
Summary The J Drive™ programming engine provides immediate and direct in-system configuration
(ISC) support for IEEE Standard 1532 programmable logic devices (PLDs). To configure an in-
system device, the programming engine uses the configuration algorithm information from a
1532 Boundary Scan Description Language (BSDL) file to apply configuration data from the
1532 data file through the IEEE Standard 1149.1 test access port (TAP). The J Drive
executable, source code, and a programming example are available in a download package
from the Xilinx website. The J Drive programming engine can be used for the following Xilinx
families: XC18V00, Virtex™, and Virtex-E.

J Drive
Programming
Engine
Advantages

The J Drive programming engine provides typical in-system configuration advantages, such as:

• Reduced device handling costs

• Reduced time to market

• Remote upgradability and testing

• Extended product life span

Moreover, because of the standardization of many aspects of programmable logic
configuration, the J Drive IEEE Standard 1532 programming engine offers the following
additional advantages:

• Immediate support for new generations of IEEE Standard 1532-compliant families,
regardless of the device vendor

• Elimination of the need to update software implementations to support new generations
(because the algorithm and data from the engine are separate)

• Single-step PLD configuration without intermediate translation or compilation steps using
the PLD’s 1532 BSDL and data files

• Independent updating of the device configuration algorithm or configuration data via the
updated 1532 BSDL file or the 1532 data file, respectively

• Configuration of different or multiple device targets in a scan chain using a single 1532
data file

• Potential for reduced multi-device configuration times through concurrent programming
techniques allowed by the IEEE Standard 1532 (thus, reducing manufacturing costs)

The J Drive programming engine makes a highly desirable base for programming
1532-compliant devices in a wide range of applications.

IEEE Standard
1532

The IEEE Standard 1532 is a formal extension to the IEEE Standard 1149.1b-1994 (also
known as JTAG) for PLDs. This standard defines the three items required to configure in-
system programmable logic devices. The three essential items are:

• Device architectural components for configuration

• Algorithm description framework

• Configuration data file

Application Note: Virtex Series

XAPP500 (v1.1) January 17, 2001

J Drive: In-System Programming of IEEE
Standard 1532 Devices
Author: Randal Kuramoto

R

XAPP500 (v1.1) January 17, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

J Drive: In-System Programming of IEEE Standard 1532 Devices
R

Figure 1 illustrates configuration-specific architectural extensions to the device, algorithm
extensions to the BSDL file, and a standard data file.

The IEEE 1149.1 TAP provides access to the device configuration logic, while the IEEE 1532
BSDL file provides the device configuration algorithm. The IEEE 1532 data file provides the
configuration data. Refer to the IEEE Standard 1532 publication for further details at:
http://grouper.ieee.org/groups/1532/.

Previous PLDs implemented proprietary configuration architectures using proprietary
combinations of algorithms and data files. Frequently, each proprietary configuration variant
required a proprietary configuration implementation.

IEEE Standard 1532 BSDL Files
The PLD manufacturer generates an IEEE Standard 1532 BSDL file for each conforming
device.

The IEEE Standard 1532 defines extensions to the IEEE Standard 1149.1b-1994 BSDL files.
(Refer to the IEEE Standard 1149.1b-1994 publication for details on the original definition of the
BSDL file contents.) The IEEE Standard 1532 extensions define a 1532-specific package and
framework of attributes that describe the programming algorithms for the corresponding PLD.
These extensions are compatible with the original IEEE Standard 1149.1b-1994 BSDL syntax.

An IEEE Standard 1532 BSDL file can be identified using the STD_1532_2000 package. The
package is included in the BSDL file using the following syntax:

Use STD_1532_2000.all; -- 1532 BSDL Extension for ISC devices

The STD_1532_2000 package contains attribute definitions used to supply in-system
programming information to the J Drive programming engine. Each attribute supplies the
specific information given in Table 1.

Figure 1: IEEE Standard 1532 Components

Table 1: IEEE Standard 1532 BSDL Attributes

Attribute Name Required Description

ISC_Pin_Behavior Required Defines the behavior of the I/O pins during
configuration: HIGHZ or CLAMP.

ISC_Status Required Specifies whether or not the standard status scheme
is implemented.

ISC_Blank_Usercode Required Specifies the value of a blank (erased) USERCODE.

ISC_Security Required Specifies the security structure (if present).

ISC_Flow Required Specifies sequences of instructions and data to
apply to the JTAG port of a device.

XAPP500_01_121400

IEEE Standard 1532
Device

1149.1
Test

Access
Port

1149.1
BSDL

File Base

1532
Algorithm

Extensions

1532
Configuration

Logic

1532
.isc

Data File
2 www.xilinx.com XAPP500 (v1.1) January 17, 2001
1-800-255-7778

http://www.xilinx.com
http://grouper.ieee.org/groups/1532/

J Drive: In-System Programming of IEEE Standard 1532 Devices
R

ISC_Flow Attribute

The ISC_Flow attribute consists of named sets of basic operations. Each named set is a flow.
Each set consists of the name of the corresponding data section from the 1532 data file and the
following phases:

• Initialization

• Body (Repeat)

• Termination

Each phase consists of zero or more four-part tuples. The four tuple parts are as follows:

• ISC instruction to be loaded

• Update field – bit values to be shifted into TDI during the data shift

• Wait time – time to wait in the JTAG Run-Test/Idle state after the data shift

• Capture field – bit values to expect out of TDO during the following data shift

The bit values in the update field can be specified as constants, variables, or as values that are
extracted from the corresponding data section in the 1532 data file.

The capture field can specify expected bit values as constants, variables, or as values to be
extracted from the corresponding data section in the 1532 data file. In addition, the captured bit
values can be written to a file or used in the calculation of a cyclic redundancy check (CRC).
The algorithm for calculating the CRC is defined in the IEEE Standard 1532 “Data CRC
Algorithm.”

ISC_Procedure Attribute

The ISC_Procedure attribute contains definitions of procedures. The procedures are defined
by a sequence of flows to be performed from the ISC_Flow attribute.

The IEEE Standard 1532 predefines the functionality of the following procedures:

• Proc_read – Read device contents and write to a data file.

• Proc_verify – Verify contents.

• Proc_program – Program contents.

• Proc_erase – Erase the device.

• Proc_blank_check – Check if device is blank.

• Proc_enable – Enable the ISC mode for the device.

• Proc_disable – Exit the ISC mode for the device.

• Proc_Error_Exit – Perform when an error occurs.

• Proc_Program_Done – Set the DONE bit.

ISC_Procedure Required Specifies the sequence of flows that perform a
procedure.

ISC_Action Required Specifies the common sequences of procedures that
perform some action.

ISC_Illegal_Exit Optional Specifies the action to take in the event of an error
during in-system programming.

ISC_Design_Warning Optional Specifies design warnings.

Table 1: IEEE Standard 1532 BSDL Attributes (Continued)

Attribute Name Required Description
XAPP500 (v1.1) January 17, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

J Drive: In-System Programming of IEEE Standard 1532 Devices
R

ISC_Action Attribute

The named actions are common sequences of procedures, with the IEEE Standard 1532
predefined actions being the following:

• Read – Read the device contents and write them to a file.

• Verify – Stand-alone verify the device contents.

• Program – Recommended, full programming algorithm. Xilinx devices erase, program,
and verify.

• Erase – Stand-alone erase.

• Blank_check – Stand-alone blank check.

By default, the specified procedures comprising the action are required. However, the
procedures can also be specified as optional or recommended.

IEEE Standard 1532 Data Files
The IEEE Standard 1532 data file is a text file format.

The first section in the file is the header, consisting of the following information:

• Header

• Version STD_1532_2000

• Creation date

• Creator

The remainder of the data file contains data for the various named data sections, as described
in the device’s 1532 BSDL file. The flows in the BSDL file name the data section. Thus, each
data section contains a subsection that corresponds to the initialize, body (repeat), and
termination sections of the flow. Each data section can also end with a cyclic redundancy check
(CRC) value.

The predefined data sections include:

• Array

• Usercode

• Security

• Idcode

Generating IEEE Standard 1532 Data Files For Xilinx Devices
A design-specific 1532 data file must be generated for each PLD design in the system.

Xilinx tools generate different kinds of implementation files for PLD designs depending on the
kind of PLD that is targeted. Xilinx FPGA implementations are stored in .bit files. Xilinx CPLD
implementations are stored in .jed files, and Xilinx PROM data is stored in .mcs files.

The Xilinx xgen1532 utility generates an IEEE Standard 1532 data file from either the .bit file,
.jed file, or .mcs file.

The syntax for the Xilinx xgen1532 command-line utility depends on the kind of input file.

For XC18V00 PROMs, the syntax is:

xgen1532 –m <mcs_file_name.mcs> -a xc1800 –p <device_pkg> –o
1532_data_file_name.isc

For Virtex/E FPGAs, the syntax is:

xgen1532 –b <bit_file_name.bit> -a virtex –o 1532_data_file_name.isc
4 www.xilinx.com XAPP500 (v1.1) January 17, 2001
1-800-255-7778

http://www.xilinx.com

J Drive: In-System Programming of IEEE Standard 1532 Devices
R

The following examples are command-lines for different kinds of devices:

xgen1532 -m xc18v256.mcs -a xc1800 -p xc18v256_so20 -o xc18v256.isc
xgen1532 -b xcv50_pq240.bit -a virtex -o xcv50_pq240.isc

Figure 2 shows the xgen1532 utility generation of IEEE Standard 1532 data (.isc) files from
FPGA (.bit), CPLD (.jed), or PROM (.mcs) files.

J Drive IEEE
Standard 1532
Programming
Engine
Overview

The simple JTAG-based interface allows the J Drive programming engine to quickly program
any of the IEEE Standard 1532 devices in a given scan chain with a minimum set of support
files.

The IEEE Standard 1532 defines the configuration architecture, BSDL algorithm extensions,
and configuration data file format for individual devices. The J Drive command file defines the
architecture of the JTAG boundary-scan chain and the IEEE 1532 actions to be performed on
target devices within the scan chain. The J Drive IEEE Standard 1532 programming engine
configures 1532 devices in-system directly using the 1532 BSDL and 1532 data files. See
Figure 3.

Figure 2: Generation of IEEE Standard 1532 Data Files
XAPP500_02_121400

FPGA
.bit
File

CPLD
.jed
File

PROM
.mcs/.exo

File

1532
.isc

Data File

Xilinx
xgen1532

Xilinx
Implementation

Tools
XAPP500 (v1.1) January 17, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

J Drive: In-System Programming of IEEE Standard 1532 Devices
R

J Drive Command File
The J Drive command file declares the order of devices in the JTAG scan chain and should
have a .cmd extension. The device kind is specified via the association of the IEEE Standard
1532 BSDL file to the device in the scan chain. The action to be performed is also specified for
target devices in the scan chain. Non-target (BYPASSED) devices can simply be declared with
the length of the device’s instruction register rather than the BSDL file.

Each line in the command file corresponds to a device in the scan chain. Each line should
contain the command for the device, and the command for each device must include the:

• Device name

• Corresponding BSDL file name or the length of the instruction register

• Action to be carried out (optional) and corresponding data name (optional)

• Name of corresponding 1532 data file (optional)

• Name of data output file (optional)

• Ending semi-colon

The first device in the command file is the device closest to the final TDO output. The last
device in the command file is the device closest to the initial TDI input. There must be an action
defined for at least one device.

BNF for Command File

<command file format> ::= <command list>
<command list> ::= <command> {<command>}
<command> ::= <device name> <bsdl stmt>; | <device name> <instruction
register stmt>;
<bsdl stmt> ::= -b „ <bsdl file name> “ [<action stmt> [<data input file
stmt> [<data output file stmt>]]
<action stmt> ::= -a „ <action name> “ | -a „ <action name> (<data name>) “
<data input file stmt> ::= -d „ <data input file name> “
<data output file stmt> ::= -o „ <data output file name> “
<instruction register stmt> ::= -i <instruction length>

Example:

D3 –b“xc18v04_pc44_1532.bsd“ –a“program(array)“ –d“promdata.isc“;
D2 –i8;
D1 –i5;

Figure 3: J Drive Configures IEEE 1532 Devices In-System
XAPP500_03_121200

J Drive

IEEE Standard 1532
Programming

Engine

1532
PLD

Device

1532
PLD

Device

J Drive
Command

File

1532
PLD

Device

1532
BSDL
File

1532
.isc

Data File

JTAG
6 www.xilinx.com XAPP500 (v1.1) January 17, 2001
1-800-255-7778

http://www.xilinx.com

J Drive: In-System Programming of IEEE Standard 1532 Devices
R

This command file reflects a scan chain containing three devices. D1 is the first device in the
scan chain to receive the initial TDI input. D1 has an instruction register length of five bits. D2
is the second device in the scan chain and has an instruction register length of eight bits. D3 is
the last device in the scan chain. D3 is programmed using the array data from the promdata.isc
file.

Notes:
1. The version 1.00 implementation of the J Drive engine can apply only one action per command file.

Using the J Drive Engine to Program an IEEE Standard 1532 Device
The 1532 J Drive programmer can be started at the Windows MS-DOS command prompt with
the command “JDrive.” A prebuilt executable is provided in the standard J Drive download
package that runs on the Win32 platforms and controls the JTAG signals of the Xilinx Parallel
Cable III hardware.

Syntax

JDrive [-adfhsv] [-l [log-file-name]] [--addclocks] [--debug]
 [--fail_ignore] [--help] [--logfile]
[log-file-name]] [--status] [--virtual] command_file.cmd

Table 2 lists the syntax parameter descriptions.

Example command-lines are shown below:

JDrive -a example.cmd
JDrive -s -d -l example.log example.cmd (for log file output)
JDrive -v example.cmd (for testing the files)

After the program starts, the syntax of the command file is checked. (If an error is found, the
program terminates with an appropriate message). All BSDL files are then checked for syntax
and semantics. Should a syntax error be encountered, the program terminates with a
corresponding message. The error message contains the file name and the line number where

Table 2: Parameter Descriptions

Parameter Description

-a/--addclocks Sets the flag ADDCLOCKS. If set, a burst is always
executed in a stable controller status (IRPAUSE, DRPAUSE,
IRSHIFT, DRSHIFT, or RUN/IDLE). If the flag is not set, then
the scan operations are executed according to the standard
form.

-d/--debug Detailed execution status information (e.g., vector
synthesizer/interpreter debug information) is printed. This
options runs J Drive much slower! For that, the compiler
switch DEBUG is necessary!

-f/--fail_ignore If a compare fails between the expected and captured bits,
the execution is not aborted if parameter -f / --fail_ignore is
set.

-h/--help Print help information on the console.

-l/--logfile Print all messages and information to the log file.

-s/--status Print parsing and execution status information.

-v/--virtual The programmer is executed without toggling the physical
TAP port signals.

Command__file.cmd The name of the command file. This is required.
XAPP500 (v1.1) January 17, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

J Drive: In-System Programming of IEEE Standard 1532 Devices
R

the error was encountered. Also, the contents of the line containing the error are displayed up
to the point at which the error was found.

After the syntax of the BSDL file has been found to be correct, the semantics of the file are
checked. Mistakes in semantics are listed together. Each error message contains the line in the
BSDL file at which the error was found together with information about the kind of mistake. The
1532 data files are similarly checked for syntax and semantics.

After all files have been successfully checked, the execution proper can begin. Should the
J Drive engine encounter an error at this point, the program terminates with a corresponding
message. The J Drive engine reports a “successful” message when the program completes
successfully.

Troubleshooting J Drive Errors
Possible sources of error include:

• Problems initializing the hardware (e.g., missing drivers)

• Hardware problems during program execution

• Incorrect actions or data names in the command file, e.g., the corresponding action is not
defined in the ISC extension of the BSDL file

• Operations on variables that were not yet initialized

• Incorrect data in the 1532 file, e.g., too few hex strings in the data block or hex strings with
unused bits

• Incorrect scan chain specification in the command file

• A bad device

• A bad net on the board

• Comparison errors during the programming, e.g., captured values do not match the
expected values. (If the procedure “proc_error_exit“ is defined, then it is carried out before
program termination.)

The following courses of action can help identify problem sources:

1. Execute just the verify (IDCODE) action. The IDCODE test is the simplest test that can be
performed. A failed IDCODE indicates a gross problem in either the scan chain description
or the physical connections between the J Drive and the device.

2. Separately, execute the erase, blank_check, program, and verify actions (if available) in
order. This sequence of actions can help to identify which operation is failing.

3. Use the Xilinx JTAG Programmer software with a Xilinx download cable to identify and
program the devices on the board. If JTAG Programmer reports an error, then there is a
gross problem with the connectivity on the board.

4. If a custom implementation of J Drive fails to work, then try the prebuilt version from a
Windows PC to program the devices using a Xilinx Parallel Cable III connection.
8 www.xilinx.com XAPP500 (v1.1) January 17, 2001
1-800-255-7778

http://www.xilinx.com

J Drive: In-System Programming of IEEE Standard 1532 Devices
R

Porting J Drive
to an Embedded
Microprocessor

Xilinx provides the source code for the J Drive programming engine. The high-level block
architecture of the J Drive programming engine is shown in Figure 4. The J Drive programming
engine consists of several parsers for the input files, an interpreter for the BSDL algorithm
information, a vector composer/sequencer, and a back-end 1149.1JTAG TAP controller
module.

When porting a J Drive to an embedded microprocessor or other environment, most of the code
remains unchanged. Only the back-end JTAG TAP controller module needs careful
modification. The given source code communicates using the Xilinx Parallel Cable III
connection to control the JTAG TAP. A ported version of the J Drive needs to substitute these
communication protocols for the appropriate protocols available on the target platform.

When porting the J Drive programming engine to another target environment, the following
issues must be taken into consideration:

• The speed at which the JTAG TAP signals can be toggled significantly affects the
programming times for the XC18V00 PROMs and Virtex/Virtex-E FPGAs, because both
require a significant amount of data to be transmitted through the serial JTAG TAP.

• The TCK, TMS, and TDI output signals must be controllable.

• The TDO input signal must be capturable.

• The ported implementation must accurately tune the timing procedures in the code for the
target platform within ±25%. The more accurate the timing, the better the programming
results.

A porting of the J Drive engine basically involves customizing the hardware module shown in
Figure 5. The hardware module consists of the following source code files:

bscanio.h – Contains the interface function declarations for the hardware module.

bscanio.c – Contains the implementations of the interface functions for the hardware
module.

Primarily, the bscanio functions control access to the values of the external TCK, TMS, TDI,
and TDO device signals. Table 2 lists the functions in the bscanio.c file that must be customized
to perform the described function on the target platform.

Figure 4: J Drive High-Level Block Architecture

XAPP500_04_120800

Command
File

Parser

1532
BSDL
Parser

1532
Data File
Parser

JTAG
Scan Vector
Sequencer

1532
BSDL Flow
Interpreter

JTAG
Tap

Controller

TCK

TDO

TDI

TMS
XAPP500 (v1.1) January 17, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

J Drive: In-System Programming of IEEE Standard 1532 Devices
R

The original implementations of the bscanio functions in the given source code control Xilinx
Parallel Cable III access to the TCK, TMS, TDI, and TDO signals through a Windows PC
parallel port driver. The parallel port interface functions and implementation are contained in
the following source code files:

bscandrv.h – Parallel port interface functions

bscandrv.c – Parallel port interface implementation

Notes:
1. The original J Drive implementation uses the Jungo WinDriver as the parallel port driver. More

information about the Jungo WinDriver can be found at: http://www.jungo.com.

Additional
Information

Additional information can be found at:

• Several resources describing IEEE Standard 1149.1 (JTAG) are available from the Xilinx
Configuration Solutions “JTAG and ISP” web page:
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=isp_standards_specs

• XAPP058: “Xilinx In-System Programming Using Embedded Microcontroller” contains
related information about programming devices using JTAG from an embedded
microcontroller and is available at: http://www.xilinx.com/apps/xappsumm.htm#xapp058

Table 3: Hardware Interface Functions of the Bscanio Module

Function Description

BscanCtrlInit This function is called once to initialize the hardware that controls
the access to the TCK, TMS, TDI, and TDO signals.

BscanCtrlClose This function is called once to release the hardware that controls
the access to the TCK, TMS, TDI, and TDO signals.

BscanCtrlCheckCable This function is called once after BscanCtrlInit to check the status
of the hardware controlling the access to the TCK, TMS, TDI, and
TDO signals.

BscanCtrlReadByte This function reads a byte that contains the value of the TDO
signal.

BscanCtrlWriteByte This function writes a byte that contains the new values of the
TCK, TMS, and TDI signals.

BscanCtrlBurstExecute This function applies a burst of new values to TCK, TMS, and TDI.
The function also reads and saves the values of TDO as the burst
of TCK, TMS, and TDI values are being written.

WriteClocks This function applies the given number of Low-High-Low pulses to
the TCK signal.

InitDelay This function is called once to calibrate the delay timer.

DelaySeconds This function is called when the J Drive engine must wait for the
specified number of seconds.

GotoNextState This function is called when the J Drive engine must apply
appropriate TMS and TCK signal values to transition the target
device’s JTAG state machine to the named state.
10 www.xilinx.com XAPP500 (v1.1) January 17, 2001
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/apps/xappsumm.htm#xapp058
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=isp_standards_specs
http://www.jungo.com
http://www.jungo.com

J Drive: In-System Programming of IEEE Standard 1532 Devices
R

Software Links Two links are provided to the following required files:

1. J Drive software and source code
http://www.xilinx.com/isp/jdrivedownload.htm

2. Xilinx IEEE 1532 BSDL files

http://www.xilinx.com/isp/1532download.htm

Figure 5: J Drive High-Level Source Module and Flow Diagram
XAPP500_05_120800

Command
File

END

BSDL
Files

Data
File

BSDL
Files

Data File Data File

Vector Synthesizer

Data FIle Parser

BSDL File Parser

Command File Parser

START

BSDL Interpreter

Internal Data Array

Hardware Executor

Legend: data flow
operation floor I

Data File
Reader

Data File
Writer

I

I

I

Satus Information
Structure

BSDL Information
Structure

Scan Chain
Structure

Input Output

Input

PDLStandard Devices
XAPP500 (v1.1) January 17, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/isp/jdrivedownload.htm
http://www.xilinx.com/isp/1532download.htm

J Drive: In-System Programming of IEEE Standard 1532 Devices
R

Revision
History

The following table shows the revision history for this document.

Date Version Revision

01/15/01 1.0 Initial Xilinx release

01/17/01 1.1 Added software link.
12 www.xilinx.com XAPP500 (v1.1) January 17, 2001
1-800-255-7778

http://www.xilinx.com

	Summary
	J Drive Programming Engine Advantages
	IEEE Standard 1532
	IEEE Standard 1532 BSDL Files
	ISC_Flow Attribute
	ISC_Procedure Attribute
	ISC_Action Attribute

	IEEE Standard 1532 Data Files
	Generating IEEE Standard 1532 Data Files For Xilinx Devices

	J Drive IEEE Standard 1532 Programming Engine Overview
	J Drive Command File
	BNF for Command File

	Using the J Drive Engine to Program an IEEE Standard 1532 Device
	Syntax

	Troubleshooting J Drive Errors

	Porting J Drive to an Embedded Microprocessor
	Additional Information
	Software Links
	Revision History

