, bus generation determines the width of the bus that will implement 
the group of channels. After the desired buswidth has been selected, protocol generation se-
lects and generates the communication protocol that will actually implement the data transfer 
over the bus. 

  22..  BBuuss  GGeenneerraattiioonn  

 In this section, we describe techniques for determining the buswidth for implementing 
a group of channels. 

 
Figure 1. A typical bus formed by merging channels transferring data of different sizes between sev-

eral processes. 

 A simple case of bus generation in which all the channels in a group have an identical 
message size is presented in [1]. In this case, channels are merged in such a way that all chan-
nels in any group are used exclusively over time to communicate between the same two proc-
esses. Consequently, each channel group is implemented with a buswidth identical to the size 
of any channel. 
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 In a more general case, processes communicating over channels that have been 
grouped together transfer data over the shared physical medium simultaneously. In addition, 
different channels may be transferring messages of different sizes between the processes. 
Such a case is shown in Figure 1. Processes P, Q, R and S communicate over channels X, Y 
and Z, which have been grouped by system partitioning to be implemented as a single bus, B. 
The three channels transfer data of different sizes – 8, 16 and 12 bits respectively – over the 
bus. In addition, process P may need to transfer data to process R at the same time that proc-
ess Q needs to send data to process S. We describe the bus generation for this case. 

  22..11..  DDeetteerrmmiinniinngg  tthhee  bbuuss  rraattee  

 Consider two channels, X and Y, which transfer 8-bit and 16-bit messages respec-
tively, as shown in Figure 2. The number of bits associated with each message transfer is in-
dicated above the message. We assume that the four second time interval shown in the figure 
represents the data transfer over the lifetimes of the processes that communicate over chan-
nels X and Y. Channels X and Y have average rates of 4 and 12 bits/second, respectively. If 
channels X and Y are merged into a single bus B, then the bus needs to send data at a rate of at 
least 16 bits/second to be able to satisfy the data transfer requirements of the two original 
channels. 

 
Figure 2. Merging channels X and Y into bus B. 

 The individual messages transferred over the channels have been labeled in the figure 
to make it easier to associate them with the data transferred over the shared bus. Consider the 
message labeled Y2 transferred at the t = 1 second in the original channel Y, which is now 
transferred on bus B at t = 1.5 seconds. While individual message transfers may be delayed 
due to the bus access conflicts, the total number of bits transferred over the individual chan-
nels before channel merging are still sent over the shared bus in the same amount of time. 
 For the synthesis of bus B in Figure 2, we take into account that the individual chan-
nels will not always be transferring data. One channel's idle time slots are utilized for data 
transfers of other channels by synthesizing a bus over which data is always being transferred 
at a constant rate. 
 Before being merged into a bus, if a channel is transferring data at a certain average 
rate, it should be able to transfer the data over the bus at the same average rate. This can be 
achieved if the average rate, avg_rate(B), of bus B is greater than the sum of the individual 
channel average rates. Thus, 

 3



 

avg rate B avg rate C_ ( ) _ (  
C B

≥
∈

)∑     (2) 

 The goal of bus generation should be to synthesize a bus with a minimum number of 
wires and an average rate given by Equation (2). The most efficient bus implementation will 
be achieved if the bus is never idle, and if it is constantly transferring data at a fixed rate. Un-
der such ideal conditions, the bus peak and average rates will be identical: 

peak_rate(B) = avg_rate(B)     (3) 

  22..22..  CCoonnssttrraaiinnttss  ffoorr  bbuuss  ggeenneerraattiioonn  

 For a given set of channels that have been grouped together to be implemented as a 
single bus, constraints and relative weights can be specified for several bus and channel pa-
rameters. 
 A minimum/maximum buswidth constraint may be derived from the overall pin con-
straints specified for the modules or chips to which the processes communicating over the bus 
have been mapped. 
 Channel average rate may be constrained to ensure that the processes are not slowed 
down due to communication delays over the bus. Given constraints on the execution time of a 
process that communicates over several channels, the designer may allocate the amount of 
time spent for communication over the various channels, from which a minimum channel av-
erage rate constraint can be derived. A maximum channel average rate may be specified in 
cases when one of the processes communicating over the channel represents a slow device 
that is incapable of sending or receiving data faster than a certain rate. 

 
Figure 3. Channel peak rate constraints. 

 In certain cases, a minimum channel peak rate may be specified to ensure that a single 
message transfer over the channel does not take an excessive amount of time. For example, 
consider channel X in Figure 3(a), which transfers a 16-bit message in each of the first two 
time slots, t = 0 and t = 1. The other two time slots are used to perform internal computations 
by the process that communicates over channel X. If we were to implement the channel as a 
bus by itself, from Equation (2), the bus average rate would be 8 bits/second, resulting in the 
execution trace of Figure 3(b). However, the process now requires four time slots just for 
communicating over the bus. This is unacceptable, since two additional time slots will still be 
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required to perform the internal computations of the process (originally performed in time 
slots t = 2 and t = 3 in Figure 3(a)). 
 If a minimum peak rate of 16 bits/second is specified for channel X, we will get the 
desired bus implementation of Figure 3(c), one that does not require any additional time 
slots. Thus, for all channels C that have a minimum peak rate constraint associated with them, 

peak_rate(B) > peak_rate(C)     (4) 
 In case a minimum channel peak rate constraint is specified, the resulting bus may be 
idle at times. 

  22..33..  AAllggoorriitthhmm  ffoorr  ddeetteerrmmiinniinngg  bbuusswwiiddtthh  

 We present an algorithm for determining the width of a bus implementation [3]. The 
algorithm assumes that the data and control lines are disjoint. At any given instant, only one 
channel can transfer data over the bus. If the width of the bus is greater than the address and 
data bitwidths, then the address and data bits are sent simultaneously over the bus, otherwise, 
they are sent separately in two distinct transfers. In the latter case, the address bits have to be 
latched in the receiving process. If the buswidth is smaller than the size of the message being 
sent over it, the message is sent in multiple transfers. 
 All the processes which communicate over one of the channels in the bus are assumed 
to having a synchronous implementation. Thus, transferring a message over the bus requires a 
whole number of clock cycles. A variable accessed over the bus is modeled by a separate 
process that sends and receives its value over the bus in response to requests from other pro-
cesses. Thus, while computing the execution time of a master process that accesses a variable 
over the bus, the slave process which model that variable is assumed to be always ready for 
data transfer, i.e., no synchronization delays occur for variable accesses over the bus. 
 The input to the buswidth-generation algorithm consists of a set of channels to be im-
plemented on a single bus and constraints on the channel rates and buswidth. The output of 
the algorithm is the width of the bus that will implement that channel group. 
 The algorithm examines a range of potential buswidths. For each buswidth, the bus 
peak rate and the individual channel average rates are computed. For the synthesis of a bus 
that constantly transfers data, Equation (2) and (3) require that the bus peak rate should be 
greater than the sum of the channel average rates. Each buswidth for which the above condi-
tion holds represents a feasible bus implementation. From the set of feasible bus implementa-
tions, each corresponding to a different buswidth, we select the one which has the least cost. 
In case no constraints are specified, a unit buswidth corresponding to a serial data transfer is 
selected. 
 The buswidth-generation algorithm is presented in Figure 4. First, the range of bus-
widths examined by the algorithm is determined. The largest buswidth, max_width, is the size 
of the largest message transferred by any channel. The lowest buswidth, min_width, is 1. 
 The variable curr_width represents the current buswidth being evaluated by the algo-
rithm. For each value of curr_width in the range (min_width, max_width), the bus peak rate is 
computed using Equation (1). 
 We denote by access(P, C) the average number of accesses performed by the process 
P to the channel C. The number of bits sent or received over the channel C in a single mes-
sage is denoted by bits(C). If a process accesses an array variable over the bus, the number of 
address bits are also included in bits(C). For instance, if a process accesses a scalar variable x 
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of 16 bits and an array variable y of 32 words × 16 bits over the channels Cx and Cy, respec-
tively, then bits(Cx) is 16, and bits(Cy) is 21 (5 address bits and 16 data bits). 

 For simplicity, assume that a process P has exactly one channel C over which mes-
sages are transferred. In case than current buswidth is less than the number of bits in the mes-
sage, several transfers ( ) may be required to implement a single 
message  transfer. The communication time for the process P is calculated as follows: 
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 Using the value of comm_time(P) computed above, the average rate for each channel 
mapped to the bus can be estimated. The sum of the channel average rates for a specific value 
of curr_width is stored in avg_rate_sum. 

 if no constraints specified then 
  return (1) 
 end if 
 /* compute range of buswidths */ 
 min_width = 1 
 max_width = Max (bits(C)) 
 mincost = ∞ 
 mincost_width = ∞ 
 for curr_width in min_width to max_width loop 
  /* compute bus peak rate */ 
  peak_rate (B) = curr_width / prot_delay (B) 
  /* compute sum of channel average rates for curr_width */ 
  avg_rate_sum = 0; 
  for all channels C ∈ B loop 

   
)(_)(_

)(),()(_
PtimecommPtimecomp

CbitsCPaccessCrateavg
+

×=  

   avg_rate_sum = avg_rate_sum + avg_rate (C) 
  end loop 
  if (peak_rate (B) > avg_rate_sum) then 
   /* feasible solution, determine minimal cost */ 
   curr_cost = ComputeCost (curr_width) 
   if (curr_cost < mincost) then 
    mincost = curr_cost 
    mincost_width = curr_width 
   end if 
  end if 
 end loop 
 if (mincost = ∞) 
  then return (failure) 
  else return (mincost_width) 
 end if 

Figure 4. Buswidth generation algorithm. 
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 If the bus peak rate is lower than the sum of the average rates of all the channels, then 
curr_width represents an infeasible implementation for the bus. We repeat the computation of 
the bus peak rate and sum of the channel rates with the next higher buswidth in the range 
(min_width, max_width). 
 If the bus peak rate is greater than the sum of the individual channel rates, then 
curr_width represents a feasible implementation of the bus. For any of the constraints on 
buswidth, channel average and peak rates specified for the bus, the procedure ComputeCost 
calculates the cost of a feasible bus implementation as the sum of the squares of any con-
straint violations weighted by the relative weights specified for that constraint. For example, 
assume that the only constraint specified was a maximum buswidth constraint represented by 
max_wires. Let k represent the relative weight specified for this constraint. For any value of 
the buswidth, curr_width, the cost function for the bus would be defined as follows: 

 
otherwise                                                 0

 if 2))_((




 >−= wiresmax_curr_widthwiresmax_widthcurrkcost  (6) 

 If more than one feasible solution exists for the group of channels, the buswidth with 
the lowest cost is selected for implementing the bus. Variable mincost represents the mini-
mum cost computed for all feasible implementations, while variable mincost_width represents 
buswidth, which corresponds to the minimum cost. 
 If there were no feasible solutions for all the buswidths examined, then an implemen-
tation for the group of channels would not be possible. Any implementation for such a group 
of channels would progressively delay the processes communicating over the bus. Such a 
situation can arise when several channels with very high average rates are grouped together to 
be implemented as a single bus. One solution would be to split the group of channels to be 
implemented further by more than one bus. Alternatively, the lowest cost infeasible buswidth 
may be selected. 

  33..  PPrroottooccooll  ggeenneerraattiioonn  

 After the selection of the appropriate buswidth, protocol generation defines the exact 
mechanism of data transfer over the bus. A bus consists of three sets of wires. 
 Data lines are used to send data over the bus. The number of data lines can be deter-
mined by the buswidth-generation algorithm, or it can be specified by the system designer. 
 Control lines are required to synchronize the processes that communicate over the 
bus. The number of control lines required depends on the type of protocol selected to imple-
ment the data transfers. The set of control lines are shared by all the channels mapped to the 
same bus. 
 Identification or mode lines are required to identify the particular channel that is 
transferring data over the bus at any moment. Since the bus control signals are shared by all 
channels, such identification (ID) lines are essential to enable processes to recognize when the 
control signals over the bus are meant for them. Each channel in the bus is assigned a unique 
ID, which serves as its address. Every time a master process initiates transfer of data over the 
bus, it places the corresponding ID of the relevant channel on the bus ID lines so that only the 
corresponding slave process will respond to the control signals. The ID lines can also be di-
rectly encoded into the addresses of data accessed over the bus. In such cases, the slave pro-
cesses must have an address detection mechanism which examines each address placed on the 
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bus, to determine whether they should respond to the control signals set by the master pro-
cess. 

 
Figure 5. Processes accessing variables over channels grouped into a bus. 

 We shall examine protocol generation through a simple example, shown in Figure 5 
[2]. Variables x and Mem are accessed by processes P and Q. The dashed lines indicate the 
assignment of the processes and variables to system components. Channels C0, C1, C2 and 
C3 are grouped into a single bus B, whose width has been determined to be 8 bits. Protocol 
generation consists of several steps: 

• Protocol selection. Various communication protocols may be selected for a bus im-
plementation, such as a full-handshake, half-handshake, or hardwired ports. Each pro-
tocol requires a different number of control lines. For bus B in Figure 5, a full-hand-
shake protocol is selected. 

• ID assignment. If N channels are implemented on the same bus, log2(N) lines will be 
required to encode the channel ID. The four channels in Figure 5 require two ID lines. 
Channel C0 is assigned the ID “00”,  C1 is assigned “01” and so on. 

• Bus structure and procedure definition. The structure defined for the bus (i.e. the 
data, control and ID lines) is defined in the specification. For each channel mapped to 
the bus, appropriate send and receive procedures are generated. Figure 6 shows the 
declaration of an 8 bit bus, with two control lines and two ID lines. The bus B is de-
clared to be a global variable (a signal in the VHDL language) so that all processes can 
access it. Process P writes to the 16-bit variable x over channel C0. Since the buswidth 
is only 8 bits, procedures SendC0 and ReceiveC0 in Figure 6(b) transfer the 16-bit 
message associated with channel C0 over the bus, in two transfers of 8 bits each. 

• Update variable-references. References to a variable that has been assigned to an-
other system component by system partitioning must be updated in processes that were 
originally referencing it directly. Accesses to variables are replaced by the send and re-
ceive procedure calls corresponding to the channel over which the variable is accessed. 
For example, in Figure 5, process P writes the value "32" directly to variable x. Chan-
nel C0 represents the write to variable x. The statement "x  <=  32" is replaced by the 
send procedure call "sendC0 (32)" as shown in Figure 7. The statement "Mem(60) := 
cont" in process Q is updated to "sendC3 (60, cont), indicating that the value in cont is 
to be written to address 60 of array Mem. 
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 TYPE HandShakeBus IS RECORD 
   start, done: BIT; 
   ID: BIT_VECTOR (1 DOWNTO 0); 
   DATA: BIT_VECTOR (7 DOWNTO 0); 
 END RECORD; 
 SIGNAL B: HandShakeBus; 
 PROCEDURE ReceiveC0 (rxdata: OUT BIT_VECTOR) IS 
 BEGIN 
   FOR j IN 1 TO 2 LOOP 
     WAIT UNTIL (B.start = '1') AND (B.ID = "00"); 
     rxdata (8*j - 1 DOWNTO 8*(j-1)) <= B.DATA; 
     B.done <= '1'; 
     WAIT UNTIL (B.start = '0'); 
     B.done <= '0'; 
   END LOOP; 
 END ReceiveC0; 
 PROCEDURE SendC0 (txdata: IN BIT_VECTOR) IS 
 BEGIN 
   B.ID <= "00"; 
   FOR j IN 1 TO 2 LOOP 
     B.DATA <= txdata (8*j - 1 DOWNTO 8*(j-1)); 
     B.start <= '1' 
     WAIT UNTIL (B.done = '1'); 
     B.start <= '0' 
     WAIT UNTIL (B.done = '0'); 
   END LOOP; 
 END SendC0; 

Figure 6. Defining bus B and the send and receive protocols for channel C0. 

• Generate processes for variables. In order to obtain a simulatable system specifica-
tion, a separate process is created for each group of variables accessed over a channel. 
Appropriate send and receive procedure calls are included in the process to respond to 
access requests to the variable over the bus. In Figure 5, the variables x and Mem were 
assigned to different system components, as shown by the dashed lines. In Figure 7, 
processes xProc and MemProc have been created for these two variables. 

 The protocol generation presented has several advantages. First, the refined specifica-
tion is simulatable, and the design functionality, after insertion of buses and communication 
protocols, can be verified. Second, by encapsulating data transfer over the bus in terms of 
send and receive procedures, the description of the process remains much ordered than it 
would be if we were to insert the assignments for the control and data lines at each communi-
cation point in the procedure. Finally, if at a later stage another communication protocol were 
selected for communication over the bus, only the bus declaration and send and receive pro-
cedures need be changed. The system's process descriptions, including the send and receive 
procedure calls, remain unchanged. 



 

 
Figure 7. Refined specification after protocol generation. 

  44..  CCoonncclluussiioonnss  

 In this paper we presented a set of tasks that have to be performed to refine the inter-
face specifications. A method for bus generation was introduced, and the tradeoffs between 
buswidths and system performance were evaluated. For a selected buswidth, we showed how 
communication protocols can be generated. We presented the advantages of this protocol 
generation method. 
 The work presented can be extended in several directions. Methods for resolving ac-
cess conflicts must be developed, for different arbitration schemes. Techniques are needed for 
interfacing fixed incompatible protocols. During protocol generation, we need to develop 
metrics to evaluate several candidate protocols that may be selected for implementing trans-
fers over the bus. We need to incorporate the effect of arbitration delays on the process execu-
tion times and channel average rates. The effect of different bus arbitration schemes on the 
performance of the processes communicating over a bus needs to be investigated. 
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