J Drive ™ Engine - Documentation

page 24

Documentation for the Xilinx 1532 J Drive ™ Programming Engine

This document describes the Xilinx IEEE Draft Standard 1532 J Drive Programming Engine.

There are two main sections:

The application documentation describes how to use the programmer to program PLD’s with it.

The source documentation describes the technical internals of the programmer.

The document includes following sections:

Application documentation:

· The command line interface

(page 2)

· The command file

(pages 2 – 3)
Source documentation:

· Architecture (operation and data flow)

(page 4)

· Description of architecture blocks:

(pages 4 – 8)

· Program flow

(pages 8 – 9)

· Source file descriptions

(pages 9 – 18)

· Build instructions

· Make file

(pages 18 – 19)

· Compiler switches

(pages 19 – 20)

· Bison grammar files

(pages 20 – 22)
· The Portability of the 1532 J Drive Programmer

· The Operating System Interface

(page 22)
· The Library Interface

(page 22)
· The Boundary Scan Interface

(pages 22 – 23)
Application Documentation for the Xilinx 1532 J Drive Programmer

The command line interface:

The 1532 J Drive Programmer can be started with the command “JDrive“.

Syntax:

JDrive [-adfhsv] [-l [log-file-name]] [--addclocks] [--debug] [--fail_ignore] [--help] [--logfile]

 [log-file-name]] [--status] [--virtual] command-file
The name of the command file must be passed a parameter. The command file has the file extension “.cmd” and describes the Bscan devices in the scan chain by using the appropriate BSDL and 1532 data files, and the action to be preformed.

With the parameter -s / --status parsing and execution status information will be displayed (parsed files, current actions and procedures in execution, duration etc.). Without this parameter only the result message (“Successful.” or “Aborted !”) and error messages will be displayed.

With the parameter -d / --debug detailed execution status information (= vector synthesizer/interpreter debug information) will be displayed (every single step and bit sequences). Slower ! For that the compiler switch DEBUG is necessary !

With the parameter -l / --loglife [logfile] all messages and information will be wrote to a file. The result message (“Successful.” or “Aborted !”) will be displayed on the screen also.

If a compare fail between expected and measured bits the execution will be not aborted if parameter -f / --fail_ignore is set.

With the parameter -v / --virtual the programmer will be executed without programming to the hardware and the Interpreter continues to run until end, unless an error (logic error in a BSDL or data file, not found in syntax and semantic check) occurs. This switch is relevant for BSDL and data file tests without hardware. Fast ! For that the compiler switch VIRTUAL is necessary !

The parameter -a / --addclock sets the flag ADDCLOCKS. If is set, a burst will always be executed in a stable controller status (IRPAUSE, DRPAUSE, IRSHIFT, DRSHIFT or RUN/IDLE). If the flag is not set, then the scan operations are executed according to the standard form.

The parameter -h / --help cause the help for the command line interface to be displayed.

Example:

JDrive -a example.cmd

JDrive -s -d -l example.log example.cmd (for full information written to a log file)

JDrive -v example.cmd (for testing the files)

After the program starts, the syntax of the command file is first checked. (If an error is found, the program terminates with an appropriate message). Then all BSDL files are checked syntax and semantics. Again, should a syntax error be encountered, the program terminates with a corresponding message. The error message contains the file name and the line number where the error was encountered. Also displayed is the contents of the line containing the error, up to the point at which the error was found.

After the syntax of the BSDL file has been found to be correct, the semantics of the file are checked. Mistakes in semantics are then listed together. Each error message contains the line in the BSDL file at which the error was found, together with information about the type of mistake. The 1532 files are, analogously to the BSDL files, checked for syntax and semantics.

After all files have been successfully checked, the parsing duration are displayed and the execution proper can begin. Should an error be encountered here, the program terminates with a corresponding message.

Possible sources of error are:

· Problems initialising the hardware (e.g. Missing drivers).

· Hardware problems during program execution.

· Incorrect actions or data names in the command file i.e. The corresponding action is not defined in the ISC extension of the BSDL file.

· Operations on variables which were not yet initialised.

· Incorrect data in the 1532 file, i.e. To few hex strings in the data block or hex strings with unused bits.

Comparison errors during the programming, i.e. The measured values are do not agree with the expected values. (If the procedure „proc_error_exit“ is defined, then it will be carried our before program termination).

The message „Successful.“ and the programming duration (without file parsing) are displayed after successful completion.

The command file:

The command for every device must include the:

· device name,

· corresponding BSDL file name or alternatively, the length of instruction register,

· action to be carried out (optional) and corresponding data name (optional),

· name of corresponding 1532 data file (optional),

· name of data output file (optional).

The order of the scan chain is defined by the order of devices encountered from TDI to TDO (of the TAP controller)I.

There must be an action defined for at least one device. (In the current version there must be one and only one action defined, for at least one device).

BNF for command file:

<command file format> ::= <command list>

<command list> ::= <command> {<command>}

<command> ::= <device name> <bsdl stmt>; | <device name> <instruction register stmt>;

<bsdl stmt> ::= -b „ <bsdl file name> “ [<action stmt> [<data input file stmt> [<data output file stmt>]]

<action stmt> ::= -a „ <action name> “ | -a „ <action name> (<data name>) “

<data input file stmt> ::= -d „ <data input file name> “

<data output file stmt> ::= -o „ <data output file name> “

<instruction register stmt> ::= -i <instruction length>

Example:

D1 –b“bsdl file name“ –a“action name“ –d“data input file name“ –o“data output file name“;

D2 –b“bsdl file name“;

D3 –b“bsdl file name“ –a“action name (data name)“ –d“data input file name“;

This entry reflects 3 devices. The nearest device to TDI (of the TAP controller) is D1. D2 is not a PLD. The sections –a, -d and –o are therefore optional. In case of a standard Bscan device a BSDL file does not exist, it is possible to enter the following instead of the BSDL file name:

D2 –i8;

(Since in the current version of the software, only one device can be programmed at a time, two command files needed to be written for this example. An action is specified for only one of the devices D1 and D3, and for the other only the BSDL file or the length of the instruction register. Then they are programmed one after the other.)

Source Documentation for the Xilinx 1532 J Drive Programmer

Architecture (operation and data flow)

[image: image1.png]
Description of architecture blocks:

Command file:

See application documentation.

BSDL files:

Description for Bscan devices. For PLDs the BSDL description includes the ISC extension (IEEE Std_1532_2000), describes the programming sequences.

Data files:

Input data file contains the data to be programmed into a PLD.

In the output data file the results of programming will be written.

Scan chain structure:

List of devices in scan chain (in order from TDO to TDI).

A device structure contains the information, necessary for programming the device. There are three blocks: basis information (from command file), BSDL information (from BSDL file) and status information.

Device information:

· basis information,

· link to BSDL information,

· status information;

Basis information:

· device identifier,

· instruction register length or

· name of BSDL file;

· if BSDL file name is not empty:

· IEEE 1532 action to be executed and corresponding data name (optional),

· IEEE 1532 data file (corresponding to the action) (optional),

· name of data output file (optional)

Source files:

progty.c

progty.h

BSDL information structure:

BSDL information for device programming, read from BSDL file.

BSDL information:

· list of instructions (pointer to instructions);

for each instruction:

· instruction identifier,

· instruction code,

· corresponding data register;

· list of data registers (pointer to registers);

for data register:

· data register identifier,

· data register length;

· list of IEEE 1532 actions (pointer to actions);

for each action:

· action identifier,

· data name (if available),

· exclusivity flag,

· list of procedures to be executed;

for each procedure:

· procedure identifier,

· data name (if available),

· pointer to procedure,

· execution flag (mandatory, recommend, optional)

· exclusivity flag;

· list of IEEE 1532 procedures (pointer to procedures);

for each procedure:

· procedure identifier,

· data name (if available),

· list of flows to be executed (pointer to flows);

· TCK signal status flag (low or both),

· instruction capture,

· user code,

· id code,

· blank user code,

· status flag (false or true),

· pin flag (clamp or highz),

· protection values;

ISC_flow information:

· IEEE 1532 flow:

· flow identifier,

· data name (if available),

· 3 blocks (initialization, repeat, terminate; pointer to blocks),

· list of variables used in the flow (pointer to variables);

· IEEE 1532 Block:

· loop count (for repeat block),

· list of activities (pointer to activities);

· IEEE 1532 activity:

· activity identifier,

· pointer to instruction,

· list of update fields (pointer to update fields),

· field width summary over all update fields,

· list of capture fields (pointer to capture fields; optional),

· field width summary over all capture fields (optional),

· minimal wait duration (pointer to),

· maximal wait duration (pointer to);

· IEEE 1532 update field:

· field width,

· data expression (pointer to),

· value as bit field (calculated using the data expression during the programming);

· IEEE 1532 capture field:

· field width,

· output operator flag for expected data,

· data expression for expected data (pointer to),

· expect value as bit field (calculated using the data expression during the programming),

· output operator flag for compare mask (optional),

· data expression for compare mask (pointer to; optional),

· compare mask as bit field value (calculated using the data expression during the programming; optional),

· flag for CRC calculation;

· IEEE 1532 data expression:

· variable identifier and

· pointer to variable (optional),

· operator (optional),

· integer operand (optional),

· hex string (optional);

· wait duration,

· port id and

· loop counter (optional),

· time in seconds (optional);

· variable:

· variable identifier,

· bit size,

· value as bit field

· initialization flag;

Source files:

prgdev.c

prgdev.h

Status information structure:

Contains information about programming status (entities and indexes for current procedure, flow, block , activity etc.) used and updated by the BSDL interpreter.

The status information structure also contains the file position of data blocks defined in the data input file, given during data file parsing.

Source files:

prgdev.c

prgdev.h

Command file parser:

Parses command file and creates scan chain structure. For each command a new device structure will be added to the list. Read device basis information and set it in the device structure.

Bison grammar file:
gcmd.y

Source files:

gcmd_tab.c
gcmd_tab.h
(generated by bison)

pcmd.c

pcmd.h

BSDL file parser:

Parses the BSDL files and fills the BSDL information of devices, including syntax and semantic checks.

Bison grammar file:
gbsd.y

Source files:

gbsd_tab.c
gbsd_tab.h
(generated by bison)

pbsd.c

pbsd.h

Data file parser:

Parses the data input files and gives the file positions of data blocks for the status information structure. Syntax check only !

Bison grammar file:
gdat.y

Source files:

gdat_tab.c
gdat_tab.h
(generated by bison)

pdat.c

pdat.h

Data file reader:

Called by the BSDL interpreter. Reads single hex strings from data input file at defined file positions.

Source files:

pdat.c

pdat.h

Data file writer:

Writes output data in the data output file of a device.

Source files:
(not implemented)

Vector synthesizer:

Main loop for device programming. Requests the BSDL interpreter for device specific codes and corresponding parameters, checks the compatibility of the codes and calls the executor with the generated vector interface data.

Source files:

interpr.c

interpr.h

BSDL interpreter:

Called by the vector synthesizer to get the device specific codes and parameters. Generates them from BSDL information structure. Uses the status information structure to save the current programming step of the device.

Source files:

interpr.c

interpr.h

Executor:

The executor has two interfaces:

The first one is the interface to the boundary scan hardware (to the driver). In this project it is the XILINX-cable. The second one is the interface to the vector synthesizer. The executor executes the scan functions and waiting functions, and puts the data into a buffer. When it receives the scan command it executes a burst and gives the measured data back to the vector synthesizer. It also controls the controller state.

If a compare function is called, the executor compares the measured data with expected values.

The first time it is called the executor initializes the driver, makes a tap reset and goes to run test/idle before the first command is sent to the executor.

Source files:

executor.c
executor.h

bscanio.c
bscanio.h

bscandrv.c
bscandrv.h

Program flow

· START

· Evaluate command line arguments.

· Get command file name – abort program if missing.

· Abort program if invalid option.

· The command file parser fills the scan chain structure and the basis information (per device).

· Command file syntax check – abort program if fail.

· The BSDL file parser fills the BSDL information (per device).

· BSDL file syntax check – abort program if fail.

· BSDL information semantic check – abort program if fail.

· The data file parser sets the data block file positions in the status information structure (per device).

· Data file syntax check – abort program if fail.

· Start the vector synthesizer:

· Initialize executor.

· Initialize BSDL interpreter (per device).

· Starts the programming loop:

· asks the interpreter for next device codes;

Interpreter:

· checks the programming state,

· defines, what has to be done (doReady for devices without action),

· defines the parameter for that code (calls the data file reader if required).

· if the last executed code for a device was doNoOp the last given code will be the next device code (no repeated interpreter request)

· Sets the global code

· it’s equal to the code of the device with action

(Later in concurrent programming: checks the compatibility of the different codes of the devices.)

· if the global code is doReady, it breaks the loop.

· if the device code not equal to the global code, doNoOp will be executed for that device.

· Delivers the global code to the executor;

Executor:

 The executor executes the delivered code. It collects the data for one ScanIR or ScanDR statement. Is the operation complete or the Scan buffer full the burst is executed, that means that The output data will be written to the controller and the measured value get from the controller. If an ScanDR with compare is given in the global code, a comparison to expect values will executed and return the fail flag to the vector synthesizer.

· Delivers parameters (as bit sequences) to the executor (in a loop):

· Request the interpreter to get the parameter (per device)

Interpreter:

· adds the parameter bits to the executor buffer (return if buffer is full),

· if doNoOp will be executed for the device, the BYPASS instruction code (if global code == doIrScan) or a single bit (doDrScan) will be added

· Continue parameter loop, if the full parameter bit sequence of the current device was deliver and there were more devices to work.

· Calls the executor to execute (if executor buffer is full or all bits were deliver):

Executor:

· The executor executes the code and execute the burst, that means it writes the data to hardware and gets the data. If the complete flag was set by the synthesizer, it puts TMS-Sequences to the buffer to go to the EXIT1-Controller state(DREXIT1 or IREXIT1).

· If the flag ADDCLOCKS is set by synthesizer it goes to the Pause state of controller(DRPAUSE or IRPAUSE)

· If the complete flag is not set, the executor stays in the shift state of the controller by burst execution. If the ADDCLOCKS flag was set, it add TMS-sequences to go to the stabil pause state of controller. After burst execution it goes back to the DRShift or Irschift state on the short way to shift the next data until the complete flag will giben in the next calls of executor.

· in case of reading back information from the device

· Calls executor to get measured and compare bits.

· Call to the data file reader if required (later).

· In case of a compare fail: breaks programming loop in the next step (*).

· Requests executor to empty the buffer:

Executor:

· The burst will be executed, see above and the buffer counter will be reset to begin.

· Continues parameter loop if not all parameter bits were deliver (because executor buffer was full).

· end parameter loop

· end programming loop

· END

· (*) In case of a compare fail between expected and measured values the current parameter loop will be fully executed. If the procedure “proc_error_exit” is defined for a device it will be initialized and executed as next (in the programming loop). Then the program will be aborted. If none error procedure is defined, the program will be aborted directly after the parameter loop.

· The IEEE 1532 data file reader reads the necessary data from the input file (using status information structure).

· The IEEE 1532 data file writer writes the necessary data to the output file (later).

Source file descriptions

sysopenv.c / sysopenv.h:

Operating system interface: provides connection to C-libraries stdio, stdlib, mem etc.

All functions are called by macros, to achieve relative independence from the C compiler.

char ReadChar(FILE *aFile, int *aEof);

Reads a single character from file. Ignores control keys, unless tabulator and line break.

int GoToFilePos(int n, FILE* aFile);

Set file pointer at a defined file position (corresponding to function ReadChar()).

 libenv.c / libenv.h:

Library interface: provides connection to C-libraries string, ctype etc. .

All functions are called by macros, to achieve relative independence from the C compiler.

Functions:

void StrInit(pString aString, char * aPchar);

void StrDone(pString aString);

void StrAssign(pString aDestString, pString aSrcString);

void StrChAssign(pString aDestString, char *aSrcString);

void StrConcat(pString aDestString, pString aSrcString);

void StrChConcat(pString aDestString, char *aSrcString);

void StrIntConcat(pString apString, int aInteger);

void StrAddChar(pString aString, char aChar);

For independence from the C-Compiler only the type “tstring” (defined in libenv.h) is used for strings in the sources. These are the string functions for that type.

logfkt.c / logfkt.h:

Functionality for output information (what and where).

Functions:

void InitLog(void);

void DoneLog(void);

Initialise and done (global) log info entity.

int SetLogOption(int aOption);

int IsLogOption(int aOption);

Set and get log options (status, debug, file).

void SetLogFile(char *aFileName);

Set log file.

void WriteLog(char *aMsg, ...);

void WriteMessageLog(char *aMsg, ...);

void WriteStatusLog(char *aMsg, ...);

void WriteDebugLog(char *aMsg, ...);

Write information (or write it not) to screen or/and to log file in dependence of set log options.

prgtyp.c / prgtyp.h:

Implements lists and bit fields.

Functions:

(List handling)

pList NewList(void);

void FreeList(pList aList);

void InitList(pList aList);

void DoneList(pList aList);

The type “tList” (defined in prgtyp.h) is used for lists. These functions create and destroy lists from that type.

void AddList(pList aList, void *aptr);

int GetItemCountOfList(pList aList);

void *GetItemAtIndex(pList aList,int aIndex);

Handle lists.

int IntCompare(void *aKey1, void *aKey2);

int lSearchList(pList aList, void *aKey, int *aIdx);

void SetListFunc(pList aList, pfCompare aCompare, pfKeyOf aKeyOf);

Searching without sorting.

pBitField NewBitField(int aSize);

void FreeBitField(pBitField aBits);

void InitBitField(pBitField aBits, int aSize);

void DoneBitFields(pBitField aBits);

Bit sequences are saved in variables from type tBitField. These functions create and destroy bit field entities.

(Bit field handling.)

int BitAtIndex(pBitField apBits, int aIndex);

Returns the value from the bit at the index of the bit field.

int HexToBitField(pBitField apResBits, PSTRING aHexStr, int aSize);

char HexDigitToInt(char aHexDigit);

int IntToBitField(pBitField apResBits, int aOperand, int aSize);

Conversion of bit fields.

int ComplementOfBitField(pBitField apResBits);

int AddBitFields(pBitField apResBits, tBitField aValue);

int SubBitFields(pBitField apResBits, tBitField aValue);

int ShiftLeftBitField(pBitField apResBits, int aOperand);

int ShiftRightBitField(pBitField apResBits, int aOperand);

Operations on bit fields.
progty.c / progty.h:

Interface for scan chain structure.

Functions:

int AddDevice(pProg1532 aProg,PSTRING aDevName);

Creates a new device and adds it to the list.

pDevEnt GetLastDevice(pProg1532 aProg);

pDevEnt GetDeviceAtIndex(pProg1532 aProg, int aIndex);

int GetDeviceCount(pProg1532 aProg);

void *KeyOfDevList(void *aItem);

List handling.

void SetDevBsdlName(pProg1532 aProg, PSTRING aName);

void SetDevDFInpName(pProg1532 aProg,PSTRING aName);

void SetDevDFOutName(pProg1532 aProg, PSTRING aName);

void SetDevActionName(pProg1532 aProg, PSTRING aName);

void SetDevDataName(pProg1532 aProg, PSTRING aName);

void SetDevIrLength(pProg1532 aProg, int aIrLength);

Functions are called during command file parsing to set device basis information.

prgdev.c / prgdev.h:

Interface for device structure. For information about device structure see sections “Description of architecture blocks: Scan chain structure”, “...: BSDL information structure” and “...: Status information structure”.

pDevEnt InitDevice(PSTRING aName);

pBsdlInfo InitBsdlInfo(void);

void FreeBsdlInfo(pBsdlInfo aInfo);

pDataExpr InitDataExpr(void);

void DoneDataExpr(pDataExpr aDataExpr);

pDurationSpec InitDurationSpec(void);

void DoneDurationSpec(pDurationSpec aDurationSpec);

pIscFlowEnt InitFlow(PSTRING aFlowName, PSTRING aDataName, int aLine);

void FreeFlow(pIscFlowEnt aFlos);

pExecBlock InitExecBlock(PSTRING aName,int aLoopCount);

void FreeExecBlock(pExecBlock);

pFlowActEnt InitFlowAct(PSTRING aName);

void FreeFlowAct(pFlowActEnt aAct);

pVarEnt InitVar(PSTRING aName, int aSize);

void FreeVar(pVarEnt aVar);

pUpFieldEnt InitUpField(int aWidth, pDataExpr aExpr);

FreeUpField(pUpFieldEnt aUpField);

pCapFieldEnt InitCapField(int aWidth, pDataExpr aExpr);

FreeCapField(pCapFieldEnt aCapField);

pProcEnt InitProc(PSTRING aName, PSTRING aDataName, int aLine);

FreeProc (pProcEnt aProc);

pActionEnt InitAction(PSTRING aName,PSTRING aDataName);

void FreeAction(pActionEnt aAct);

pActProcEnt InitActProc(PSTRING aName,PSTRING aDataName);

FreeActProc(pActProcEnt aActSpec);

pActionStatus InitActionStatus(void);

pDataRecord InitDataRecord(PSTRING aDataName);

void DoneDataRecord(pDataRecord apDataRecord);

Create and destroy entities of device structure.

(Functions called from command file parser. Fill device basis information)

void SetBsdlFileName(pDevEnt aDevEnt, PSTRING aFileName);

void SetDataInputFileName(pDevEnt aDevEnt, PSTRING aFileName);

void SetDataOutputFileName(pDevEnt aDevEnt, PSTRING aFileName);

void SetActionName(pDevEnt aDevEnt, PSTRING aActionName);

void SetDataName(pDevEnt aDevEnt, PSTRING aDataName);

Set file names, action name and data name.

int PutIrLength(pDevEnt aDevEnt, int aIrLength, int aLine);

Set instruction register length for device.

(Functions called from BSDL file parser. Fill device BSDL information structure.)

int SetTCKSignalStatus(pDevEnt apDevEnt, int aStatus, int aLine);

Sets the signal status of TCK (low or both).

int AddInstruction(pDevEnt aDevEnt, PSTRING aInst, int aLine);

int AddOpCode(pDevEnt aDevEnt,PSTRING aCode, int aLine);

Add instruction and set instruction opcode.

int AddIrCapVal(pDevEnt aDevEnt, PSTRING aIrCap,int aLine);

Sets capture value for instruction register.

int AddIdCode(pDevEnt aDevEnt, PSTRING aCode, int aLine);

int AddUserCode(pDevEnt aDevEnt, PSTRING aCode, int aLine);

Set id and user code.

int AddDataReg(pDevEnt aDevEnt, PSTRING aName, int aLength, int aLine);

Adds data register to list.

int AddInstToDR(pDevEnt aDevEnt, PSTRING aName, PSTRING aCapVal, int aLine);

Sets association between a data register and an instruction.

(Fill ISC information.)

int SetStatus(pDevEnt aDevEntint, int aState, int aLine);

int SetPinBehavior(pDevEnt aDevEnt, int aPinOpt, int aLine);

Set isc status flag and isc pin behavior flag.

int SetBlankUserCode(pDevEnt aDevEnt, PSTRING aCode, int aLine);

Sets blank user code.

int SetProtectionBits(pDevEnt aDevEnt, int aRead, int aProg, int aEra, int aLine);

int SetProtectionKeyRange(pDevEnt aDevEnt, int aMsb, int aLsb, int aLine);

Sets isc protection values.

int AddFlow(pDevEnt aDevEnt, PSTRING aFlowName, PSTRING aDataName, int aLine);

int AddFlowBlock(pDevEnt aDevEnt, int aBlockId, int aLoopCount, int aLine);

int AddFlowActivity(pDevEnt aDevEnt, PSTRING aInstructionName, int aLine);

int AddUpdateField(pDevEnt aDevEnt, int aWidth, pDataExpr aDataExpr, int aLine);

int AddWaitDurMin(pDevEnt aDevEnt, pDurationSpec aDurationSpec, int aLine);

int AddWaitDurMax(pDevEnt aDevEnt, pDurationSpec aDurationSpec, int aLine);

int AddCaptureField(pDevEnt aDevEnt, int aWidth, int aOutputOp, pDataExpr aDataExpr, int aLine);

int AddCompareMask(pDevEnt aDevEnt, int aOutputOp, pDataExpr aDataExpr, int aLine);

int SetCRC(pDevEnt aDevEnt, int aCRC, int aLine);

int AddVar(pList aList, PSTRING aName, int aSize, int *aIndex);

Add flow to list and fill flow information.

int AddProcedure(pDevEnt aDevEnt, PSTRING aProcName, PSTRING aDataName, int aLine);

int AddProcFlow(pDevEnt aDevEnt, PSTRING aFlowName, PSTRING aDataName, int aLine);

Add procedure to list and set links to performed flows.

int AddAction(pDevEnt aDevEnt, PSTRING aActionName, PSTRING aDataName, int aPROPRIETARY, int aLine);

int AddActionSpec(pDevEnt aDevEnt, PSTRING aProcName, PSTRING aDataName, int aPROPRIETARY, int OptRec, int aLine);

Add action to list and set links to procedures to execute.

int AddExitInstruction(pDevEnt aDevEnt, PSTRING aExitInstr, int aLine);

Sets isc illegal exit instruction.

int SemantikCheck(pDevEnt apDevice);

Semantik check for BSDL information (called from main).

(Functions called from data file parser.)

int AddDataRecord(pDevEnt aDevEnt, PSTRING aDataName, int aLine);

int AddDataBlock(pDevEnt aDevEnt, int aBlockId, int aFilePos, int aLine);

Add data record to status information structure and save the file positions of data blocks.

(Semantic check functions (called from main))

int BsdlSemanticCheck(pDevEnt apDevice);

int DataSemanticCheck(pDevEnt apDevice);

Semantic check for BSDL information and data blocks.

(Functions called from vector synthesizer and interpreter to get device information.)

pActionEnt GetActionByName(pDevEnt aDevEnt, PSTRING aActionName, PSTRING aDataName);

pProcEnt GetProcedureByName(pDevEnt apDevice, PSTRING aProcName);

pInstructionEnt GetInstructionByName(pDevEnt apDevice, PSTRING aInstructionName);

pDataRecord GetDataRecordByName(pActionStatus apStatus, PSTRING aDataName);

Get entities by name.

int GetBypassInstructionCodeOfDevice(pDevEnt apDevice, PSTRING aCode);

Gets opcode of the BYPASS instruction of the device. From BSDL information structure or as sequence of ‘1’s with the length of the instruction register (basis information).

pExecBlock GetBlockAtIndex(pIscFlowEnt aFlow, int aIndex);

Returns the block at the index of the flow.
(Functions for local list handling.)

void *KeyOfInstList(void *aItem);

void *KeyOfDRList(void *aItem);

void *KeyOfFlowList(void *aItem);

void *KeyOfProcList(void *aItem);

void *KeyOfAction(void *aItem);

void *KeyOfVarStack(void *aItem);

void *KeyOfDataRecordList(void *aItem);

Item keys for list searching.

int ComparepString(void * aStr1, void *aStr2);

int CompareIscFlow(void *aFlow1, void *aFlow2);

int CompareProc(void *aProc1, void *aProc2);

int CompareAction(void *aAction1, void *aAction2);

Compare functions for list searching.

pList GetCurrentActList(pDevEnt aDevEnt);

Returns activity list of last added flow.

pCapFieldEnt GetLastCapField(pDevEnt aDevEnt);

Returns the capture field added as last.

gcmd.y / gcmd_tab.c / gcmd_tab.h / pcmd.c / pcmd.h:

“gcmd.y” is a bison grammar file. It describes the grammar rules of the command file in the Backus-Naur-Form (BNF). From this file the tool bison is used to generate the files “gcmd_tab.c” and “gcmd_tab.h”. For further information see the section “build instructions: bison grammar files”. The functions of the source files “progty.c/.h” are called in order to set the scan chain structure and to enter the basic information for the Bscan devices.

The files “pcmd.c” and “pcmd.h” make the scanner functionality available for the command file parser and the interface.

Functions:

int parseCommandFile(pProg1532, char *);

Initialisation and start of the perser. Interface function.

CMDerror (aErrorString);

CMDlex(lvalp, ParserControl);

See section “build instructions: bison grammar files”.

gbsd.y / gbsd_tab.c / gbsd_tab.h / pbsd.c / pbsd.h:

“gbsd.y” is a bison grammar file. It describes the grammar rules of the BSDL standard IEEE Std_1149.1b_1994 and IEEE Std_1532_2000 in the Backus-Naur-Form (BNF). From this file the tool bison is used to generate the files “gbsd_tab.c” and “gbsd_tab.h”. For further information, see the section “build instructions: bison grammar files”. The functions of the source files “prgdev.c/.h” are called in order to set the BSDL information for each Bscan device.

The file “pbsd.c” and “pbsd.h” make the scanner functionality available for the command file parser and the interface.

Functions:

int parseBsdlFile(pDevEnt *aDevice);

Initialisation and start of he parser. Interface function.

BSDLerror (aErrorString);

BSDLlex(lvalp, ParserControl);

See section “build instructions: bison grammar files”.

int getAttribute(lvalp, ParserControl);

int OverreadComment(ParserControl);

int OverreadSringConcat(ParserControl);

Auxillary function for the scanner function BSDLlex.

gdat.y / gdat_tab.c / gdat_tab.h / pdat.c / pdat.h:

“gdat.y” is a bison grammar file. It describes the grammar rules for the data file syntax specification of the BSDL Standard IEEE Std_1532_2000 in the Backus-Naur-Form (BNF).

From this file the tool bison is used to generate the files “gdat_tab.c” and “gdat_tab.h”. For further information, see the section “build instructions: bison grammar files”. The functions of the source files “prgdev.c/.h” are called in order to enter the file positions data blocks in the structure of a boundary scan in the status information structure of a Bscan device.

The file“pdat.c” and “pdat.h”make the scanner functionality available for the data file parser, the data file reader functionality and the interface available.

Functions:

int parseDataFile(pDevEnt *aDevice);

Initialisation and start of the perser. Interface function.

DATAerror (aErrorString);

DATAlex(lvalp, ParserControl);

See section “build instructions: bison grammar files”.

int OverreadComment(ParserControl);

int OverreadSringConcat(ParserControl);

Auxillary function for the scanner function DATAlex.

int GetNextInputHexString(pActionStatus apStatus);

Reads a single hex string from a data file (data file reader). The file name and the file position, at which should be read, are entered in the status information structure (apStatus).

bscandrv.c / bscandrv.h:

This files includes the special code for the driver and the general burst-structure.

This file have to be substituted by the customer, who wants use their own hardware.

Functions:

(Burstfunctions)

Constructors of burst structure :

void InitBurstInfo(pBurstInfo aInfo, long aSize);

Initialisizes a BurstInfo structure.

pBurstInfo NewBurstInfo(long aSize);

Returns a new pointer of pBurstInfo. It gets the memory for this pointer and calls the

InitBurstInfo

Destructors of Burst structure

void FreeBurstInfo(pBurstInfo aInfo);

Free the memory of pBurstInfo and calls the destructor

void DoneBurstInfo(pBurstInfo aInfo);

Destroys the values of burstInfo structure.

(Driver functions - The driver functions are witten for XILINX cable and depends from hardware and driver

Constructors of the driver.)

pJDriver JDriverNew();

This function get the new "class" of Jdriver structure

void JDriverInit(pJDriver aDriver);

Fill the driver structure

Destructors of the driver:

void JDriverDone(pJDriver aDriver);

Destroy the driver structure

void JDriverFree(pJDriver aDriver);

Destroy the driver structure and free the memory of it.

Driver actions:

int JDriverOpen(pJDriver aDriver);

Gets a handle of system

void JDriverClose(pJDriver aDriver);

Frees the handle of system.

int JDriverGetParallelPorts(pJDriver aDriver, DWORD port_index);

Gets the parallel port of PC where the XILINX cable is connected.

Driver Transfer functions

BOOLEAN JDriverWRTransfer(pJDriver aDriver, LPBYTE pOutBuf, LPBYTE pInBuf, DWORD dwSize);

Puts the buffer pOutBuf to the hardware and gets the data from hardware and puts them to the pInBuf buffer

BYTE JDriverReadByte(pJDriver aDriver, DWORD dwIOAddr);

Reads one byte from selected parallel port

BYTE JDriverWriteByte(pJDriver aDriver, DWORD dwIOAddr, BYTE bData);

Gets one byte from the parallel port

bscanio.c / bscanio.h:

This file contains the common boundary scan functions witch are the general interface to specified hardware.

Functions:

int BScanCtrlInit(pBscanController aCtrl);

It inits the boudary scan controller.

It callsthe driver constructor, calculates the delay time settings and executes a TAP-reset.

After that it goes to the Run test/Idle controller state.

void BScanCtrlClose(pBscanController aCtrl);

This function destroys the controller structure and frees the driver.

tByte BScanCtrlReadByte(pBscanController aCtrl);

Reads one byte from the controller.

void BScanCtrlWriteByte(pBscanController aCtrl,tByte aByte);

Writes one byte to the controller

int BScanCtrlCheckCable(pBscanController aCtrl);

This is a special function for checking for the presence of the XILINX download cable.

int BScanCtrlBurstExecute(pBscanController aCtrl);

Executes a burst - that means data will be output to the hardware and readback from the hardware.

The buffers are given in the burstInfo structure.

void DelayMicroSec(pBscanController aCtrl, long aMicroSec);

Makes th time delay by specified time in Microseconds

void WriteClocks(pBscanController aCtrl, long aCount);

This functions write Clocks to the controller. This is the waiting for TCK-cycles.

int GotoNextState(pBscanController aCtrl, int aTms);

This function make a step in the constroller state engine (software engine) to control the current controller state using the rules of boundary scan standard

executor.c / executor.h:

Functions:

pExecutor InitExecutor(void);

int ExeDone(pExecutor apExecutor);

Creates a executor structur

int SetExecutorCode(pExecutor apExecutor, tCode aGlobalCode);

The current global code will set for next operation

int Execute(pExecutor aExecutor, int aComplete, int *vExecutorError);

This executes the given global code

int ReInitExecutor(pExecutor apExecutor);

This function goes in the required TAP controller mode.

void SetTCKClockInfoBit(pByte aTCKClockInfo, int aBit);

Sets the byte witch is writeing to a burst or getting from the hardware.

int AddTCKClockInfoTDO(pExecutor aExecutor, pByte aTCKClockInfo);

Adds Byte to executor buffer.

int AddTCKClockInfoTDI(pExecutor aExecutor, pByte aTCKClockInfo);

Adds Byte to executor buffer.

int GetTCKClockInfoTDI(pExecutor aExecutor,int aIndex, pByte aByte);

Reads Buffer TDI-Controller and Expectbuffer

int GetTDIIndex(pExecutor aExecutor);

Returns the current index of TDI-Buffer

int AddTMSStep(pExecutor aExec, pByte aByte);

Adds the TMS-Step after filling the buffer

int ExeScanDR(pExecutor apExecutor,int *aResult);

Executes d Irscan or DRscan

int ExeScanCompare(pExecutor aExec);

Compares the expected values with the current measured values and set the fail bits.

int ExeSetTAPState(pExecutor apExecutor);

Sets the TAP state - makes some TMS sequences

Not required by 1532 standars

int ExeWait(pExecutor apExecutor);

Executes a wait in the Run test/Idle state of controller

int TapReset (pExecutor aExec);

Goes to the TAP-reset state

int GotoShiftDR(pExecutor aExec);

Goes from any state to the DRShift state by adding TMS-Sequences to the buffer

int GotoShiftIR(pExecutor aExec);

Goes from any state to the IRShift state by adding TMS-Sequences to the buffer

int GotoRunIdle(pExecutor aExec);

Geos from any state to Run test/Idle state

interpr.c / interpr.h:

Functionality of the Vector Synthesizer and the BSDL Interpreter.

Functions:

(vector synthesizer)

int VectorSynthesizer(pProg1532 vProg1532 , int aOptions);

Main loop for the programming of the Bscan devices. Initializes the Executor and the BSDL
interpreter for the programming of the Bscan devices. Additionally the execution according to
the vector synthesizer description in the section “program flow”.

tCode GetGlobalCode(pCodeList apCodeList);

Checks the compatibility of the code (type of the instruction to be executed next) of the individual devices, and determines the global code (instruction to be executed next). Devices, whose code doesn’t agree with the global code, are designated the code doNoOp ((BYPASS).

pCodeList InitCodeList(int aDeviceCount);

Initialization of the global code list (list of all device specific codes).

(BSDL interpreter - All Information about the programming status of an individual device are maintained in the corresponding action information structure.)

int InitCodeLoop(pDevEnt aDevEnt, int *vActionCount);

Initialization of the BSDL interpreter for a device. The status information structure points to the first activity of the first block of the first flow of the first procedure of the action selected. When no action is to be carried out for the device, only the opcode of the bypass instruction is entered in the information structure (for doNoOp).

tCode GetNextCode(pDevEnt apDevEnt, int *vError);

Determines the next instruction to be executed for the device (updating of the status information structure) and returns it.

int InitActivityParameters(pDevEnt apDevice);

The parameter values of the instructionof the activity to be carried out next are determined

 (bit sequence for instruction code, bit sequences of corresponding update and capture fields, wait duration)

int GetNextParameter(pExecutor aExecutor, pDevEnt apDevice, int *vError);

Passes the the bit sequences, to be shifted for the current instruction to be carried out, to the executor.

If he executor buffer is full, the function is carried out again from the vector synthesiser in order to pass the remaining bits.

int InitBypassParameter(pDevEnt apDevice);

BYPASS is selected as the next instruction to be executed ((Sets the BYPASS opcode in the status information structure).

int GetBypassParameter(pExecutor aExecutor, pDevEnt apDevice, tCode vCode, int *vError);

Passes the bit sequence of the BYPASS opcode (irScan) or a single bit (drScan) to the executor.

int InitNextProcedure(pDevEnt apDevice);

int InitErrorProcedure(pDevEnt apDevice);

int InitNextFlow(pDevEnt apDevice);

int InitNextBlock(pDevEnt apDevice);

int IncBlockLoop(pDevEnt apDevice);

int InitNextActivity(pDevEnt apDevice);

Determination of the procedure, flow, block, block loop or activity in the program execution ((Entry of the corresponding entry and setting of the index in the status information structure).
Cascade-like call for top to bottom, ie. When the next procedure gets initialised, its first activity gets automatically initialised.

int InitNextUpdateField(pDevEnt apDevice);

int InitNextCaptureField(pDevEnt apDevice);

Initialisation of the next update or capture field of the current activity ((setting of the corresponding bit sequence and indices in the status action structure).
int InitFieldValues(pDevEnt apDevice);

For all update fields and capture fields of the activity, the corresponding update fileds are calculated.

int GetFieldValue(pActionStatus apStatus, int aFieldWidth, pDataExpr apDataExpr, int aFieldType);

Determination of the bit field values of a data expresion. Call of the data file reader to read the hex string and variable assignment.

int UpdateVariable(pVarEnt apVariable, tOpType aOpType, int aOperand);

Calculates the values (bit fields) of a variable corresponding to operators and operands as in the data expression.

void WriteProgrammingStatus(pProg1532 apProg1532);

Displays the current programming step (action, procedure, flow etc.) of all devices (called after compare fail).

(debugging)

void WriteStringBitField(PSTRING aBitField);

prog1532.c:

main (int argc, char **argv);

Main flow. Checks command line arguments. Calls first the command file parser, then for each device the BSDL file parser, the BSDL semantik check and the data file parser. Starts the vector synthesizer if all files are correct.

void WriteHelp();

Writes the command line options to the standard output.

Build instructions

Building the source code for the J Drive Programmer requires two steps:

1. Build the parser code files using the bison utility.

2. Compile the code.

Bison grammar files

Prebuilt parser code files are provided in the JDrive\source directory for the existing grammar files. The parser code files need to regenerated only when the grammar files are updated.

Bison is a parser generator. It reads in its input and produces from this its output C source code. This C code must be compiled with a C complier. This program processes its input according to the grammar in BNF notation and the associated actions in the bison input file.

Three bison grammar files are associated with the source code: one for the command file parser, for the BSDL file parser and for the data file parse. The file extension is in all three cases “.y”.

These files should be modified should the grammar be extended (e.g. Extra options in the command file or new BSDL extensions) or when further actions should be carried out (e.g. To enter further information from the BSDL file in the in the bsdl information structure of the building block).

Introduction to bison:

In order to modify the grammar files, one needs to be familiar with the bison syntax. To attain this familiarity one should study the bison documentation. Here only a few explanations will be given to help in understanding the grammar files that belong to the project.

A bison input file consists of three parts:

Definitions

%%

Rules

%%

Functions

Among the definitions are conventions, which bison uses in producing the program e.g. The definition of the variables. Among the rules are grammar rules in BNF notation, where the rules can be have actions associated with them. Among the functions are functions which are called during program execution e.g. from the rule part (as actions).

In the definition part the structure tParserControl is defined. When the parsing begins, a variable of this type gets initialised. A pointer to this variable is passed as a parameter to all functions. This structure contains most of the information which is necessary for the parsing process e.g. A pointer to the device structure and to the file to be parsed or status information such as the line counter.

In the rule part, the syntax for the file to be parsed is written in BNF. The syntax description consists of a set of rules. Each rule in turn consists of a set of terminal symbols (tokens), non-terminal symbols (rules) and actions (responses to entering a rule e.g. function call). All rules must be replaced by tokens. If these consist of more than one character, they must be declared in the definition section. It is then the job of the scanner to deliver a series of tokens to the parser.

By convention, in the grammar files of the project, all rules are written completely in lower case and all tokens in upper case letters. Rules consist of a name followed by a colon, the rule description, and end in a semicolon. Actions are enclosed in curly braces.

Eg.

instruction_register_description:

instr_length_stmt instr_opcode_stmt instr_capture_stmt instr_private_stmt

;

instr_length_stmt:

ATTRIBUTE_INSTRUCTION_LENGTH OF component_name ':' ENTITY IS instruction_length ';'

;

instruction_length:

integer

{ PARSERControl->mError |=

PutIrLength(PARSERControl->mDevice, $1, PARSERControl->mLine);}

;

...

The first rule describes the instruction register description, which consists of four attributes. The second rule describes the attribute INSTRUCTION_LENGTH. In the third rule a function is instigated, as a result of which the length of the instruction register is entered in the bsdl information structure of the building block. “$1” in the function call refers to the first element of the rule.

The functionality is realised through at least three functions.

-
The function yylex() reads in the input file one character at a time and decomposes it into tokens.

· The function yyerror() is responsible for the error handling (in the case of syntax errors).

· The function yyparse() is responsible for the parsing itself. In doing so, in turn calls the function yylex(), to have the next token delivered. Should a rule or part thereof be fulfilled, and should there be a corresponding action defined, this action is executed. Otherwise the next token is requested. Should no rule exist for a series of delivered tokens, then there is a syntax error in the input file, and the parsing is aborted with the function yyerror().

The function yyparse() is generated by bison. The functions yylex() and yyerror() must be manually edited.

In the project, the function parts are each placed in a separate source file, which links the source file generated by bison via the include instruction.

Obtaining the bison parser generator:

The bison parser generator is a programming utility from the Free Software Foundation, also known as GNU. The source code for the bison parser generator is distributed under license from GNU. Links to the bison source code may be found via the GNU website. See http://www.gnu.org.

A port of the GNU tools to the Win32 operating environment is available from http://cygwin.com.

Running bison to make the parser:

There are three bison grammar files in this project:

gcmd.y
(for command file parser),

gbsd.y
(for BSDL file parser) and

gdat.y
(for data file parser).

Use the following commands to convert the grammar files into parser files:

bison –d –pCMD gcmd.y

bison –d –pBSDL gbsd.y

bison –d –pDATA gdat.y

to generate the following files:

gcmd_tab.c / gcmd_tab.h

gbsd_tab.c / gbsd_tab.h

gdat_tab.c / gdat_tab.h

The option –d generates an extra output file (“.h”) including macro definitions for the token type names and other definitions defined in the grammar. This output file is essential to put the definition of yylex in a separate source file.

The option –p renames the external symbols used in the parser so that they start with prefix instead of `yy'. The precise list of symbols renamed is yyparse, yylex, yyerror, yynerrs, yylval, yychar and yydebug. For example with “-pCMD”, the names become CMDparse, CMDlex, CMDerror and so on. It’s necessary for multiple parsers in the same program.

The functions yylex and yyerror are defined in the files:

pcmd.c (CMDlex, CMDerror),

pbsd.c (BSDLlex, BSDLerror) and

pdat.c (DATAlex, DATAerror).

which include the “.h” files.

Compiling the Source Files

The project for Microsoft Visual C++ 6.0:

A Microsoft Visual C++ 6.0 project exists in the JDrive\msvc subdirectory. This project file has the name “jdrive.dsw”.

The makefile for borland c/c++ builder:

A makefile exists in the JDrive\borlandc subdirectory to compile the JDrive project with the borland c/c++ builder compiler. This makefile has the name “Makefile”. A free version of the Borland C++ compiler is available via http://www.borland.com.

If you want to execute the compilation, go to the directory “JDrive\borlandc” and enter the command:

make Makefile

Following variables in this file can you modify to change project setting.

Variables

Settings

Remark

JDRIVEDIR =

c:\JDrive\source

Project directory

JDRIVEOBJDIR =

c:\JDrive\obj

Object file directory

(output of compiler)

JDRIVEEXEDIR =

:\JDrive\exec

directory for executable file

(Linker output)

JDRIVECOMPSWITCHES =
SYSWin32;DEBUG;XILINX_CABLE;

Compiler switches

The following variables define the executables to compile and link the files:

Variables

Settings

Remark
IMPLIB =

Implib

library

BCCD32 =

Bcc32 +BccD32.cfg
compiler

TLINK32 =

TLink32

linker

TLIB =

Tlib

library

TASM32 =

Tasm32

Assembler

Makefiles for Other Platforms/Compilers

Creating a make file with the tool “tmake”:

Using the tool tmake, a makefile adapted to the Builder used can be produced. The tool is freeware and can be downloaded from the Internet site http://www.trolltech.com/products/download/freebies/tmake.html”

The following steps must be followed in order to create a makefile (see also the documentation for tmake):

1) Replace the Environment Variables

Set the TMAKEPATH environment variable to the directories containing the template files (see below).

Add the tmake/bin directory to your PATH.

Here is an example for Microsoft Windows:

 set TMAKEPATH=c:\tmake\lib\win32-msvc

 set PATH=%PATH%;c:\tmake\bin

2) Create a Project Description

The project description has already been created: the file “prog1532.pro” can be found in the directory “JDrive\tmake”.

Modify the variable SWITCHES to configure the switches for the compiler.

3) Create the Makefile

Using the project description, tmake creates a Makefile, which controls the building of the project in question. To do this, tmake must be called in the source directory. The following example illustrates the use of tmake.

 tmake -o Makefile prog1532.pro

The –o option is used to specify the output file. The call produces, with the help of the file prog1532.pro, a Makefile, which controls the building of prog1532.

4) Building with the help of make

After the Makefile has been created, the program can be built with the help of the command make (the action of which is described in a Makefile):

 make Makefile

This call must also be made in the source directory.

Compiler switches

Portability of the Software:

SYSWin32 :

The 1532 J Drive Programmer runs on Windows(platforms

Adaptation of the software is only necessary for the Boundary Scan Interface.

SYSLinux :

The 1532 J Drive Programmer runs under Linux.

The boundary scan interface and the operating system interface must both be adapted.

XILINX_CABLE :

If the switch is set, then the special bits for the output with the XILINX download cable will be set.

If any other hardware is used then the switch must be deactivated and the corresponding bits must be set as necessary.

Debugging:

DEBUG:

The vector synthesizer/interpreter outputs debug information (about programming status) to the standard output, when the command line option -d/--debug is entered.

VIRTUAL:

The fail output in the executor leads to a termination of the program.

If this switch is set, then the programmer will be executed without programming to the hardware and the Interpreter continues to run until the end, unless an error (logic error in a BSDL or data file, not found in syntax and semantic check) occurs. This switch is relevant for BSDL and data file tests without hardware. Command line option -d/--debug must be entered for the virtual mode.

The Portability of the 1532 J Drive Programmer

The pre-compiled 1532 J Drive Programmer in the JDrive\exec directory runs on a Windows-32 bit platform with the Xilinx Parallel Cable III. The J Drive Programmer source code is given for this implementation. However, the J Drive executable cannot be recompiled with just the files given in this package because the WinDriver.h file is not provided in this package. WinDriver.h is part of the commercial parallel port driver kit from http://www.jungo.com.

The Operating System Interface

The operating system interface provides connection to C-libraries stdio, stdlib, mem etc.

All functions are called by macros, to achieve relative independence from the C compiler.
The files

sysopenv.h

sysopenv.c

may need to be adjusted.

 The Library Interface

The library interface provides connection to C-libraries string, ctype etc. .

All functions are called by macros, to achieve relative independence from the C compiler.

The files

libenv.h

libenv.c

may need to be adjusted.

The Boundary Scan Interface

 The Boundary Scan interface provides the connection to the boundary Scan Controller.

 The 1532 J Drive Programmer uses the XILINX Parallel Cable III for the parallel port of the PC.

 The files

bscanio.h

bscanio.c

 should be adjusted. The files

bscandrv.h

bscandrv.c

contain the structure JDriver. This structure should be rewritten in the case of a hardware change and adjusted to the controller in question.

The following functions are hardware independent:

int BScanCtrlInit(pBscanController aCtrl);

Initialisation of the Boundary Scan Controller.

void BScanCtrlClose(pBscanController aCtrl);

The Boundary Scan Controller is closed after completion of an action.

tByte BScanCtrlReadByte(pBscanController aCtrl);

The function reads a byte from the boundary scan hardware. This function is not used in JDrive, because output and input proceeds buffer wise.
void BScanCtrlWriteByte(pBscanController aCtrl,tByte aByte);

This function writes a byte (TCK-Step) to the boundary scan controller. This function is not used in JDrive, because output and input proceeds buffer wise.

int BScanCtrlCheckCable(pBscanController aCtrl);

This function checks whether the XILINX download cable is connected to the PC. The value rtOk is returned is the function is successful, and the value rtErr, otherwise. In the latter case the program terminates with a corresponding message.

int BScanCtrlBurstExecute(pBscanController aCtrl);

void DelayMiliSec(pBscanController aCtrl, long aMiliSec);

void WriteClocks(pBscanController aCtrl, long aCount);

long DelayCalc(void);
_1037570816.doc
[image: image1.png]

