
XST User Guide for Vir tex-4,
Vir tex-5, Spar tan-3, and Newer
CPLD Devices

UG627 (v 14.5) March 20, 2013

This document applies to the following software versions: ISE Design Suite 14.5 through 14.7This document applies to the following software versions: ISE Design Suite 14.5 through 14.7This document applies to the following software versions: ISE Design Suite 14.5 through 14.7This document applies to the following software versions: ISE Design Suite 14.5 through 14.7

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use
of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available
"AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable
(whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage
of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss
of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third
party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the
same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to
the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the
Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited
Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty
and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to
be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use
of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2002-2013 Xilinx Inc. All rights reserved. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. The PowerPC name and logo are registered trademarks of IBM Corp., and used under license.
All other trademarks are the property of their respective owners.

Frontmatter
2 www.xilinx.com UG627 (v 14.5) March 20, 2013

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

Table of Contents
Chapter 1 About This Guide ..11

Guide Overview... 11
Supported Devices ... 12

Chapter 2 Intr oduction to Xilinx Synthesis Technology (XST)...............................13
About XST .. 13
Setting XST Options .. 13

Chapter 3 XST HDL Coding Techniques ..15
Signed and Unsigned Support in XST.. 16
Registers HDL Coding Techniques... 17
Latches HDL Coding Techniques.. 27
Tristates HDL Coding Techniques .. 32
Counters HDL Coding Techniques... 36
Accumulators HDL Coding Techniques... 49
Shift Registers HDL Coding Techniques ... 53
Dynamic Shift Registers HDL Coding Techniques ... 59
Multiplexers HDL Coding Techniques... 63
Decoders HDL Coding Techniques .. 72
Priority Encoders HDL Coding Techniques ... 78
Logical Shifters HDL Coding Techniques.. 81
Arithmetic Operators HDL Coding Techniques .. 86
Adders, Subtractors, and Adders/Subtractors HDL Coding

Techniques.. 88
Comparators HDL Coding Techniques... 99
Multipliers HDL Coding Techniques ... 101
Sequential Complex Multipliers HDL Coding Techniques 105
Pipelined Multipliers HDL Coding Techniques.. 109
Multiply Adder/Subtractors HDL Coding Techniques 116
Multiply Accumulate HDL Coding Techniques .. 122
Dividers HDL Coding Techniques ... 128
Resource Sharing HDL Coding Techniques... 130
RAMs and ROMs HDL Coding Techniques .. 133
ROMs Using Block RAM Resources HDL Coding Techniques 188
Pipelined Distributed RAMHDL Coding Techniques 195
FSM HDL Coding Techniques .. 199
Black Boxes HDL Coding Techniques .. 212

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 3

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=3

Chapter 4 XST FPGA Optimization ...215
FPGA Synthesis and Optimization... 215
FPGA Specific Synthesis Options ... 216
Macro Generation .. 216
DSP48 Block Resources ... 221
Mapping Logic Onto Block RAM ... 223
Flip-Flop Retiming... 227
Partitions... 228
Speed Optimization Under Area Constraint .. 228
FPGA Device Optimization Report Section ... 230
Implementation Constraints ... 236
FPGA Device Primitive Support ... 237
Cores Processing .. 243
Specifying INIT and RLOC... 245
Using PCI Flow With XST ... 251

Chapter 5 XST CPLD Optimization ...253
CPLD Synthesis Options ... 253
Implementation Details for Macro Generation.. 254
CPLD Synthesis Log File Analysis ... 255
CPLD Synthesis Constraints ... 257
Improving Results in CPLD Synthesis ... 257

Chapter 6 XST Design Constraints ...261
About XST Design Constraints ... 261
Mechanisms for Specifying Constraints... 262
Global and Local Constraint Settings ... 262
Rules for Applying Constraints .. 262
Setting Global Constraints and Options .. 263
VHDL Attribute Syntax ... 268
Verilog-2001 Attributes .. 268
XST Constraint File (XCF) ... 270
Constraints Priority.. 272
XST Specific Non-Timing Options ... 273
XST Command Line Only Options... 279

Chapter 7 XST General Constraints ...285
Add I/O Buffers (-iobuf) .. 286
BoxType (BOX_TYPE).. 287
Bus Delimiter (-bus_delimiter) ... 288

Frontmatter
4 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=4

Case (-case) ... 289
Case Implementation Style (-vlgcase)... 289
Duplication Suffix (-duplication_suffix)... 290
Full Case (FULL_CASE)... 292
Generate RTL Schematic (-rtlview) ... 293
Generics (-generics).. 294
HDL Library Mapping File (-xsthdpini) ... 295
Hierarchy Separator (-hierarchy_separator) ... 297
I/O Standard (IOSTANDARD) ... 298
Keep (KEEP) ... 298
Keep Hierarchy (KEEP_HIERARCHY)... 298
Library Search Order (-lso) .. 300
LOC... 301
Netlist Hierarchy (-netlist_hierarchy) ... 301
Optimization Effort (OPT_LEVEL)... 302
Optimization Goal (OPT_MODE) .. 303
Parallel Case (PARALLEL_CASE)... 304
RLOC (RLOC) .. 306
Save (S) ... 306
Synthesis Constraint File (-uc) .. 307
Translate Off (TRANSLATE_OFF) and Translate On

(TRANSLATE_ON).. 308
Ignore Synthesis Constraints File (–iuc)... 309
Verilog 2001 (-verilog2001)... 309
Verilog Include Directories (-vlgincdir).. 310
Verilog Macros (-define) .. 311
Work Directory (-xsthdpdir) .. 312

Chapter 8 XST HDL Constraints ...315
Automatic FSM Extraction (FSM_EXTRACT).. 316
Enumerated Encoding (ENUM_ENCODING) ... 317
Equivalent Register Removal

(EQUIVALENT_REGISTER_REMOVAL) .. 318
FSM Encoding Algorithm (FSM_ENCODING) ... 320
Mux Extraction (MUX_EXTRACT) ... 321
Resource Sharing (RESOURCE_SHARING) ... 322
Safe Implementation (SAFE_IMPLEMENTATION).. 324
Signal Encoding (SIGNAL_ENCODING).. 325
Safe Recovery State (SAFE_RECOVERY_STATE) ... 326

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 5

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=5

Chapter 9 XST FPGA Constraints (Non-Timing) ...329
Asynchronous to Synchronous (ASYNC_TO_SYNC) 331
Automatic BRAM Packing (AUTO_BRAM_PACKING)................................. 332
BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO) 332
Buffer Type (BUFFER_TYPE) .. 334
Convert Tristates to Logic (TRISTATE2LOGIC) .. 335
Cores Search Directories (-sd) ... 337
Decoder Extraction (DECODER_EXTRACT) ... 338
DSP Utilization Ratio (DSP_UTILIZATION_RATIO) 339
Extract BUFGCE (BUFGCE)... 341
FSM Style (FSM_STYLE)... 342
Logical Shifter Extraction (SHIFT_EXTRACT) .. 343
LUT Combining (LC) ... 344
Map Entity on a Single LUT (LUT_MAP) .. 345
Map Logic on BRAM (BRAM_MAP).. 346
Max Fanout (MAX_FANOUT)... 347
Move First Stage (MOVE_FIRST_STAGE)... 349
Move Last Stage (MOVE_LAST_STAGE) .. 351
Multiplier Style (MULT_STYLE) .. 353
Mux Style (MUX_STYLE).. 354
Number of Global Clock Buffers (-bufg) ... 356
Number of Regional Clock Buffers (-bufr)... 357
Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES) 358
Pack I/O Registers Into IOBs (IOB) .. 359
Power Reduction (POWER)... 359
Priority Encoder Extraction (PRIORITY_EXTRACT)....................................... 361
RAM Extraction (RAM_EXTRACT).. 362
RAM Style (RAM_STYLE) .. 363
Read Cores (READ_CORES) ... 365
Reduce Control Sets (REDUCE_CONTROL_SETS) .. 367
Register Balancing (REGISTER_BALANCING).. 367
Register Duplication (REGISTER_DUPLICATION) 371
ROM Extraction (ROM_EXTRACT) ... 372
ROM Style (ROM_STYLE) .. 373
Shift Register Extraction (SHREG_EXTRACT).. 374
Slice (LUT-FF Pairs) Utilization Ratio

(SLICE_UTILIZATION_RATIO)... 376
Slice (LUT-FF Pairs) Utilization Ratio Delta

(SLICE_UTILIZATION_RATIO_MAXMARGIN) 378

Frontmatter
6 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=6

Slice Packing (-slice_packing) ... 379
Use Low Skew Lines (USELOWSKEWLINES) .. 380
Use Carry Chain (USE_CARRY_CHAIN)... 380
Use Clock Enable (USE_CLOCK_ENABLE)... 382
USE_DSP48 (Use DSP48)... 383
Use Synchronous Set (USE_SYNC_SET).. 385
Use Synchronous Reset (USE_SYNC_RESET) ... 387
XOR Collapsing (XOR_COLLAPSE) .. 388

Chapter 10 XST CPLD Constraints (Non-Timing) ..391
Clock Enable (-pld_ce) ... 391
Data Gate (DATA_GATE) .. 392
Macro Preserve (-pld_mp) ... 392
No Reduce (NOREDUCE) ... 393
WYSIWYG (-wysiwyg) .. 393
XOR Preserve (-pld_xp) ... 394

Chapter 11 XST Timing Constraints ...397
Applying Timing Constraints ... 398
XCF Timing Constraint Support ... 399
Clock Signal (CLOCK_SIGNAL).. 399
Cross Clock Analysis (-cross_clock_analysis) .. 400
From-To (FROM-TO) ... 401
Global Optimization Goal (-glob_opt) ... 401
Offset (OFFSET)... 404
Period (PERIOD).. 404
Timing Name (TNM) ... 405
Timing Name on a Net (TNM_NET)... 405
Timegroup (TIMEGRP) ... 405
Timing Ignore (TIG) .. 406
Write Timing Constraints (-write_timing_constraints).................................... 406

Chapter 12 XST Implementation Constraints ..409
Implementation Constraints Syntax Examples .. 409
No Reduce (NOREDUCE) ... 410
Power Mode (PWR_MODE).. 411
RLOC (RLOC) .. 411

Chapter 13 XST Suppor ted Thir d Party Constraints ...413
XST Equivalents to Third Party Constraints .. 413

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 7

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=7

Third Party Constraints Syntax Examples .. 416

Chapter 14 XST VHDL Langua ge Suppor t ...417
VHDL Logic Descriptions ... 417
VHDL IEEE Support .. 418
VHDL File Type Support... 419
VHDL Debugging Using Write Operation... 420
VHDL Data Types .. 423
VHDL Record Types .. 427
VHDL Initial Values .. 427
VHDL Objects .. 430
VHDL Operators .. 431
VHDL Entity and Architecture Descriptions ... 432
VHDL Combinatorial Circuits .. 438
VHDL Sequential Circuits .. 444
VHDL Functions and Procedures.. 450
VHDL Assert Statements... 452
VHDLModels Defined Using Packages... 455
VHDL Constructs Supported in XST.. 458
VHDL Reserved Words.. 462

Chapter 15 XST Verilog Langua ge Suppor t ...463
About XST Verilog Language Support ... 463
Behavioral Verilog.. 464
Variable Part Selects... 464
Structural Verilog Features .. 464
Verilog Parameters ... 468
Verilog Parameter and Attribute Conflicts ... 469
Verilog Limitations in XST.. 470
Verilog Attributes and Meta Comments... 473
Verilog Constructs Supported in XST... 475
Verilog System Tasks and Functions Supported in XST 478
Verilog Primitives .. 480
Verilog Reserved Keywords .. 481
Verilog-2001 Support in XST ... 482

Chapter 16 XST Behavioral Verilog Langua ge Suppor t..483
Behavioral Verilog Variable Declarations... 484
Behavioral Verilog Initial Values .. 485
Behavioral Verilog Local Reset.. 486

Frontmatter
8 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=8

Behavioral Verilog Arrays ... 487
Behavioral Verilog Multi-Dimensional Arrays .. 487
Behavioral Verilog Data Types .. 488
Behavioral Verilog Legal Statements .. 490
Behavioral Verilog Expressions... 491
Behavioral Verilog Blocks ... 494
Behavioral Verilog Modules.. 494
Behavioral Verilog Module Declarations ... 495
Behavioral Verilog Continuous Assignments .. 496
Behavioral Verilog Procedural Assignments.. 497
Behavioral Verilog Constants .. 510
Behavioral Verilog Macros .. 510
Behavioral Verilog Include Files ... 511
Behavioral Verilog Comments... 512
Behavioral Verilog Generate Statements .. 513

Chapter 17 XST Mixed Langua ge Suppor t ...515
About XST Mixed Language Support... 515
Mixed Language Project Files ... 516
VHDL and Verilog Boundary Rules in Mixed Language Projects 517
Port Mapping in Mixed Language Projects .. 519
Generics Support in Mixed Language Projects .. 520
LSO Files in Mixed Language Projects ... 520

Chapter 18 XST Log File ..523
XST FPGA Log File Contents .. 523
Reducing the Size of the XST Log File ... 527
Macros in XST Log Files .. 529
XST Log File Examples .. 529

Chapter 19 XST Naming Conventions ..551
XST Net Naming Conventions.. 551
XST Instance Naming Conventions.. 551
XST Name Generation Control ... 552

Chapter 20 XST Command Line Mode ...553
About XST Command Line Mode... 553
Launching XST in Command Line Mode Using the XST Shell 554
Launching XST in Command Line Mode Using a Script File 554
Setting Up an XST Script Using the Run Command 555

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 9

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=9

Setting Up an XST Script Using the Set Command ... 558
Setting Up an XST Script Using the Elaborate Command............................... 558
Running XST in Script Mode (VHDL) ... 559
Running XST in Script Mode (Verilog) .. 561
Running XST in Script Mode (Mixed Language)... 563
Synthesizing VHDL Designs Using Command Line Mode............................ 564
Synthesizing Verilog Designs Using Command Line Mode........................... 566
Synthesizing Mixed Designs Using Command Line Mode 568

Frontmatter
10 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=10

Chapter 1

About This Guide
This chapter includes:

• Guide Overview

• Supported Devices

• Additional Resources

• Conventions

Guide Overview
This Guide:

• Applies only to the devices listed in Supported Devices.

• Describes Xilinx Synthesis Technology (XST) support for:

– Hardware Description Language (HDL) designs

– Supported Xilinx® devices

– Design constraints for the Xilinx ISE® Design Suite software

• Discusses optimization and coding techniques when creating designs for use with
XST.

• Explains how to run XST from the:

– ISE Design Suite Process window

– Command line

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 11

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=11

Chapter 1: About This Guide

Suppor ted Devices
This Guide applies to the following Xilinx® devices only:

• FPGA Devices

– Virtex®-4

– Virtex-5

– Spartan®-3 device family, including:

♦ Spartan-3

♦ Spartan-3A

♦ Spartan-3A DSP

♦ Spartan-3AN

♦ Spartan-3E

♦ Spartan-3L

• CPLD Devices

– CoolRunner™ XPLA3

– CoolRunner-II

– XC9500

– XC9500XL

Frontmatter
12 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=12

Chapter 2

Introduction to Xilinx Synthesis
Technology (XST)

This chapter includes:

• About XST

• Setting XST Options

About XST
Xilinx Synthesis Technology (XST) is a Xilinx® application that synthesizes Hardware
Description Language (HDL) designs to create Xilinx specific netlist files called NGC
files.

The NGC file:

• Is a netlist that contains both logical design data and constraints.

• Takes the place of both Electronic Data Interchange Format (EDIF) and Netlist
Constraints File (NCF) files.

For more information, see:

Xilinx Synthesis Technology (XST) - Frequently Asked Questions (FAQ)

Search for keyword XST FAQ.

Setting XST Options
Before synthesizing your design, you can set a variety of options for XST.

Designs are usually made up of:

• Combinatorial logic

• Macros such as flip-flops, adders, subtractors, counters, FSMs, and RAMs

Macros greatly improve performance of the synthesized designs. It is important to use
coding techniques to model the macros so they are optimally processed by XST.

XST first tries to recognize (infer) as many macros as possible. These macros are then
passed to the Low Level Optimization step. In order to obtain better optimization
results, the macros are either preserved as separate blocks, or merged with surrounded
logic. This filtering depends on the type and size of a macro. For example, by default,
2-to-1 multiplexers are not preserved by the optimization engine. Synthesis constraints
control the processing of inferred macros.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 13

Send Feedback

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=13

Chapter 2: Intr oduction to Xilinx Synthesis Technology (XST)

For more information, see:

• ISE® Design Suite Help

• XST Design Constraints

• XST Command Line Mode

Frontmatter
14 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=14

Chapter 3

XST HDL Coding Techniques
This chapter discusses XST HDL Coding Techniques, and includes:
• Signed and Unsigned Support in XST
• Registers HDL Coding Techniques
• Latches HDL Coding Techniques
• Tristates HDL Coding Techniques
• Counters HDL Coding Techniques
• Accumulators HDL Coding Techniques
• Shift Registers HDL Coding Techniques
• Dynamic Shift Registers HDL Coding Techniques
• Multiplexers HDL Coding Techniques
• Decoders HDL Coding Techniques
• Priority Encoders HDL Coding Techniques
• Logical Shifters HDL Coding Techniques
• Arithmetic Operators HDL Coding Techniques
• Adders, Subtractors, and Adders/Subtractors HDL Coding Techniques
• Comparators HDL Coding Techniques
• Multipliers HDL Coding Techniques
• Sequential Complex Multipliers HDL Coding Techniques
• Pipelined Multipliers HDL Coding Techniques
• Multiply Adder/Subtractors HDL Coding Techniques
• Multiply Accumulate HDL Coding Techniques
• Dividers HDL Coding Techniques
• Resource Sharing HDL Coding Techniques
• RAMs and ROMs HDL Coding Techniques
• ROMs Using Block RAM Resources HDL Coding Techniques
• Pipelined Distributed RAM HDL Coding Techniques
• FSM HDL Coding Techniques
• Black Boxes HDL Coding Techniques

For more information, see:

• XST FPGA Optimization
• XST CPLD Optimization

For information on accessing the synthesis templates from ISE® Design Suite, see the
ISE Design Suite Help.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 15

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=15

Chapter 3: XST HDL Coding Techniques

Signed and Unsigned Suppor t in XST
When using Verilog or VHDL in XST, some macros, such as adders or counters, can be
implemented for signed and unsigned values.

To enable support for signed and unsigned values in Verilog, enable Verilog-2001
as follows:

• ISE® Design Suite

Select Verilog 2001 as instructed in the Synthesis Options topic of ISE Design Suite
Help

• XST Command Line

Set -verilog2001 to yes.

For VHDL, depending on the operation and type of the operands, you must include
additional packages in your code. For example, to create an unsigned adder, use the
arithmetic packages and types that operate on unsigned values shown in the following
table.

Unsigned Adders
PACKAGE TYPE
numeric_std unsigned

std_logic_arith unsigned

std_logic_unsigned std_logic_vector

To create a signed adder, use the arithmetic packages and types that operate on signed
values shown in the following table.

Signed Adders
PACKAGE TYPE
numeric_std signed

std_logic_arith signed

std_logic_signed std_logic_vector

For more information about available types, see the IEEE VHDL Manual.

Frontmatter
16 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=16

Chapter 3: XST HDL Coding Techniques

Register s HDL Coding Techniques
This section discusses Registers HDL Coding Techniques, and includes:
• About Registers
• Registers Log File
• Registers Related Constraints
• Registers Coding Examples

About Register s
XST recognizes flip-flops with the following control signals:
• Asynchronous Set/Reset
• Synchronous Set/Reset
• Clock Enable

For more information, see:

Specifying INIT and RLOC

Register s Log File
The XST log file reports the type and size of recognized flip-flops during the Macro
Recognition step.

With device families such as the Virtex®-4 device family, XST may optimize different
slices of the same register in different ways. For example, XST may push a part of a
register into a DSP48 block, while another part may be implemented on slices, or even
become a part of a shift register. XST reports the total number of FF bits in the design in
the HDL Synthesis Report after the Advanced HDL Synthesis step.

Register s Log File Example
...
===
* HDL Synthesis *
===

Synthesizing Unit <registers_5>.
Related source file is "registers_5.vhd".
Found 4-bit register for signal <Q>.
Summary:

inferred 4 D-type flip-flop(s).
Unit <registers_5> synthesized.

===
HDL Synthesis Report

Macro Statistics
Registers : 1
4-bit register : 1

===
===
* Advanced HDL Synthesis *
===
===
Advanced HDL Synthesis Report

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 17

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=17

Chapter 3: XST HDL Coding Techniques

Macro Statistics
Registers : 4
Flip-Flops/Latches : 4

===
...

Register s Related Constraints
• Pack I/O Registers Into IOBs (IOB)
• Register Duplication (REGISTER_DUPLICATION)
• Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL)
• Register Balancing (REGISTER_BALANCING)

Register s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Flip-Flop With Positive-Edg e Clock Diagram

Flip-Flop With Positive-Edg e Clock Pin Descriptions
IO Pins Description
D Data Input

C Positive-Edge Clock

Q Data Output

Flip-Flop With Positive Edge Clock VHDL Coding Example
--
-- Flip-Flop with Positive-Edge Clock
--
library ieee;
use ieee.std_logic_1164.all;

entity registers_1 is
port(C, D : in std_logic;

Q : out std_logic);
end registers_1;

architecture archi of registers_1 is
begin

process (C)
begin

if (C’event and C=’1’) then
Q <= D;

end if;

Frontmatter
18 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=18

Chapter 3: XST HDL Coding Techniques

end process;

end archi;

When using VHDL for a positive-edge clock, instead of using:

if (C’event and C=’1’) then

you can also use:

if (rising_edge(C)) then

Flip-Flop With Positive-Edg e Clock Verilog Coding Example
//
// Flip-Flop with Positive-Edge Clock
//

module v_registers_1 (C, D, Q);
input C, D;
output Q;
reg Q;

always @(posedge C)
begin

Q <= D;
end

endmodule

Flip-Flop With Positive Edge Clock with INITSTATE of the Flop Set Verilog
Coding Example
module test(d, C, q);

input d;
input C;
output q;

reg qtemp = ’b1 ;

always @ (posedge C)
begin

qtemp = d;
end

assign q = qtemp;
endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 19

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=19

Chapter 3: XST HDL Coding Techniques

Flip-Flop With Positive Edge Clock with INITSTATE of the Flop Set VHDL
Coding Example
library ieee;
use ieee.std_logic_1164.all;

entity registers_1 is
port(C, D : in std_logic;
Q : out std_logic);

end registers_1;

architecture archi of registers_1 is
signal qtemp : std_logic := ’1’;

begin

process (C)

begin
if (C’event and C=’1’) then
qtemp <= D;

end if;
Q <= Qtemp;

end process;

end archi;

Flip-Flop With Negative-Edg e Clock and Async hronous Reset
Diagram

Flip-Flop With Negative-Edg e Clock and Async hronous Reset
Pin Descriptions

IO Pins Description
D Data Input

C Negative-Edge Clock

CLR Asynchronous Reset (active-High)

Q Data Output

Frontmatter
20 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=20

Chapter 3: XST HDL Coding Techniques

Flip-Flop With Negative-Edg e Clock and Async hronous Reset VHDL
Coding Example
--
-- Flip-Flop with Negative-Edge Clock and Asynchronous Reset
--

library ieee;
use ieee.std_logic_1164.all;

entity registers_2 is
port(C, D, CLR : in std_logic;

Q : out std_logic);
end registers_2;

architecture archi of registers_2 is
begin

process (C, CLR)
begin

if (CLR = ’1’)then
Q <= ’0’;

elsif (C’event and C=’0’)then
Q <= D;

end if;
end process;

end archi;

Flip-Flop With Negative-Edg e Clock and Async hronous Reset Verilog
Coding Example
//
// Flip-Flop with Negative-Edge Clock and Asynchronous Reset
//

module v_registers_2 (C, D, CLR, Q);
input C, D, CLR;
output Q;
reg Q;

always @(negedge C or posedge CLR)
begin

if (CLR)
Q <= 1’b0;

else
Q <= D;

end

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 21

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=21

Chapter 3: XST HDL Coding Techniques

Flip-Flop With Positive-Edg e Clock and Synchronous Set Diagram

Flip-Flop With Positive-Edg e Clock and Synchronous Set Pin
Descriptions

IO Pins Description
D Data Input

C Positive-Edge Clock

S Synchronous Set (active-High)

Q Data Output

Flip-Flop With Positive-Edg e Clock and Synchronous Set VHDL Coding
Example
--
-- Flip-Flop with Positive-Edge Clock and Synchronous Set
--
library ieee;
use ieee.std_logic_1164.all;
entity registers_3 is
port(C, D, S : in std_logic;
Q : out std_logic);

end registers_3;

architecture archi of registers_3 is
begin

process (C)
begin
if (C’event and C=’1’) then
if (S=’1’) then
Q <= ’1’;

else
Q <= D;

end if;
end if;

end process;

end archi;

Frontmatter
22 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=22

Chapter 3: XST HDL Coding Techniques

Flip-Flop With Positive-Edg e Clock and Synchronous Set Verilog Coding
Example
//
// Flip-Flop with Positive-Edge Clock and Synchronous Set
//
module v_registers_3 (C, D, S, Q);
input C, D, S;
output Q;
reg Q;

always @(posedge C)
begin
if (S)
Q <= 1’b1;

else
Q <= D;

end

endmodule

Flip-Flop With Positive-Edg e Clock and Clock Enable Diagram

Flip-Flop With Positive-Edg e Clock and Clock Enable Pin
Descriptions

IO Pins Description
D Data Input

C Positive-Edge Clock

CE Clock Enable (active-High)

Q Data Output

Flip-Flop With Positive-Edg e Clock and Clock Enable VHDL Coding
Example
--
-- Flip-Flop with Positive-Edge Clock and Clock Enable
--
library ieee;
use ieee.std_logic_1164.all;

entity registers_4 is
port(C, D, CE : in std_logic;

Q : out std_logic);
end registers_4;

architecture archi of registers_4 is
begin

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 23

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=23

Chapter 3: XST HDL Coding Techniques

process (C)
begin

if (C’event and C=’1’) then
if (CE=’1’) then

Q <= D;
end if;

end if;
end process;

end archi;

Flip-Flop With Positive-Edg e Clock and Clock Enable Verilog Coding
Example
//
// Flip-Flop with Positive-Edge Clock and Clock Enable
//

module v_registers_4 (C, D, CE, Q);
input C, D, CE;
output Q;
reg Q;

always @(posedge C)
begin

if (CE)
Q <= D;

end

endmodule

4-Bit Register With Positive-Edg e Clock, Async hronous Set, and
Clock Enable Diagram

4-Bit Register With Positive-Edg e Clock, Async hronous Set, and
Clock Enable Pin Descriptions

IO Pins Description
D Data Input

C Positive-Edge Clock

PRE Asynchronous Set (active-High)

CE Clock Enable (active-High)

Q Data Output

Frontmatter
24 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=24

Chapter 3: XST HDL Coding Techniques

4-Bit Register With Positive-Edg e Clock, Async hronous Set, and Clock
Enable VHDL Coding Example

--
-- 4-bit Register with Positive-Edge Clock,
-- Asynchronous Set and Clock Enable
--

library ieee;
use ieee.std_logic_1164.all;

entity registers_5 is
port(C, CE, PRE : in std_logic;

D : in std_logic_vector (3 downto 0);
Q : out std_logic_vector (3 downto 0));

end registers_5;

architecture archi of registers_5 is
begin

process (C, PRE)
begin

if (PRE=’1’) then
Q <= "1111";

elsif (C’event and C=’1’)then
if (CE=’1’) then

Q <= D;
end if;

end if;
end process;

end archi;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 25

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=25

Chapter 3: XST HDL Coding Techniques

4-Bit Register With Positive-Edg e Clock, Async hronous Set, and Clock
Enable Verilog Coding Example

//
// 4-bit Register with Positive-Edge Clock,
// Asynchronous Set and Clock Enable
//

module v_registers_5 (C, D, CE, PRE, Q);
input C, CE, PRE;
input [3:0] D;
output [3:0] Q;
reg [3:0] Q;

always @(posedge C or posedge PRE)
begin

if (PRE)
Q <= 4’b1111;

else
if (CE)

Q <= D;
end

endmodule

Frontmatter
26 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=26

Chapter 3: XST HDL Coding Techniques

Latc hes HDL Coding Techniques
This section includes:

• About Latches

• Latches Log File

• Latches Related Constraints

• Latches Coding Examples

About Latc hes
XST can recognize latches with asynchronous set/reset control signals. Latches can
be described using:

• Process (VHDL)

• Always block (Verilog)

• Concurrent state assignment

XST does not support wait statements (VHDL) for latch descriptions.

Latc hes Log File
The XST log file reports the type and size of recognized latches during the Macro
Recognition step.

Latc hes Log File Example
...
Synthesizing Unit <latch>.

Related source file is latch_1.vhd.
WARNING:Xst:737 - Found 1-bit latch for signal <q>.

Summary:
inferred 1 Latch(s).

Unit <latch> synthesized.

=======================================
HDL Synthesis Report

Macro Statistics
Latches : 1

1-bit latch : 1
==
...

Latc hes Related Constraints
Pack I/O Registers Into IOBs (IOB)

Latc hes Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 27

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=27

Chapter 3: XST HDL Coding Techniques

Latc h With Positive Gate Diagram

Latc h With Positive Gate Pin Descriptions
IO Pins Description
D Data Input

G Positive Gate

Q Data Output

Latc h With Positive Gate VHDL Coding Example
--
-- Latch with Positive Gate
--
library ieee;
use ieee.std_logic_1164.all;
entity latches_1 is
port(G, D : in std_logic;
Q : out std_logic);

end latches_1;

architecture archi of latches_1 is
begin
process (G, D)
begin
if (G=’1’) then
Q <= D;
end if;

end process;
end archi;

Latc h With Positive Gate Verilog Coding Example
//
// Latch with Positive Gate
//
module v_latches_1 (G, D, Q);
input G, D;
output Q;
reg Q;

always @(G or D)
begin
if (G)
Q = D;

end
endmodule

Frontmatter
28 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=28

Chapter 3: XST HDL Coding Techniques

Latc h With Positive Gate and Async hronous Reset Diagram

Latc h With Positive Gate and Async hronous Reset Pin
Descriptions

IO Pins Description
D Data Input

G Positive Gate

CLR Asynchronous Reset (active-High)

Q Data Output

Latc h With Positive Gate and Async hronous Reset VHDL Coding Example
--
-- Latch with Positive Gate and Asynchronous Reset
--

library ieee;
use ieee.std_logic_1164.all;

entity latches_2 is
port(G, D, CLR : in std_logic;

Q : out std_logic);
end latches_2;

architecture archi of latches_2 is
begin

process (CLR, D, G)
begin

if (CLR=’1’) then
Q <= ’0’;

elsif (G=’1’) then
Q <= D;

end if;
end process;

end archi;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 29

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=29

Chapter 3: XST HDL Coding Techniques

Latc h With Positive Gate and Async hronous Reset Verilog Coding Example
//
// Latch with Positive Gate and Asynchronous Reset
//

module v_latches_2 (G, D, CLR, Q);
input G, D, CLR;
output Q;
reg Q;

always @(G or D or CLR)
begin

if (CLR)
Q = 1’b0;

else if (G)
Q = D;

end
endmodule

4-Bit Latc h With Inver ted Gate and Async hronous Set Diagram

4-Bit Latc h With Inver ted Gate and Async hronous Set Pin
Descriptions

IO Pins Description
D Data Input

G Inverted Gate

PRE Asynchronous Preset (active-High)

Q Data Output

4-Bit Latc h With Inver ted Gate and Async hronous Set VHDL Coding
Example
--
-- 4-bit Latch with Inverted Gate and Asynchronous Set
--

library ieee;
use ieee.std_logic_1164.all;

entity latches_3 is
port(D : in std_logic_vector(3 downto 0);

G, PRE : in std_logic;
Q : out std_logic_vector(3 downto 0));

end latches_3;

Frontmatter
30 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=30

Chapter 3: XST HDL Coding Techniques

architecture archi of latches_3 is
begin

process (PRE, G, D)
begin

if (PRE=’1’) then
Q <= "1111";

elsif (G=’0’) then
Q <= D;

end if;
end process;

end archi;

4-Bit Latc h With Inver ted Gate and Async hronous Set Verilog Coding
Example
//
// 4-bit Latch with Inverted Gate and Asynchronous Set
//

module v_latches_3 (G, D, PRE, Q);
input G, PRE;
input [3:0] D;
output [3:0] Q;
reg [3:0] Q;

always @(G or D or PRE)
begin

if (PRE)
Q = 4’b1111;

else if (~G)
Q = D;

end
endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 31

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=31

Chapter 3: XST HDL Coding Techniques

Tristates HDL Coding Techniques
This section discusses Tristates HDL Coding Techniques, and includes:

• About Tristates

• Tristates Log File

• Tristates Related Constraints

• Tristates Coding Examples

About Tristates
Tristate elements can be described using:

• Combinatorial process (VHDL)

• Always block (Verilog)

• Concurrent assignment

In the Tristates Coding Examples, comparing to 0 instead of 1 infers a BUFT primitive
instead of a BUFE macro. The BUFE macro has an inverter on the E pin.

Tristates Log File
The XST log file reports the type and size of recognized tristates during the Macro
Recognition step.

Tristates Log File Example
...
Synthesizing Unit <three_st>.

Related source file is tristates_1.vhd.
Found 1-bit tristate buffer for signal <o>.
Summary:

inferred 1 Tristate(s).
Unit <three_st> synthesized.

=============================
HDL Synthesis Report

Macro Statistics
Tristates : 1

1-bit tristate buffer : 1
=============================
...

Tristates Related Constraints
Convert Tristates to Logic (TRISTATE2LOGIC)

Tristates Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Frontmatter
32 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=32

Chapter 3: XST HDL Coding Techniques

Tristate Description Using Combinatorial Process and Always
Bloc k Diagram

Tristate Description Using Combinatorial Process and Always
Bloc k Pin Descriptions

IO Pins Description
I Data Input

T Output Enable (active-Low)

O Data Output

Tristate Description Using Combinatorial Process VHDL Coding Example
--
-- Tristate Description Using Combinatorial Process
--

library ieee;
use ieee.std_logic_1164.all;

entity three_st_1 is
port(T : in std_logic;

I : in std_logic;
O : out std_logic);

end three_st_1;

architecture archi of three_st_1 is
begin

process (I, T)
begin

if (T=’0’) then
O <= I;

else
O <= ’Z’;

end if;
end process;

end archi;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 33

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=33

Chapter 3: XST HDL Coding Techniques

Tristate Description Using Combinatorial Always Bloc k Verilog Coding
Example
//
// Tristate Description Using Combinatorial Always Block
//

module v_three_st_1 (T, I, O);
input T, I;
output O;
reg O;

always @(T or I)
begin

if (~T)
O = I;

else
O = 1’bZ;

end

endmodule

Tristate Description Using Concurrent Assignment Diagram

Tristate Description Using Concurrent Assignment Pin
Descriptions

IO Pins Description
I Data Input

T Output Enable (active-Low)

O Data Output

Tristate Description Using Concurrent Assignment VHDL Coding Example
--
-- Tristate Description Using Concurrent Assignment
--

library ieee;
use ieee.std_logic_1164.all;

entity three_st_2 is
port(T : in std_logic;

I : in std_logic;
O : out std_logic);

end three_st_2;

architecture archi of three_st_2 is
begin

O <= I when (T=’0’) else ’Z’;

Frontmatter
34 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=34

Chapter 3: XST HDL Coding Techniques

end archi;

Tristate Description Using Concurrent Assignment Verilog Coding Example
//
// Tristate Description Using Concurrent Assignment
//

module v_three_st_2 (T, I, O);
input T, I;
output O;

assign O = (~T) ? I: 1’bZ;

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 35

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=35

Chapter 3: XST HDL Coding Techniques

Counter s HDL Coding Techniques
This section discusses Counters HDL Coding Techniques, and includes:

• About Counters

• Counters Log File

• Counters Related Constraints

• Counters Coding Examples

About Counter s
XST recognizes counters with the following control signals:

• Asynchronous Set/Reset

• Synchronous Set/Reset

• Asynchronous/Synchronous Load (signal or constant or both)

• Clock Enable

• Modes (Up, Down, Up/Down)

• Mixture of all of the above

Hardware Description Language (HDL) coding styles for the following control signals
are equivalent to those described in Registers HDL Coding Techniques.

• Clock

• Asynchronous Set/Reset

• Synchronous Set/Reset

XST supports both unsigned and signed counters.

Counter s Log File
The XST log file reports the type and size of recognized counters during the Macro
Recognition step.

Counter s Log File Example
...
Synthesizing Unit <counter>.

Related source file is counters_1.vhd.
Found 4-bit up counter for signal <tmp>.
Summary:

inferred 1 Counter(s).
Unit <counter> synthesized.

==============================
HDL Synthesis Report

Macro Statistics
Counters : 1

4-bit up counter : 1
==============================
...

Frontmatter
36 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=36

Chapter 3: XST HDL Coding Techniques

Counter s Related Constraints
• Use DSP48 (USE_DSP48)
• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)
• Keep (KEEP)

Counter s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

4-Bit Unsigned Up Counter With Async hronous Reset Diagram

4-Bit Unsigned Up Counter With Async hronous Reset Pin
Descriptions

IO Pins Description
C Positive-Edge Clock

CLR Asynchronous Reset (active-High)

Q Data Output

4-Bit Unsigned Up Counter With Async hronous Reset VHDL Coding
Example
--
-- 4-bit unsigned up counter with an asynchronous reset.
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counters_1 is
port(C, CLR : in std_logic;

Q : out std_logic_vector(3 downto 0));
end counters_1;

architecture archi of counters_1 is
signal tmp: std_logic_vector(3 downto 0);

begin
process (C, CLR)
begin

if (CLR=’1’) then
tmp <= "0000";

elsif (C’event and C=’1’) then
tmp <= tmp + 1;

end if;
end process;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 37

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=37

Chapter 3: XST HDL Coding Techniques

Q <= tmp;

end archi;

4-Bit Unsigned Up Counter With Async hronous Reset Verilog Coding
Example
//
// 4-bit unsigned up counter with an asynchronous reset.
//

module v_counters_1 (C, CLR, Q);
input C, CLR;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge CLR)
begin

if (CLR)
tmp <= 4’b0000;

else
tmp <= tmp + 1’b1;

end

assign Q = tmp;
endmodule

4-Bit Unsigned Down Counter With Synchronous Set Diagram

4-Bit Unsigned Down Counter With Synchronous Set Pin
Descriptions

IO Pins Description
C Positive-Edge Clock

S Synchronous Set (active-High)

Q Data Output

Frontmatter
38 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=38

Chapter 3: XST HDL Coding Techniques

4-Bit Unsigned Down Counter With Synchronous Set VHDL Coding
Example
--
-- 4-bit unsigned down counter with a synchronous set.
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counters_2 is
port(C, S : in std_logic;

Q : out std_logic_vector(3 downto 0));
end counters_2;

architecture archi of counters_2 is
signal tmp: std_logic_vector(3 downto 0);

begin
process (C)
begin

if (C’event and C=’1’) then
if (S=’1’) then

tmp <= "1111";
else

tmp <= tmp - 1;
end if;

end if;
end process;

Q <= tmp;

end archi;

4-Bit Unsigned Down Counter With Synchronous Set Verilog Coding
Example
//
// 4-bit unsigned down counter with a synchronous set.
//

module v_counters_2 (C, S, Q);
input C, S;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C)
begin

if (S)
tmp <= 4’b1111;

else
tmp <= tmp - 1’b1;

end

assign Q = tmp;

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 39

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=39

Chapter 3: XST HDL Coding Techniques

4-Bit Unsigned Up Counter With Async hronous Load From
Primar y Input Diagram

4-Bit Unsigned Up Counter With Async hronous Load From
Primar y Input Pin Descriptions

IO Pins Description
C Positive-Edge Clock

ALOAD Asynchronous Load (active-High)

D Data Input

Q Data Output

4-Bit Unsigned Up Counter With Async hronous Load From Primar y Input
VHDL Coding Example
--
-- 4-bit Unsigned Up Counter with Asynchronous Load
-- from Primary Input
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counters_3 is
port(C, ALOAD : in std_logic;

D : in std_logic_vector(3 downto 0);
Q : out std_logic_vector(3 downto 0));

end counters_3;

architecture archi of counters_3 is
signal tmp: std_logic_vector(3 downto 0);

begin
process (C, ALOAD, D)
begin

if (ALOAD=’1’) then
tmp <= D;

elsif (C’event and C=’1’) then
tmp <= tmp + 1;

end if;
end process;

Q <= tmp;

end archi;

Frontmatter
40 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=40

Chapter 3: XST HDL Coding Techniques

4-Bit Unsigned Up Counter With Async hronous Load From Primar y Input
Verilog Coding Example
//
// 4-bit Unsigned Up Counter with Asynchronous Load
// from Primary Input
//

module v_counters_3 (C, ALOAD, D, Q);
input C, ALOAD;
input [3:0] D;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge ALOAD)
begin

if (ALOAD)
tmp <= D;

else
tmp <= tmp + 1’b1;

end

assign Q = tmp;

endmodule

4-Bit Unsigned Up Counter With Synchronous Load With
Constant Diagram

4-Bit Unsigned Up Counter With Synchronous Load With
Constant Pin Descriptions

IO Pins Description
C Positive-Edge Clock

SLOAD Synchronous Load (active-High)

Q Data Output

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 41

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=41

Chapter 3: XST HDL Coding Techniques

4-Bit Unsigned Up Counter With Synchronous Load With Constant VHDL
Coding Example
--
-- 4-bit Unsigned Up Counter with Synchronous Load
-- with a Constant
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counters_4 is
port(C, SLOAD : in std_logic;

Q : out std_logic_vector(3 downto 0));
end counters_4;

architecture archi of counters_4 is
signal tmp: std_logic_vector(3 downto 0);

begin
process (C)
begin

if (C’event and C=’1’) then
if (SLOAD=’1’) then

tmp <= "1010";
else

tmp <= tmp + 1;
end if;

end if;
end process;

Q <= tmp;

end archi;

4-Bit Unsigned Up Counter With Synchronous Load With Constant Verilog
Coding Example
//
// 4-bit Unsigned Up Counter with Synchronous Load
// with a Constant
//

module v_counters_4 (C, SLOAD, Q);
input C, SLOAD;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C)
begin

if (SLOAD)
tmp <= 4’b1010;

else
tmp <= tmp + 1’b1;

end

assign Q = tmp;

endmodule

Frontmatter
42 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=42

Chapter 3: XST HDL Coding Techniques

4-Bit Unsigned Up Counter With Async hronous Reset and Clock
Enable Diagram

4-Bit Unsigned Up Counter With Async hronous Reset and Clock
Enable Pin Descriptions

IO Pins Description
C Positive-Edge Clock

CLR Asynchronous Reset (active-High)

CE Clock Enable

Q Data Output

4-Bit Unsigned Up Counter With Async hronous Reset and Clock Enable
VHDL Coding Example
--
-- 4-bit Unsigned Up Counter with Asynchronous Reset
-- and Clock Enable
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counters_5 is
port(C, CLR, CE : in std_logic;

Q : out std_logic_vector(3 downto 0));
end counters_5;

architecture archi of counters_5 is
signal tmp: std_logic_vector(3 downto 0);

begin
process (C, CLR)
begin

if (CLR=’1’) then
tmp <= "0000";

elsif (C’event and C=’1’) then
if (CE=’1’) then

tmp <= tmp + 1;
end if;

end if;
end process;

Q <= tmp;

end archi;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 43

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=43

Chapter 3: XST HDL Coding Techniques

4-Bit Unsigned Up Counter With Async hronous Reset and Clock Enable
Verilog Coding Example
//
// 4-bit Unsigned Up Counter with Asynchronous Reset
// and Clock Enable
//

module v_counters_5 (C, CLR, CE, Q);
input C, CLR, CE;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge CLR)
begin

if (CLR)
tmp <= 4’b0000;

else if (CE)
tmp <= tmp + 1’b1;

end

assign Q = tmp;

endmodule

4-Bit Unsigned Up/Down Counter With Async hronous Reset
Diagram

4-Bit Unsigned Up/Down Counter With Async hronous Reset Pin
Descriptions

IO Pins Description
C Positive-Edge Clock

CLR Asynchronous Reset (active-High)

UP_DOWN Up/Down Count Mode Selector

Q Data Output

Frontmatter
44 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=44

Chapter 3: XST HDL Coding Techniques

4-Bit Unsigned Up/Down Counter With Async hronous Reset VHDL Coding
Example
--
-- 4-bit Unsigned Up/Down counter
-- with Asynchronous Reset
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counters_6 is
port(C, CLR, UP_DOWN: in std_logic;

Q : out std_logic_vector(3 downto 0));
end counters_6;

architecture archi of counters_6 is
signal tmp: std_logic_vector(3 downto 0);

begin
process (C, CLR)
begin

if (CLR=’1’) then
tmp <= "0000";

elsif (C’event and C=’1’) then
if (UP_DOWN=’1’) then

tmp <= tmp + 1;
else

tmp <= tmp - 1;
end if;

end if;
end process;

Q <= tmp;

end archi;

4-Bit Unsigned Up/Down Counter With Async hronous Reset Verilog
Coding Example
//
// 4-bit Unsigned Up/Down counter
// with Asynchronous Reset
//

module v_counters_6 (C, CLR, UP_DOWN,Q);
input C, CLR, UP_DOWN;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge CLR)
begin

if (CLR)
tmp <= 4’b0000;

else if (UP_DOWN)
tmp <= tmp + 1’b1;

else
tmp <= tmp - 1’b1;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 45

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=45

Chapter 3: XST HDL Coding Techniques

end

assign Q = tmp;

endmodule

4-Bit Signed Up Counter With Async hronous Reset Diagram

4-Bit Signed Up Counter With Async hronous Reset Pin
Descriptions

IO Pins Description
C Positive-Edge Clock

CLR Asynchronous Reset (active-High)

Q Data Output

4-Bit Signed Up Counter With Async hronous Reset VHDL Coding Example
--
-- 4-bit Signed Up Counter with Asynchronous Reset
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity counters_7 is
port(C, CLR : in std_logic;

Q : out std_logic_vector(3 downto 0));
end counters_7;

architecture archi of counters_7 is
signal tmp: std_logic_vector(3 downto 0);

begin
process (C, CLR)
begin

if (CLR=’1’) then
tmp <= "0000";

elsif (C’event and C=’1’) then
tmp <= tmp + 1;

end if;
end process;

Q <= tmp;

end archi;

Frontmatter
46 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=46

Chapter 3: XST HDL Coding Techniques

4-Bit Signed Up Counter With Async hronous Reset Verilog Coding
Example
//
// 4-bit Signed Up Counter with Asynchronous Reset
//

module v_counters_7 (C, CLR, Q);
input C, CLR;
output signed [3:0] Q;
reg signed [3:0] tmp;

always @ (posedge C or posedge CLR)
begin

if (CLR)
tmp <= 4’b0000;

else
tmp <= tmp + 1’b1;

end

assign Q = tmp;

endmodule

4-Bit Signed Up Counter With Async hronous Reset and Modulo
Maximum Diagram

4-Bit Signed Up Counter With Async hronous Reset and Modulo
Maximum Pin Descriptions

IO Pins Description
C Positive-Edge Clock

CLR Asynchronous Reset (active-High)

Q Data Output

4-Bit Signed Up Counter With Async hronous Reset and Modulo Maximum
VHDL Coding Example
--
-- 4-bit Signed Up Counter with Asynchronous Reset
-- and Modulo Maximum
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity counters_8 is

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 47

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=47

Chapter 3: XST HDL Coding Techniques

generic (MAX : integer := 16);
port(C, CLR : in std_logic;

Q : out integer range 0 to MAX-1);
end counters_8;

architecture archi of counters_8 is
signal cnt : integer range 0 to MAX-1;

begin
process (C, CLR)
begin

if (CLR=’1’) then
cnt <= 0;

elsif (rising_edge(C)) then
cnt <= (cnt + 1) mod MAX ;

end if;
end process;

Q <= cnt;

end archi;

4-Bit Signed Up Counter With Async hronous Reset and Modulo Maximum
Verilog Coding Example
//
// 4-bit Signed Up Counter with Asynchronous Reset
// and Modulo Maximum
//

module v_counters_8 (C, CLR, Q);
parameter

MAX_SQRT= 4,
MAX = (MAX_SQRT*MAX_SQRT);

input C, CLR;
output [MAX_SQRT-1:0] Q;
reg [MAX_SQRT-1:0] cnt;

always @ (posedge C or posedge CLR)
begin

if (CLR)
cnt <= 0;

else
cnt <= (cnt + 1) %MAX;

end

assign Q = cnt;

endmodule

Frontmatter
48 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=48

Chapter 3: XST HDL Coding Techniques

Accum ulator s HDL Coding Techniques
This section discusses Accumulators HDL Coding Techniques, and includes:
• About Accumulators
• Accumulators in Virtex®-4 Devices and Virtex-5 Device
• Accumulators Log File
• Accumulators Related Constraints
• Accumulators Coding Examples

About Accum ulator s
An accumulator differs from a counter in the nature of the operands of the add and
subtract operation.
• In a counter:

– The destination and first operand is a signal or variable
– The second operand is a constant equal to 1:

A <= A + 1

• In an accumulator:
– The destination and first operand is a signal or variable
– The second operand is either:

♦ A signal or variable:

A <= A + B

♦ A constant not equal to 1:

A <= A + Constant

An inferred accumulator can be up, down, or updown. For an updown accumulator,
the accumulated data may differ between the up and downmode:

...
if updown = ’1’ then

a <= a + b;
else

a <= a - c;
...

XST can infer an accumulator with the same set of control signals available for counters.

For more information, see:

Counters HDL Coding Techniques

Accum ulator s in Vir tex-4 Devices and Vir tex-5 Devices
This section discusses Accumulators in Virtex®-4 Devices and Virtex-5 Devices, and
includes:
• About Accumulators in Virtex-4 Devices and Virtex-5 Devices
• Macro Implementation on DSP48 Resources
• Maximum Macro Configuration
• Reporting of Inferred Accumulators

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 49

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=49

Chapter 3: XST HDL Coding Techniques

About Accum ulator s in Vir tex-4 Devices and Vir tex-5 Devices
Virtex-4 devices and Virtex-5 devices enable accumulators to be implemented on DSP48
resources. XST can push up to two levels of input registers into DSP48 blocks.

XST can implement an accumulator in a DSP48 block if its implementation requires only
a single DSP48 resource. If an accumulator macro does not fit in a single DSP48, XST
implements the entire macro using slice logic.

Macro Implementation on DSP48 Resour ces
Macro implementation on DSP48 resources is controlled by Use DSP48 (USE_DSP48),
with a default value of auto. In automode, XST implements accumulators taking into
account DSP48 resources on the device.

Use DSP Utilization Ratio (DSP_UTILIZATION_RATIO) in automode to control DSP48
resources for synthesis. By default, XST tries to utilize all DSP48 resources.

For more information, see:

DSP48 Block Resources

Maximum Macro Configuration
To deliver the best performance, XST by default tries to infer and implement the
maximum macro configuration, including as many registers as possible in the DSP48.
Use Keep (KEEP) to shape a macro in a specific way. For example, to exclude the first
register stage from the DSP48, place Keep (KEEP) constraints on the outputs of these
registers.

Repor ting of Inferred Accum ulator s
XST reports the details of inferred accumulators at the HDL Synthesis step. Because
accumulators are implemented within the MAC implementation mechanism, they are
no longer visible in the Final Synthesis Report.

Accum ulator s Log File
The XST log file reports the type and size of recognized accumulators during the Macro
Recognition step.

Accum ulator s Log File Example
...
Synthesizing Unit <accum>.

Related source file is accumulators_1.vhd.
Found 4-bit up accumulator for signal <tmp>.
Summary:

inferred 1 Accumulator(s).
Unit <accum> synthesized.

==============================
HDL Synthesis Report

Macro Statistics
Accumulators : 1

4-bit up accumulator : 1
==============================
...

Frontmatter
50 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=50

Chapter 3: XST HDL Coding Techniques

Accum ulator s Related Constraints
• Use DSP48 (USE_DSP48)
• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)
• Keep (KEEP)

Accum ulator s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

4-Bit Unsigned Up Accum ulator With Async hronous Reset
Diagram

4-Bit Unsigned Up Accum ulator With Async hronous Reset Pin
Descriptions

IO Pins Description
C Positive-Edge Clock

CLR Asynchronous Reset (active-High)

D Data Input

Q Data Output

4-Bit Unsigned Up Accum ulator With Async hronous Reset VHDL Coding
Example

--
-- 4-bit Unsigned Up Accumulator with Asynchronous Reset
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity accumulators_1 is
port(C, CLR : in std_logic;

D : in std_logic_vector(3 downto 0);
Q : out std_logic_vector(3 downto 0));

end accumulators_1;

architecture archi of accumulators_1 is
signal tmp: std_logic_vector(3 downto 0);

begin

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 51

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=51

Chapter 3: XST HDL Coding Techniques

process (C, CLR)
begin

if (CLR=’1’) then
tmp <= "0000";

elsif (C’event and C=’1’) then
tmp <= tmp + D;

end if;
end process;

Q <= tmp;

end archi;

4-Bit Unsigned Up Accum ulator With Async hronous Reset Verilog Coding
Example

//
// 4-bit Unsigned Up Accumulator with Asynchronous Reset
//

module v_accumulators_1 (C, CLR, D, Q);

input C, CLR;
input [3:0] D;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge CLR)
begin

if (CLR)
tmp = 4’b0000;

else
tmp = tmp + D;

end
assign Q = tmp;

endmodule

Frontmatter
52 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=52

Chapter 3: XST HDL Coding Techniques

Shift Register s HDL Coding Techniques
This section discusses Shift Registers HDL Coding Techniques, and includes:
• About Shift Registers
• Shift Registers Log File
• Shift Registers Related Constraints
• Shift Registers Coding Examples

About Shift Register s
This section discusses About Shift Registers, and includes:
• Shift Register Definition
• Static Shift Register Components
• Additional Functionality
• Describing Shift Registers
• Implementing Shift Registers

Shift Register Definition
A shift register is a chain of flip-flops allowing propagation of data across a fixed (static)
number of latency stages. In Dynamic Shift Registers HDL Coding Techniques, the
length of the propagation chain dynamically varies during circuit operation.

Static Shift Register Components
A static shift register usually involves:
• A clock
• An optional clock enable
• A serial data input
• A serial data output

Additional Functionality
You can include additional functionality, such as reset, set, or parallel load logic.
In this case however, XST may not always be able to take advantage of dedicated
SRL-type primitives for reduced device utilization and optimized performance. Xilinx®
recommends removing such logic, and loading the desired contents serially instead.

Describing Shift Register s
Ways to describe shift registers in VHDL include:
• Concatenation operator

shreg <= shreg (6 downto 0) & SI;

• For loop construct

for i in 0 to 6 loop
shreg(i+1) <= shreg(i);

end loop;
shreg(0) <= SI;

• Predefined shift operators (for example, SLL or SRL)

For more information, see your VHDL and Verilog language reference manuals.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 53

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=53

Chapter 3: XST HDL Coding Techniques

Implementing Shift Register s
Inferred shift registers are implemented on SRL-type resources. The resources shown in
the following table are leveraged.

Devices SRL16 SRL16E SRLC16 SRLC16E SRLC32E
Spartan®-3

Spartan-3E

Spartan-3A

Yes Yes Yes Yes No

Virtex®-4 Yes Yes Yes Yes No

Virtex-5 Yes Yes Yes Yes Yes

Shift Register s Log File
XST recognizes shift registers in the Low Level Optimization step. The XST log file
reports the size of recognized shift registers.

Shift Register s Log File Example
...
===
* HDL Synthesis *
===

Synthesizing Unit <shift_registers_1>.
Related source file is "shift_registers_1.vhd".
Found 8-bit register for signal <tmp>.
Summary:

inferred 8 D-type flip-flop(s).
Unit <shift_registers_1> synthesized.

===
* Advanced HDL Synthesis *
===
Advanced HDL Synthesis Report
Macro Statistics
Registers : 8
Flip-Flops : 8

===
===
* Low Level Synthesis *
===
Processing Unit <shift_registers_1> :
Found 8-bit shift register for signal <tmp_7>.

Unit <shift_registers_1> processed.
===
Final Register Report
Macro Statistics
Shift Registers : 1
8-bit shift register : 1

===

Shift Register s Related Constraints
Shift Register Extraction (SHREG_EXTRACT)

Frontmatter
54 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=54

Chapter 3: XST HDL Coding Techniques

Shift Register s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

8-Bit Shift-Left Register With Positive-Edg e Clock, Serial In and
Serial Out Diagram

8-Bit Shift-Left Register With Positive-Edg e Clock, Serial In and
Serial Out Pin Descriptions

IO Pins Description
C Positive-Edge Clock

SI Serial In

SO Serial Output

8-Bit Shift-Left Register With Positive-Edg e Clock, Serial In and Serial
Out VHDL Coding Example
--
-- 8-bit Shift-Left Register with Positive-Edge Clock,
-- Serial In, and Serial Out
--

library ieee;
use ieee.std_logic_1164.all;

entity shift_registers_1 is
port(C, SI : in std_logic;

SO : out std_logic);
end shift_registers_1;

architecture archi of shift_registers_1 is
signal tmp: std_logic_vector(7 downto 0);

begin

process (C)
begin

if (C’event and C=’1’) then
for i in 0 to 6 loop

tmp(i+1) <= tmp(i);
end loop;
tmp(0) <= SI;

end if;
end process;

SO <= tmp(7);

end archi;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 55

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=55

Chapter 3: XST HDL Coding Techniques

8-Bit Shift-Left Register With Positive-Edg e Clock, Serial In and Serial
Out Verilog Coding Example
//
// 8-bit Shift-Left Register with Positive-Edge Clock,
// Serial In, and Serial Out
//

module v_shift_registers_1 (C, SI, SO);
input C,SI;
output SO;
reg [7:0] tmp;

always @(posedge C)
begin

tmp = {tmp[6:0], SI};
end

assign SO = tmp[7];

endmodule

8-Bit Shift-Left Register With Negative-Edg e Clock, Clock Enable,
Serial In and Serial Out Diagram

8-Bit Shift-Left Register With Negative-Edg e Clock, Clock Enable,
Serial In and Serial Out Pin Descriptions

IO Pins Description
C Negative-Edge Clock

SI Serial In

CE Clock Enable (active-High)

SO Serial Output

Frontmatter
56 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=56

Chapter 3: XST HDL Coding Techniques

8-Bit Shift-Left Register With Negative-Edg e Clock, Clock Enable, Serial In
and Serial Out VHDL Coding Example
--
-- 8-bit Shift-Left Register with Negative-Edge Clock,
-- Clock Enable,Serial In, and Serial Out
--
library ieee;
use ieee.std_logic_1164.all;

entity shift_registers_2 is
port(C, SI, CE : in std_logic;

SO : out std_logic);
end shift_registers_2;

architecture archi of shift_registers_2 is
signal tmp: std_logic_vector(7 downto 0);

begin

process (C)
begin

if (C’event and C=’0’) then
if (CE=’1’) then

for i in 0 to 6 loop
tmp(i+1) <= tmp(i);

end loop;
tmp(0) <= SI;

end if;
end if;

end process;

SO <= tmp(7);

end archi;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 57

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=57

Chapter 3: XST HDL Coding Techniques

8-Bit Shift-Left Register With Negative-Edg e Clock, Clock Enable, Serial In
and Serial Out Verilog Coding Example
//
// 8-bit Shift-Left Register with Negative-Edge Clock,
// Clock Enable, Serial In, and Serial Out
//

module v_shift_registers_2 (C, CE, SI, SO);
input C,SI, CE;
output SO;
reg [7:0] tmp;

always @(negedge C)
begin

if (CE)
begin

tmp = {tmp[6:0], SI};
end

end

assign SO = tmp[7];

endmodule

Frontmatter
58 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=58

Chapter 3: XST HDL Coding Techniques

Dynamic Shift Register s HDL Coding Techniques
This section discusses Dynamic Shift Registers HDL Coding Techniques, and includes:
• About Dynamic Shift Registers
• Dynamic Shift Registers Log File
• Dynamic Shift Registers Related Constraints
• Dynamic Shift Registers Coding Examples

About Dynamic Shift Register s
XST can infer Dynamic Shift Registers. Once a Dynamic Shift Register has been
identified, its characteristics are handed to the XST macro generator for optimal
implementation using the primitives shown in the following table.

Devices SRL16 SRL16E SRLC16 SRLC16E SRLC32E
Spartan®-3

Spartan-3E

Spartan-3A

Yes Yes Yes Yes No

Virtex®-4 Yes Yes Yes Yes No

Virtex-5 Yes Yes Yes Yes Yes

Dynamic Shift Register s Log File
Dynamic shift registers are recognized in the Advanced HDL Synthesis step. The
XST log file reports the size of recognized dynamic shift registers during the Macro
Recognition step.

Dynamic Shift Register s Log File Example
...
===
* HDL Synthesis *
===

Synthesizing Unit <dynamic_shift_registers_1>.
Related source file is "dynamic_shift_registers_1.vhd".
Found 1-bit 16-to-1 multiplexer for signal <Q>.
Found 16-bit register for signal <SRL_SIG>.
Summary:

inferred 16 D-type flip-flop(s).
inferred 1 Multiplexer(s).

Unit <dynamic_shift_registers_1> synthesized.

===
* Advanced HDL Synthesis *
===
...
Synthesizing (advanced) Unit <dynamic_shift_registers_1>.

Found 16-bit dynamic shift register for signal <Q>.
Unit <dynamic_shift_registers_1> synthesized (advanced).

===
HDL Synthesis Report

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 59

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=59

Chapter 3: XST HDL Coding Techniques

Macro Statistics
Shift Registers : 1
16-bit dynamic shift register : 1

===
...

Dynamic Shift Register s Related Constraints
Shift Register Extraction (SHREG_EXTRACT)

Dynamic Shift Register s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

16-Bit Dynamic Shift Register With Positive-Edg e Clock, Serial In
and Serial Out Diagram

The following table shows pin descriptions for a dynamic register. The register can:

• Be either serial or parallel

• Be left or right

• Have a synchronous or asynchronous reset

• Have a depth up to 16 bits.

16-Bit Dynamic Shift Register With Positive-Edg e Clock, Serial In
and Serial Out Pin Descriptions

IO Pins Description
C Positive-Edge Clock

SI Serial In

AClr Asynchronous Reset

SClr Synchronous Reset

SLoad Synchronous Parallel Load

Data Parallel Data Input Port

ClkEn Clock Enable

LeftRight Direction selection

SerialInRight Serial Input Right for Bidirectional Shift
Register

PSO Serial or Parallel Output

Frontmatter
60 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=60

Chapter 3: XST HDL Coding Techniques

16-Bit Dynamic Shift Register With Positive-Edg e Clock, Serial In and
Serial Out VHDL Coding Example
--
-- 16-bit dynamic shift register.
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity dynamic_shift_registers_1 is
port(CLK : in std_logic;

DATA : in std_logic;
CE : in std_logic;
A : in std_logic_vector(3 downto 0);
Q : out std_logic);

end dynamic_shift_registers_1;

architecture rtl of dynamic_shift_registers_1 is
constant DEPTH_WIDTH: integer := 16;

type SRL_ARRAYis array (0 to DEPTH_WIDTH-1) of std_logic;
-- The type SRL_ARRAYcan be array
-- (0 to DEPTH_WIDTH-1) of
-- std_logic_vector(BUS_WIDTH downto 0)
-- or array (DEPTH_WIDTH-1 downto 0) of
-- std_logic_vector(BUS_WIDTH downto 0)
-- (the subtype is forward (see below))
signal SRL_SIG : SRL_ARRAY;

begin
PROC_SRL16: process (CLK)
begin

if (CLK’event and CLK = ’1’) then
if (CE = ’1’) then

SRL_SIG <= DATA & SRL_SIG(0 to DEPTH_WIDTH-2);
end if;

end if;
end process;

Q <= SRL_SIG(conv_integer(A));

end rtl;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 61

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=61

Chapter 3: XST HDL Coding Techniques

16-Bit Dynamic Shift Register With Positive-Edg e Clock, Serial In and
Serial Out Verilog Coding Example
//
// 16-bit dynamic shift register.
//

module v_dynamic_shift_registers_1 (Q,CE,CLK,D,A);
input CLK, D, CE;
input [3:0] A;
output Q;
reg [15:0] data;

assign Q = data[A];

always @(posedge CLK)
begin

if (CE == 1’b1)
data <= {data[14:0], D};

end

endmodule

Frontmatter
62 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=62

Chapter 3: XST HDL Coding Techniques

Multiple xers HDL Coding Techniques
This section discusses Multiplexers HDL Coding Techniques, and includes:
• About Multiplexers
• Multiplexers Log File
• Multiplexers Related Constraints
• Multiplexers Coding Examples

About Multiple xers
This section discusses About Multiplexers, and includes:
• Multiplexers Description Styles
• Verilog Case Statements
• Verilog Case Statement Resources
• Case Implementation Style Parameter
• Multiplexers Case Statements

Multiple xers Description Styles
XST supports different description styles for multiplexers (MUX), such as:
• if-then-else
• case

If you describe a MUX using a case statement, and you do not specify all values of the
selector, the result may be latches instead of a multiplexer. When writing a MUX, you
can use dont care to describe selector values.

XST decides whether to infer the MUX during the Macro Inference step. If the MUX has
several inputs that are the same, XST can decide not to infer it. Use MUX_EXTRACT
to force XST to infer the MUX.

Verilog Case Statements
Verilog case statements can be:
• full or not full
• parallel or not parallel

A Verilog case statement is:
• full if all possible branches are specified
• parallel if it does not contain branches that can be executed simultaneously

Verilog Case Statement Resour ces
Verilog Case Statement Resources indicates the resources used to synthesize the
Multiplexers Case Statement Examples using the four Case Implementation Styles.
The term resources means the functionality.

For example, if you code the case statement neither full nor parallel with Case
Implementation Style set to none, from the functionality point of view, XST implements
a priority encoder + latch. But it does not inevitably mean that XST infers the priority
encoder during the Macro Recognition step.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 63

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=63

Chapter 3: XST HDL Coding Techniques

Parameter
Value Case Implementation

Full Not Full Neither Full nor Parallel

none MUX Latch Priority Encoder + Latch

parallel MUX Latch Latch

full MUX MUX Priority Encoder

full-parallel MUX MUX MUX

Specifying full, parallel or full-parallel may result in an implementation with a
behavior that may differ from the behavior of the initial model.

Case Implementation Style Parameter
This characterization of the case statements can be guided or modified by using Case
Implementation Style. Accepted values for this parameter are:

• none

• full

• parallel

• full-parallel

Value XST Behavior
none
(default)

Implements the exact behavior of the case statements

full Considers that case statements are complete and avoids latch creation

parallel Considers that the branches cannot occur in parallel and does not use a priority
encoder

full-parallel Considers that case statements are complete and that the branches cannot occur
in parallel, therefore saving latches and priority encoders

For more information, see:

XST Design Constraints

Multiple xers Case Statements
Following are three examples of Case statements:

• Full and Parallel Case Statement

• Not Full But Parallel Case Statement

• Neither Full Nor Parallel Case Statement

Frontmatter
64 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=64

Chapter 3: XST HDL Coding Techniques

Full and Parallel Case Statement
module full (sel, i1, i2, i3, i4, o1);
input [1:0] sel;
input [1:0] i1, i2, i3, i4;
output [1:0] o1;

reg [1:0] o1;

always @(sel or i1 or i2 or i3 or i4)
begin

case (sel)
2’b00: o1 = i1;
2’b01: o1 = i2;
2’b10: o1 = i3;
2’b11: o1 = i4;
endcase

end
endmodule

Not Full But Parallel Case Statement
module notfull (sel, i1, i2, i3, o1);

input [1:0] sel;
input [1:0] i1, i2, i3;
output [1:0] o1;

reg [1:0] o1;

always @(sel or i1 or i2 or i3)
begin

case (sel)
2’b00: o1 = i1;
2’b01: o1 = i2;
2’b10: o1 = i3;

endcase
end

endmodule

Neither Full Nor Parallel Case Statement
module notfull_notparallel (sel1, sel2, i1, i2, o1);

input [1:0] sel1, sel2;
input [1:0] i1, i2;
output [1:0] o1;

reg [1:0] o1;

always @(sel1 or sel2)
begin

case (2’b00)
sel1: o1 = i1;
sel2: o1 = i2;

endcase
end

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 65

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=65

Chapter 3: XST HDL Coding Techniques

XST automatically determines the characteristics of the case statements and generates
logic using multiplexers, priority encoders, and latches that best implement the exact
behavior of the case statement.

Multiple xers Log File
The XST log file reports the type and size of recognized multiplexers (MUX) during the
Macro Recognition step.

Multiple xers Log File Example
...
Synthesizing Unit <mux>.

Related source file is multiplexers_1.vhd.
Found 1-bit 4-to-1 multiplexer for signal <o>.
Summary:

inferred 1 Multiplexer(s).
Unit <mux> synthesized.

=============================
HDL Synthesis Report

Macro Statistics
Multiplexers : 1

1-bit 4-to-1 multiplexer : 1
==============================
...

Explicit inference and reporting of multiplexers may vary depending on the targeted
device families. The following coding examples are limited to 4-to-1 multiplexers. They
are reported as shown above only if the target is a LUT4-based device family. For
Virtex®-5 devices, multiplexers are explicitly inferred only for sizes of 8-to-1 and above.

Multiple xers Related Constraints
• Mux Extraction (MUX_EXTRACT)
• Mux Style (MUX_STYLE)
• Enumerated Encoding (ENUM_ENCODING)

Multiple xers Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

4-to-1 1-Bit MUX Using IF Statement Diagram

Frontmatter
66 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=66

Chapter 3: XST HDL Coding Techniques

4-to-1 1-Bit MUX Using IF Statement Pin Descriptions
IO Pins Description
a, b, c, d Data Inputs
s MUX Selector
o Data Output

4-to-1 1-Bit MUX Using IF Statement VHDL Coding Example
--
-- 4-to-1 1-bit MUXusing an If statement.
--

library ieee;
use ieee.std_logic_1164.all;

entity multiplexers_1 is
port (a, b, c, d : in std_logic;

s : in std_logic_vector (1 downto 0);
o : out std_logic);

end multiplexers_1;

architecture archi of multiplexers_1 is
begin

process (a, b, c, d, s)
begin

if (s = "00") then o <= a;
elsif (s = "01") then o <= b;
elsif (s = "10") then o <= c;
else o <= d;
end if;

end process;
end archi;

4-to-1 1-Bit MUX Using IF Statement Verilog Coding Example
//
// 4-to-1 1-bit MUXusing an If statement.
//

module v_multiplexers_1 (a, b, c, d, s, o);
input a,b,c,d;
input [1:0] s;
output o;
reg o;

always @(a or b or c or d or s)
begin

if (s == 2’b00) o = a;
else if (s == 2’b01) o = b;
else if (s == 2’b10) o = c;
else o = d;

end
endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 67

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=67

Chapter 3: XST HDL Coding Techniques

4-to-1 1-Bit MUX Using Case Statement Diagram

4-to-1 1-Bit MUX Using Case Statement Pin Descriptions
IO Pins Description
a, b, c, d Data Inputs
s MUX Selector
o Data Output

4-to-1 1-Bit MUX Using Case Statement VHDL Coding Example
--
-- 4-to-1 1-bit MUXusing a Case statement.
--

library ieee;
use ieee.std_logic_1164.all;

entity multiplexers_2 is
port (a, b, c, d : in std_logic;

s : in std_logic_vector (1 downto 0);
o : out std_logic);

end multiplexers_2;

architecture archi of multiplexers_2 is
begin

process (a, b, c, d, s)
begin

case s is
when "00" => o <= a;
when "01" => o <= b;
when "10" => o <= c;
when others => o <= d;

end case;
end process;

end archi;

Frontmatter
68 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=68

Chapter 3: XST HDL Coding Techniques

4-to-1 1-Bit MUX Using Case Statement Verilog Coding Example
//
// 4-to-1 1-bit MUXusing a Case statement.
//

module v_multiplexers_2 (a, b, c, d, s, o);
input a,b,c,d;
input [1:0] s;
output o;
reg o;

always @(a or b or c or d or s)
begin

case (s)
2’b00 : o = a;
2’b01 : o = b;
2’b10 : o = c;
default : o = d;

endcase
end

endmodule

4-to-1 1-Bit MUX Using Tristate Buff ers Diagram

4-to-1 1-Bit MUX Using Tristate Buff ers Pin Descriptions
IO Pins Description
a, b, c, d Data Inputs
s MUX Selector
o Data Output

4-to-1 1-Bit MUX Using Tristate Buff ers VHDL Coding Example
--
-- 4-to-1 1-bit MUXusing tristate buffers.
--

library ieee;
use ieee.std_logic_1164.all;

entity multiplexers_3 is
port (a, b, c, d : in std_logic;

s : in std_logic_vector (3 downto 0);
o : out std_logic);

end multiplexers_3;

architecture archi of multiplexers_3 is
begin

o <= a when (s(0)=’0’) else ’Z’;
o <= b when (s(1)=’0’) else ’Z’;
o <= c when (s(2)=’0’) else ’Z’;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 69

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=69

Chapter 3: XST HDL Coding Techniques

o <= d when (s(3)=’0’) else ’Z’;
end archi;

4-to-1 1-Bit MUX Using Tristate Buff ers Verilog Coding Example
//
// 4-to-1 1-bit MUXusing tristate buffers.
//

module v_multiplexers_3 (a, b, c, d, s, o);
input a,b,c,d;
input [3:0] s;
output o;

assign o = s[3] ? a :1’bz;
assign o = s[2] ? b :1’bz;
assign o = s[1] ? c :1’bz;
assign o = s[0] ? d :1’bz;

endmodule

VHDL Coding Example of a Missing Else Statement Leading to a Latc h
Inference
The following coding examples illustrate how XST infers a latch when no else statement
is described at the end of an if/elsif construct. Since the else statement is missing, XST
assumes that, for the s=11 case, o retains its old value, and that a memory element is
needed. XST issues the following warning message.

WARNING:Xst:737 - Found 1-bit latch for signal <o1>. INFO:Xst
- HDL ADVISOR - Logic functions respectively driving the data
and gate enable inputs of this latch share common terms. This
situation will potentially lead to setup/hold violations and,
as a result, to simulation problems. This situation may come
from an incomplete case statement (all selector values are
not covered). You should carefully review if it was in your
intentions to describe such a latch.

Frontmatter
70 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=70

Chapter 3: XST HDL Coding Techniques

Unless you actually intended to describe such a latch, add the missing else statement.

Caution! Leaving out an else statement may result in errors during simulation.

--
-- 3-to-1 1-bit MUXwith a 1-bit latch.
--

library ieee;
use ieee.std_logic_1164.all;

entity multiplexers_4 is
port (a, b, c: in std_logic;

s : in std_logic_vector (1 downto 0);
o : out std_logic);

end multiplexers_4;

architecture archi of multiplexers_4 is
begin

process (a, b, c, s)
begin

if (s = "00") then o <= a;
elsif (s = "01") then o <= b;
elsif (s = "10") then o <= c;
end if;

end process;
end archi;

Verilog Coding Example of a Missing Else Statement Leading to a Latc h
Inference
//
// 3-to-1 1-bit MUXwith a 1-bit latch.
//
module v_multiplexers_4 (a, b, c, s, o);

input a,b,c;
input [1:0] s;
output o;
reg o;

always @(a or b or c or s)
begin

if (s == 2’b00) o = a;
else if (s == 2’b01) o = b;
else if (s == 2’b10) o = c;

end
endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 71

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=71

Chapter 3: XST HDL Coding Techniques

Decoder s HDL Coding Techniques
This section includes:

• About Decoders

• Decoders Log File

• Decoders Related Constraints

• Decoders Coding Examples

About Decoder s
A decoder is a multiplexer the inputs of which are all constant with distinct one-hot (or
one-cold) coded values.

For more information, see:

Multiplexers HDL Coding Techniques

Decoder s Log File
The XST log file reports the type and size of recognized decoders during the Macro
Recognition step.

Decoder s Log File Example

Synthesizing Unit <dec>.
Related source file is decoders_1.vhd.
Found 1-of-8 decoder for signal <res>.
Summary:

inferred 1 Decoder(s).
Unit <dec> synthesized.

==============================
HDL Synthesis Report

Macro Statistics
Decoders : 1

1-of-8 decoder : 1
==============================
...

Decoder s Related Constraints
Decoder Extraction (DECODER_EXTRACT)

Decoder s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Frontmatter
72 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=72

Chapter 3: XST HDL Coding Techniques

1-of-8 Decoder (One-Hot) Diagram

1-of-8 Decoder s (One-Hot) Pin Descriptions
IO Pins Description
s Selector
res Data Output

1-of-8 Decoder (One-Hot) VHDL Coding Example
--
-- 1-of-8 decoder (One-Hot)
--

library ieee;
use ieee.std_logic_1164.all;

entity decoders_1 is
port (sel: in std_logic_vector (2 downto 0);

res: out std_logic_vector (7 downto 0));
end decoders_1;

architecture archi of decoders_1 is
begin

res <= "00000001" when sel = "000" else
"00000010" when sel = "001" else
"00000100" when sel = "010" else
"00001000" when sel = "011" else
"00010000" when sel = "100" else
"00100000" when sel = "101" else
"01000000" when sel = "110" else
"10000000";

end archi;

1-of-8 decoder (One-Hot) Verilog Coding Example
//
// 1-of-8 decoder (One-Hot)
//

module v_decoders_1 (sel, res);
input [2:0] sel;
output [7:0] res;
reg [7:0] res;

always @(sel or res)
begin

case (sel)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 73

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=73

Chapter 3: XST HDL Coding Techniques

3’b000 : res = 8’b00000001;
3’b001 : res = 8’b00000010;
3’b010 : res = 8’b00000100;
3’b011 : res = 8’b00001000;
3’b100 : res = 8’b00010000;
3’b101 : res = 8’b00100000;
3’b110 : res = 8’b01000000;
default : res = 8’b10000000;

endcase
end

endmodule

1-of-8 Decoder (One-Cold) Pin Descriptions
IO Pins Description
s Selector
res Data Output

1-of-8 decoder (One-Cold) VHDL Coding Example
--
-- 1-of-8 decoder (One-Cold)
--

library ieee;
use ieee.std_logic_1164.all;

entity decoders_2 is
port (sel: in std_logic_vector (2 downto 0);

res: out std_logic_vector (7 downto 0));
end decoders_2;

architecture archi of decoders_2 is
begin

res <= "11111110" when sel = "000" else
"11111101" when sel = "001" else
"11111011" when sel = "010" else
"11110111" when sel = "011" else
"11101111" when sel = "100" else
"11011111" when sel = "101" else
"10111111" when sel = "110" else
"01111111";

end archi;

Frontmatter
74 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=74

Chapter 3: XST HDL Coding Techniques

1-of-8 Decoder (One-Cold) Verilog Coding Example
//
// 1-of-8 decoder (One-Cold)
//

module v_decoders_2 (sel, res);
input [2:0] sel;
output [7:0] res;
reg [7:0] res;

always @(sel)
begin

case (sel)
3’b000 : res = 8’b11111110;
3’b001 : res = 8’b11111101;
3’b010 : res = 8’b11111011;
3’b011 : res = 8’b11110111;
3’b100 : res = 8’b11101111;
3’b101 : res = 8’b11011111;
3’b110 : res = 8’b10111111;
default : res = 8’b01111111;

endcase
end

endmodule

Decoder With Unselected Outputs Pin Descriptions
IO Pins Description
s Selector
res Data Output

No Decoder Inference (Unused Decoder Output) VHDL Coding Example
--
-- No Decoder Inference (unused decoder output)
--

library ieee;
use ieee.std_logic_1164.all;

entity decoders_3 is
port (sel: in std_logic_vector (2 downto 0);

res: out std_logic_vector (7 downto 0));
end decoders_3;

architecture archi of decoders_3 is
begin

res <= "00000001" when sel = "000" else
-- unused decoder output
"XXXXXXXX" when sel = "001" else
"00000100" when sel = "010" else
"00001000" when sel = "011" else
"00010000" when sel = "100" else
"00100000" when sel = "101" else
"01000000" when sel = "110" else
"10000000";

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 75

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=75

Chapter 3: XST HDL Coding Techniques

end archi;

No Decoder Inference (Unused Decoder Output) Verilog Coding Example
//
// No Decoder Inference (unused decoder output)
//

module v_decoders_3 (sel, res);
input [2:0] sel;
output [7:0] res;
reg [7:0] res;

always @(sel)
begin

case (sel)
3’b000 : res = 8’b00000001;
// unused decoder output
3’b001 : res = 8’bxxxxxxxx;
3’b010 : res = 8’b00000100;
3’b011 : res = 8’b00001000;
3’b100 : res = 8’b00010000;
3’b101 : res = 8’b00100000;
3’b110 : res = 8’b01000000;
default : res = 8’b10000000;

endcase
end

endmodule

No Decoder Inference (Some Selector Values Unused) VHDL Coding
Example
--
-- No Decoder Inference (some selector values are unused)
--

library ieee;
use ieee.std_logic_1164.all;

entity decoders_4 is
port (sel: in std_logic_vector (2 downto 0);

res: out std_logic_vector (7 downto 0));
end decoders_4;

architecture archi of decoders_4 is
begin

res <= "00000001" when sel = "000" else
"00000010" when sel = "001" else
"00000100" when sel = "010" else
"00001000" when sel = "011" else
"00010000" when sel = "100" else
"00100000" when sel = "101" else
-- 110 and 111 selector values are unused
"XXXXXXXX";

end archi;

Frontmatter
76 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=76

Chapter 3: XST HDL Coding Techniques

No Decoder Inference (Some Selector Values Unused) Verilog Coding
Example
//
// No Decoder Inference (some selector values are unused)
//

module v_decoders_4 (sel, res);
input [2:0] sel;
output [7:0] res;
reg [7:0] res;

always @(sel or res)
begin

case (sel)
3’b000 : res = 8’b00000001;
3’b001 : res = 8’b00000010;
3’b010 : res = 8’b00000100;
3’b011 : res = 8’b00001000;
3’b100 : res = 8’b00010000;
3’b101 : res = 8’b00100000;
// 110 and 111 selector values are unused
default : res = 8’bxxxxxxxx;

endcase
end

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 77

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=77

Chapter 3: XST HDL Coding Techniques

Priority Encoder s HDL Coding Techniques
This section discusses Priority Encoders HDL Coding Techniques, and includes:

• About Priority Encoders

• Priority Encoders Log File

• Priority Encoders Related Constraints

• Priority Encoders Coding Examples

About Priority Encoder s
XST can recognize a priority encoder, but in most cases XST does not infer it. To force
priority encoder inference, use Priority Encoder Extraction (PRIORITY_EXTRACT)
with the value force.

Xilinx® recommends that you use Priority Encoder Extraction (PRIORITY_EXTRACT) on
a signal-by-signal basis. Otherwise, Priority Encoder Extraction (PRIORITY_EXTRACT)
may give less than optimal results.

Priority Encoder s Log File
The XST log file reports the type and size of recognized priority encoders during the
Macro Recognition step.

Priority Encoder s Log File Example
...
Synthesizing Unit <priority>.

Related source file is priority_encoders_1.vhd.
Found 3-bit 1-of-9 priority encoder for signal <code>.
Summary:

inferred 3 Priority encoder(s).
Unit <priority> synthesized.

==============================
HDL Synthesis Report

Macro Statistics
Priority Encoders : 1

3-bit 1-of-9 priority encoder : 1
==============================
...

Priority Encoder s Related Constraints
Priority Encoder Extraction (PRIORITY_EXTRACT)

Priority Encoder s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

For this example XST may infer a priority encoder. Use Priority Encoder Extraction
(PRIORITY_EXTRACT) with a value of force to force its inference.

Frontmatter
78 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=78

Chapter 3: XST HDL Coding Techniques

3-Bit 1-of-9 Priority Encoder Pin Descriptions
IO Pins Description
sel Selector

code Encoded Output Bus

3-Bit 1-of-9 Priority Encoder VHDL Coding Example
--
-- 3-Bit 1-of-9 Priority Encoder
--

library ieee;
use ieee.std_logic_1164.all;

entity priority_encoder_1 is
port (sel : in std_logic_vector (7 downto 0);

code :out std_logic_vector (2 downto 0));

attribute priority_extract: string;
attribute priority_extract of priority_encoder_1: entity is "force";

end priority_encoder_1;

architecture archi of priority_encoder_1 is
begin

code <= "000" when sel(0) = ’1’ else
"001" when sel(1) = ’1’ else
"010" when sel(2) = ’1’ else
"011" when sel(3) = ’1’ else
"100" when sel(4) = ’1’ else
"101" when sel(5) = ’1’ else
"110" when sel(6) = ’1’ else
"111" when sel(7) = ’1’ else
"---";

end archi;

3-Bit 1-of-9 Priority Encoder Verilog Coding Example
//
// 3-Bit 1-of-9 Priority Encoder
//

(* priority_extract="force" *)
module v_priority_encoder_1 (sel, code);

input [7:0] sel;
output [2:0] code;
reg [2:0] code;

always @(sel)
begin

if (sel[0]) code = 3’b000;
else if (sel[1]) code = 3’b001;
else if (sel[2]) code = 3’b010;
else if (sel[3]) code = 3’b011;
else if (sel[4]) code = 3’b100;
else if (sel[5]) code = 3’b101;
else if (sel[6]) code = 3’b110;
else if (sel[7]) code = 3’b111;
else code = 3’bxxx;

end

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 79

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=79

Chapter 3: XST HDL Coding Techniques

endmodule

Frontmatter
80 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=80

Chapter 3: XST HDL Coding Techniques

Logical Shifter s HDL Coding Techniques
This section discusses Logical Shifters HDL Coding Techniques, and includes:
• About Logical Shifters
• Logical Shifters Log File
• Logical Shifters Related Constraints
• Logical Shifters Coding Examples

About Logical Shifter s
Xilinx® defines a logical shifter as a combinatorial circuit with 2 inputs and 1 output:
• The first input is a data input that is shifted.
• The second input is a selector whose binary value defines the shift distance.
• The output is the result of the shift operation.

All of these I/Os are mandatory. Otherwise, XST does not infer a logical shifter.

When writing your Hardware Description Language (HDL) code:
• Use only logical, arithmetic, and rotate shift operators. Shift operations that fill

vacated positions with values from another signal are not recognized.
• For VHDL, you can use predefined shift (for example, SLL, SRL, ROL) or

concatenation operations only. For more information on predefined shift operations,
see the IEEE VHDL reference manual.

• Use only one type of shift operation.
• The n value in the shift operation must be incremented or decremented only by 1 for

each consequent binary value of the selector.
• The n value can be positive only.
• All values of the selector must be presented.

Logical Shifter s Log File
The XST log file reports the type and size of a recognized logical shifter during the
Macro Recognition step.

Logical Shifter s Log File Example
...
Synthesizing Unit <lshift>.

Related source file is Logical_Shifters_1.vhd.
Found 8-bit shifter logical left for signal <so>.
Summary:

inferred 1 Combinational logic shifter(s).
Unit <lshift> synthesized.

...
==============================
HDL Synthesis Report

Macro Statistics
Logic shifters : 1

8-bit shifter logical left : 1
==============================
...

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 81

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=81

Chapter 3: XST HDL Coding Techniques

Logical Shifter s Related Constraints
Logical Shifter Extraction (SHIFT_EXTRACT)

Logical Shifter s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

The minimal size for XST to explicitly infer logical shifter macros may vary depending
on the targeted device family. The following coding examples have been validated on
LUT4-based device families such as Virtex®-4 devices. For Virtex-5 devices, logical
shifters are explicitly inferred only when the selector size is at least 3.

Logical Shifter One Diagram

Logical Shifter One Pin Descriptions
IO Pins Description
DI Data Input

SEL Shift Distance Selector

SO Data Output

Logical Shifter One VHDL Coding Example
--
-- Following is the VHDL code for a logical shifter.
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity logical_shifters_1 is
port(DI : in unsigned(7 downto 0);

SEL : in unsigned(1 downto 0);
SO : out unsigned(7 downto 0));

end logical_shifters_1;

architecture archi of logical_shifters_1 is
begin

with SEL select
SO <= DI when "00",
DI sll 1 when "01",
DI sll 2 when "10",
DI sll 3 when others;

end archi;

Frontmatter
82 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=82

Chapter 3: XST HDL Coding Techniques

Logical Shifter One Verilog Coding Example
//
// Following is the Verilog code for a logical shifter.
//

module v_logical_shifters_1 (DI, SEL, SO);
input [7:0] DI;
input [1:0] SEL;
output [7:0] SO;
reg [7:0] SO;

always @(DI or SEL)
begin

case (SEL)
2’b00 : SO = DI;
2’b01 : SO = DI << 1;
2’b10 : SO = DI << 2;
default : SO = DI << 3;

endcase
end

endmodule

Logical Shifter Two Pin Descriptions
IO Pins Description
DI Data Input

SEL Shift Distance Selector

SO Data Output

Logical Shifter Two VHDL Coding Example
XST does not infer a logical shifter for Logical Shifter Two, since not all selector values
are presented.

--
-- XST does not infer a logical shifter for this example,
-- as not all of the selector values are presented.
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity logical_shifters_2 is
port(DI : in unsigned(7 downto 0);

SEL : in unsigned(1 downto 0);
SO : out unsigned(7 downto 0));

end logical_shifters_2;

architecture archi of logical_shifters_2 is
begin

with SEL select
SO <= DI when "00",
DI sll 1 when "01",
DI sll 2 when others;

end archi;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 83

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=83

Chapter 3: XST HDL Coding Techniques

Logical Shifter Two Verilog Coding Example
//
// XST does not infer a logical shifter for this example,
// as not all of the selector values are presented.
//

module v_logical_shifters_2 (DI, SEL, SO);
input [7:0] DI;
input [1:0] SEL;
output [7:0] SO;
reg [7:0] SO;

always @(DI or SEL)
begin

case (SEL)
2’b00 : SO = DI;
2’b01 : SO = DI << 1;
default : SO = DI << 2;

endcase
end

endmodule

Logical Shifter Three Pin Descriptions
IO Pins Description
DI Data Input

SEL Shift Distance Selector

SO Data Output

Logical Shifter Three VHDL Coding Example
XST does not infer a logical shifter for this example, as the value is not incremented by 1
for each consequent binary value of the selector.

--
-- XST does not infer a logical shifter for this example,
-- as the value is not incremented by 1 for each consequent
-- binary value of the selector.
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity logical_shifters_3 is
port(DI : in unsigned(7 downto 0);

SEL : in unsigned(1 downto 0);
SO : out unsigned(7 downto 0));

end logical_shifters_3;

architecture archi of logical_shifters_3 is
begin

with SEL select
SO <= DI when "00",
DI sll 1 when "01",
DI sll 3 when "10",

Frontmatter
84 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=84

Chapter 3: XST HDL Coding Techniques

DI sll 2 when others;
end archi;

Logical Shifter Three Verilog Coding Example
//
// XST does not infer a logical shifter for this example,
// as the value is not incremented by 1 for each consequent
// binary value of the selector.
//

module v_logical_shifters_3 (DI, SEL, SO);
input [7:0] DI;
input [1:0] SEL;
output [7:0] SO;
reg[7:0] SO;

always @(DI or SEL)
begin

case (SEL)
2’b00 : SO = DI;
2’b01 : SO = DI << 1;
2’b10 : SO = DI << 3;
default : SO = DI << 2;

endcase
end

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 85

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=85

Chapter 3: XST HDL Coding Techniques

Arithmetic Operator s HDL Coding Techniques
This section and includes:
• About Arithmetic Operators
• Arithmetic Operators Log File
• Arithmetic Operators Related Constraints
• Arithmetic Operators Coding Examples

About Arithmetic Operator s
This section discusses Arithmetic Operators, and includes:
• Supported Arithmetic Operators
• Signed and Unsigned Operators
• Resource Sharing

Suppor ted Arithmetic Operator s
XST supports the following arithmetic operators:
• Adders with:

– Carry In
– Carry Out
– Carry In/Out

• Subtractors
• Adders/Subtractors
• Comparators:

– =
– /=
– <
– <=
– >
– >=

• Multipliers
• Dividers

Signed and Unsigned Operator s
XST supports the following for signed and unsigned operators:
• Adders
• Subtractors
• Comparators
• Multipliers

For more information on signed and unsigned operators support in VHDL, see:

Registers HDL Coding Techniques

Frontmatter
86 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=86

Chapter 3: XST HDL Coding Techniques

Resour ce Sharing
XST performs resource sharing for:

• Adders

• Subtractors

• Adders/subtractors

• Multipliers

Arithmetic Operator s Log File
The XST log file reports the type and size of recognized adder, subtractor and
adder/subtractor during the Macro Recognition step.

Arithmetic Operator s Log File Example
...
Synthesizing Unit <adder>.

Related source file is arithmetic_operations_1.vhd.
Found 8-bit adder for signal <sum>.
Summary:

inferred 1 Adder/Subtracter(s).
Unit <adder> synthesized.

=============================
HDL Synthesis Report

Macro Statistics
Adders/Subtractors : 1

8-bit adder : 1
==============================

Arithmetic Operator s Related Constraints
• Use DSP48 (USE_DSP48)

• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)

• Keep (KEEP)

Arithmetic Operator s Coding Examples
None

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 87

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=87

Chapter 3: XST HDL Coding Techniques

Adders, Subtractor s, and Adders/Subtractor s HDL Coding
Techniques

This section includes:
• About Adders, Subtractors, and Adders/Subtractors
• Adders, Subtractors, and Adders/Subtractors Log File
• Adders, Subtractors, and Adders/Subtractors Related Constraints
• Adders, Subtractors, and Adders/Subtractors Coding Examples

About Adders, Subtractor s, and Adders/Subtractor s
This section includes:
• Supported Device Families
• XST DSP48 Block Support
• Macro Implementation on DSP48 Blocks
• Automatic DSP48 Resource Control
• Maximum Macro Configuration

Suppor ted Device Families
The following device families allow adders and subtractors to be implemented on
DSP48 resources:

• Virtex®-4
• Virtex-5
• Spartan®-3A DSP

XST DSP48 Bloc k Suppor t
XST supports the one level of output registers into DSP48 blocks. If the Carry In or
Add/Sub operation selectors are registered, XST pushes these registers into the DSP48 as
well.

XST can implement an adder/subtractor in a DSP48 block if its implementation requires
only a single DSP48 resource. If an adder/subtractor macro does not fit in a single
DSP48, XST implements the entire macro using slice logic.

Macro Implementation on DSP48 Bloc ks
Macro implementation on DSP48 blocks is controlled by DSP Utilization Ratio
(DSP_UTILIZATION_RATIO) with a default value of auto. In auto mode, if an
adder/subtractor is a part of a more complex macro such as a filter, XST automatically
places it on the DSP block. Otherwise, XST implements adders/subtractors using LUTs.

Set the value of Use DSP48 (USE_DSP48) to yes in order to force XST to push these
macros into a DSP48. When placing an Adder/Subtractor on a DSP block, XST checks
to see if it is connected to other DSP chains. If so, XST tries to take advantage of fast
DSP connections, and connects this adder/subtractor to the DSP chain using these fast
connections.

Automatic DSP48 Resour ce Contr ol
When implementing adders/subtractors on DSP48 blocks, XST performs automatic
DSP48 resource control.

Frontmatter
88 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=88

Chapter 3: XST HDL Coding Techniques

Maximum Macro Configuration
To deliver the best performance, XST by default tries to infer and implement the
maximum macro configuration, including as many registers in the DSP48 as possible.
Use Keep (KEEP) to shape a macro in a specific way. For example, to exclude the first
register stage from the DSP48, place Keep (KEEP) constraints on the outputs of these
registers.

Adders, Subtractor s, and Adders/Subtractor s Log File
In the log file, XST reports the details of inferred multipliers, adders, subtractors, and
registers at the HDL Synthesis step. XST reports about inferred MACs during the
Advanced HDL Synthesis Step where the MAC implementation mechanism takes place.

Adders, Subtractor s, and Adders/Subtractor s Log File Example

Synthesizing Unit <v_adders_4>.
Related source file is "v_adders_4.v".
Found 8-bit adder carry in/out for signal <$addsub0000>.
Summary:

inferred 1 Adder/Subtractor(s).
Unit <v_adders_4> synthesized.

===
HDL Synthesis Report

Macro Statistics
Adders/Subtractors : 1
8-bit adder carry in/out : 1

==

Adders, Subtractor s, and Adders/Subtractor s Related Constraints
• Use DSP48 (USE_DSP48)

• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)

• Keep (KEEP)

Adders, Subtractor s, and Adders/Subtractor s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Unsigned 8-Bit Adder Diagram

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 89

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=89

Chapter 3: XST HDL Coding Techniques

Unsigned 8-Bit Adder Pin Descriptions IO Pins
IO Pins Description
A, B Add Operands

SUM Add Result

Unsigned 8-Bit Adder VHDL Coding Example
--
-- Unsigned 8-bit Adder
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity adders_1 is
port(A,B : in std_logic_vector(7 downto 0);
SUM : out std_logic_vector(7 downto 0));

end adders_1;

architecture archi of adders_1 is
begin

SUM<= A + B;

end archi;

Unsigned 8-Bit Adder Verilog Coding Example
//
// Unsigned 8-bit Adder
//

module v_adders_1(A, B, SUM);
input [7:0] A;
input [7:0] B;
output [7:0] SUM;

assign SUM= A + B;

endmodule

Unsigned 8-Bit Adder With Carry In Diagram

Frontmatter
90 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=90

Chapter 3: XST HDL Coding Techniques

Unsigned 8-Bit Adder With Carry In Pin Descriptions IO Pins
IO Pins Description
A, B Add Operands

CI Carry In

SUM Add Result

Unsigned 8-Bit Adder With Carry In VHDL Coding Example
--
-- Unsigned 8-bit Adder with Carry In
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity adders_2 is
port(A,B : in std_logic_vector(7 downto 0);
CI : in std_logic;
SUM : out std_logic_vector(7 downto 0));

end adders_2;

architecture archi of adders_2 is
begin

SUM<= A + B + CI;

end archi;

Unsigned 8-Bit Adder With Carry In Verilog Coding Example
//
// Unsigned 8-bit Adder with Carry In
//

module v_adders_2(A, B, CI, SUM);
input [7:0] A;
input [7:0] B;
input CI;
output [7:0] SUM;

assign SUM= A + B + CI;

endmodule

Unsigned 8-Bit Adder With Carry Out
Before writing a + (plus) operation with carry out in VHDL, read the arithmetic package
you plan to use. For example, std_logic_unsigned does not allow you to write + (plus)
in the following form to obtain Carry Out:

Res(9-bit) = A(8-bit) + B(8-bit)

The reason is that the size of the result for + (plus) in this package is equal to the size
of the longest argument (8 bits).

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 91

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=91

Chapter 3: XST HDL Coding Techniques

One solution for the example is to adjust the size of operands A and B to 9 bits using
concatenation.

Res <= ("0" & A) + ("0" & B);

In this case, XST recognizes that this 9-bit adder can be implemented as an 8-bit adder
with carry out.

Another solution is:

• Convert A and B to integers

• Convert the result back to the std_logic vector

• Specify the size of the vector equal to 9

Unsigned 8-Bit Adder With Carry Out Diagram

Unsigned 8-Bit Adder With Carry Out Pin Descriptions IO Pins
IO Pins Description
A, B Add Operands

SUM Add Result

CO Carry Out

Unsigned 8-Bit Adder With Carry Out VHDL Coding Example
--
-- Unsigned 8-bit Adder with Carry Out
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity adders_3 is
port(A,B : in std_logic_vector(7 downto 0);
SUM : out std_logic_vector(7 downto 0);
CO : out std_logic);

end adders_3;

architecture archi of adders_3 is
signal tmp: std_logic_vector(8 downto 0);

begin

tmp <= conv_std_logic_vector((conv_integer(A) + conv_integer(B)),9);
SUM<= tmp(7 downto 0);
CO <= tmp(8);

end archi;

Frontmatter
92 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=92

Chapter 3: XST HDL Coding Techniques

The preceding example uses two arithmetic packages:

• std_logic_arith

Contains the integer to std_logic conversion function (conv_std_logic_vector)

• std_logic_unsigned

Contains the unsigned + (plus) operation

Unsigned 8-Bit Adder With Carry Out Verilog Coding Example
//
// Unsigned 8-bit Adder with Carry Out
//

module v_adders_3(A, B, SUM, CO);
input [7:0] A;
input [7:0] B;
output [7:0] SUM;
output CO;
wire [8:0] tmp;

assign tmp = A + B;
assign SUM= tmp [7:0];
assign CO = tmp [8];

endmodule

Unsigned 8-Bit Adder With Carry In and Carry Out Diagram

Unsigned 8-Bit Adder With Carry In and Carry Out Pin Descriptions IO Pins

IO Pins Description
A, B Add Operands

CI Carry In

SUM Add Result

CO Carry Out

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 93

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=93

Chapter 3: XST HDL Coding Techniques

Unsigned 8-Bit Adder With Carry In and Carry Out VHDL Coding Example
--
-- Unsigned 8-bit Adder with Carry In and Carry Out
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity adders_4 is
port(A,B : in std_logic_vector(7 downto 0);
CI : in std_logic;
SUM : out std_logic_vector(7 downto 0);
CO : out std_logic);

end adders_4;

architecture archi of adders_4 is
signal tmp: std_logic_vector(8 downto 0);

begin

tmp <= conv_std_logic_vector((conv_integer(A) + conv_integer(B) + conv_integer(CI)),9);
SUM<= tmp(7 downto 0);
CO <= tmp(8);

end archi;

Unsigned 8-Bit Adder With Carry In and Carry Out Verilog Coding Example
//
// Unsigned 8-bit Adder with Carry In and Carry Out
//

module v_adders_4(A, B, CI, SUM, CO);
input CI;
input [7:0] A;
input [7:0] B;
output [7:0] SUM;
output CO;
wire [8:0] tmp;

assign tmp = A + B + CI;
assign SUM= tmp [7:0];
assign CO = tmp [8];

endmodule

Signed 8-Bit Adder Diagram

Frontmatter
94 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=94

Chapter 3: XST HDL Coding Techniques

Signed 8-Bit Adder Pin Descriptions IO Pins
IO Pins Description
A, B Add Operands

SUM Add Result

Signed 8-Bit Adder VHDL Coding Example
--
-- Signed 8-bit Adder
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity adders_5 is
port(A,B : in std_logic_vector(7 downto 0);
SUM : out std_logic_vector(7 downto 0));

end adders_5;

architecture archi of adders_5 is
begin

SUM<= A + B;

end archi;

Signed 8-Bit Adder Verilog Coding Example
//
// Signed 8-bit Adder
//

module v_adders_5 (A,B,SUM);
input signed [7:0] A;
input signed [7:0] B;
output signed [7:0] SUM;
wire signed [7:0] SUM;

assign SUM= A + B;

endmodule

Unsigned 8-Bit Subtractor Diagram

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 95

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=95

Chapter 3: XST HDL Coding Techniques

Unsigned 8-Bit Subtractor Pin Descriptions
IO Pins Description
A, B Sub Operands

RES Sub Result

Unsigned 8-Bit Subtractor VHDL Coding Example
--
-- Unsigned 8-bit Subtractor
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity adders_6 is
port(A,B : in std_logic_vector(7 downto 0);
RES : out std_logic_vector(7 downto 0));

end adders_6;

architecture archi of adders_6 is
begin

RES <= A - B;

end archi;

Unsigned 8-Bit Subtractor Verilog Coding Example
//
// Unsigned 8-bit Subtractor
//

module v_adders_6(A, B, RES);
input [7:0] A;
input [7:0] B;
output [7:0] RES;

assign RES = A - B;

endmodule

Unsigned 8-Bit Subtractor With Borr ow In Pin Descriptions
IO Pins Description
A, B Sub Operands

BI Borrow In

RES Sub Result

Frontmatter
96 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=96

Chapter 3: XST HDL Coding Techniques

Unsigned 8-Bit Subtractor With Borr ow In VHDL Coding Example
--
-- Unsigned 8-bit Subtractor with Borrow In
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity adders_8 is
port(A,B : in std_logic_vector(7 downto 0);

BI : in std_logic;
RES : out std_logic_vector(7 downto 0));

end adders_8;

architecture archi of adders_8 is

begin

RES <= A - B - BI;

end archi;

Unsigned 8-Bit Subtractor With Borr ow In Verilog Coding Example
//
// Unsigned 8-bit Subtractor with Borrow In
//

module v_adders_8(A, B, BI, RES);
input [7:0] A;
input [7:0] B;
input BI;
output [7:0] RES;

assign RES = A - B - BI;

endmodule

Unsigned 8-Bit Adder/Subtractor Diagram

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 97

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=97

Chapter 3: XST HDL Coding Techniques

Unsigned 8-Bit Adder/Subtractor Pin Descriptions
IO Pins Description
A, B Add/Sub Operands

OPER Add/Sub Select

SUM Add/Sub Result

Unsigned 8-Bit Adder/Subtractor VHDL Coding Example
--
-- Unsigned 8-bit Adder/Subtractor
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity adders_7 is
port(A,B : in std_logic_vector(7 downto 0);
OPER: in std_logic;
RES : out std_logic_vector(7 downto 0));

end adders_7;

architecture archi of adders_7 is
begin

RES <= A + B when OPER=’0’
else A - B;

end archi;

Unsigned 8-Bit Adder/Subtractor Verilog Coding Example
//
// Unsigned 8-bit Adder/Subtractor
//

module v_adders_7(A, B, OPER, RES);
input OPER;
input [7:0] A;
input [7:0] B;
output [7:0] RES;
reg [7:0] RES;

always @(A or B or OPER)
begin
if (OPER==1’b0) RES = A + B;
else RES = A - B;

end

endmodule

Frontmatter
98 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=98

Chapter 3: XST HDL Coding Techniques

Comparator s HDL Coding Techniques
This section discusses Comparators HDL Coding Techniques, and includes:
• About Comparators
• Comparators Log File
• Comparators Related Constraints
• Comparators Coding Examples

About Comparator s
Not applicable.

Comparator s Log File
The XST log file reports the type and size of recognized comparators during the Macro
Recognition step.

Comparator s Log File Example
...
Synthesizing Unit <compar>.

Related source file is comparators_1.vhd.
Found 8-bit comparator greatequal for signal <$n0000> created at line 10.

Summary:
inferred 1 Comparator(s).

Unit <compar> synthesized.

=============================
HDL Synthesis Report

Macro Statistics
Comparators : 1

8-bit comparator greatequal : 1
==============================
...

Comparator s Related Constraints
None

Comparator s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Unsigned 8-Bit Greater or Equal Comparator Diagram

Unsigned 8-Bit Greater or Equal Comparator Pin Descriptions
IO Pins Description
A, B Comparison Operands

CMP Comparison Result

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 99

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=99

Chapter 3: XST HDL Coding Techniques

Unsigned 8-Bit Greater or Equal Comparator VHDL Coding Example
--
-- Unsigned 8-bit Greater or Equal Comparator
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity comparator_1 is
port(A,B : in std_logic_vector(7 downto 0);

CMP : out std_logic);
end comparator_1;

architecture archi of comparator_1 is
begin

CMP<= ’1’ when A >= B else ’0’;

end archi;

Unsigned 8-Bit Greater or Equal Comparator Verilog Coding Example
//
// Unsigned 8-bit Greater or Equal Comparator
//

module v_comparator_1 (A, B, CMP);
input [7:0] A;
input [7:0] B;
output CMP;

assign CMP= (A >= B) ? 1’b1 : 1’b0;
endmodule

Frontmatter
100 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=100

Chapter 3: XST HDL Coding Techniques

Multiplier s HDL Coding Techniques
This section discusses Multipliers HDL Coding Techniques, and includes:
• About Multipliers
• Multipliers (Virtex®-4, Virtex-5, and Spartan®-3A DSP Devices)
• Multipliers Log File
• Multipliers Related Constraints
• Multipliers Coding Examples

About Multiplier s
This section discusses Multipliers, and includes:
• Implementing a Multiplier
• Registered Multipliers
• Multiplication with Constant

Implementing a Multiplier
When implementing a multiplier, the size of the resulting signal is equal to the sum of
two operand lengths. For example, if you multiply A (8-bit signal) by B (4-bit signal),
the size of the result must be declared as a 12-bit signal.

Registered Multiplier s
In instances where a multiplier would have a registered output, XST infers a unique
registered multiplier for the following devices:
• Virtex®-4
• Virtex-5

This registered multiplier is 18x18 bits.

Under the following conditions, a registered multiplier is not used, and a multiplier +
register is used instead.
• Output from the multiplier goes to any component other than the register.
• The Multiplier Style (MULT_STYLE) constraint is set to:

lut
• The multiplier is asynchronous.
• The multiplier has control signals other than synchronous reset or clock enable.
• The multiplier does not fit in a single 18x18 bit block multiplier.

The following pins are optional for a registered multiplier:
• Clock enable port
• Synchronous and asynchronous reset, and load ports

Multiplication with Constant
When one of the arguments is a constant, XST can create efficient dedicated
implementations of a multiplier with a constant using two methods:
• Constant Coefficient Multiplier (KCM)
• Canonical Signed Digit (CSD)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 101

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=101

Chapter 3: XST HDL Coding Techniques

Dedicated implementations do not always provide the best results for multiplication
with constants. XST can automatically choose between KCM or standard multiplier
implementation. The CSD method cannot be automatically chosen. Use Mux Style
(MUX_STYLE) to force CSD implementation.

XST does not support KCM or CSD implementation for signed numbers.

If the either of the arguments is larger than 32 bits, XST does not use KCM or CSD
implementation, even if it is specified with Multiplier Style (MULT_STYLE).

Multiplier s (Vir tex-4, Vir tex-5, and Spar tan-3A DSP Devices)
Note This section applies to Virtex®-4 devices, Virtex-5 devices, and Spartan®-3A
DSP devices only.

This section discusses Multipliers (Virtex-4, Virtex-5, and Spartan-3A DSP Devices),
and includes:
• Implementing Multipliers on DSP48 Resources
• Multiple DSP48 Resources
• Macro Implementation on DSP48 Blocks
• Recognizing the Multiplier Style Constraint
• Maximum Macro Configuration

Implementing Multiplier s on DSP48 Resour ces
Virtex-4 devices, Virtex-5 devices, and Spartan-3A DSP devices allow multipliers to
be implemented on DSP48 resources. XST supports the registered version of these
macros and can push up to 2 levels of input registers and 2 levels of output registers
into DSP48 blocks.

Multiple DSP48 Resour ces
If a multiplier implementation requires multiple DSP48 resources, XST automatically
decomposes it onto multiple DSP48 blocks. Depending on the operand size, and to
obtain the best performance, XST may implement most of a multiplier using DSP48
blocks, and use slice logic for the rest of the macro. For example, it is not sufficient to use
a single DSP48 to implement an 18x18 unsigned multiplier. In this case, XST implements
most of the logic in one DSP48, and the rest in LUTs.

For Virtex-4 devices, Virtex-5 devices, and Spartan-3A DSP devices, XST can infer
pipelined multipliers, not only for the LUT implementation, but for the DSP48
implementation as well.

Macro Implementation on DSP48 Bloc ks
Macro implementation on DSP48 blocks is controlled by the Use DSP48 (USE_DSP48)
constraint or command line option, with a default value of auto. In this mode, XST
implements multipliers taking into account available DSP48 resources in the device.

In automode, use DSP Utilization Ratio (DSP_UTILIZATION_RATIO) to control DSP48
resources for synthesis. By default, XST tries to utilize all DSP48 resources.

For more information, see:

DSP48 Block Resources.

Recognizing the Multiplier Style Constraint
XST can automatically recognize the Multiplier Style (MULT_STYLE) constraint with
values lut and block and then convert it to Use DSP48 (USE_DSP48).

Frontmatter
102 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=102

Chapter 3: XST HDL Coding Techniques

Xilinx® recommends:
• Use Use DSP48 (USE_DSP48) for Virtex-4 devices and Virtex-5 devices to define

FPGA resources used for multiplier implementation.
• Use Multiplier Style (MULT_STYLE) to define the multiplier implementation

method on the selected FPGA resources.

The following rules apply:

• If Use DSP48 (USE_DSP48) is set to auto or yes, you may usemult_style=pipe_block
to pipeline the DSP48 implementation if the multiplier implementation requires
multiple DSP48 blocks.

• If Use DSP48 (USE_DSP48) is set to no, use mult_style=pipe_lut|KCM|CSD to
define the multiplier implementation method on LUTs.

Maximum Macro Configuration
To deliver the best performance, XST by default tries to infer and implement the
maximum macro configuration, including as many registers in the DSP48 as possible.
Use Keep (KEEP) to shape a macro in a specific way. For example, to exclude the first
register stage from the DSP48, place Keep (KEEP) constraints on the outputs of these
registers.

Multiplier s Log File
The XST log file reports the type and size of recognized multipliers during the Macro
Recognition step.

Multiplier s Log File Example
...
Synthesizing Unit <mux>.

Related source file is multiplexers_1.vhd.
Found 1-bit 4-to-1 multiplexer for signal <o>.
Summary:

inferred 1 Multiplexer(s).
Unit <mux> synthesized.

=============================
HDL Synthesis Report

Macro Statistics
Multiplexers : 1

1-bit 4-to-1 multiplexer : 1
==============================
...

Multiplier s Related Constraints
• Multiplier Style (MULT_STYLE)
• Use DSP48 (USE_DSP48)
• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)
• Keep (KEEP)

Multiplier s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 103

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=103

Chapter 3: XST HDL Coding Techniques

Unsigned 8x4-Bit Multiplier Diagram

Unsigned 8x4-Bit Multiplier Pin Descriptions
IO Pins Description
A, B MULT Operands

RES MULT Result

Unsigned 8x4-Bit Multiplier VHDL Coding Example
--
-- Unsigned 8x4-bit Multiplier
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity multipliers_1 is
port(A : in std_logic_vector(7 downto 0);

B : in std_logic_vector(3 downto 0);
RES : out std_logic_vector(11 downto 0));

end multipliers_1;

architecture beh of multipliers_1 is
begin

RES <= A * B;
end beh;

Unsigned 8x4-Bit Multiplier Verilog Coding Example
//
// Unsigned 8x4-bit Multiplier
//

module v_multipliers_1(A, B, RES);
input [7:0] A;
input [3:0] B;
output [11:0] RES;

assign RES = A * B;
endmodule

Frontmatter
104 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=104

Chapter 3: XST HDL Coding Techniques

Sequential Comple x Multiplier s HDL Coding Techniques
This section discusses Sequential Complex Multipliers HDL Coding Techniques, and
includes:
• About Sequential Complex Multipliers
• Sequential Complex Multipliers Log File
• Sequential Complex Multipliers Related Constraints
• Sequential Complex Multipliers Coding Examples

About Sequential Comple x Multiplier s
A sequential complex multiplier requires:
• Four cycles to make a complete multiplication by accumulating intermediate results.
• One DSP block for implementation.

Multiplying two complex numbers A and B requires four cycles.

The first two first cycles compute:

Res_real = A_real * B_real - A_imag * B_imag

The second two cycles compute:

Res_imag = A_real * B_imag + A_imag * B_real

While several templates could be used to describe the above functionality, XST does not
support using enum or integer types to describe the different DSP modes and store
the enum values. Instead, Xilinx® recommends a very regular template to ease XST
inferencing. This general accumulator template allows XST to inference a single DSP to
perform the following operations:
• Load:P <= Value
• Load: P <= -Value
• Accumulate: P <= P + Value
• Accumulate: P <= P - Value

This template works with the following two control signals that perform the above
four operations when combined:
• load
• addsub

Sequential Comple x Multiplier s Log File
None

Sequential Comple x Multiplier s Related Constraints
None

Sequential Comple x Multiplier s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 105

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=105

Chapter 3: XST HDL Coding Techniques

Signed 18x18-bit Sequential Comple x Multiplier Pin Descriptions
IO Pins Description
CLK Clock Signal

Oper_Load, Oper_AddSub Control Signals controlling Load and AddSub
Operations

A, B MULT Operands

RES MULT Result

Signed 18x18-bit Sequential Comple x Multiplier VHDL Coding Example
--
-- Sequential Complex Multiplier
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity multipliers_8 is
generic(A_WIDTH: positive:=18;

B_WIDTH: positive:=18;
RES_WIDTH: positive:=48);

port(CLK: in std_logic;
A: in signed(A_WIDTH-1 downto 0);
B: in signed(B_WIDTH-1 downto 0);

Oper_Load: in std_logic;
Oper_AddSub: in std_logic;
-- Oper_Load Oper_AddSub Operation
-- 0 0 R= +A*B
-- 0 1 R= -A*B
-- 1 0 R=R+A*B
-- 1 1 R=R-A*B

RES: out signed(RES_WIDTH-1 downto 0)
);

end multipliers_8;

architecture beh of multipliers_8 is

constant P_WIDTH: integer:=A_WIDTH+B_WIDTH;

signal oper_load0: std_logic:=’0’;
signal oper_addsub0: std_logic:=’0’;

signal p1: signed(P_WIDTH-1 downto 0):=(others=>’0’);
signal oper_load1: std_logic:=’0’;
signal oper_addsub1: std_logic:=’0’;

signal res0: signed(RES_WIDTH-1 downto 0);
begin

process (clk)
variable acc: signed(RES_WIDTH-1 downto 0);

begin
if rising_edge(clk) then

Frontmatter
106 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=106

Chapter 3: XST HDL Coding Techniques

oper_load0 <= Oper_Load;
oper_addsub0 <= Oper_AddSub;

p1 <= A*B;
oper_load1 <= oper_load0;
oper_addsub1 <= oper_addsub0;

if (oper_load1=’1’) then
acc := res0;

else
acc := (others=>’0’);

end if;

if (oper_addsub1=’1’) then
res0 <= acc-p1;

else
res0 <= acc+p1;

end if;

end if;
end process;

RES <= res0;

end architecture;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 107

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=107

Chapter 3: XST HDL Coding Techniques

Signed 18x18-bit Sequential Comple x Multiplier Verilog Coding Example
module v_multipliers_8(CLK,A,B,Oper_Load,Oper_AddSub, RES);

parameter A_WIDTH = 18;
parameter B_WIDTH = 18;
parameter RES_WIDTH= 48;
parameter P_WIDTH = A_WIDTH+B_WIDTH;

input CLK;
input signed [A_WIDTH-1:0] A, B;

input Oper_Load, Oper_AddSub;
// Oper_Load Oper_AddSub Operation
// 0 0 R= +A*B
// 0 1 R= -A*B
// 1 0 R=R+A*B
// 1 1 R=R-A*B

output [RES_WIDTH-1:0] RES;

reg oper_load0 = 0;
reg oper_addsub0 = 0;

reg signed [P_WIDTH-1:0] p1 = 0;
reg oper_load1 = 0;
reg oper_addsub1 = 0;

reg signed [RES_WIDTH-1:0] res0 = 0;
reg signed [RES_WIDTH-1:0] acc;

always @(posedge CLK)
begin

oper_load0 <= Oper_Load;
oper_addsub0 <= Oper_AddSub;

p1 <= A*B;
oper_load1 <= oper_load0;
oper_addsub1 <= oper_addsub0;

if (oper_load1==1’b1)
acc = res0;

else
acc = 0;

if (oper_addsub1==1’b1)
res0 <= acc-p1;

else
res0 <= acc+p1;

end

assign RES = res0;

endmodule

Frontmatter
108 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=108

Chapter 3: XST HDL Coding Techniques

Pipelined Multiplier s HDL Coding Techniques
This section discusses Pipelined Multipliers HDL Coding Techniques, and includes:
• About Pipelined Multipliers
• Pipelined Multipliers Log File
• Pipelined Multipliers Related Constraints
• Pipelined Multipliers Coding Examples

About Pipelined Multiplier s
This section discusses About Pipelined Multipliers, and includes:
• Inferring Pipelined Multipliers
• Maximizing Performance
• Implementing Unused Stages
• XST Limitations

Inferring Pipelined Multiplier s
In order to increase the speed of designs with large multipliers, XST can infer pipelined
multipliers. By interspersing registers between the stages of large multipliers, pipelining
can significantly increase the overall frequency of your design. The effect of pipelining
is similar to Flip-Flop Retiming.

To insert pipeline stages:
1. Describe the necessary registers in your HDL code
2. Place them after any multipliers
3. Set Multiplier Style (MULT_STYLE) to:

pipe_lut

XST can also pipeline an implementation when:
• The target is a Virtex®-4 device or a Virtex-5 device, and
• Implementation of a multiplier requires multiple DSP48 blocks

Set Multiplier Style (MULT_STYLE) in this instance to:
pipe_block

Maximizing Performance
In order to reach the maximum multiplier speed, XST uses the maximum number of
available registers when:
• XST detects valid registers for pipelining, and
• Multiplier Style (MULT_STYLE) is set to:

pipe_lut or pipe_block
In order to obtain the best frequency, XST automatically calculates the maximum
number of registers for each multiplier .

During the Advanced HDL Synthesis step, the XST HDL Advisor advises you to specify
the optimum number of register stages if:
• You have not specified sufficient register stages, and
• Multiplier Style (MULT_STYLE) is coded directly on a signal,

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 109

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=109

Chapter 3: XST HDL Coding Techniques

Implementing Unused Stages
XST implements the unused stages as shift registers if:

• The number of registers placed after the multiplier exceeds the maximum required,
and

• Shift register extraction is activated

XST Limitations
XST has the following limitations:

• XST cannot pipeline hardware Multipliers (implementation using MULT18X18S
resource)

• XST cannot pipeline Multipliers if registers contain async set/reset or sync reset
signals. XST can pipeline if registers contain sync reset signals.

Pipelined Multiplier s Log File
Following is a Pipelined Multipliers Log File Example.

Pipelined Multiplier s Log File Example
==
* HDL Synthesis *
==

Synthesizing Unit <multipliers_2>.
Related source file is "multipliers_2.vhd".
Found 36-bit register for signal <MULT>.
Found 18-bit register for signal <a_in>.
Found 18-bit register for signal <b_in>.
Found 18x18-bit multiplier for signal <mult_res>.
Found 36-bit register for signal <pipe_1>.
Found 36-bit register for signal <pipe_2>.
Found 36-bit register for signal <pipe_3>.
Summary:

inferred 180 D-type flip-flop(s).
inferred 1 Multiplier(s).

Unit <multipliers_2> synthesized.
...
==
* Advanced HDL Synthesis *
==

Synthesizing (advanced) Unit <multipliers_2>.
Found pipelined multiplier on signal <mult_res>:
- 4 pipeline level(s) found in a register connected to the
multiplier macro output.
Pushing register(s) into the multiplier macro.
INFO:Xst - HDL ADVISOR - You can improve the performance of the
multiplier Mmult_mult_res by adding 1 register level(s).
Unit <multipliers_2> synthesized (advanced).

==
HDL Synthesis Report

Macro Statistics
Multipliers : 1
18x18-bit registered multiplier : 1

==

Frontmatter
110 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=110

Chapter 3: XST HDL Coding Techniques

Pipelined Multiplier s Related Constraints
• Use DSP48 (USE_DSP48)
• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)
• Keep (KEEP)
• Multiplier Style (MULT_STYLE)

Pipelined Multiplier s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Pipelined Multiplier (Outside , Single) Diagram

Pipelined Multiplier (Outside , Single) Pin Descriptions
IO Pins Description
clk Positive-Edge Clock

A, B MULT Operands

MULT MULT Result

Pipelined Multiplier (Outside , Single) VHDL Coding Example
--
-- Pipelined multiplier
-- The multiplication operation placed outside the
-- process block and the pipeline stages represented
-- as single registers.
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity multipliers_2 is
generic(A_port_size : integer := 18;

B_port_size : integer := 18);
port(clk : in std_logic;

A : in unsigned (A_port_size-1 downto 0);
B : in unsigned (B_port_size-1 downto 0);
MULT : out unsigned ((A_port_size+B_port_size-1) downto 0));

attribute mult_style: string;
attribute mult_style of multipliers_2: entity is "pipe_lut";

end multipliers_2;

architecture beh of multipliers_2 is
signal a_in, b_in : unsigned (A_port_size-1 downto 0);
signal mult_res : unsigned ((A_port_size+B_port_size-1) downto 0);
signal pipe_1,

pipe_2,

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 111

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=111

Chapter 3: XST HDL Coding Techniques

pipe_3 : unsigned ((A_port_size+B_port_size-1) downto 0);

begin

mult_res <= a_in * b_in;

process (clk)
begin

if (clk’event and clk=’1’) then
a_in <= A; b_in <= B;
pipe_1 <= mult_res;
pipe_2 <= pipe_1;
pipe_3 <= pipe_2;
MULT <= pipe_3;

end if;
end process;

end beh;

Pipelined Multiplier (Outside , Single) Verilog Coding Example
//
// Pipelined multiplier
// The multiplication operation placed outside the
// always block and the pipeline stages represented
// as single registers.
//

(*mult_style="pipe_lut"*)
module v_multipliers_2(clk, A, B, MULT);

input clk;
input [17:0] A;
input [17:0] B;
output [35:0] MULT;
reg [35:0] MULT;
reg [17:0] a_in, b_in;
wire [35:0] mult_res;
reg [35:0] pipe_1, pipe_2, pipe_3;

assign mult_res = a_in * b_in;

always @(posedge clk)
begin

a_in <= A; b_in <= B;
pipe_1 <= mult_res;
pipe_2 <= pipe_1;
pipe_3 <= pipe_2;
MULT <= pipe_3;

end
endmodule

Pipelined Multiplier (Inside , Single) Pin Descriptions
IO Pins Description
clk Positive-Edge Clock

A, B MULT Operands

MULT MULT Result

Frontmatter
112 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=112

Chapter 3: XST HDL Coding Techniques

Pipelined Multiplier (Inside , Single) VHDL Coding Example
--
-- Pipelined multiplier
-- The multiplication operation placed inside the
-- process block and the pipeline stages represented
-- as single registers.
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity multipliers_3 is
generic(A_port_size: integer := 18;

B_port_size: integer := 18);
port(clk : in std_logic;

A : in unsigned (A_port_size-1 downto 0);
B : in unsigned (B_port_size-1 downto 0);
MULT : out unsigned ((A_port_size+B_port_size-1) downto 0));

attribute mult_style: string;
attribute mult_style of multipliers_3: entity is "pipe_lut";

end multipliers_3;

architecture beh of multipliers_3 is
signal a_in, b_in : unsigned (A_port_size-1 downto 0);
signal mult_res : unsigned ((A_port_size+B_port_size-1) downto 0);
signal pipe_2,

pipe_3 : unsigned ((A_port_size+B_port_size-1) downto 0);

begin
process (clk)
begin

if (clk’event and clk=’1’) then
a_in <= A; b_in <= B;
mult_res <= a_in * b_in;
pipe_2 <= mult_res;
pipe_3 <= pipe_2;
MULT <= pipe_3;

end if;
end process;

end beh;

Pipelined Multiplier (Inside , Single) Verilog Coding Example
//
// Pipelined multiplier
// The multiplication operation placed inside the
// process block and the pipeline stages are represented
// as single registers.
//

(*mult_style="pipe_lut"*)
module v_multipliers_3(clk, A, B, MULT);

input clk;
input [17:0] A;
input [17:0] B;
output [35:0] MULT;
reg [35:0] MULT;
reg [17:0] a_in, b_in;
reg [35:0] mult_res;
reg [35:0] pipe_2, pipe_3;

always @(posedge clk)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 113

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=113

Chapter 3: XST HDL Coding Techniques

begin
a_in <= A; b_in <= B;
mult_res <= a_in * b_in;
pipe_2 <= mult_res;
pipe_3 <= pipe_2;
MULT <= pipe_3;

end
endmodule

Pipelined Multiplier (Outside , Shift) Pin Descriptions
IO Pins Description
clk Positive-Edge Clock

A, B MULT Operands

MULT MULT Result

Pipelined Multiplier (Outside , Shift) VHDL Coding Example
--
-- Pipelined multiplier
-- The multiplication operation placed outside the
-- process block and the pipeline stages represented
-- as shift registers.
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity multipliers_4 is
generic(A_port_size: integer := 18;

B_port_size: integer := 18);
port(clk : in std_logic;

A : in unsigned (A_port_size-1 downto 0);
B : in unsigned (B_port_size-1 downto 0);
MULT : out unsigned ((A_port_size+B_port_size-1) downto 0));

attribute mult_style: string;
attribute mult_style of multipliers_4: entity is "pipe_lut";

end multipliers_4;

architecture beh of multipliers_4 is
signal a_in, b_in : unsigned (A_port_size-1 downto 0);
signal mult_res : unsigned ((A_port_size+B_port_size-1) downto 0);

type pipe_reg_type is array (2 downto 0) of unsigned ((A_port_size+B_port_size-1) downto 0);
signal pipe_regs : pipe_reg_type;

begin

mult_res <= a_in * b_in;

process (clk)
begin

if (clk’event and clk=’1’) then
a_in <= A; b_in <= B;
pipe_regs <= mult_res & pipe_regs(2 downto 1);
MULT <= pipe_regs(0);

end if;
end process;

end beh;

Frontmatter
114 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=114

Chapter 3: XST HDL Coding Techniques

Pipelined Multiplier (Outside , Shift) Verilog Coding Example
//
// Pipelined multiplier
// The multiplication operation placed outside the
// always block and the pipeline stages represented
// as shift registers.
//

(*mult_style="pipe_lut"*)
module v_multipliers_4(clk, A, B, MULT);

input clk;
input [17:0] A;
input [17:0] B;
output [35:0] MULT;
reg [35:0] MULT;
reg [17:0] a_in, b_in;
wire [35:0] mult_res;
reg [35:0] pipe_regs [2:0];
integer i;

assign mult_res = a_in * b_in;

always @(posedge clk)
begin

a_in <= A; b_in <= B;

pipe_regs[2] <= mult_res;
for (i=0; i<=1; i=i+1) pipe_regs[i] <= pipe_regs[i+1];

MULT <= pipe_regs[0];
end

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 115

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=115

Chapter 3: XST HDL Coding Techniques

Multipl y Adder/Subtractor s HDL Coding Techniques
This section discusses Multiply Adder/Subtractors HDL Coding Techniques, and
includes:
• About Multiply Adder/Subtractors
• Multiply Adder/Subtractors in Virtex-4 Devices and Virtex-5 Devices
• Multiply Adder/Subtractors Log File
• Multiply Adder/Subtractors Related Constraints
• Multiply Adder/Subtractors Coding Examples

About Multipl y Adder/Subtractor s
The Multiply Adder/Subtractor macro is a complex macro consisting of several basic
macros such as:
• Multipliers
• Adder/subtractors
• Registers

The recognition of this complex macro enables XST to implement it on dedicated DSP48
resources in the following devices:
• Virtex®-4
• Virtex-5

Multipl y Adder/Subtractor s in Vir tex-4 Devices and Vir tex-5 Devices
This section discusses Multiply Adder/Subtractors in Virtex®-4 Devices and Virtex-5
Devices, and includes:
• XST Registered Macro Support
• XST DSP48 Block Support
• Macro Implementation on DSP48 Blocks
• Maximum Macro Configuration

XST Registered Macro Suppor t
XST supports the registered version of this macro and can push up to:
• Two levels of input registers on multiplier inputs
• One register level on the Adder/Subtractor input
• One level of output register into the DSP48 block

If the Carry In or Add/Sub operation selectors are registered, XST pushes these registers
into the DSP48. In addition, the multiplication operation could be registered as well.

XST DSP48 Bloc k Suppor t
XST can implement a multiply adder/subtractor in a DSP48 block if its implementation
requires only a single DSP48 resource. If the macro exceeds the limits of a single DSP48,
XST processes it as two separate Multiplier and Adder/Subtractor macros, making
independent decisions on each macro.

For more information, see:

• Multipliers Hardware Description Language (HDL) Coding Techniques
• Adders, Subtractors, and Adders/Subtractors Hardware Description Language

(HDL) Coding Techniques

Frontmatter
116 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=116

Chapter 3: XST HDL Coding Techniques

Macro Implementation on DSP48 Bloc ks
Macro implementation on DSP48 blocks is controlled by Use DSP48 (USE_DSP48) with a
default value of auto. In this mode, XST implements multiply adder/subtractors taking
into account DSP48 resources in the device.

In automode, use DSP Utilization Ratio (DSP_UTILIZATION_RATIO) to control DSP48
resources for the synthesis. By default, XST tries to utilize all available DSP48 resources.

For more information, see:

DSP48 Block Resources

Maximum Macro Configuration
To deliver the best performance, XST by default tries to infer and implement the
maximum macro configuration, including as many registers in the DSP48 as possible.
Use Keep (KEEP) to shape a macro in a specific way. For example, to exclude the first
register stage from the DSP48, place Keep (KEEP) constraints on the outputs of these
registers.

Multipl y Adder/Subtractor s Log File
In the log file, XST reports the details of inferred multipliers, adder/subtractors and
registers at the HDL Synthesis step. The composition of multiply adder/subtractor
macros happens at the Advanced HDL Synthesis step. XST reports information about
inferred MACs, because they are implemented within the MAC implementation
mechanism.

Multipl y Adder/Subtractor s Log File Example
==
* HDL Synthesis *
==

Synthesizing Unit <multipliers_6>.
Related source file is "multipliers_6.vhd".
Found 8-bit register for signal <A_reg1>.
Found 8-bit register for signal <A_reg2>.
Found 8-bit register for signal <B_reg1>.
Found 8-bit register for signal <B_reg2>.
Found 8x8-bit multiplier for signal <mult>.
Found 16-bit addsub for signal <multaddsub>.
Summary:

inferred 32 D-type flip-flop(s).
inferred 1 Adder/Subtractor(s).
inferred 1 Multiplier(s).

Unit <multipliers_6> synthesized.
...
==
* Advanced HDL Synthesis *
==
...
Synthesizing (advanced) Unit <Mmult_mult>.

Multiplier <Mmult_mult> in block <multipliers_6> and adder/subtractor
<Maddsub_multaddsub> in block <multipliers_6> are combined into a
MAC<Mmac_Maddsub_multaddsub>.

The following registers are also absorbed by the MAC: <A_reg2> in block
<multipliers_6>, <A_reg1> in block <multipliers_6>, <B_reg2> in
block <multipliers_6>, <B_reg1> in block <multipliers_6>.

Unit <Mmult_mult> synthesized (advanced).

==
HDL Synthesis Report

Macro Statistics
MACs : 1
8x8-to-16-bit MAC : 1

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 117

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=117

Chapter 3: XST HDL Coding Techniques

==

Multipl y Adder/Subtractor s Related Constraints
• Use DSP48 (USE_DSP48)
• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)
• Keep (KEEP)

Multipl y Adder/Subtractor s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Multiplier Adder With 2 Register Levels on Multiplier Inputs
Diagram

Multiplier Adder With 2 Register Levels on Multiplier Inputs Pin
Descriptions

IO Pins Description
clk Positive-Edge Clock

A, B, C MULT-Add Operands

RES MULT-Add Result

Multiplier Adder With 2 Register Levels on Multiplier Inputs VHDL Coding
Example
--
-- Multiplier Adder with 2 Register Levels on Multiplier Inputs
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity multipliers_5 is
generic (p_width: integer:=8);
port (clk : in std_logic;

A, B, C : in std_logic_vector(p_width-1 downto 0);
RES : out std_logic_vector(p_width*2-1 downto 0));

end multipliers_5;

architecture beh of multipliers_5 is
signal A_reg1, A_reg2,

B_reg1, B_reg2 : std_logic_vector(p_width-1 downto 0);

Frontmatter
118 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=118

Chapter 3: XST HDL Coding Techniques

signal multaddsub : std_logic_vector(p_width*2-1 downto 0);
begin

multaddsub <= A_reg2 * B_reg2 + C;

process (clk)
begin

if (clk’event and clk=’1’) then
A_reg1 <= A; A_reg2 <= A_reg1;
B_reg1 <= B; B_reg2 <= B_reg1;

end if;
end process;

RES <= multaddsub;

end beh;

Multiplier Adder With 2 Register Levels on Multiplier Inputs Verilog Coding
Example
//
// Multiplier Adder with 2 Register Levels on Multiplier Inputs
//

module v_multipliers_5 (clk, A, B, C, RES);

input clk;
input [7:0] A;
input [7:0] B;
input [7:0] C;
output [15:0] RES;
reg [7:0] A_reg1, A_reg2, B_reg1, B_reg2;
wire [15:0] multaddsub;

always @(posedge clk)
begin

A_reg1 <= A; A_reg2 <= A_reg1;
B_reg1 <= B; B_reg2 <= B_reg1;

end

assign multaddsub = A_reg2 * B_reg2 + C;
assign RES = multaddsub;

endmodule

Multiplier Adder/Subtractor With 2 Register Levels On Multiplier
Inputs Diagram

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 119

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=119

Chapter 3: XST HDL Coding Techniques

Multiplier Adder/Subtractor With 2 Register Levels On Multiplier
Inputs Pin Descriptions

IO Pins Description
clk Positive-Edge Clock

add_sub AddSub Selector

A, B, C MULT-AddSub Operands

RES MULT-AddSub Result

Multiplier Adder/Subtractor With 2 Register Levels On Multiplier Inputs
VHDL Coding Example

--
-- Multiplier Adder/Subtractor with
-- 2 Register Levels on Multiplier Inputs
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity multipliers_6 is
generic (p_width: integer:=8);
port (clk,add_sub: in std_logic;

A, B, C: in std_logic_vector(p_width-1 downto 0);
RES: out std_logic_vector(p_width*2-1 downto 0));

end multipliers_6;

architecture beh of multipliers_6 is
signal A_reg1, A_reg2,

B_reg1, B_reg2 : std_logic_vector(p_width-1 downto 0);
signal mult, multaddsub : std_logic_vector(p_width*2-1 downto 0);

begin

mult <= A_reg2 * B_reg2;
multaddsub <= C + mult when add_sub = ’1’ else C - mult;

process (clk)
begin

if (clk’event and clk=’1’) then
A_reg1 <= A; A_reg2 <= A_reg1;
B_reg1 <= B; B_reg2 <= B_reg1;

end if;
end process;

RES <= multaddsub;

end beh;

Multiplier Adder/Subtractor With 2 Register Levels On Multiplier Inputs
Verilog Coding Example
//
// Multiplier Adder/Subtractor with
// 2 Register Levels on Multiplier Inputs
//

module v_multipliers_6 (clk, add_sub, A, B, C, RES);

input clk,add_sub;
input [7:0] A;
input [7:0] B;
input [7:0] C;

Frontmatter
120 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=120

Chapter 3: XST HDL Coding Techniques

output [15:0] RES;
reg [7:0] A_reg1, A_reg2, B_reg1, B_reg2;
wire [15:0] mult, multaddsub;

always @(posedge clk)
begin

A_reg1 <= A; A_reg2 <= A_reg1;
B_reg1 <= B; B_reg2 <= B_reg1;

end

assign mult = A_reg2 * B_reg2;
assign multaddsub = add_sub ? C + mult : C - mult;
assign RES = multaddsub;

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 121

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=121

Chapter 3: XST HDL Coding Techniques

Multipl y Accum ulate HDL Coding Techniques
This section discusses Multiply Accumulate HDL Coding Techniques, and includes:
• About Multiply Accumulate
• Multiply Accumulate in Virtex-4 Devices and Virtex-5 Devices
• Multiply Accumulate Log File
• Multiply Accumulate Related Constraints
• Multiply Accumulate Coding Examples

About Multipl y Accum ulate
The Multiply Accumulate macro is a complex macro consisting of several basic macros
such as:
• Multipliers
• Accumulators
• Registers

The recognition of this complex macro enables XST to implement it on dedicated DSP48
resources in the following devices:
• Virtex®-4
• Virtex-5

Multipl y Accum ulate in Vir tex-4 Devices and Vir tex-5 Devices
This section discusses Multiply Accumulate in Virtex®-4 Devices and Virtex-5 Devices,
and includes:
• XST Registered Macro Support
• XST DSP48 Block Support
• Macro Implementation on DSP48 Blocks
• Maximum Macro Configuration

For more information, see:
• Multipliers HDL Coding Techniques
• Accumulators HDL Coding Techniques

XST Registered Macro Suppor t
XST supports the registered version of this macro, and can push up to 2 levels of input
registers into the DSP48 block. If Adder/Subtractor operation selectors are registered,
XST pushes these registers into the DSP48. In addition, the multiplication operation
could be registered as well.

XST DSP48 Bloc k Suppor t
XST can implement a multiply accumulate in a DSP48 block if its implementation
requires only a single DSP48 resource. If the macro exceeds the limits of a single
DSP48, XST processes it as two separate Multiplier and Accumulate macros, making
independent decisions on each macro.

Frontmatter
122 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=122

Chapter 3: XST HDL Coding Techniques

Macro Implementation on DSP48 Bloc ks
Macro implementation on DSP48 blocks is controlled by the Use DSP48 (USE_DSP48)
constraint or command line option, with a default value of auto. In auto mode, XST
implements multiply accumulate taking into account available DSP48 resources in the
device.

In auto mode, use DSP Utilization Ratio (DSP_UTILIZATION_RATIO) to control
DSP48 resources. XST tries to utilize as many DSP48 resources as possible. For more
information, see DSP48 Block Resources.

Maximum Macro Configuration
To deliver the best performance, XST by default tries to infer and implement the
maximum macro configuration, including as many registers in the DSP48 as possible.
To shape a macro in a specific way, use the Keep (KEEP) constraint. For example, to
exclude the first register stage from the DSP48, place Keep (KEEP) constraints on the
outputs of these registers.

Multipl y Accum ulate Log File
XST reports the following information in the Multiply Accumulate Log File.

Step Repor t
HDL Synthesis Details of inferred multipliers, accumulators

and registers

Advanced HDL Synthesis Composition of multiply accumulate macros

Multipl y Accum ulate Log File Example
==
* HDL Synthesis *
==
...
Synthesizing Unit <multipliers_7a>.

Related source file is "multipliers_7a.vhd".
Found 8x8-bit multiplier for signal <$n0002> created at line 28.
Found 16-bit up accumulator for signal <accum>.
Found 16-bit register for signal <mult>.
Summary:

inferred 1 Accumulator(s).
inferred 16 D-type flip-flop(s).
inferred 1 Multiplier(s).

Unit <multipliers_7a> synthesized....
==
* Advanced HDL Synthesis *
==
...
Synthesizing (advanced) Unit <Mmult__n0002>.

Multiplier <Mmult__n0002> in block <multipliers_7a> and accumulator
<accum> in block <multipliers_7a> are combined into a MAC<Mmac_accum>.

The following registers are also absorbed by the MAC: <mult> in block
<multipliers_7a>. Unit <Mmult__n0002> synthesized (advanced).

==
HDL Synthesis Report

Macro Statistics
MACs : 1
8x8-to-16-bit MAC : 1

==

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 123

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=123

Chapter 3: XST HDL Coding Techniques

Multipl y Accum ulate Related Constraints
• Use DSP48 (USE_DSP48)
• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)
• Keep (KEEP)

Multipl y Accum ulate Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Multiplier Up Accum ulate With Register After Multiplication
Diagram

Multiplier Up Accum ulate With Register After Multiplication Pin
Descriptions

IO Pins Description
clk Positive-Edge Clock

reset Synchronous Reset

A, B MAC Operands

RES MAC Result

Multiplier Up Accum ulate With Register After Multiplication VHDL Coding
Example
--
-- Multiplier Up Accumulate with Register After Multiplication
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity multipliers_7a is
generic (p_width: integer:=8);
port (clk, reset: in std_logic;
A, B: in std_logic_vector(p_width-1 downto 0);
RES: out std_logic_vector(p_width*2-1 downto 0));

end multipliers_7a;

architecture beh of multipliers_7a is
signal mult, accum: std_logic_vector(p_width*2-1 downto 0);

Frontmatter
124 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=124

Chapter 3: XST HDL Coding Techniques

begin

process (clk)
begin
if (clk’event and clk=’1’) then
if (reset = ’1’) then
accum <= (others => ’0’);
mult <= (others => ’0’);

else
accum <= accum + mult;
mult <= A * B;

end if;
end if;

end process;

RES <= accum;

end beh;

Multiplier Up Accum ulate With Register After Multiplication Verilog Coding
Example
//
// Multiplier Up Accumulate with Register After Multiplication
//
module v_multipliers_7a (clk, reset, A, B, RES);
input clk, reset;
input [7:0] A;
input [7:0] B;
output [15:0] RES;
reg [15:0] mult, accum;

always @(posedge clk)
begin
if (reset)
mult <= 16’b0000000000000000;

else
mult <= A * B;

end

always @(posedge clk)
begin
if (reset)
accum <= 16’b0000000000000000;

else
accum <= accum + mult;

end
assign RES = accum;

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 125

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=125

Chapter 3: XST HDL Coding Techniques

Multiplier Up/Down Accum ulate With Register After Multiplication
Diagram

Multiplier Up/Down Accum ulate With Register After Multiplication
Pin Descriptions

IO Pins Description
clk Positive-Edge Clock

reset Synchronous Reset

add_sub AddSub Selector

A, B MAC Operands

RES MAC Result

Multiplier Up/Down Accum ulate With Register After Multiplication VHDL
Coding Example
--
-- Multiplier Up/Down Accumulate with Register
-- After Multiplication
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity multipliers_7b is

generic (p_width: integer:=8);
port (clk, reset, add_sub: in std_logic;

A, B: in std_logic_vector(p_width-1 downto 0);
RES: out std_logic_vector(p_width*2-1 downto 0));

end multipliers_7b;

architecture beh of multipliers_7b is
signal mult, accum: std_logic_vector(p_width*2-1 downto 0);

begin

process (clk)
begin

if (clk’event and clk=’1’) then
if (reset = ’1’) then

accum <= (others => ’0’);
mult <= (others => ’0’);

else

Frontmatter
126 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=126

Chapter 3: XST HDL Coding Techniques

if (add_sub = ’1’) then
accum <= accum + mult;

else
accum <= accum - mult;

end if;

mult <= A * B;
end if;

end if;
end process;

RES <= accum;

end beh;

Multiplier Up/Down Accum ulate With Register After Multiplication Verilog
Coding Example
//
// Multiplier Up/Down Accumulate with Register
// After Multiplication
//

module v_multipliers_7b (clk, reset, add_sub, A, B, RES);

input clk, reset, add_sub;
input [7:0] A;
input [7:0] B;
output [15:0] RES;
reg [15:0] mult, accum;

always @(posedge clk)
begin

if (reset)
mult <= 16’b0000000000000000;

else
mult <= A * B;

end

always @(posedge clk)
begin

if (reset)
accum <= 16’b0000000000000000;

else
if (add_sub)

accum <= accum + mult;
else

accum <= accum - mult;
end

assign RES = accum;

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 127

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=127

Chapter 3: XST HDL Coding Techniques

Divider s HDL Coding Techniques
This section discusses Dividers HDL Coding Techniques, and includes:

• About Dividers

• Dividers Log File

• Dividers Related Constraints

• Dividers Coding Examples

About Divider s
Dividers are supported only when the divisor is a constant and is a power of 2. In that
case, the operator is implemented as a shifter. Otherwise, XST issues an error message.

Divider s Log File
When you implement a divider with a constant with the power of 2, XST does not issue
any message during the Macro Recognition step. If the divider does not correspond to
the case supported by XST, then XST issues the following error message:

...
ERROR:Xst:719 - file1.vhd (Line 172).
Operator is not supported yet : ’DIVIDE’
...

Divider s Related Constraints
None

Divider s Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Division by Constant 2 Divider Diagram

Division by Constant 2 Divider Pin Descriptions
IO Pins Description
DI Division Operands

DO Division Result

Frontmatter
128 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=128

Chapter 3: XST HDL Coding Techniques

Division by Constant 2 Divider VHDL Coding Example
--
-- Division By Constant 2
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity divider_1 is
port(DI : in unsigned(7 downto 0);

DO : out unsigned(7 downto 0));
end divider_1;

architecture archi of divider_1 is
begin

DO <= DI / 2;

end archi;

Division by Constant 2 Divider Verilog Coding Example
//
// Division By Constant 2
//

module v_divider_1 (DI, DO);
input [7:0] DI;
output [7:0] DO;

assign DO = DI / 2;

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 129

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=129

Chapter 3: XST HDL Coding Techniques

Resour ce Sharing HDL Coding Techniques
This section discusses Resource Sharing HDL Coding Techniques, and includes:
• About Resource Sharing
• Resource Sharing Log File
• Resource Sharing Related Constraints
• Resource Sharing Coding Examples

About Resour ce Sharing
The goal of resource sharing (also known as folding) is to minimize the number of
operators and the subsequent logic in the synthesized design. This optimization is based
on the principle that two similar arithmetic resources may be implemented as one single
arithmetic operator if they are never used at the same time. XST performs both resource
sharing and, if required, reduces the number of multiplexers.

XST supports resource sharing for:
• Adders
• Subtractors
• Adders/subtractors
• Multipliers

If the optimization goal is speed, disabling resource sharing may give better results. To
improve clock frequency, Xilinx® recommends deactivating resource sharing at the
Advanced HDL Synthesis step.

Resour ce Sharing Log File
The XST log file reports the type and size of recognized arithmetic blocks and
multiplexers during the Macro Recognition step.

Resour ce Sharing Log File Example
...
Synthesizing Unit <addsub>.

Related source file is resource_sharing_1.vhd.
Found 8-bit addsub for signal <res>.
Found 8 1-bit 2-to-1 multiplexers.
Summary:

inferred 1 Adder/Subtracter(s).
inferred 8 Multiplexer(s).

Unit <addsub> synthesized.

==============================
HDL Synthesis Report

Macro Statistics
Multiplexers : 1

2-to-1 multiplexer : 1
Adders/Subtractors : 1

8-bit addsub : 1
==============================
...
===
* Advanced HDL Synthesis *
===

INFO:Xst - HDL ADVISOR - Resource sharing has identified that some
arithmetic operations in this design can share the same physical resources
for reduced device utilization. For improved clock frequency you may
try to disable resource sharing.
...

Frontmatter
130 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=130

Chapter 3: XST HDL Coding Techniques

Resour ce Sharing Related Constraints
Resource Sharing (RESOURCE_SHARING)

Resour ce Sharing Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

For the following VHDL and Verilog examples, XST gives the following solution.

Resour ce Sharing Diagram

Resour ce Sharing Pin Descriptions
IO Pins Description
A, B, C Operands

OPER Operation Selector

RES Data Output

Resour ce Sharing VHDL Coding Example
--
-- Resource Sharing
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity resource_sharing_1 is
port(A,B,C : in std_logic_vector(7 downto 0);

OPER : in std_logic;
RES : out std_logic_vector(7 downto 0));

end resource_sharing_1;

architecture archi of resource_sharing_1 is
begin

RES <= A + B when OPER=’0’ else A - C;

end archi;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 131

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=131

Chapter 3: XST HDL Coding Techniques

Resour ce Sharing Verilog Coding Example
//
// Resource Sharing
//

module v_resource_sharing_1 (A, B, C, OPER, RES);
input [7:0] A, B, C;
input OPER;
output [7:0] RES;
wire [7:0] RES;

assign RES = !OPER ? A + B : A - C;

endmodule

Frontmatter
132 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=132

Chapter 3: XST HDL Coding Techniques

RAMs and ROMs HDL Coding Techniques
This section discusses RAMs and ROMs HDL Coding Techniques, and includes:
• About RAMs and ROMs
• RAMs and ROMs Log File
• RAMs and ROMs Related Constraints
• RAMs and ROMs Coding Examples
• Initializing RAM Coding Examples
• Initializing RAM From an External File Coding Examples

About RAMs and ROMs
This section discusses About RAMs and ROMs, and includes:
• Automatic RAM Recognition
• RAMs and ROMs with Negative Addresses
• Types of Inferred RAM
• Block and Distributed RAM
• Unsupported Block RAM Features
• Speed-Oriented Implementation
• Additional XST Capabilities
• Automatic BRAM Resource Control
• Small RAMs and ROMs
• Available BRAM Resources

Automatic RAM Recognition
If you do not want to instantiate RAM primitives to keep your Hardware Description
Language (HDL) code architecture independent, use XST automatic RAM recognition.
XST can infer distributed as well as block RAM. It covers the following characteristics,
offered by these RAM types:
• Synchronous write
• Write enable
• RAM enable
• Asynchronous or synchronous read
• Reset of the data output latches
• Data output reset
• Single, dual, or multiple-port read
• Single-port and dual-port write
• Parity bits
• Block Ram with Byte-Wide Write Enable
• Simple dual-port BRAM

RAMs and ROMs with Negative Addresses
XST does not support RAMs and ROMs with negative addresses.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 133

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=133

Chapter 3: XST HDL Coding Techniques

Types of Inferred RAM
The type of Inferred RAM depends on its description.

• RAM descriptions with an asynchronous read generate a distributed RAMmacro.
• RAM descriptions with a synchronous read generate a block RAM macro. In some

cases, a block RAM macro can actually be implemented with distributed RAM. The
decision on the actual RAM implementation is done by the macro generator.

Bloc k and Distrib uted RAM
If a given template can be implemented using Block and Distributed RAM, XST
implements BLOCK ones. Use the RAM Style (RAM_STYLE) constraint to control RAM
implementation and select a desirable RAM type.

For more information, see:

XST Design Constraints

Unsuppor ted Bloc k RAM Features
The following block RAM features are not supported:
• Parity bits
• Different aspect ratios on each port
• Simple dual-port distributed RAMs
• Quad-port distributed RAMs

Speed-Oriented Implementation
XST uses speed-oriented implementation to implement RAMs on BRAM resources. This
gives good results for speed, but may require more BRAM resources than area-oriented
implementation. XST does not support area-oriented BRAM implementation. Xilinx®
recommends the CORE Generator™ software for area-oriented implementation.

For more information, see:

XST FPGA Optimization

Additional XST Capabilities
XST can:
• Implement Finite State Machine (FSM) components.

For more information, see:
Finite State Machine (FSM) HDL Coding Techniques.

• Map general logic onto block RAMs
For more information, see:
Mapping Logic Onto Block RAM

Automatic BRAM Resour ce Contr ol
XST automatically controls BRAM resources on the target device. BRAM Utilization
Ratio (BRAM_UTILIZATION_RATIO) allows you to specify the number of BRAM
blocks that XST must not exceed during synthesis.

Small RAMs and ROMs
Use RAM Style (RAM_STYLE) and ROM Style (ROM_STYLE) to force implementation
of small RAMs and ROMs on BRAM resources.

Frontmatter
134 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=134

Chapter 3: XST HDL Coding Techniques

To achieve better design speed, XST implements small RAMs and ROMs using
distributed resources. RAMs and ROMs are considered small if their sizes follow the
rules shown in the following table.

Devices Size (bits) * Width (bits)
Virtex®-4 <= 512

Virtex-5 <= 512

Availab le BRAM Resour ces
XST calculates the available BRAM resources for inference using the following formula:

Total_Number_of_Available_BRAMs - Number_of_Reserved_BRAMs

where

Total_Number_of_Available_BRAMs is the number of BRAMs specified by the BRAM
Utilization Ratio (BRAM_UTILIZATION_RATIO) constraint. By default it is 100%.

The Number of Reserved_BRAMs encapsulates:
• The number of instantiated BRAMs in the Hardware Description Language (HDL)

code from the UNISIM library
• The number of RAM which were forced to be implemented as BRAMs by the RAM

Style (RAM_STYLE) and ROM Style (ROM_STYLE) constraints
• The number of BRAMs generated using BRAM mapping optimizations

(BRAM_MAP).

Where there are available BRAM resources, XST implements the largest inferred RAMs
and ROMs using BRAM, and the smallest on distributed resources.

If the Number_of_Reserved_BRAMs exceeds available resources, XST implements
them as block RAMs, and all inferred RAMs are implemented on distributed memory.

As soon as this process is completed, XST can automatically pack two small single-port
BRAMs in a single BRAM primitive. This optimization is controlled by Automatic
BRAM Packing (AUTO_BRAM_PACKING). It is disabled by default.

For more information, see:

• BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO)
• Automatic BRAM Packing (AUTO_BRAM_PACKING)

RAMs and ROMs Log File
The XST RAMs and ROMs log file reports the following:
• Type and size of recognized RAM
• Complete information on its I/O ports

Steps in RAM Recognition
Step XST Behavior
HDL Synthesis Recognizes the presence of the memory structure in the Hardware

Description Language (HDL) code

Advanced HDL
Synthesis

Decides how to implement a specific memory (that is, whether to use
Block or Distributed memory resources)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 135

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=135

Chapter 3: XST HDL Coding Techniques

RAMs and ROMs Log File Example
===
* HDL Synthesis *
===

Synthesizing Unit <rams_16>.
Related source file is "rams_16.vhd".
Found 64x16-bit dual-port RAM<Mram_RAM>for signal <RAM>.
Found 16-bit register for signal <doa>.
Found 16-bit register for signal <dob>.
Summary:
inferred 1 RAM(s).

inferred32 D-type flip-flop(s).
Unit <rams_16> synthesized.

===
HDL Synthesis Report

Macro Statistics
RAMs : 1
64x16-bit dual-port RAM : 1

Registers: 2
16-bit register : 2

===

===
* Advanced HDL Synthesis*
===

Synthesizing (advanced) Unit <rams_16>.
INFO:Xst - The RAM<Mram_RAM>will be implemented as a BLOCKRAM, absorbing
the following register(s): <doa> <dob>

| ram_type | Block | |

| Port A |
aspect ratio	64-word x 16-bit	
mode	write-first	
clkA	connected to signal <clka>	rise
enA	connected to signal <ena>	high
weA	connected to internal <wea>	high
addrA	connected to signal <addra>	
diA	connected to internal <dia>	
doA	connected to signal <doa>	

| optimization | speed | |

===

| ram_type | Block | |

| Port B |
aspect ratio	64-word x 16-bit	
mode	write-first	
clkB	connected to signal <clkb>	rise
enB	connected to signal <enb>	high
weB	connected to internal <web>	high
addrB	connected to signal <addrb>	
diB	connected to internal <dib>	
doB	connected to signal <dob>	

| optimization | speed | |

===

Unit <rams_16> synthesized (advanced).

===
Advanced HDL Synthesis Report

Frontmatter
136 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=136

Chapter 3: XST HDL Coding Techniques

Macro Statistics
RAMs : 1
64x16-bit dual-port block RAM : 1

===

RAMs and ROMs Related Constraints
• BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO)

• Automatic BRAM Packing (AUTO_BRAM_PACKING)

• RAM Extraction (RAM_EXTRACT)

• RAM Style (RAM_STYLE)

• ROM Extraction (ROM_EXTRACT)

• ROM Style (ROM_STYLE)

XST accepts LOC and RLOC constraints on inferred RAMs that can be implemented
in a single block RAM primitive. The LOC and RLOC constraints are propagated
to the NGC netlist.

RAMs and ROMs Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

See Also:

Initializing RAM Coding Examples

Initializing RAM From an External File Coding Examples

About RAMs and ROMs Coding Examples
Block RAM resources in the following devices offer different read/write synchronization
modes:

• Virtex®-4

• Virtex-5

• Spartan®-3

• Spartan-3E

• Spartan-3A

The following coding examples describe a single-port block RAM. You can deduce
descriptions of dual-port block RAMs from these examples. Dual-port block RAMs
can be configured with a different read/write mode on each port. Inference supports
this capability.

This table summarizes support for read/write modes according to the targeted devices
and how XST handles it.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 137

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=137

Chapter 3: XST HDL Coding Techniques

Suppor t For Read/Write Modes
Devices Inferred Modes Behavior
Spartan-3

Spartan-3E

Spartan-3A

Virtex-4

Virtex-5

write-first

read-first

no-change

Macro inference and generation

Attach adequate WRITE_MODE,
WRITE_MODE_A, WRITE_MODE_B
constraints to generated block RAMs
in NCF

CPLD none RAM inference completely disabled

Single-P or t RAM in Read-Fir st Mode Diagram

Single-P or t RAM in Read-Fir st Mode Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (active-High)
en Clock Enable

addr Read/Write Address

di Data Input

do Data Output

Single-P or t RAM in Read-Fir st Mode VHDL Coding Example One
--
-- Read-First Mode
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity rams_01 is

port (clk : in std_logic;
we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_01;

architecture syn of rams_01 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM: ram_type;

begin

process (clk)

Frontmatter
138 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=138

Chapter 3: XST HDL Coding Techniques

begin
if clk’event and clk = ’1’ then

if en = ’1’ then
if we = ’1’ then

RAM(conv_integer(addr)) <= di;
end if;
do <= RAM(conv_integer(addr)) ;

end if;
end if;

end process;

end syn;

Single-P or t RAM in Read-Fir st Mode Verilog Coding Example One
//
// Read-First Mode
//
module v_rams_01 (clk, en, we, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] RAM [63:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en)
begin

if (we)
RAM[addr]<=di;

do <= RAM[addr];
end

end

endmodule

Single-P or t RAM in Write-Fir st Mode Diagram

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 139

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=139

Chapter 3: XST HDL Coding Techniques

Single-P or t RAM in Write-Fir st Mode Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (active-High)
en Clock Enable

addr Read/Write Address

di Data Input

do Data Output

Single-P or t RAM in Write-Fir st Mode VHDL Coding Example One
--
-- Write-First Mode (template 1)
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_02a is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_02a;

architecture syn of rams_02a is
type ram_type is array (63 downto 0)

of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then

if we = ’1’ then
RAM(conv_integer(addr)) <= di;
do <= di;

else
do <= RAM(conv_integer(addr));

end if;
end if;

end if;
end process;

end syn;

Frontmatter
140 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=140

Chapter 3: XST HDL Coding Techniques

Single-P or t RAM in Write-Fir st Mode VHDL Coding Example Two
--
-- Write-First Mode (template 2)
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_02b is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_02b;

architecture syn of rams_02b is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;
signal read_addr: std_logic_vector(5 downto 0);

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then

if we = ’1’ then
ram(conv_integer(addr)) <= di;

end if;
read_addr <= addr;

end if;
end if;

end process;

do <= ram(conv_integer(read_addr));

end syn;

Single-P or t RAM In Write-Fir st Mode Verilog Coding Example One
//
// Write-First Mode (template 1)
//

module v_rams_02a (clk, we, en, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] RAM [63:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en)
begin

if (we)
begin

RAM[addr] <= di;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 141

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=141

Chapter 3: XST HDL Coding Techniques

do <= di;
end
else

do <= RAM[addr];
end

end
endmodule

Single-P or t RAM In Write-Fir st Mode Verilog Coding Example Two
//
// Write-First Mode (template 2)
//

module v_rams_02b (clk, we, en, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] RAM [63:0];
reg [5:0] read_addr;

always @(posedge clk)
begin

if (en)
begin

if (we)
RAM[addr] <= di;

read_addr <= addr;
end

end

assign do = RAM[read_addr];

endmodule

Single-P or t RAM In No-Chang e Mode Diagram

Frontmatter
142 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=142

Chapter 3: XST HDL Coding Techniques

Single-P or t RAM In No-Chang e Mode Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (active-High)
en Clock Enable

addr Read/Write Address

di Data Input

do Data Output

Single-P or t RAM In No-Chang e Mode VHDL Coding Example Two
--
-- No-Change Mode (template 1)
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_03 is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_03;

architecture syn of rams_03 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then

if we = ’1’ then
RAM(conv_integer(addr)) <= di;

else
do <= RAM(conv_integer(addr));

end if;
end if;

end if;
end process;

end syn;

Single-P or t RAM In No-Chang e Mode Verilog Coding Example Two
//
// No-Change Mode (template 1)
//

module v_rams_03 (clk, we, en, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 143

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=143

Chapter 3: XST HDL Coding Techniques

reg [15:0] RAM [63:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en)
begin

if (we)
RAM[addr] <= di;

else
do <= RAM[addr];

end
end

endmodule

The following descriptions are directly mappable onto distributed RAM only.

Single-P or t RAM With Async hronous Read Diagram

Single-P or t RAM With Async hronous Read Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (active-High)
a Read/Write Address

di Data Input

do Data Output

Single-P or t RAM With Async hronous Read VHDL Coding Example
--
-- Single-Port RAMwith Asynchronous Read
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_04 is
port (clk : in std_logic;

we : in std_logic;
a : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_04;

architecture syn of rams_04 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)

Frontmatter
144 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=144

Chapter 3: XST HDL Coding Techniques

begin
if (clk’event and clk = ’1’) then

if (we = ’1’) then
RAM(conv_integer(a)) <= di;

end if;
end if;

end process;

do <= RAM(conv_integer(a));

end syn;

Single-P or t RAM With Async hronous Read Verilog Coding Example
//
// Single-Port RAMwith Asynchronous Read
//

module v_rams_04 (clk, we, a, di, do);

input clk;
input we;
input [5:0] a;
input [15:0] di;
output [15:0] do;
reg [15:0] ram [63:0];

always @(posedge clk) begin
if (we)

ram[a] <= di;
end

assign do = ram[a];

endmodule

The following description implements a true synchronous read. A true synchronous
read is the synchronization mechanism in Virtex device block RAMs, where the read
address is registered on the RAM clock edge. Such descriptions are directly mappable
onto block RAM, as shown in the diagram below. The same descriptions can also be
mapped onto Distributed RAM.

Single-P or t RAM With Synchronous Read (Read Through)
Diagram

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 145

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=145

Chapter 3: XST HDL Coding Techniques

Single-P or t RAM With Synchronous Read (Read Through) Pin
Descriptions

IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (active-High)
a Read/Write Address

di Data Input

do Data Output

Single-P or t RAM With Synchronous Read (Read Through) VHDL Coding
Example

--
-- Single-Port RAMwith Synchronous Read (Read Through)
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_07 is
port (clk : in std_logic;

we : in std_logic;
a : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_07;

architecture syn of rams_07 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;
signal read_a : std_logic_vector(5 downto 0);

begin

process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(a)) <= di;
end if;
read_a <= a;

end if;
end process;

do <= RAM(conv_integer(read_a));

end syn;

Single-P or t RAM With Synchronous Read (Read Through) Verilog Coding
Example
//
// Single-Port RAMwith Synchronous Read (Read Through)
//

module v_rams_07 (clk, we, a, di, do);

input clk;
input we;
input [5:0] a;
input [15:0] di;
output [15:0] do;

Frontmatter
146 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=146

Chapter 3: XST HDL Coding Techniques

reg [15:0] ram [63:0];
reg [5:0] read_a;

always @(posedge clk) begin
if (we)

ram[a] <= di;
read_a <= a;

end

assign do = ram[read_a];

endmodule

Single-P or t RAM With Enable Diagram

Single-P or t RAM With Enable Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
en Global Enable
we Synchronous Write Enable (active-High)
a Read/Write Address

di Data Input

do Data Output

Single-P or t RAM With Enable VHDL Coding Example
--
-- Single-Port RAMwith Enable
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_08 is
port (clk : in std_logic;

en : in std_logic;
we : in std_logic;
a : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_08;

architecture syn of rams_08 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;
signal read_a : std_logic_vector(5 downto 0);

begin

process (clk)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 147

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=147

Chapter 3: XST HDL Coding Techniques

begin
if (clk’event and clk = ’1’) then

if (en = ’1’) then
if (we = ’1’) then

RAM(conv_integer(a)) <= di;
end if;
read_a <= a;

end if;
end if;

end process;

do <= RAM(conv_integer(read_a));

end syn;

Single-P or t RAM With Enable Verilog Coding Example
//
// Single-Port RAMwith Enable
//

module v_rams_08 (clk, en, we, a, di, do);

input clk;
input en;
input we;
input [5:0] a;
input [15:0] di;
output [15:0] do;
reg [15:0] ram [63:0];
reg [5:0] read_a;

always @(posedge clk) begin
if (en)
begin

if (we)
ram[a] <= di;

read_a <= a;
end

end

assign do = ram[read_a];

endmodule

The following diagram shows where the two output ports are used. It is directly
mappable onto Distributed RAM only.

Dual-Por t RAM With Async hronous Read Diagram

Frontmatter
148 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=148

Chapter 3: XST HDL Coding Techniques

Dual-Por t RAM With Async hronous Read Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (active-High)
a Write Address/Primary Read Address

dpra Dual Read Address

di Data Input
spo Primary Output Port

dpo Dual Output Port

Dual-Por t RAM With Async hronous Read VHDL Coding Example
--
-- Dual-Port RAMwith Asynchronous Read
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_09 is
port (clk : in std_logic;

we : in std_logic;
a : in std_logic_vector(5 downto 0);
dpra : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
spo : out std_logic_vector(15 downto 0);
dpo : out std_logic_vector(15 downto 0));

end rams_09;

architecture syn of rams_09 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(a)) <= di;
end if;

end if;
end process;

spo <= RAM(conv_integer(a));
dpo <= RAM(conv_integer(dpra));

end syn;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 149

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=149

Chapter 3: XST HDL Coding Techniques

Dual-Por t RAM With Async hronous Read Verilog Coding Example
//
// Dual-Port RAMwith Asynchronous Read
//

module v_rams_09 (clk, we, a, dpra, di, spo, dpo);

input clk;
input we;
input [5:0] a;
input [5:0] dpra;
input [15:0] di;
output [15:0] spo;
output [15:0] dpo;
reg [15:0] ram [63:0];

always @(posedge clk) begin
if (we)

ram[a] <= di;
end

assign spo = ram[a];
assign dpo = ram[dpra];

endmodule

The following descriptions are directly mappable onto block RAM, as shown in the
diagram below. They may also be implemented with Distributed RAM.

Dual-Por t RAM With Synchronous Read (Read Through) Diagram

Dual-Por t RAM With Synchronous Read (Read Through) Pin
Descriptions

IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (active-High)
a Write Address/Primary Read Address

dpra Dual Read Address

di Data Input
spo Primary Output Port

dpo Dual Output Port

Frontmatter
150 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=150

Chapter 3: XST HDL Coding Techniques

Dual-Por t RAM With Synchronous Read (Read Through) VHDL Coding
Example
--
-- Dual-Port RAMwith Synchronous Read (Read Through)
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_11 is
port (clk : in std_logic;

we : in std_logic;
a : in std_logic_vector(5 downto 0);
dpra : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
spo : out std_logic_vector(15 downto 0);
dpo : out std_logic_vector(15 downto 0));

end rams_11;

architecture syn of rams_11 is
type ram_type is array (63 downto 0)

of std_logic_vector (15 downto 0);
signal RAM : ram_type;
signal read_a : std_logic_vector(5 downto 0);
signal read_dpra : std_logic_vector(5 downto 0);

begin

process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(a)) <= di;
end if;
read_a <= a;
read_dpra <= dpra;

end if;
end process;

spo <= RAM(conv_integer(read_a));
dpo <= RAM(conv_integer(read_dpra));

end syn;

Dual-Por t RAM With Synchronous Read (Read Through) Verilog Coding
Example
//
// Dual-Port RAMwith Synchronous Read (Read Through)
//

module v_rams_11 (clk, we, a, dpra, di, spo, dpo);

input clk;
input we;
input [5:0] a;
input [5:0] dpra;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 151

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=151

Chapter 3: XST HDL Coding Techniques

input [15:0] di;
output [15:0] spo;
output [15:0] dpo;
reg [15:0] ram [63:0];
reg [5:0] read_a;
reg [5:0] read_dpra;

always @(posedge clk) begin
if (we)

ram[a] <= di;
read_a <= a;
read_dpra <= dpra;

end

assign spo = ram[read_a];
assign dpo = ram[read_dpra];

endmodule

Dual-Por t RAM With Synchronous Read (Read Through) and Two
Clocks Diagram

Dual-Por t RAM With Synchronous Read (Read Through) and Two
Clocks Pin Descriptions

IO Pins Description
clk1 Positive-Edge Write/Primary Read Clock

clk2 Positive-Edge Dual Read Clock
we Synchronous Write Enable (active-High)

add1 Write/Primary Read Address

add2 Dual Read Address

di Data Input

do1 Primary Output Port

do2 Dual Output Port

Frontmatter
152 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=152

Chapter 3: XST HDL Coding Techniques

Dual-Por t RAM With Synchronous Read (Read Through) and Two Clocks
VHDL Coding Example

--
-- Dual-Port RAMwith Synchronous Read (Read Through)
-- using More than One Clock
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_12 is
port (clk1 : in std_logic;

clk2 : in std_logic;
we : in std_logic;
add1 : in std_logic_vector(5 downto 0);
add2 : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do1 : out std_logic_vector(15 downto 0);
do2 : out std_logic_vector(15 downto 0));

end rams_12;

architecture syn of rams_12 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;
signal read_add1 : std_logic_vector(5 downto 0);
signal read_add2 : std_logic_vector(5 downto 0);

begin

process (clk1)
begin

if (clk1’event and clk1 = ’1’) then
if (we = ’1’) then

RAM(conv_integer(add1)) <= di;
end if;
read_add1 <= add1;

end if;
end process;

do1 <= RAM(conv_integer(read_add1));

process (clk2)
begin

if (clk2’event and clk2 = ’1’) then
read_add2 <= add2;

end if;
end process;

do2 <= RAM(conv_integer(read_add2));

end syn;

Dual-Por t RAM With Synchronous Read (Read Through) and Two Clocks
Verilog Coding Example
//
// Dual-Port RAMwith Synchronous Read (Read Through)
// using More than One Clock
//

module v_rams_12 (clk1, clk2, we, add1, add2, di, do1, do2);

input clk1;
input clk2;
input we;
input [5:0] add1;
input [5:0] add2;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 153

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=153

Chapter 3: XST HDL Coding Techniques

input [15:0] di;
output [15:0] do1;
output [15:0] do2;
reg [15:0] ram [63:0];
reg [5:0] read_add1;
reg [5:0] read_add2;

always @(posedge clk1) begin
if (we)

ram[add1] <= di;
read_add1 <= add1;

end

assign do1 = ram[read_add1];

always @(posedge clk2) begin
read_add2 <= add2;

end

assign do2 = ram[read_add2];

endmodule

Dual-Por t RAM With One Enable Contr olling Both Por ts Diagram

Dual-Por t RAM With One Enable Contr olling Both Por ts Pin
Descriptions

IO Pins Description
clk Positive-Edge Clock
en Primary Global Enable (active-High)
we Primary Synchronous Write Enable (active-High)

addra Write Address/Primary Read Address

addrb Dual Read Address

di Primary Data Input

doa Primary Output Port

dob Dual Output Port

Frontmatter
154 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=154

Chapter 3: XST HDL Coding Techniques

Dual-Por t RAM With One Enable Contr olling Both Por ts VHDL Coding
Example

--
-- Dual-Port RAMwith One Enable Controlling Both Ports
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_13 is
port (clk : in std_logic;

en : in std_logic;
we : in std_logic;
addra : in std_logic_vector(5 downto 0);
addrb : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
doa : out std_logic_vector(15 downto 0);
dob : out std_logic_vector(15 downto 0));

end rams_13;

architecture syn of rams_13 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;
signal read_addra : std_logic_vector(5 downto 0);
signal read_addrb : std_logic_vector(5 downto 0);

begin

process (clk)
begin

if (clk’event and clk = ’1’) then
if (en = ’1’) then

if (we = ’1’) then
RAM(conv_integer(addra)) <= di;

end if;

read_addra <= addra;
read_addrb <= addrb;

end if;
end if;

end process;

doa <= RAM(conv_integer(read_addra));
dob <= RAM(conv_integer(read_addrb));

end syn;

Dual-Por t RAM With One Enable Contr olling Both Por ts Verilog Coding
Example
//
// Dual-Port RAMwith One Enable Controlling Both Ports
//

module v_rams_13 (clk, en, we, addra, addrb, di, doa, dob);

input clk;
input en;
input we;
input [5:0] addra;
input [5:0] addrb;
input [15:0] di;
output [15:0] doa;
output [15:0] dob;
reg [15:0] ram [63:0];
reg [5:0] read_addra;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 155

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=155

Chapter 3: XST HDL Coding Techniques

reg [5:0] read_addrb;

always @(posedge clk) begin
if (en)
begin

if (we)
ram[addra] <= di;

read_addra <= addra;
read_addrb <= addrb;

end
end

assign doa = ram[read_addra];
assign dob = ram[read_addrb];

endmodule

The following descriptions are directly mappable onto block RAM, as shown in the
diagram.

Dual Por t RAM With Enable on Each Por t Diagram

Dual Por t RAM With Enable on Each Por t Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
ena Primary Global Enable (active-High)

enb Dual Global Enable (active-High)
wea Primary Synchronous Write Enable

(active-High)

addra Write Address/Primary Read Address

addrb Dual Read Address

dia Primary Data Input

doa Primary Output Port

dob Dual Output Port

Frontmatter
156 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=156

Chapter 3: XST HDL Coding Techniques

Dual Por t RAM With Enable on Each Por t VHDL Coding Example
--
-- Dual-Port RAMwith Enable on Each Port
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_14 is
port (clk : in std_logic;

ena : in std_logic;
enb : in std_logic;
wea : in std_logic;
addra : in std_logic_vector(5 downto 0);
addrb : in std_logic_vector(5 downto 0);
dia : in std_logic_vector(15 downto 0);
doa : out std_logic_vector(15 downto 0);
dob : out std_logic_vector(15 downto 0));

end rams_14;

architecture syn of rams_14 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;
signal read_addra : std_logic_vector(5 downto 0);
signal read_addrb : std_logic_vector(5 downto 0);

begin

process (clk)
begin

if (clk’event and clk = ’1’) then

if (ena = ’1’) then
if (wea = ’1’) then

RAM (conv_integer(addra)) <= dia;
end if;
read_addra <= addra;

end if;

if (enb = ’1’) then
read_addrb <= addrb;

end if;

end if;
end process;

doa <= RAM(conv_integer(read_addra));
dob <= RAM(conv_integer(read_addrb));

end syn;

Dual Por t RAM With Enable on Each Por t Verilog Coding Example
//
// Dual-Port RAMwith Enable on Each Port
//

module v_rams_14 (clk,ena,enb,wea,addra,addrb,dia,doa,dob);

input clk;
input ena;
input enb;
input wea;
input [5:0] addra;
input [5:0] addrb;
input [15:0] dia;
output [15:0] doa;
output [15:0] dob;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 157

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=157

Chapter 3: XST HDL Coding Techniques

reg [15:0] ram [63:0];
reg [5:0] read_addra;
reg [5:0] read_addrb;

always @(posedge clk) begin
if (ena)
begin

if (wea)
ram[addra] <= dia;

read_addra <= addra;
end

if (enb)
read_addrb <= addrb;

end

assign doa = ram[read_addra];
assign dob = ram[read_addrb];

endmodule

Dual-Por t Bloc k RAM With Diff erent Clocks Diagram

Dual-Por t Bloc k RAM With Diff erent Clock Pin Descriptions
IO Pins Description
clka Positive-Edge Clock

clkb Positive-Edge Clock
wea Primary Synchronous Write Enable

(active-High)

addra Write Address/Primary Read Address

addrb Dual Read Address

dia Primary Data Input

doa Primary Output Port

dob Dual Output Port

XST supports dual-port block RAMs with two write ports for VHDL and Verilog.

The concept of dual-write ports implies not only distinct data ports, but the possibility
of distinct write clocks and write enables as well. Distinct write clocks also mean distinct
read clocks, since the dual-port block RAM offers two clocks, one shared by the primary
read and write port, the other shared by the secondary read and write port.

Frontmatter
158 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=158

Chapter 3: XST HDL Coding Techniques

In VHDL, the description of this type of block RAM is based on the usage of shared
variables. The XST VHDL analyzer accepts shared variables, but errors out in the HDL
Synthesis step if a shared variable does not describe a valid RAM macro.

Dual-Por t Bloc k RAM With Two Write Por ts Diagram

Dual-Por t Bloc k RAM With Two Write Por ts Pin Descriptions
IO Pins Description
clka, clkb Positive-Edge Clock
ena Primary Global Enable (active-High)

enb Dual Global Enable (active-High)

wea, web Primary Synchronous Write Enable
(active-High)

addra Write Address/Primary Read Address

addrb Dual Read Address

dia Primary Data Input

dib Dual Data Input

doa Primary Output Port

dob Dual Output Port

Dual-Por t Bloc k RAM With Two Write Por ts VHDL Coding Example
This is the most general example. It has different clocks, enables, and write enables.

--
-- Dual-Port Block RAMwith Two Write Ports
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity rams_16 is
port(clka : in std_logic;

clkb : in std_logic;
ena : in std_logic;
enb : in std_logic;
wea : in std_logic;
web : in std_logic;
addra : in std_logic_vector(5 downto 0);
addrb : in std_logic_vector(5 downto 0);
dia : in std_logic_vector(15 downto 0);
dib : in std_logic_vector(15 downto 0);
doa : out std_logic_vector(15 downto 0);
dob : out std_logic_vector(15 downto 0));

end rams_16;

architecture syn of rams_16 is

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 159

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=159

Chapter 3: XST HDL Coding Techniques

type ram_type is array (63 downto 0) of std_logic_vector(15 downto 0);
shared variable RAM : ram_type;

begin

process (CLKA)
begin

if CLKA’event and CLKA = ’1’ then
if ENA = ’1’ then

if WEA= ’1’ then
RAM(conv_integer(ADDRA)) := DIA;

end if;
DOA <= RAM(conv_integer(ADDRA));

end if;
end if;

end process;

process (CLKB)
begin

if CLKB’event and CLKB = ’1’ then
if ENB = ’1’ then

if WEB= ’1’ then
RAM(conv_integer(ADDRB)) := DIB;

end if;
DOB <= RAM(conv_integer(ADDRB));

end if;
end if;
end process;

end syn;

Because of the shared variable, the description of the different read/write
synchronizations may be different from coding examples recommended for single-write
RAMs. The order of appearance of the different lines of code is significant.

Dual-Por t Bloc k RAM With Two Write Por ts Verilog Coding Example
This is the most general example. It has different clocks, enables, and write enables.

//
// Dual-Port Block RAMwith Two Write Ports
//

module v_rams_16 (clka,clkb,ena,enb,wea,web,addra,addrb,dia,dib,doa,dob);

input clka,clkb,ena,enb,wea,web;
input [5:0] addra,addrb;
input [15:0] dia,dib;
output [15:0] doa,dob;
reg [15:0] ram [63:0];
reg [15:0] doa,dob;

always @(posedge clka) begin
if (ena)
begin

if (wea)
ram[addra] <= dia;

doa <= ram[addra];
end

end

always @(posedge clkb) begin
if (enb)
begin

if (web)
ram[addrb] <= dib;

dob <= ram[addrb];
end

end

endmodule

Frontmatter
160 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=160

Chapter 3: XST HDL Coding Techniques

Write-Fir st Synchronization Coding Example One
process (CLKA)
begin

if CLKA’event and CLKA = ’1’ then
if WEA= ’1’ then

RAM(conv_integer(ADDRA)) := DIA;
DOA <= DIA;

else
DOA <= RAM(conv_integer(ADDRA));

end if;
end if;

end process;

Write-Fir st Synchronization Coding Example Two
In this example, the read statement necessarily comes after the write statement.

process (CLKA)
begin

if CLKA’event and CLKA = ’1’ then
if WEA= ’1’ then

RAM(conv_integer(ADDRA)) := DIA;
end if;
DOA <= RAM(conv_integer(ADDRA)); -- The read statement must come

-- AFTER the write statement
end if;

end process;

Although they may look the same except for the signal/variable difference, it is also
important to understand the functional difference between this template and the
following well known template which describes a read-first synchronization in a
single-write RAM.

signal RAM : RAMtype;

process (CLKA)
begin

if CLKA’event and CLKA = ’1’ then
if WEA= ’1’ then

RAM(conv_integer(ADDRA)) <= DIA;
end if;
DOA <= RAM(conv_integer(ADDRA));

end if;
end process;

Read-Fir st Synchronization Coding Example
A read-first synchronization is described as follows, where the read statement must
come BEFORE the write statement.

process (CLKA)
begin

if CLKA’event and CLKA = ’1’ then
DOA <= RAM(conv_integer(ADDRA)); -- The read statement must come

-- BEFOREthe write statement
if WEA= ’1’ then

RAM(conv_integer(ADDRA)) := DIA;
end if;

end if;
end process;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 161

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=161

Chapter 3: XST HDL Coding Techniques

No-Chang e Synchronization Coding Example
process (CLKA)
begin

if CLKA’event and CLKA = ’1’ then
if WEA= ’1’ then

RAM(conv_integer(ADDRA)) := DIA;
else

DOA <= RAM(conv_integer(ADDRA));
end if;

end if;
end process;

Single and Dual-Por t Bloc k RAM with Byte-Wide Write Enable
XST supports single and dual-port block RAM with Byte-wide Write Enable for VHDL
and Verilog. The RAM can be seen as a collection of equal size columns. During a write
cycle, you separately control writing into each of these columns.

• Multiple Write Statement

There is one separate write access statement, including the description of the related
write enable, for each column.

• Single Write Statement

Allows you to describe only one write access statement. The write enables are
described separately outside the main sequential process. XST currently supports
this method only.

The two methods for describing column-based RAM writes are shown in the following
coding examples.

Multiple Write Statement VHDL Coding Example
type ram_type is array (SIZE-1 downto 0)

of std_logic_vector (2*WIDTH-1 downto 0);
signal RAM : ram_type;

(...)

process(clk)
begin

if posedge(clk) then
if we(1) = ’1’ then

RAM(conv_integer(addr))(2*WIDTH-1 downto WIDTH) <= di(2*WIDTH-1 downto WIDTH);
end if;
if we(0) = ’1’ then

RAM(conv_integer(addr))(WIDTH-1 downto 0) <= di(WIDTH-1 downto 0);
end if;

do <= RAM(conv_integer(addr));
end if;

end process;

Frontmatter
162 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=162

Chapter 3: XST HDL Coding Techniques

Multiple Write Statement Verilog Coding Example
reg [2*DI_WIDTH-1:0] RAM [SIZE-1:0];

always @(posedge clk)
begin

if (we[1]) then
RAM[addr][2*WIDTH-1:WIDTH] <= di[2*WIDTH-1:WIDTH];

end if;
if (we[0]) then

RAM[addr][WIDTH-1:0] <= di[WIDTH-1:0;
end if;

do <= RAM[addr];
end

Single Write Statement VHDL Coding Example
type ram_type is array (SIZE-1 downto 0)

of std_logic_vector (2*WIDTH-1 downto 0);
signal RAM : ram_type;
signal di0, di1 : std_logic_vector (WIDTH-1 downto 0);

(...)

-- Write enables described outside main sequential process
process(we, di, addr)
begin

if we(1) = ’1’ then
di1 <= di(2*WIDTH-1 downto WIDTH);

else
di1 <= RAM(conv_integer(addr))(2*WIDTH-1 downto WIDTH);

end if;

if we(0) = ’1’ then
di0 <= di(WIDTH-1 downto 0);

else
di0 <= RAM(conv_integer(addr))(WIDTH-1 downto 0);

end if;

end process;

process(clk)
begin

if posedge(clk) then
if en = ’1’ then

RAM(conv_integer(addr)) <= di1 & di0; -- single write access statement
do <= RAM(conv_integer(addr));

end if;
end if;

end process;

Single Write Statement Verilog Coding Example
reg [2*DI_WIDTH-1:0] RAM [SIZE-1:0];
reg [DI_WIDTH-1:0] di0, di1;

always @(we or di or addr)
begin

if (we[1])
di1 = di[2*DI_WIDTH-1:1*DI_WIDTH];

else
di1 = RAM[addr][2*DI_WIDTH-1:1*DI_WIDTH];

if (we[0])
di0 = di[DI_WIDTH-1:0];

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 163

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=163

Chapter 3: XST HDL Coding Techniques

else
di0 = RAM[addr][DI_WIDTH-1:0];

end

always @(posedge clk)
begin

RAM[addr]<={di1,di0};
do <= RAM[addr];

end

To simplify the understanding of byte-wide write enable templates, the following
coding examples use single-port block RAMs. XST supports dual-port Block RAM, as
well as byte-wide write enable.

Read-Fir st Mode: Single-P or t BRAM with Byte-wide Write Enable
(2 Bytes) Pin Descriptions

IO Pins Description
clk Positive-Edge Clock
we Write Enable

addr Write/Read Address

di Data Input

do RAM Output Port

Read-Fir st Mode: Single-P or t BRAM With Byte-Wide Write Enable (2 Bytes)
VHDL Coding Example

--
-- Single-Port BRAMwith Byte-wide Write Enable (2 bytes) in Read-First Mode
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_24 is
generic (SIZE : integer := 512;

ADDR_WIDTH: integer := 9;
DI_WIDTH : integer := 8);

port (clk : in std_logic;
we : in std_logic_vector(1 downto 0);
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
di : in std_logic_vector(2*DI_WIDTH-1 downto 0);
do : out std_logic_vector(2*DI_WIDTH-1 downto 0));

end rams_24;

architecture syn of rams_24 is

type ram_type is array (SIZE-1 downto 0) of std_logic_vector (2*DI_WIDTH-1 downto 0);
signal RAM : ram_type;

signal di0, di1 : std_logic_vector (DI_WIDTH-1 downto 0);
begin

process(we, di)
begin

if we(1) = ’1’ then
di1 <= di(2*DI_WIDTH-1 downto 1*DI_WIDTH);

else
di1 <= RAM(conv_integer(addr))(2*DI_WIDTH-1 downto 1*DI_WIDTH);

end if;

Frontmatter
164 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=164

Chapter 3: XST HDL Coding Techniques

if we(0) = ’1’ then
di0 <= di(DI_WIDTH-1 downto 0);

else
di0 <= RAM(conv_integer(addr))(DI_WIDTH-1 downto 0);

end if;
end process;

process(clk)
begin

if (clk’event and clk = ’1’) then
RAM(conv_integer(addr)) <= di1 & di0;
do <= RAM(conv_integer(addr));

end if;
end process;

end syn;

Read-Fir st Mode: Single-P or t BRAM With Byte-wide Write Enable (2 Bytes)
Verilog Coding Example

//
// Single-Port BRAMwith Byte-wide Write Enable (2 bytes) in Read-First Mode
//

module v_rams_24 (clk, we, addr, di, do);

parameter SIZE = 512;
parameter ADDR_WIDTH= 9;
parameter DI_WIDTH = 8;

input clk;
input [1:0] we;
input [ADDR_WIDTH-1:0] addr;
input [2*DI_WIDTH-1:0] di;
output [2*DI_WIDTH-1:0] do;
reg [2*DI_WIDTH-1:0] RAM [SIZE-1:0];
reg [2*DI_WIDTH-1:0] do;

reg [DI_WIDTH-1:0] di0, di1;

always @(we or di)
begin

if (we[1])
di1 = di[2*DI_WIDTH-1:1*DI_WIDTH];

else
di1 = RAM[addr][2*DI_WIDTH-1:1*DI_WIDTH];

if (we[0])
di0 = di[DI_WIDTH-1:0];

else
di0 = RAM[addr][DI_WIDTH-1:0];

end

always @(posedge clk)
begin

RAM[addr]<={di1,di0};
do <= RAM[addr];

end

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 165

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=165

Chapter 3: XST HDL Coding Techniques

Write-Fir st Mode: Single-P or t BRAM with Byte-wide Write Enable
(2 Bytes) Pin Descriptions

IO Pins Description
Clk Positive-Edge Clock

We Write Enable

Addr Write/Read Address

Di Data Input

Do RAM Output Port

Write-Fir st Mode: Single-P or t BRAM with Byte-Wide Write Enable (2 Bytes)
VHDL Coding Example

--
-- Single-Port BRAMwith Byte-wide Write Enable (2 bytes) in Write-First Mode
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_25 is
generic (SIZE : integer := 512;

ADDR_WIDTH: integer := 9;
DI_WIDTH : integer := 8);

port (clk : in std_logic;
we : in std_logic_vector(1 downto 0);
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
di : in std_logic_vector(2*DI_WIDTH-1 downto 0);
do : out std_logic_vector(2*DI_WIDTH-1 downto 0));

end rams_25;

architecture syn of rams_25 is
type ram_type is array (SIZE-1 downto 0) of std_logic_vector (2*DI_WIDTH-1 downto 0);
signal RAM : ram_type;

signal di0, di1 : std_logic_vector (DI_WIDTH-1 downto 0);
signal do0, do1 : std_logic_vector (DI_WIDTH-1 downto 0);

begin

process(we, di)
begin

if we(1) = ’1’ then
di1 <= di(2*DI_WIDTH-1 downto 1*DI_WIDTH);
do1 <= di(2*DI_WIDTH-1 downto 1*DI_WIDTH);

else
di1 <= RAM(conv_integer(addr))(2*DI_WIDTH-1 downto 1*DI_WIDTH);
do1 <= RAM(conv_integer(addr))(2*DI_WIDTH-1 downto 1*DI_WIDTH);

end if;

if we(0) = ’1’ then
di0 <= di(DI_WIDTH-1 downto 0);
do0 <= di(DI_WIDTH-1 downto 0);

else
di0 <= RAM(conv_integer(addr))(DI_WIDTH-1 downto 0);
do0 <= RAM(conv_integer(addr))(DI_WIDTH-1 downto 0);

end if;
end process;

process(clk)
begin

if (clk’event and clk = ’1’) then
RAM(conv_integer(addr)) <= di1 & di0;
do <= do1 & do0;

end if;
end process;

Frontmatter
166 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=166

Chapter 3: XST HDL Coding Techniques

end syn;

Write-Fir st Mode: Single-P or t BRAM with Byte-Wide Write Enable (2 Bytes)
Verilog Coding Example
//
// Single-Port BRAMwith Byte-wide Write Enable
// (2 bytes) in Write-First Mode
//

module v_rams_25 (clk, we, addr, di, do);

parameter SIZE = 512;
parameter ADDR_WIDTH= 9;
parameter DI_WIDTH = 8;

input clk;
input [1:0] we;
input [ADDR_WIDTH-1:0] addr;
input [2*DI_WIDTH-1:0] di;
output [2*DI_WIDTH-1:0] do;
reg [2*DI_WIDTH-1:0] RAM [SIZE-1:0];
reg [2*DI_WIDTH-1:0] do;

reg [DI_WIDTH-1:0] di0, di1;
reg [DI_WIDTH-1:0] do0, do1;

always @(we or di)
begin

if (we[1])
begin

di1 = di[2*DI_WIDTH-1:1*DI_WIDTH];
do1 = di[2*DI_WIDTH-1:1*DI_WIDTH];

end
else

begin
di1 = RAM[addr][2*DI_WIDTH-1:1*DI_WIDTH];
do1 = RAM[addr][2*DI_WIDTH-1:1*DI_WIDTH];

end

if (we[0])
begin

di0 <= di[DI_WIDTH-1:0];
do0 <= di[DI_WIDTH-1:0];

end
else

begin
di0 <= RAM[addr][DI_WIDTH-1:0];
do0 <= RAM[addr][DI_WIDTH-1:0];

end

end

always @(posedge clk)
begin

RAM[addr]<={di1,di0};
do <= {do1,do0};

end

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 167

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=167

Chapter 3: XST HDL Coding Techniques

endmodule

No-Chang e Mode: Single-P or t BRAM with Byte-Wide Write Enable
(2 Bytes) Pin Descriptions

IO Pins Description
Clk Positive-Edge Clock

We Write Enable

Addr Write/Read Address

Di Data Input

Do RAM Output Port

XST infers latches for do1 and do0 signals during the basic HDL Synthesis. These
latches are absorbed by BRAM during the Advanced HDL Synthesis step.

No-Chang e Mode: Single-P or t BRAM with Byte-Wide Write Enable (2
Bytes) VHDL Coding Example

--
-- Single-Port BRAMwith Byte-wide Write Enable (2 bytes) in No-Change Mode
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_26 is
generic (SIZE : integer := 512;

ADDR_WIDTH: integer := 9;
DI_WIDTH : integer := 8);

port (clk : in std_logic;
we : in std_logic_vector(1 downto 0);
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
di : in std_logic_vector(2*DI_WIDTH-1 downto 0);
do : out std_logic_vector(2*DI_WIDTH-1 downto 0));

end rams_26;

architecture syn of rams_26 is
type ram_type is array (SIZE-1 downto 0) of std_logic_vector (2*DI_WIDTH-1 downto 0);
signal RAM : ram_type;

signal di0, di1 : std_logic_vector (DI_WIDTH-1 downto 0);
signal do0, do1 : std_logic_vector (DI_WIDTH-1 downto 0);

begin

process(we, di)
begin

if we(1) = ’1’ then
di1 <= di(2*DI_WIDTH-1 downto 1*DI_WIDTH);

else
di1 <= RAM(conv_integer(addr))(2*DI_WIDTH-1 downto 1*DI_WIDTH);
do1 <= RAM(conv_integer(addr))(2*DI_WIDTH-1 downto 1*DI_WIDTH);

end if;

if we(0) = ’1’ then
di0 <= di(DI_WIDTH-1 downto 0);

else
di0 <= RAM(conv_integer(addr))(DI_WIDTH-1 downto 0);
do0 <= RAM(conv_integer(addr))(DI_WIDTH-1 downto 0);

end if;
end process;

process(clk)

Frontmatter
168 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=168

Chapter 3: XST HDL Coding Techniques

begin
if (clk’event and clk = ’1’) then

RAM(conv_integer(addr)) <= di1 & di0;
do <= do1 & do0;

end if;
end process;

end syn;

No-Chang e Mode: Single-P or t BRAM with Byte-Wide Write Enable (2
Bytes) in Verilog Coding Example
//
// Single-Port BRAMwith Byte-wide Write Enable
// (2 bytes) in No-Change Mode
//

module v_rams_26 (clk, we, addr, di, do);

parameter SIZE = 512;
parameter ADDR_WIDTH= 9;
parameter DI_WIDTH = 8;

input clk;
input [1:0] we;
input [ADDR_WIDTH-1:0] addr;
input [2*DI_WIDTH-1:0] di;
output [2*DI_WIDTH-1:0] do;
reg [2*DI_WIDTH-1:0] RAM [SIZE-1:0];
reg [2*DI_WIDTH-1:0] do;

reg [DI_WIDTH-1:0] di0, di1;
reg [DI_WIDTH-1:0] do0, do1;

always @(we or di)
begin

if (we[1])
di1 = di[2*DI_WIDTH-1:1*DI_WIDTH];

else
begin

di1 = RAM[addr][2*DI_WIDTH-1:1*DI_WIDTH];
do1 = RAM[addr][2*DI_WIDTH-1:1*DI_WIDTH];

end

if (we[0])
di0 <= di[DI_WIDTH-1:0];

else
begin

di0 <= RAM[addr][DI_WIDTH-1:0];
do0 <= RAM[addr][DI_WIDTH-1:0];

end

end

always @(posedge clk)
begin

RAM[addr]<={di1,di0};
do <= {do1,do0};

end

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 169

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=169

Chapter 3: XST HDL Coding Techniques

endmodule

XST can identify RAM descriptions with two or more read ports that access the RAM
contents at addresses different from the write address. However, there can only be one
write port. XST implements the following descriptions by replicating the RAM contents
for each output port, as shown in the following figure.

Multiple-P or t RAM Descriptions Diagram

Multiple-P or t RAM Descriptions Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (active-High)
wa Write Address

ra1 Read Address of the First RAM

ra2 Read Address of the Second RAM

di Data Input

do1 First RAM Output Port

do2 Second RAM Output Port

Multiple-P or t RAM Descriptions VHDL Coding Example
--
-- Multiple-Port RAMDescriptions
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_17 is
port (clk : in std_logic;

we : in std_logic;
wa : in std_logic_vector(5 downto 0);
ra1 : in std_logic_vector(5 downto 0);
ra2 : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do1 : out std_logic_vector(15 downto 0);
do2 : out std_logic_vector(15 downto 0));

end rams_17;

architecture syn of rams_17 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(wa)) <= di;

Frontmatter
170 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=170

Chapter 3: XST HDL Coding Techniques

end if;
end if;

end process;

do1 <= RAM(conv_integer(ra1));
do2 <= RAM(conv_integer(ra2));

end syn;

Multiple-P or t RAM Descriptions Verilog Coding Example
//
// Multiple-Port RAMDescriptions
//

module v_rams_17 (clk, we, wa, ra1, ra2, di, do1, do2);

input clk;
input we;
input [5:0] wa;
input [5:0] ra1;
input [5:0] ra2;
input [15:0] di;
output [15:0] do1;
output [15:0] do2;
reg [15:0] ram [63:0];

always @(posedge clk)
begin

if (we)
ram[wa] <= di;

end

assign do1 = ram[ra1];
assign do2 = ram[ra2];

endmodule

Bloc k RAM with Reset on the Data Outputs
XST supports block RAM with reset on the data outputs, as offered with Virtex-4
devices, Virtex-5 devices, and related block RAM resources. Optionally, you can include
a synchronously controlled initialization of the RAM data outputs.

Block RAM with the following synchronization modes can have re-settable data ports.

• Read-First Block RAM with Reset

• Write-First Block RAM with Reset

• No-Change Block RAM with Reset

• Registered ROM with Reset

• Supported Dual-Port Templates

Because XST does not support block RAMs with dual-write in a dual-read block RAM
description, both data outputs may be reset, but the various read-write synchronizations
are allowed for the primary data output only. The dual output may be used in Read-First
Mode only.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 171

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=171

Chapter 3: XST HDL Coding Techniques

Bloc k RAM With Reset Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
en Global Enable
we Write Enable (active-High)

addr Read/Write Address

rst Reset for data output

di Data Input

do RAM Output Port

Bloc k RAM With Reset VHDL Coding Example
--
-- Block RAMwith Reset
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_18 is
port (clk : in std_logic;

en : in std_logic;
we : in std_logic;
rst : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_18;

architecture syn of rams_18 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal ram : ram_type;

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then -- optional enable

if we = ’1’ then -- write enable
ram(conv_integer(addr)) <= di;

end if;

if rst = ’1’ then -- optional reset
do <= (others => ’0’);

else
do <= ram(conv_integer(addr)) ;

end if;

end if;
end if;

end process;

end syn;

Frontmatter
172 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=172

Chapter 3: XST HDL Coding Techniques

Bloc k RAM With Reset Verilog Coding Example
//
// Block RAMwith Reset
//

module v_rams_18 (clk, en, we, rst, addr, di, do);

input clk;
input en;
input we;
input rst;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] ram [63:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en) // optional enable
begin

if (we) // write enable
ram[addr] <= di;

if (rst) // optional reset
do <= 16’h0000;

else
do <= ram[addr];

end
end

endmodule

Bloc k RAM With Optional Output Register s Diagram

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 173

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=173

Chapter 3: XST HDL Coding Techniques

Bloc k RAM With Optional Output Register s Pin Descriptions
IO Pins Description
clk1, clk2 Positive-Edge Clock
we Write Enable

en1, en2 Clock Enable (active-High)

addr1 Primary Read Address

addr2 Dual Read Address

di Data Input

res1 Primary Output Port

res2 Dual Output Port

Bloc k RAM With Optional Output Register s VHDL Coding Example
--
-- Block RAMwith Optional Output Registers
--

library IEEE;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity rams_19 is
port (clk1, clk2 : in std_logic;

we, en1, en2 : in std_logic;
addr1 : in std_logic_vector(5 downto 0);
addr2 : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
res1 : out std_logic_vector(15 downto 0);
res2 : out std_logic_vector(15 downto 0));

end rams_19;

architecture beh of rams_19 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal ram : ram_type;
signal do1 : std_logic_vector(15 downto 0);
signal do2 : std_logic_vector(15 downto 0);

begin

process (clk1)
begin

if rising_edge(clk1) then
if we = ’1’ then

ram(conv_integer(addr1)) <= di;
end if;
do1 <= ram(conv_integer(addr1));

end if;
end process;

process (clk2)
begin

if rising_edge(clk2) then
do2 <= ram(conv_integer(addr2));

end if;
end process;

process (clk1)
begin

if rising_edge(clk1) then
if en1 = ’1’ then

res1 <= do1;
end if;

end if;
end process;

Frontmatter
174 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=174

Chapter 3: XST HDL Coding Techniques

process (clk2)
begin

if rising_edge(clk2) then
if en2 = ’1’ then

res2 <= do2;
end if;

end if;
end process;

end beh;

Bloc k RAM With Optional Output Register s Verilog Coding Example
//
// Block RAMwith Optional Output Registers
//

module v_rams_19 (clk1, clk2, we, en1, en2, addr1, addr2, di, res1, res2);

input clk1;
input clk2;
input we, en1, en2;
input [5:0] addr1;
input [5:0] addr2;
input [15:0] di;
output [15:0] res1;
output [15:0] res2;
reg [15:0] res1;
reg [15:0] res2;
reg [15:0] RAM [63:0];
reg [15:0] do1;
reg [15:0] do2;

always @(posedge clk1)
begin

if (we == 1’b1)
RAM[addr1] <= di;

do1 <= RAM[addr1];
end

always @(posedge clk2)
begin

do2 <= RAM[addr2];
end

always @(posedge clk1)
begin

if (en1 == 1’b1)
res1 <= do1;

end

always @(posedge clk2)
begin

if (en2 == 1’b1)
res2 <= do2;

end

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 175

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=175

Chapter 3: XST HDL Coding Techniques

Initializing RAM Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Block and distributed RAM initial contents can be specified by initialization of the signal
describing the memory array in your HDL code. Do this directly in your HDL code, or
specify a file containing the initialization data.

XST supports RAM initialization in both VHDL and Verilog.

The following coding examples show how to initialize RAM directly in Hardware
Description Language (HDL) code.

RAM Initial Contents VHDL Coding Example (Hexadecimal)
To specify RAM initial contents, initialize the signal describing the memory array in the
VHDL code as shown in the following coding example.

...
type ram_type is array (0 to 63) of std_logic_vector(19 downto 0);
signal RAM : ram_type :=
(
X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",
X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",
X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
X"0030D", X"02341", X"08201", X"0400D");

...
process (clk)
begin
if rising_edge(clk) then

if we = ’1’ then
RAM(conv_integer(a)) <= di;

end if;
ra <= a;

end if;
end process;
...
do <= RAM(conv_integer(ra));

Initializing Bloc k RAM Verilog Coding Example (Hexadecimal)
To specify RAM initial contents, initialize the signal describing the memory array in
your Verilog code using initial statements as shown in the following coding example.

...
reg [19:0] ram [63:0];
initial begin

ram[63] = 20’h0200A; ram[62] = 20’h00300; ram[61] = 20’h08101;
ram[60] = 20’h04000; ram[59] = 20’h08601; ram[58] = 20’h0233A;
...

ram[2] = 20’h02341; ram[1] = 20’h08201; ram[0] = 20’h0400D;
end
...
always @(posedge clk)
begin
if (we)
ram[addr] <= di;

do <= ram[addr];
end

Frontmatter
176 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=176

Chapter 3: XST HDL Coding Techniques

RAM Initial Contents VHDL Coding Example (Binar y)
RAM initial contents can be specified in hexadecimal, as shown in RAM Initial Contents
VHDL Coding Example (Hexadecimal), or in binary as shown in the following coding
example.

...
type ram_type is array (0 to SIZE-1) of std_logic_vector(15 downto 0);
signal RAM : ram_type :=

(
"0111100100000101",
"0000010110111101",
"1100001101010000",
...
"0000100101110011");

Initializing Bloc k RAM Verilog Coding Example (Binar y)
RAM initial contents can be specified in hexadecimal, as shown in Initializing Block RAM
Verilog Coding Example (Hexadecimal), or in binary as shown in the following coding
example.

...
reg [15:0] ram [63:0];
initial begin

ram[63] = 16’b0111100100000101;
ram[62] = 16’b0000010110111101;
ram[61] = 16’b1100001101010000;
...
ram[0] = 16’b0000100101110011;

end
...

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 177

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=177

Chapter 3: XST HDL Coding Techniques

Single-P or t BRAM Initial Contents VHDL Coding Example
--
-- Initializing Block RAM (Single-Port BRAM)
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_20a is
port (clk : in std_logic;

we : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(19 downto 0);
do : out std_logic_vector(19 downto 0));

end rams_20a;

architecture syn of rams_20a is

type ram_type is array (63 downto 0) of std_logic_vector (19 downto 0);
signal RAM : ram_type:= (X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",

X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",
X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
X"0030D", X"02341", X"08201", X"0400D");

begin

process (clk)
begin

if rising_edge(clk) then
if we = ’1’ then
RAM(conv_integer(addr)) <= di;

end if;
do <= RAM(conv_integer(addr));
end if;

end process;

end syn;

Frontmatter
178 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=178

Chapter 3: XST HDL Coding Techniques

Single-P or t BRAM Initial Contents Verilog Coding Example
//
// Initializing Block RAM (Single-Port BRAM)
//
module v_rams_20a (clk, we, addr, di, do);
input clk;
input we;
input [5:0] addr;
input [19:0] di;
output [19:0] do;
reg [19:0] ram [63:0];
reg [19:0] do;

initial begin
ram[63] = 20’h0200A; ram[62] = 20’h00300; ram[61] = 20’h08101;
ram[60] = 20’h04000; ram[59] = 20’h08601; ram[58] = 20’h0233A;
ram[57] = 20’h00300; ram[56] = 20’h08602; ram[55] = 20’h02310;
ram[54] = 20’h0203B; ram[53] = 20’h08300; ram[52] = 20’h04002;
ram[51] = 20’h08201; ram[50] = 20’h00500; ram[49] = 20’h04001;
ram[48] = 20’h02500; ram[47] = 20’h00340; ram[46] = 20’h00241;
ram[45] = 20’h04002; ram[44] = 20’h08300; ram[43] = 20’h08201;
ram[42] = 20’h00500; ram[41] = 20’h08101; ram[40] = 20’h00602;
ram[39] = 20’h04003; ram[38] = 20’h0241E; ram[37] = 20’h00301;
ram[36] = 20’h00102; ram[35] = 20’h02122; ram[34] = 20’h02021;
ram[33] = 20’h00301; ram[32] = 20’h00102; ram[31] = 20’h02222;

ram[30] = 20’h04001; ram[29] = 20’h00342; ram[28] = 20’h0232B;
ram[27] = 20’h00900; ram[26] = 20’h00302; ram[25] = 20’h00102;
ram[24] = 20’h04002; ram[23] = 20’h00900; ram[22] = 20’h08201;
ram[21] = 20’h02023; ram[20] = 20’h00303; ram[19] = 20’h02433;
ram[18] = 20’h00301; ram[17] = 20’h04004; ram[16] = 20’h00301;
ram[15] = 20’h00102; ram[14] = 20’h02137; ram[13] = 20’h02036;
ram[12] = 20’h00301; ram[11] = 20’h00102; ram[10] = 20’h02237;
ram[9] = 20’h04004; ram[8] = 20’h00304; ram[7] = 20’h04040;
ram[6] = 20’h02500; ram[5] = 20’h02500; ram[4] = 20’h02500;
ram[3] = 20’h0030D; ram[2] = 20’h02341; ram[1] = 20’h08201;
ram[0] = 20’h0400D;

end

always @(posedge clk)
begin
if (we)
ram[addr] <= di;

do <= ram[addr];
end

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 179

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=179

Chapter 3: XST HDL Coding Techniques

Dual-Por t RAM Initial Contents VHDL Coding Example
--
-- Initializing Block RAM (Dual-Port BRAM)
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_20b is
port (clk1 : in std_logic;

clk2 : in std_logic;
we : in std_logic;
addr1 : in std_logic_vector(7 downto 0);
addr2 : in std_logic_vector(7 downto 0);
di : in std_logic_vector(15 downto 0);
do1 : out std_logic_vector(15 downto 0);
do2 : out std_logic_vector(15 downto 0));

end rams_20b;

architecture syn of rams_20b is

type ram_type is array (255 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type:= (255 downto 100 => X"B8B8", 99 downto 0 => X"8282");

begin

process (clk1)
begin
if rising_edge(clk1) then
if we = ’1’ then
RAM(conv_integer(addr1)) <= di;

end if;
do1 <= RAM(conv_integer(addr1));

end if;
end process;

process (clk2)
begin
if rising_edge(clk2) then
do2 <= RAM(conv_integer(addr2));

end if;
end process;

end syn;

Frontmatter
180 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=180

Chapter 3: XST HDL Coding Techniques

Dual-Por t RAM Initial Contents Verilog Coding Example
//
// Initializing Block RAM (Dual-Port BRAM)
//

module v_rams_20b (clk1, clk2, we, addr1, addr2, di, do1, do2);
input clk1, clk2;
input we;
input [7:0] addr1, addr2;
input [15:0] di;
output [15:0] do1, do2;

reg [15:0] ram [255:0];
reg [15:0] do1, do2;
integer index;

initial begin
for (index = 0 ; index <= 99 ; index = index + 1) begin
ram[index] = 16’h8282;

end

for (index= 100 ; index <= 255 ; index = index + 1) begin
ram[index] = 16’hB8B8;

end
end

always @(posedge clk1)
begin
if (we)
ram[addr1] <= di;

do1 <= ram[addr1];
end

always @(posedge clk2)
begin
do2 <= ram[addr2];

end

endmodule

Initializing RAM From an External File Coding Examples
The following coding examples show how to initialize RAM from an external file.

To initialize RAM from values contained in an external file, use a read function in the
VHDL code.

For more information, see:

VHDL File Type Support.

Set up the initialization file as follows.
• Use each line of the initialization file to represent the initial contents of a given

row in the RAM.
• RAM contents can be represented in binary or hexadecimal.
• There should be as many lines in the file as there are rows in the RAM array.

Following is an example of the contents of a file initializing an 8 x 32-bit RAM with
binary values:

00001111000011110000111100001111

01001010001000001100000010000100

00000000001111100000000001000001

11111101010000011100010000100100

00001111000011110000111100001111

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 181

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=181

Chapter 3: XST HDL Coding Techniques

01001010001000001100000010000100

00000000001111100000000001000001

11111101010000011100010000100100

Initializing Bloc k RAM (External Data File)
RAM initial values may be stored in an external data file that is accessed from within
the HDL code. The data file must be pure binary or hexadecimal content with no
comments or other information.

Following is an example of the contents of a file initializing an 8 x 32-bit RAM with
binary values. For both examples, the data file referenced is called rams_20c.data .

00001111000011110000111100001111

01001010001000001100000010000100

00000000001111100000000001000001

11111101010000011100010000100100

00001111000011110000111100001111

01001010001000001100000010000100

00000000001111100000000001000001

11111101010000011100010000100100

Frontmatter
182 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=182

Chapter 3: XST HDL Coding Techniques

Initializing Bloc k RAM (External Data File) VHDL Coding Example
In the following coding example, the loop that generates the initial value is controlled by
testing that we are in the RAM address range. The following coding examples show
initializing Block RAM from an external data file.

--
-- Initializing Block RAM from external data file
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use std.textio.all;

entity rams_20c is
port(clk : in std_logic;
we : in std_logic;
addr : in std_logic_vector(5 downto 0);
din : in std_logic_vector(31 downto 0);
dout : out std_logic_vector(31 downto 0));

end rams_20c;

architecture syn of rams_20c is

type RamType is array(0 to 63) of bit_vector(31 downto 0);

impure function InitRamFromFile (RamFileName : in string) return RamType is
FILE RamFile : text is in RamFileName;
variable RamFileLine : line;
variable RAM : RamType;

begin
for I in RamType’range loop
readline (RamFile, RamFileLine);
read (RamFileLine, RAM(I));

end loop;
return RAM;

end function;

signal RAM : RamType := InitRamFromFile("rams_20c.data");

begin

process (clk)
begin
if clk’event and clk = ’1’ then
if we = ’1’ then
RAM(conv_integer(addr)) <= to_bitvector(din);

end if;
dout <= to_stdlogicvector(RAM(conv_integer(addr)));

end if;
end process;

end syn;

If there are not enough lines in the external data file, XST issues the following message.
ERROR:Xst - raminitfile1.vhd line 40: Line <RamFileLine has not
enough elements for target <RAM<63>>.

Initializing Bloc k RAM (External Data File) Verilog Coding Example
To initialize RAM from values contained in an external file, use a $readmemb or
$readmemh system task in your Verilog code.

For more information, see:

XST Behavioral Verilog Language Support

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 183

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=183

Chapter 3: XST HDL Coding Techniques

Set up the initialization file as follows.

• Arrange each line of the initialization file to represent the initial contents of a given
row in the RAM

• RAM contents can be represented in binary or hexadecimal.

• Use $readmemb for binary and $readmemh for hexadecimal representation.
To avoid the possible difference between XST and simulator behavior, Xilinx®
recommends that you use index parameters in these system tasks. See the following
coding example.

$readmemb("rams_20c.data",ram, 0, 7);

Create as many lines in the file as there are rows in the RAM array.

//
// Initializing Block RAM from external data file
//

module v_rams_20c (clk, we, addr, din, dout);
input clk;
input we;
input [5:0] addr;
input [31:0] din;
output [31:0] dout;

reg [31:0] ram [0:63];
reg [31:0] dout;

initial
begin
$readmemb("rams_20c.data",ram, 0, 63);

end

always @(posedge clk)
begin
if (we)
ram[addr] <= din;

dout <= ram[addr];
end

endmodule

Frontmatter
184 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=184

Chapter 3: XST HDL Coding Techniques

Initializing RAM From an External File Coding Examples
The following coding examples show how to initialize RAM from an external file.

To initialize RAM from values contained in an external file, use a read function in the
VHDL code.

For more information, see:

VHDL File Type Support.

Set up the initialization file as follows.

• Use each line of the initialization file to represent the initial contents of a given
row in the RAM.

• RAM contents can be represented in binary or hexadecimal.

• There should be as many lines in the file as there are rows in the RAM array.

Following is an example of the contents of a file initializing an 8 x 32-bit RAM with
binary values:

00001111000011110000111100001111

01001010001000001100000010000100

00000000001111100000000001000001

11111101010000011100010000100100

00001111000011110000111100001111

01001010001000001100000010000100

00000000001111100000000001000001

11111101010000011100010000100100

Initializing Bloc k RAM (External Data File)
RAM initial values may be stored in an external data file that is accessed from within
the HDL code. The data file must be pure binary or hexadecimal content with no
comments or other information.

Following is an example of the contents of a file initializing an 8 x 32-bit RAM with
binary values. For both examples, the data file referenced is called rams_20c.data .

00001111000011110000111100001111

01001010001000001100000010000100

00000000001111100000000001000001

11111101010000011100010000100100

00001111000011110000111100001111

01001010001000001100000010000100

00000000001111100000000001000001

11111101010000011100010000100100

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 185

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=185

Chapter 3: XST HDL Coding Techniques

Initializing Bloc k RAM (External Data File) VHDL Coding Example
In the following coding example, the loop that generates the initial value is controlled by
testing that we are in the RAM address range. The following coding examples show
initializing Block RAM from an external data file.

--
-- Initializing Block RAM from external data file
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use std.textio.all;

entity rams_20c is
port(clk : in std_logic;
we : in std_logic;
addr : in std_logic_vector(5 downto 0);
din : in std_logic_vector(31 downto 0);
dout : out std_logic_vector(31 downto 0));

end rams_20c;

architecture syn of rams_20c is

type RamType is array(0 to 63) of bit_vector(31 downto 0);

impure function InitRamFromFile (RamFileName : in string) return RamType is
FILE RamFile : text is in RamFileName;
variable RamFileLine : line;
variable RAM : RamType;

begin
for I in RamType’range loop
readline (RamFile, RamFileLine);
read (RamFileLine, RAM(I));

end loop;
return RAM;

end function;

signal RAM : RamType := InitRamFromFile("rams_20c.data");

begin

process (clk)
begin
if clk’event and clk = ’1’ then
if we = ’1’ then
RAM(conv_integer(addr)) <= to_bitvector(din);

end if;
dout <= to_stdlogicvector(RAM(conv_integer(addr)));

end if;
end process;

end syn;

If there are not enough lines in the external data file, XST issues the following message.
ERROR:Xst - raminitfile1.vhd line 40: Line <RamFileLine has not
enough elements for target <RAM<63>>.

Initializing Bloc k RAM (External Data File) Verilog Coding Example
To initialize RAM from values contained in an external file, use a $readmemb or
$readmemh system task in your Verilog code.

For more information, see:

XST Behavioral Verilog Language Support

Frontmatter
186 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=186

Chapter 3: XST HDL Coding Techniques

Set up the initialization file as follows.

• Arrange each line of the initialization file to represent the initial contents of a given
row in the RAM

• RAM contents can be represented in binary or hexadecimal.

• Use $readmemb for binary and $readmemh for hexadecimal representation.
To avoid the possible difference between XST and simulator behavior, Xilinx®
recommends that you use index parameters in these system tasks. See the following
coding example.

$readmemb("rams_20c.data",ram, 0, 7);

Create as many lines in the file as there are rows in the RAM array.

//
// Initializing Block RAM from external data file
//

module v_rams_20c (clk, we, addr, din, dout);
input clk;
input we;
input [5:0] addr;
input [31:0] din;
output [31:0] dout;

reg [31:0] ram [0:63];
reg [31:0] dout;

initial
begin
$readmemb("rams_20c.data",ram, 0, 63);

end

always @(posedge clk)
begin
if (we)
ram[addr] <= din;

dout <= ram[addr];
end

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 187

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=187

Chapter 3: XST HDL Coding Techniques

ROMs Using Bloc k RAM Resour ces HDL Coding Techniques
This section discusses ROMs Using Block RAM Resources HDL Coding Techniques,
and includes:
• About ROMs Using Block RAM Resources
• ROMs Using Block RAM Resources Log File
• ROMs Using Block RAM Resources Related Constraints
• ROMs Using Block RAM Resources Coding Examples

About ROMs Using Bloc k RAM Resour ces
XST can use block RAM resources to implement ROMs with synchronous outputs or
address inputs. These ROMs are implemented as single-port or dual-port block RAMs
depending on the HDL description.

XST can infer block ROM across hierarchies if Keep Hierarchy (KEEP_HIERARCHY) is
set to no. In this case, ROM and the data output or address register can be described in
separate hierarchy blocks. This inference is performed during Advanced HDL Synthesis.

Using block RAM resources to implement ROMs is controlled by the ROM Style
(ROM_STYLE) constraint.

For more information about ROM Style (ROM_STYLE), see:

XST Design Constraints

For more information about ROM implementation, see:

XST FPGA Optimization

ROMs Using Bloc k RAM Resour ces Log File
Following is a ROMs Using Block RAM Resources Log File Example.

ROMs Using Bloc k RAM Resour ces Log File Example
===
* HDL Synthesis *
===
Synthesizing Unit <rams_21a>.

Related source file is "rams_21a.vhd".
Found 64x20-bit ROMfor signal <$varindex0000> created at line 38.
Found 20-bit register for signal <data>.
Summary:

inferred 1 ROM(s).
inferred 20 D-type flip-flop(s).

Unit <rams_21a> synthesized.
===
HDL Synthesis Report
Macro Statistics
ROMs : 1
64x20-bit ROM : 1

Registers : 1
20-bit register : 1

===
===
* Advanced HDL Synthesis *
===
INFO:Xst - Unit <rams_21a> : The ROM<Mrom__varindex0000> will be implemented
as a read-only BLOCKRAM, absorbing the register: <data>.

| ram_type | Block | |

| Port A |
| aspect ratio | 64-word x 20-bit (6.9%) | |
| mode | write-first | |

Frontmatter
188 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=188

Chapter 3: XST HDL Coding Techniques

clkA	connected to signal <clk>	rise
enA	connected to signal <en>	high
weA	connected to internal node	high
addrA	connected to signal <addr>	
diA	connected to internal node	
doA	connected to signal <data>	

===
Advanced HDL Synthesis Report
Macro Statistics
RAMs : 1
64x20-bit single-port block RAM : 1

===

ROMs Using Bloc k RAM Resour ces Related Constraints
ROM Style (ROM_STYLE)

ROMs Using Bloc k RAM Resour ces Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

ROM With Registered Output Diagram

ROM With Registered Output Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
en Synchronous Enable (active-High)

addr Read Address

data Data Output

ROM With Registered Output VHDL Coding Example One
--
-- ROMsUsing Block RAMResources.
-- VHDL code for a ROMwith registered output (template 1)
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_21a is
port (clk : in std_logic;

en : in std_logic;
addr : in std_logic_vector(5 downto 0);
data : out std_logic_vector(19 downto 0));

end rams_21a;

architecture syn of rams_21a is

type rom_type is array (63 downto 0) of std_logic_vector (19 downto 0);
signal ROM: rom_type:= (X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",

X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 189

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=189

Chapter 3: XST HDL Coding Techniques

X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",
X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
X"0030D", X"02341", X"08201", X"0400D");

begin

process (clk)
begin

if (clk’event and clk = ’1’) then
if (en = ’1’) then

data <= ROM(conv_integer(addr));
end if;

end if;
end process;

end syn;

ROM With Registered Output VHDL Coding Example Two
--
-- ROMsUsing Block RAMResources.
-- VHDL code for a ROMwith registered output (template 2)
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_21b is
port (clk : in std_logic;

en : in std_logic;
addr : in std_logic_vector(5 downto 0);
data : out std_logic_vector(19 downto 0));

end rams_21b;

architecture syn of rams_21b is
type rom_type is array (63 downto 0) of std_logic_vector (19 downto 0);
signal ROM: rom_type:= (X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",

X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",
X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
X"0030D", X"02341", X"08201", X"0400D");

signal rdata : std_logic_vector(19 downto 0);
begin

rdata <= ROM(conv_integer(addr));

process (clk)
begin

if (clk’event and clk = ’1’) then
if (en = ’1’) then

data <= rdata;
end if;

end if;
end process;

end syn;

Frontmatter
190 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=190

Chapter 3: XST HDL Coding Techniques

ROM With Registered Output Verilog Coding Example One
//
// ROMsUsing Block RAMResources.
// Verilog code for a ROMwith registered output (template 1)
//

module v_rams_21a (clk, en, addr, data);

input clk;
input en;
input [5:0] addr;
output reg [19:0] data;

always @(posedge clk) begin
if (en)

case(addr)
6’b000000: data <= 20’h0200A; 6’b100000: data <= 20’h02222;
6’b000001: data <= 20’h00300; 6’b100001: data <= 20’h04001;
6’b000010: data <= 20’h08101; 6’b100010: data <= 20’h00342;
6’b000011: data <= 20’h04000; 6’b100011: data <= 20’h0232B;
6’b000100: data <= 20’h08601; 6’b100100: data <= 20’h00900;
6’b000101: data <= 20’h0233A; 6’b100101: data <= 20’h00302;
6’b000110: data <= 20’h00300; 6’b100110: data <= 20’h00102;
6’b000111: data <= 20’h08602; 6’b100111: data <= 20’h04002;
6’b001000: data <= 20’h02310; 6’b101000: data <= 20’h00900;
6’b001001: data <= 20’h0203B; 6’b101001: data <= 20’h08201;
6’b001010: data <= 20’h08300; 6’b101010: data <= 20’h02023;
6’b001011: data <= 20’h04002; 6’b101011: data <= 20’h00303;
6’b001100: data <= 20’h08201; 6’b101100: data <= 20’h02433;
6’b001101: data <= 20’h00500; 6’b101101: data <= 20’h00301;
6’b001110: data <= 20’h04001; 6’b101110: data <= 20’h04004;
6’b001111: data <= 20’h02500; 6’b101111: data <= 20’h00301;
6’b010000: data <= 20’h00340; 6’b110000: data <= 20’h00102;
6’b010001: data <= 20’h00241; 6’b110001: data <= 20’h02137;
6’b010010: data <= 20’h04002; 6’b110010: data <= 20’h02036;
6’b010011: data <= 20’h08300; 6’b110011: data <= 20’h00301;
6’b010100: data <= 20’h08201; 6’b110100: data <= 20’h00102;
6’b010101: data <= 20’h00500; 6’b110101: data <= 20’h02237;
6’b010110: data <= 20’h08101; 6’b110110: data <= 20’h04004;
6’b010111: data <= 20’h00602; 6’b110111: data <= 20’h00304;
6’b011000: data <= 20’h04003; 6’b111000: data <= 20’h04040;
6’b011001: data <= 20’h0241E; 6’b111001: data <= 20’h02500;
6’b011010: data <= 20’h00301; 6’b111010: data <= 20’h02500;
6’b011011: data <= 20’h00102; 6’b111011: data <= 20’h02500;
6’b011100: data <= 20’h02122; 6’b111100: data <= 20’h0030D;
6’b011101: data <= 20’h02021; 6’b111101: data <= 20’h02341;
6’b011110: data <= 20’h00301; 6’b111110: data <= 20’h08201;
6’b011111: data <= 20’h00102; 6’b111111: data <= 20’h0400D;

endcase
end

endmodule

ROM With Registered Output Verilog Coding Example Two
//
// ROMsUsing Block RAMResources.
// Verilog code for a ROMwith registered output (template 2)
//

module v_rams_21b (clk, en, addr, data);

input clk;
input en;
input [5:0] addr;
output reg [19:0] data;
reg [19:0] rdata;

always @(addr) begin
case(addr)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 191

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=191

Chapter 3: XST HDL Coding Techniques

6’b000000: rdata <= 20’h0200A; 6’b100000: rdata <= 20’h02222;
6’b000001: rdata <= 20’h00300; 6’b100001: rdata <= 20’h04001;
6’b000010: rdata <= 20’h08101; 6’b100010: rdata <= 20’h00342;
6’b000011: rdata <= 20’h04000; 6’b100011: rdata <= 20’h0232B;
6’b000100: rdata <= 20’h08601; 6’b100100: rdata <= 20’h00900;
6’b000101: rdata <= 20’h0233A; 6’b100101: rdata <= 20’h00302;
6’b000110: rdata <= 20’h00300; 6’b100110: rdata <= 20’h00102;
6’b000111: rdata <= 20’h08602; 6’b100111: rdata <= 20’h04002;
6’b001000: rdata <= 20’h02310; 6’b101000: rdata <= 20’h00900;
6’b001001: rdata <= 20’h0203B; 6’b101001: rdata <= 20’h08201;
6’b001010: rdata <= 20’h08300; 6’b101010: rdata <= 20’h02023;
6’b001011: rdata <= 20’h04002; 6’b101011: rdata <= 20’h00303;
6’b001100: rdata <= 20’h08201; 6’b101100: rdata <= 20’h02433;
6’b001101: rdata <= 20’h00500; 6’b101101: rdata <= 20’h00301;
6’b001110: rdata <= 20’h04001; 6’b101110: rdata <= 20’h04004;
6’b001111: rdata <= 20’h02500; 6’b101111: rdata <= 20’h00301;
6’b010000: rdata <= 20’h00340; 6’b110000: rdata <= 20’h00102;
6’b010001: rdata <= 20’h00241; 6’b110001: rdata <= 20’h02137;
6’b010010: rdata <= 20’h04002; 6’b110010: rdata <= 20’h02036;
6’b010011: rdata <= 20’h08300; 6’b110011: rdata <= 20’h00301;
6’b010100: rdata <= 20’h08201; 6’b110100: rdata <= 20’h00102;
6’b010101: rdata <= 20’h00500; 6’b110101: rdata <= 20’h02237;
6’b010110: rdata <= 20’h08101; 6’b110110: rdata <= 20’h04004;
6’b010111: rdata <= 20’h00602; 6’b110111: rdata <= 20’h00304;
6’b011000: rdata <= 20’h04003; 6’b111000: rdata <= 20’h04040;
6’b011001: rdata <= 20’h0241E; 6’b111001: rdata <= 20’h02500;
6’b011010: rdata <= 20’h00301; 6’b111010: rdata <= 20’h02500;
6’b011011: rdata <= 20’h00102; 6’b111011: rdata <= 20’h02500;
6’b011100: rdata <= 20’h02122; 6’b111100: rdata <= 20’h0030D;
6’b011101: rdata <= 20’h02021; 6’b111101: rdata <= 20’h02341;
6’b011110: rdata <= 20’h00301; 6’b111110: rdata <= 20’h08201;
6’b011111: rdata <= 20’h00102; 6’b111111: rdata <= 20’h0400D;

endcase
end

always @(posedge clk) begin
if (en)

data <= rdata;
end

endmodule

ROM With Registered Address Diagram

ROM With Registered Address Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
en Synchronous Enable (active-High)

addr Read Address

data Data Output

clk Positive-Edge Clock

Frontmatter
192 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=192

Chapter 3: XST HDL Coding Techniques

ROM With Registered Address VHDL Coding Example
--
-- ROMsUsing Block RAMResources.
-- VHDL code for a ROMwith registered address
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_21c is
port (clk : in std_logic;

en : in std_logic;
addr : in std_logic_vector(5 downto 0);
data : out std_logic_vector(19 downto 0));

end rams_21c;

architecture syn of rams_21c is
type rom_type is array (63 downto 0) of std_logic_vector (19 downto 0);
signal ROM: rom_type:= (X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",

X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",
X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
X"0030D", X"02341", X"08201", X"0400D");

signal raddr : std_logic_vector(5 downto 0);
begin

process (clk)
begin

if (clk’event and clk = ’1’) then
if (en = ’1’) then

raddr <= addr;
end if;

end if;
end process;

data <= ROM(conv_integer(raddr));

end syn;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 193

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=193

Chapter 3: XST HDL Coding Techniques

ROM With Registered Address Verilog Coding Example
//
// ROMsUsing Block RAMResources.
// Verilog code for a ROMwith registered address
//

module v_rams_21c (clk, en, addr, data);

input clk;
input en;
input [5:0] addr;
output reg [19:0] data;
reg [5:0] raddr;

always @(posedge clk) begin
if (en)

raddr <= addr;
end

always @(raddr) begin
case(raddr)

6’b000000: data <= 20’h0200A; 6’b100000: data <= 20’h02222;
6’b000001: data <= 20’h00300; 6’b100001: data <= 20’h04001;
6’b000010: data <= 20’h08101; 6’b100010: data <= 20’h00342;
6’b000011: data <= 20’h04000; 6’b100011: data <= 20’h0232B;
6’b000100: data <= 20’h08601; 6’b100100: data <= 20’h00900;
6’b000101: data <= 20’h0233A; 6’b100101: data <= 20’h00302;
6’b000110: data <= 20’h00300; 6’b100110: data <= 20’h00102;
6’b000111: data <= 20’h08602; 6’b100111: data <= 20’h04002;
6’b001000: data <= 20’h02310; 6’b101000: data <= 20’h00900;
6’b001001: data <= 20’h0203B; 6’b101001: data <= 20’h08201;
6’b001010: data <= 20’h08300; 6’b101010: data <= 20’h02023;
6’b001011: data <= 20’h04002; 6’b101011: data <= 20’h00303;
6’b001100: data <= 20’h08201; 6’b101100: data <= 20’h02433;
6’b001101: data <= 20’h00500; 6’b101101: data <= 20’h00301;
6’b001110: data <= 20’h04001; 6’b101110: data <= 20’h04004;
6’b001111: data <= 20’h02500; 6’b101111: data <= 20’h00301;
6’b010000: data <= 20’h00340; 6’b110000: data <= 20’h00102;
6’b010001: data <= 20’h00241; 6’b110001: data <= 20’h02137;
6’b010010: data <= 20’h04002; 6’b110010: data <= 20’h02036;
6’b010011: data <= 20’h08300; 6’b110011: data <= 20’h00301;
6’b010100: data <= 20’h08201; 6’b110100: data <= 20’h00102;
6’b010101: data <= 20’h00500; 6’b110101: data <= 20’h02237;
6’b010110: data <= 20’h08101; 6’b110110: data <= 20’h04004;
6’b010111: data <= 20’h00602; 6’b110111: data <= 20’h00304;
6’b011000: data <= 20’h04003; 6’b111000: data <= 20’h04040;
6’b011001: data <= 20’h0241E; 6’b111001: data <= 20’h02500;
6’b011010: data <= 20’h00301; 6’b111010: data <= 20’h02500;
6’b011011: data <= 20’h00102; 6’b111011: data <= 20’h02500;
6’b011100: data <= 20’h02122; 6’b111100: data <= 20’h0030D;
6’b011101: data <= 20’h02021; 6’b111101: data <= 20’h02341;
6’b011110: data <= 20’h00301; 6’b111110: data <= 20’h08201;
6’b011111: data <= 20’h00102; 6’b111111: data <= 20’h0400D;

endcase
end

endmodule

Frontmatter
194 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=194

Chapter 3: XST HDL Coding Techniques

Pipelined Distrib uted RAM HDL Coding Techniques
This section discusses Pipelined Distributed RAM HDL Coding Techniques, and
includes:

• About Pipelined Distributed RAM

• Pipelined Distributed RAM Log File

• Pipelined Distributed RAM Related Constraints

• Pipelined Distributed RAM Coding Examples

About Pipelined Distrib uted RAM
In order to increase the speed of designs, XST can infer pipelined distributed RAM.
By interspersing registers between the stages of distributed RAM, pipelining can
significantly increase the overall frequency of your design. The effect of pipelining
is similar to Flip-Flop Retiming.

To insert pipeline stages:

1. Describe the necessary registers in your Hardware Description Language (HDL)
code

2. Place them after any distributed RAM

3. Set RAM Style (RAM_STYLE) to:

pipe_distributed

In order to reach the maximum distributed RAM speed, XST uses the maximum number
of available registers when:

• It detects valid registers for pipelining, and

• RAM_STYLE is set to:

pipe_distributed

In order to obtain the best frequency, XST automatically calculates the maximum
number of registers for each RAM.

During the Advanced HDL Synthesis step, the XST HDL Advisor advises you to specify
the optimum number of register stages if:

• You have not specified sufficient register stages, and

• RAM_STYLE is coded directly on a signal

XST implements the unused stages as shift registers if:

• The number of registers placed after the multiplier exceeds the maximum required,
and

• Shift register extraction is activated

XST cannot pipeline RAM if registers contain asynchronous set/reset signals. XST can
pipeline RAM if registers contain synchronous reset signals.

Pipelined Distrib uted RAM Log File
Following is a Pipelined Distributed RAM Log File Example.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 195

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=195

Chapter 3: XST HDL Coding Techniques

Pipelined Distrib uted RAM Log File Example
==
* HDL Synthesis *
==
Synthesizing Unit <rams_22>.

Related source file is "rams_22.vhd".
Found 64x4-bit single-port RAM for signal <RAM>.
Found 4-bit register for signal <do>.
Summary:

inferred 1 RAM(s).
inferred 4 D-type flip-flop(s).

Unit <rams_22> synthesized.

===
HDL Synthesis Report

Macro Statistics
RAMs : 1
64x4-bit single-port RAM : 1

Registers : 1
4-bit register : 1

===
==
* Advanced HDL Synthesis *
==
INFO:Xst - Unit <rams_22> : The RAM<Mram_RAM>will be implemented as a
distributed RAM, absorbing the following register(s): <do>.

aspect ratio	64-word x 4-bit	
clock	connected to signal <clk>	rise
write enable	connected to signal <we>	high
address	connected to signal <addr>	
data in	connected to signal <di>	
data out	connected to internal node	
ram_style	distributed	

Synthesizing (advanced) Unit <rams_22>.
Found pipelined ram on signal <_varindex0000>:
- 1 pipeline level(s) found in a register on signal <_varindex0000>.
Pushing register(s) into the ram macro.

INFO:Xst:2390 - HDL ADVISOR - You can improve the performance of
the ram Mram_RAMby adding 1 register level(s) on output signal _varindex0000.
Unit <rams_22> synthesized (advanced).
===
Advanced HDL Synthesis Report
Macro Statistics
RAMs : 1
64x4-bit registered single-port distributed RAM : 1

===

Pipelined Distrib uted RAM Related Constraints
• RAM Extraction (RAM_EXTRACT)

• RAM Style (RAM_STYLE)

• ROM Extraction (ROM_EXTRACT)

• ROM Style (ROM_STYLE)

• BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO)

• Automatic BRAM Packing (AUTO_BRAM_PACKING)

Frontmatter
196 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=196

Chapter 3: XST HDL Coding Techniques

Pipelined Distrib uted RAM Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Pipelined Distrib uted RAM Diagram

Pipelined Distrib uted RAM Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (active-High)

addr Read/Write Address

di Data Input

do Data Output

Pipelined Distrib uted RAM VHDL Coding Example
--
-- Pipeline distributed RAMs
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_22 is
port (clk : in std_logic;

we : in std_logic;
addr : in std_logic_vector(8 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0));

end rams_22;

architecture syn of rams_22 is
type ram_type is array (511 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;

signal pipe_reg: std_logic_vector(3 downto 0);

attribute ram_style: string;
attribute ram_style of RAM: signal is "pipe_distributed";

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if we = ’1’ then

RAM(conv_integer(addr)) <= di;
else

pipe_reg <= RAM(conv_integer(addr));

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 197

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=197

Chapter 3: XST HDL Coding Techniques

end if;
do <= pipe_reg;
end if;

end process;

end syn;

Pipelined Distrib uted RAM Verilog Coding Example
//
// Pipeline distributed RAMs
//

module v_rams_22 (clk, we, addr, di, do);

input clk;
input we;
input [8:0] addr;
input [3:0] di;
output [3:0] do;
(*ram_style="pipe_distributed"*)

reg [3:0] RAM [511:0];
reg [3:0] do;

reg [3:0] pipe_reg;

always @(posedge clk)
begin

if (we)
RAM[addr] <= di;

else
pipe_reg <= RAM[addr];

do <= pipe_reg;
end

endmodule

Frontmatter
198 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=198

Chapter 3: XST HDL Coding Techniques

FSM HDL Coding Techniques
This section discusses Finite State Machine (FSM) HDL Coding Techniques, and includes:

• About FSM Components

• Describing an FSM Component

• State Encoding Techniques

• RAM-Based FSM Synthesis

• Safe FSM Implementation

• FSM Log File

• FSM Related Constraints

• FSM Coding Examples

About FSM Components
The Xilinx Synthesis Technology (XST) software:

• Includes a large set of templates to describe Finite State Machine (FSM) components

• Can apply several state encoding techniques to obtain better performance or less area

• Can re-encode your initial encoding

• Can handle only synchronous state machines

To disable FSM extraction, use Automatic FSM Extraction (FSM_EXTRACT).

Describing an FSM Component
There are many ways to describe a Finite State Machine (FSM) component. A traditional
FSM representation incorporates Mealy and Moore machines, as shown in the following
diagram. XST supports both models.

FSM Representation Incorporating Mealy and Moore Machines
Diagram

Describing FSM Components with Process and Always
For HDL, process (VHDL) and always blocks (Verilog) are the best ways to describe
FSM components. Xilinx® uses process to refer to both VHDL processes and Verilog
always blocks.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 199

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=199

Chapter 3: XST HDL Coding Techniques

You may have several processes (1, 2 or 3) in your description, depending upon how you
consider and decompose the different parts of the preceding model. Following is an
example of the Moore Machine with Asynchronous Reset, RESET.
• 4 states

– s1
– s2
– s3
– s4

• 5 transitions
• 1 input

x1com
• 1 output

outp

The above model is represented by the following bubble diagram.

Bubb le Diagram

State Register s
For XST to successfully identify a Finite State Machine (FSM), descriptions of the state
register should include either:
• A power-up state

The power-up state must use proper VHDL or Verilog signal initialization.
• An operational reset

The operational reset can be asynchronous or synchronous.

For coding examples on how to write Asynchronous and Synchronous initialization
signals, see:

Registers HDL Coding Techniques

In VHDL, the type of a state register can be a different type, such as:
• integer
• bit_vector
• std_logic_vector

But it is common and convenient to define an enumerated type containing all possible
state values and to declare your state register with that type.

Frontmatter
200 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=200

Chapter 3: XST HDL Coding Techniques

In Verilog, the type of state register can be an integer or a set of defined parameters. In
the following Verilog examples the state assignments could have been made as follows:

parameter [3:0]
s1 = 4’b0001,
s2 = 4’b0010,
s3 = 4’b0100,
s4 = 4’b1000;

reg [3:0] state;

These parameters can be modified to represent different state encoding schemes.

Next State Equations
Next state equations can be described directly in the sequential process or in a distinct
combinatorial process. The simplest coding example is based on a case statement. If
using a separate combinatorial process, its sensitivity list should contain the state signal
and all FSM inputs.

Unreachable States
XST can detect unreachable states in an FSM. It lists them in the log file in the HDL
Synthesis step.

Outputs and Inputs
Non-registered outputs are described either in the combinatorial process or in concurrent
assignments. Registered outputs must be assigned within the sequential process.

Registered inputs are described using internal signals, which are assigned in the
sequential process.

State Encoding Techniques
XST supports the following state encoding techniques:

• Auto State Encoding

• One-Hot State Encoding

• Gray State Encoding

• Compact State Encoding

• Johnson State Encoding

• Sequential State Encoding

• Speed1 State Encoding

• User State Encoding

Auto State Encoding
In Auto State Encoding, XST tries to select the best suited encoding algorithm for each
Finite State Machine (FSM).

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 201

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=201

Chapter 3: XST HDL Coding Techniques

One-Hot State Encoding
One-Hot State Encoding:
• Is the default encoding scheme.
• Associates one code bit and one flip-flop to each state. At a given clock cycle during

operation, one and only one bit of the state variable is asserted. Only two bits toggle
during a transition between two states.

• Is appropriate with most FPGA targets where a large number of flip-flops are
available.

• Is a good alternative when trying to optimize speed or to reduce power dissipation.

Gray State Encoding
Gray State Encoding:
• Guarantees that only one bit switches between two consecutive states.
• Is appropriate for controllers exhibiting long paths without branching.
• Minimizes hazards and glitches.
• Gives good results when implementing the state register with T flip-flops.

Compact State Encoding
Compact State Encoding:
• Minimizes the number of bits in the state variables and flip-flops.
• Is based on hypercube immersion.
• Is appropriate when trying to optimize area.

Johnson State Encoding
Like Gray State Encoding, Johnson State Encoding shows benefits with state machines
containing long paths with no branching.

Sequential State Encoding
Sequential State Encoding:
• Identifies long paths and applies successive radix two codes to the states on these

paths.
• Minimizes next state equations.

Speed1 State Encoding
Speed1 State Encoding is oriented for speed optimization. The number of bits for a state
register depends on the particular FSM, but generally it is greater than the number
of FSM states.

User State Encoding
In User State Encoding, XST uses the original encoding specified in the HDL file. For
example, if you use enumerated types for a state register, use Enumerated Encoding
(ENUM_ENCODING) to assign a specific binary value to each state.

For more information, see:

XST Design Constraints

Frontmatter
202 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=202

Chapter 3: XST HDL Coding Techniques

RAM-Based FSM Synthesis
Large Finite State Machine (FSM) components can be made more compact and faster by
implementing them in the block RAM resources provided in Virtex® devices and later
technologies. FSM Style (FSM_STYLE) directs XST to use block RAM resources for FSMs.

Values for FSM Style (FSM_STYLE) are:
• lut (default)

XST maps the FSM using LUTs.
• bram

XST maps the FSM onto block RAM.

Invoke FSM Style (FSM_STYLE) as follows:
• ISE® Design Suite

Select LUT or Block RAM as instructed in the HDL Options topics of the ISE Design
Suite Help.

• Command line
Use the -fsm_style command line option.

• Hardware Description Language (HDL) code
Use FSM Style (FSM_STYLE)

If it cannot implement a state machine on block RAM, XST:
• Issues a warning in the Advanced HDL Synthesis step of the log file.
• Automatically implements the state machine using LUTs.

For example, if FSM has an asynchronous reset, it cannot be implemented using block
RAM. In this case XST informs you:

...
===
* Advanced HDL Synthesis *
===

WARNING:Xst - Unable to fit FSM <FSM_0> in BRAM(reset is
asynchronous).
Selecting encoding for FSM_0 ...
Optimizing FSM <FSM_0> on signal <current_state>
with one-hot encoding.
...

Safe FSM Implementation
XST can add logic to a Finite State Machine (FSM) implementation that will let a state
machine recover from an invalid state. If during its execution, a state machine enters an
invalid state, the logic added by XST brings it back to a known state, called a recovery
state. This is known as Safe Implementation mode.

To activate Safe FSM implementation:
• In ISE® Design Suite, select Safe Implementation as instructed in the HDL Options

topic of ISE Design Suite Help, or
• Apply Safe Implementation (SAFE_IMPLEMENTATION) to the hierarchical block

or signal that represents the state register.

By default, XST automatically selects a reset state as the recovery state. If the
FSM does not have an initialization signal, XST selects a power-up state as the
recovery state. To manually define the recovery state, apply Safe Recovery State
(SAFE_RECOVERY_STATE).

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 203

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=203

Chapter 3: XST HDL Coding Techniques

FSM Log File
The XST log file reports the full information of recognized Finite State Machine (FSM)
components during the Macro Recognition step. If you allow XST to choose the best
encoding algorithm for your FSMs, it reports the algorithm it chose for each FSM. As
soon as encoding is selected, XST reports the original and final FSM encoding. If the
target is an FPGA device, XST reports this encoding at the HDL Synthesis step. If the
target is a CPLD device, then XST reports this encoding at the Low Level Optimization
step.

FSM Log File Example
...
Synthesizing Unit <fsm_1>.

Related source file is "/state_machines_1.vhd".
Found finite state machine <FSM_0> for signal <state>.
--
States	4
Transitions	5
Inputs	1
Outputs	4
Clock	clk (rising_edge)
Reset	reset (positive)
Reset type	asynchronous
Reset State	s1
Power Up State	s1
Encoding	automatic
Implementation	LUT
--
Found 1-bit register for signal <outp>.
Summary:

inferred 1 Finite State Machine(s).
inferred 1 D-type flip-flop(s).

Unit <fsm_1> synthesized.

==
HDL Synthesis Report

Macro Statistics
Registers : 1
1-bit register : 1

==
==
* Advanced HDL Synthesis *
==

Advanced Registered AddSub inference ...
Analyzing FSM <FSM_0> for best encoding.
Optimizing FSM <state/FSM_0> on signal <state[1:2]>
with gray encoding.

State | Encoding

s1 | 00
s2 | 01
s3 | 11
s4 | 10

Frontmatter
204 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=204

Chapter 3: XST HDL Coding Techniques

===
HDL Synthesis Report

Macro Statistics
FSMs : 1
===

FSM Related Constraints
• Automatic FSM Extraction (FSM_EXTRACT)
• FSM Style (FSM_STYLE)
• FSM Encoding Algorithm (FSM_ENCODING)
• Enumerated Encoding (ENUM_ENCODING)
• Safe Implementation (SAFE_IMPLEMENTATION)
• Safe Recovery State (SAFE_RECOVERY_STATE)

FSM Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

FSM With One Process Pin Descriptions
IO Pins Description
clk Positive-Edge Clock

reset Asynchronous Reset (active-High)

x1 FSM Input

outp FSM Output

FSM With One Process VHDL Coding Example

--
-- State Machine with a single process.
--

library IEEE;
use IEEE.std_logic_1164.all;
entity fsm_1 is

port (clk, reset, x1 : IN std_logic;
outp : OUT std_logic);

end entity;

architecture beh1 of fsm_1 is
type state_type is (s1,s2,s3,s4);
signal state: state_type ;

begin

process (clk,reset)
begin

if (reset =’1’) then
state <=s1;
outp<=’1’;

elsif (clk=’1’ and clk’event) then

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 205

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=205

Chapter 3: XST HDL Coding Techniques

case state is
when s1 => if x1=’1’ then

state <= s2;
outp <= ’1’;

else
state <= s3;
outp <= ’0’;

end if;
when s2 => state <= s4; outp <= ’0’;
when s3 => state <= s4; outp <= ’0’;
when s4 => state <= s1; outp <= ’1’;

end case;
end if;

end process;

end beh1;

FSM With Single Always Bloc k Verilog Coding Example
//
// State Machine with a single always block.
//

module v_fsm_1 (clk, reset, x1, outp);
input clk, reset, x1;
output outp;
reg outp;
reg [1:0] state;

parameter s1 = 2’b00; parameter s2 = 2’b01;
parameter s3 = 2’b10; parameter s4 = 2’b11;

initial begin
state = 2’b00;

end

always@(posedge clk or posedge reset)
begin

if (reset)
begin

state <= s1; outp <= 1’b1;
end

else
begin

case (state)
s1: begin

if (x1==1’b1)
begin

state <= s2;
outp <= 1’b1;

end
else

begin
state <= s3;
outp <= 1’b0;

end
end

s2: begin
state <= s4; outp <= 1’b1;

Frontmatter
206 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=206

Chapter 3: XST HDL Coding Techniques

end
s3: begin

state <= s4; outp <= 1’b0;
end

s4: begin
state <= s1; outp <= 1’b0;

end
endcase

end
end

endmodule

FSM With Two Processes
To eliminate a register from the outputs , remove all assignments outp <=…from
the Clock synchronization section. This can be done by introducing two processes as
shown below.

FSM With Two Processes Diagram

FSM With Two Processes Pin Descriptions
IO Pins Description
clk Positive-Edge Clock

reset Asynchronous Reset (active-High)

x1 FSM Input

outp FSM Output

FSM With Two Processes VHDL Coding Example
--
-- State Machine with two processes.
--

library IEEE;
use IEEE.std_logic_1164.all;
entity fsm_2 is

port (clk, reset, x1 : IN std_logic;
outp : OUT std_logic);

end entity;

architecture beh1 of fsm_2 is
type state_type is (s1,s2,s3,s4);
signal state: state_type ;

begin

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 207

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=207

Chapter 3: XST HDL Coding Techniques

process1: process (clk,reset)
begin

if (reset =’1’) then state <=s1;
elsif (clk=’1’ and clk’Event) then

case state is
when s1 => if x1=’1’ then

state <= s2;
else

state <= s3;
end if;

when s2 => state <= s4;
when s3 => state <= s4;
when s4 => state <= s1;

end case;
end if;

end process process1;

process2 : process (state)
begin

case state is
when s1 => outp <= ’1’;
when s2 => outp <= ’1’;
when s3 => outp <= ’0’;
when s4 => outp <= ’0’;

end case;
end process process2;

end beh1;

FSM With Two Always Bloc ks Verilog Coding Example
//
// State Machine with two always blocks.
//

module v_fsm_2 (clk, reset, x1, outp);
input clk, reset, x1;
output outp;
reg outp;
reg [1:0] state;

parameter s1 = 2’b00; parameter s2 = 2’b01;
parameter s3 = 2’b10; parameter s4 = 2’b11;

initial begin
state = 2’b00;

end

always @(posedge clk or posedge reset)
begin

if (reset)
state <= s1;

else
begin

case (state)
s1: if (x1==1’b1)

state <= s2;
else

state <= s3;

Frontmatter
208 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=208

Chapter 3: XST HDL Coding Techniques

s2: state <= s4;
s3: state <= s4;
s4: state <= s1;

endcase
end

end

always @(state)
begin

case (state)
s1: outp = 1’b1;
s2: outp = 1’b1;
s3: outp = 1’b0;
s4: outp = 1’b0;

endcase
end

endmodule

You can also separate the NEXT State function from the state register.

FSM With Three Processes Diagram

FSM With Three Processes Pin Descriptions
IO Pins Description
clk Positive-Edge Clock

reset Asynchronous Reset (active-High)

x1 FSM Input

outp FSM Output

FSM With Three Processes VHDL Coding Example
--
-- State Machine with three processes.
--

library IEEE;
use IEEE.std_logic_1164.all;
entity fsm_3 is

port (clk, reset, x1 : IN std_logic;
outp : OUT std_logic);

end entity;

architecture beh1 of fsm_3 is
type state_type is (s1,s2,s3,s4);
signal state, next_state: state_type ;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 209

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=209

Chapter 3: XST HDL Coding Techniques

begin

process1: process (clk,reset)
begin

if (reset =’1’) then
state <=s1;

elsif (clk=’1’ and clk’Event) then
state <= next_state;

end if;
end process process1;

process2 : process (state, x1)
begin

case state is
when s1 => if x1=’1’ then

next_state <= s2;
else

next_state <= s3;
end if;

when s2 => next_state <= s4;
when s3 => next_state <= s4;
when s4 => next_state <= s1;

end case;
end process process2;

process3 : process (state)
begin

case state is
when s1 => outp <= ’1’;
when s2 => outp <= ’1’;
when s3 => outp <= ’0’;
when s4 => outp <= ’0’;

end case;
end process process3;

end beh1;

Frontmatter
210 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=210

Chapter 3: XST HDL Coding Techniques

FSM With Three Always Bloc ks Verilog Coding Example
//
// State Machine with three always blocks.
//

module v_fsm_3 (clk, reset, x1, outp);
input clk, reset, x1;
output outp;
reg outp;
reg [1:0] state;
reg [1:0] next_state;

parameter s1 = 2’b00; parameter s2 = 2’b01;
parameter s3 = 2’b10; parameter s4 = 2’b11;

initial begin
state = 2’b00;

end

always @(posedge clk or posedge reset)
begin

if (reset) state <= s1;
else state <= next_state;

end

always @(state or x1)
begin

case (state)
s1: if (x1==1’b1)

next_state = s2;
else

next_state = s3;
s2: next_state = s4;
s3: next_state = s4;
s4: next_state = s1;

endcase
end

always @(state)
begin

case (state)
s1: outp = 1’b1;
s2: outp = 1’b1;
s3: outp = 1’b0;
s4: outp = 1’b0;

endcase
end

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 211

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=211

Chapter 3: XST HDL Coding Techniques

Black Boxes HDL Coding Techniques
This section discusses Black Boxes HDL Coding Techniques, and includes:
• About Black Boxes
• Black Box Log File
• Black Box Related Constraints
• Black Box Coding Examples

About Black Boxes
Your design may contain Electronic Data Interchange Format (EDIF) or NGC files
generated by:
• Synthesis tools
• Schematic text editors
• Any other design entry mechanism

These modules must be instantiated in your code in order to be connected to the rest of
your design. To do so in XST, use Black Box instantiation in the VHDL or Verilog code.
The netlist is propagated to the final top-level netlist without being processed by XST.
XST enables you to attach specific constraints to these Black Box instantiations, which
are passed to the NGC file.

In addition, you may have a design block for which you have an Register Transfer Level
(RTL) model, as well as your own implementation of this block in the form of an EDIF
netlist. The RTL model is valid for simulation purposes only. Use BoxType (BOX_TYPE)
to direct XST to skip synthesis of this RTL code and create a Black Box. The EDIF netlist
is linked to the synthesized design during NGDBuild.

Once you make a design a Black Box, each instance of that design is a Black Box. While
you can attach constraints to the instance, XST ignores any constraint attached to the
original design.

For more information, see:

• XST General Constraints
• Constraints Guide

Black Box Log File
Since XST recognizes Black Boxes before macro inference, the Black Box log file differs
from the log files generated for other macros.

Black Box Log File Example
...
Analyzing Entity <black_b> (Architecture <archi>).

WARNING:Xst:766 - black_box_1.vhd (Line 15).
Generating a Black Box for component <my_block>.
Entity <black_b> analyzed. Unit <black_b> generated

....

Black Box Related Constraints
BoxType (BOX_TYPE)

BoxType was introduced for device primitive instantiation in XST. Before using
BoxType, see:

Frontmatter
212 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=212

Chapter 3: XST HDL Coding Techniques

Device Primitive Support

Black Box Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Black Box VHDL Coding Example
--
-- Black Box
--

library ieee;
use ieee.std_logic_1164.all;

entity black_box_1 is
port(DI_1, DI_2 : in std_logic;

DOUT : out std_logic);
end black_box_1;

architecture archi of black_box_1 is

component my_block
port (I1 : in std_logic;

I2 : in std_logic;
O : out std_logic);

end component;

begin

inst: my_block port map (I1=>DI_1,I2=>DI_2,O=>DOUT);

end archi;

Black Box Verilog Coding Example
//
// Black Box
//

module v_my_block (in1, in2, dout);
input in1, in2;
output dout;

endmodule

module v_black_box_1 (DI_1, DI_2, DOUT);
input DI_1, DI_2;
output DOUT;

v_my_block inst (
.in1(DI_1),
.in2(DI_2),
.dout(DOUT));

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 213

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=213

Chapter 3: XST HDL Coding Techniques

For more information on component instantiation, see your VHDL and Verilog language
reference manuals.

Frontmatter
214 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=214

Chapter 4

XST FPGA Optimization
This chapter discusses XST FPGA Optimization, and includes:

• FPGA Synthesis and Optimization

• FPGA Specific Synthesis Options

• Macro Generation

• DSP48 Block Resources

• Mapping Logic Onto Block RAM

• Flip-Flop Retiming

• Partitions

• Speed Optimization Under Area Constraint

• FPGA Optimization Report

• Implementation Constraints

• FPGA Device Primitive Support

• Cores Processing

• Specifying INIT and RLOC

• Using PCI™ Flow With XST

FPGA Synthesis and Optimization
XST performs the following steps during FPGA synthesis and optimization:

• Mapping and optimization on an entity by entity or module by module basis

• Global optimization on the complete design

The output is an NGC file.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 215

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=215

Chapter 4: XST FPGA Optimization

FPGA Specific Synthesis Options
XST supports the following options to fine-tune FPGA synthesis to meet user constraints:
• Extract BUFGCE (BUFGCE)
• Cores Search Directories (-sd)
• Decoder Extraction (DECODER_EXTRACT)
• FSM Style (FSM_STYLE)
• Global Optimization Goal (-glob_opt)
• Keep Hierarchy (KEEP_HIERARCHY)
• Logical Shifter Extraction (SHIFT_EXTRACT)
• Map Logic on BRAM (BRAM_MAP)
• Max Fanout (MAX_FANOUT)
• Move First Stage (MOVE_FIRST_STAGE)
• Move Last Stage (MOVE_LAST_STAGE)
• Multiplier Style (MULT_STYLE)
• Mux Style (MUX_STYLE)
• Number of Global Clock Buffers (-bufg)
• Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES)
• Pack I/O Registers Into IOBs (IOB)
• Priority Encoder Extraction (PRIORITY_EXTRACT)
• RAM Style (RAM_STYLE)
• Register Balancing (REGISTER_BALANCING)
• Register Duplication (REGISTER_DUPLICATION)
• Signal Encoding (SIGNAL_ENCODING)
• Slice Packing (-slice_packing)
• Use Carry Chain (USE_CARRY_CHAIN)
• Write Timing Constraints (-write_timing_constraints)
• XOR Collapsing (XOR_COLLAPSE)

For more information, see:

XST FPGA Constraints (Non-Timing)

Macro Generation
The FPGA Device Macro Generator module provides the XST HDL Flow with a catalog
of functions. These functions are identified by the inference engine from the Hardware
Description Language (HDL) description. Their characteristics are handed to the Macro
Generator for optimal implementation.

The set of inferred functions ranges in complexity from simple arithmetic operators
(such as adders, accumulators, counters and multiplexers), to more complex building
blocks (such as multipliers, shift registers and memories).

Inferred functions are optimized to deliver the highest levels of performance and
efficiency for the selected Virtex® architecture or Spartan® architecture, and then
integrated into the rest of the design. In addition, the generated functions are optimized
through their borders depending on the design context.

This section categorizes, by function, all available macros and briefly describes
technology resources used in the building and optimization phase.

Frontmatter
216 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=216

Chapter 4: XST FPGA Optimization

Macro Generation can be controlled through attributes. These attributes are listed in
each subsection.

XST uses dedicated carry chain logic to implement many macros. In some situations
carry chain logic may result in less than ideal optimization. Use Carry Chain
(USE_CARRY_CHAIN) deactivates this feature.

For more information, see:

XST Design Constraints

Arithmetic Functions in Macro Generation
For Arithmetic Functions, XST provides the following elements:

• Adders, Subtractors and Adder/Subtractors

• Cascadable Binary Counters

• Accumulators

• Incrementers, Decrementers and Incrementer/Decrementers

• Signed and Unsigned Multipliers

XST uses fast carry logic (MUXCY) to provide fast arithmetic carry capability for
high-speed arithmetic functions. The sum logic formed from two XOR gates is
implemented using LUTs and the dedicated carry-XORs (XORCY). In addition, XST
benefits from a dedicated carry-ANDs (MULTAND) resource for high-speed multiplier
implementation.

Loadab le Functions in Macro Generation
For Loadable functions XST provides the following elements:

• Loadable Up, Down and Up/Down Binary Counters

• Loadable Up, Down and Up/Down Accumulators

XST can provide synchronously loadable, cascadable binary counters and accumulators
inferred in the HDL flow. Fast carry logic is used to cascade the different stages of
the macros. Synchronous loading and count functions are packed in the same LUT
primitive for optimal implementation.

For Up/Down counters and accumulators, XST uses dedicated carry-ANDs to improve
performance.

Multiple xers in Macro Generation
For multiplexers, the Macro Generator provides the following two architectures:

• MUXFx based multiplexers

• Dedicated Carry-MUXs based multiplexers

For Virtex®-4 devices, XST can implement multiplexers using the primitives shown in
the following table.

Multiple xer CLB Primitive
16:1 single CLB MUXF7

32:1 across two CLBs MUXF8

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 217

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=217

Chapter 4: XST FPGA Optimization

To better control the implementation of the inferred multiplexer, XST offers a way
to select the generation of either the MUXF5/MUXF6 or Dedicated Carry-MUXs
architectures. The attribute MUX_STYLE (Mux Style) specifies that an inferred
multiplexer be implemented on a MUXFx based architecture if the value is MUXF, or a
Dedicated Carry-MUXs based architecture if the value is MUXCY.

You can apply this attribute to either a signal that defines the multiplexer or the instance
name of the multiplexer. This attribute can also be global.

The attribute MUX_EXTRACT (Mux Extraction) with, respectively, the value no or force
can be used to disable or force the inference of the multiplexer.

You still may have MUXFx elements in the final netlist even if multiplexer inference is
disabled using the MUX_EXTRACT (Mux Extraction) constraint. These elements come
from the general mapping procedure of Boolean equations.

Priority Encoder s in Macro Generation
The if/elsif structure described in Priority Encoders HDL Coding Techniques is
implemented with a 1-of-n priority encoder.

XST uses the MUXCY primitive to chain the conditions of the priority encoder, which
results in its high-speed implementation.

Use Priority Encoder Extraction (PRIORITY_EXTRACT) to enable or disable priority
encoder inference.

XST does not generally infer (and therefore does not generate) a large number of
priority encoders. To enable priority encoders, use Priority Encoder Extraction
(PRIORITY_EXTRACT) with the force option.

Decoder s in Macro Generation
A decoder is a demultiplexer whose inputs are all constant with distinct one-hot (or
one-cold) coded values. An n-bit or 1-of-m decoder is mainly characterized by an m-bit
data output and an n-bit selection input, such that:

n**(2-1) < m <= n**2

Once XST has inferred the decoder, the implementation uses the MUXF5 or MUXCY
primitive depending on the size of the decoder.

Use Decoder Extraction (DECODER_EXTRACT) to enable or disable decoder inference.

RAMs in Macro Generation
Two types of RAM are available during inference and generation:
• Distributed RAM

If the RAM is asynchronous READ, Distributed RAM is inferred and generated.
• Block RAM (default)

If the RAM is synchronous READ, block RAM is inferred. In this case, XST can
implement block RAM or distributed RAM.

Primitives Used by XST
This section applies to the following devices:
• Virtex®-4
• Spartan®-3

For these devices, XST uses the primitives shown in the following table.

Frontmatter
218 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=218

Chapter 4: XST FPGA Optimization

RAM Clock Edge Primitives
Single-Port Synchronous Distributed
RAM

Distributed Single-Port RAM with
positive clock edge

RAM16X1S, RAM16X2S, RAM16X4S,
RAM16X8S, RAM32X1S, RAM32X2S,
RAM32X4S, RAM32X8S, RAM64X1S,
RAM64X2S, RAM128X1S

Single-Port Synchronous Distributed
RAM

Distributed Single-Port RAM with
negative clock edge

RAM16X1S_1, RAM32X1S_1,
RAM64X1S_1, RAM128X1S_1

Dual-Port Synchronous Distributed
RAM

Distributed Dual-Port RAM with
positive clock edge

RAM16X1D, RAM32X1D, RAM64X1D

Dual-Port Synchronous Distributed
RAM

Distributed Dual-Port RAM with
negative clock edge

RAM16X1D_1, RAM32X1D_1,
RAM64X1D_1

Single-Port Synchronous Block RAM N/A RAMB4_Sn

Dual-Port Synchronous Block RAM N/A RAMB4_Sm_Sn

Contr olling Implementation of Inferred RAM
To better control the implementation of the inferred RAM, XST offers a way to control
RAM inference, and to select the generation of distributed RAM or block RAMs (if
possible).

The RAM Style (RAM_STYLE) attribute specifies that an inferred RAM be generated
using:

• Block RAM if the value is block

• Distributed RAM if the value is distributed

Apply the RAM Style (RAM_STYLE) attribute to:

• A signal that defines the RAM, or

• The instance name of the RAM

The RAM Style (RAM_STYLE) attribute can also be global.

If the RAM resources are limited, XST can generate additional RAMs using registers.
To generate additional RAMs using registers, use RAM Extraction (RAM_EXTRACT)
with the value set to no.

ROMs in Macro Generation
This section discusses ROMs in Macro Generation, and includes:

• Inferring ROMWhen Assigned Contexts are Constants

• Inferring ROM from an Array

• Types of ROM Available During Inference and Generation

• Type of Synchronous ROM Inferred by XST

• Applying RAM Style

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 219

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=219

Chapter 4: XST FPGA Optimization

Inferring ROM When Assigned Conte xts are Constants
A ROM can be inferred when all assigned contexts in a case or if...else statement are
constants. Macro inference considers only ROMs of at least 16 words with no width
restriction. For example, the following Hardware Description Language (HDL) equation
can be implemented with a ROM of 16 words of 4 bits:

data = if address = 0000 then 0010
if address = 0001 then 1100
if address = 0010 then 1011
...
if address = 1111 then 0001

Inferring ROM from an Arra y
A ROM can also be inferred from an array composed entirely of constants, as shown in
the following coding example.

type ROM_TYPEis array(15 downto 0)of std_logic_vector(3 downto 0);
constant ROM: rom_type := ("0010", "1100", "1011", ..., "0001");
...
data <= ROM(conv_integer(address));

ROM Extraction (ROM_EXTRACT) can be used to disable the inference of ROMs.
• To enable ROM inference, set the value to yes.
• To disable ROM inference, set the value to no.

The default is yes.

Types of ROM Availab le During Inference and Generation
Two types of ROM are available during inference and generation:
• Distributed ROM

Distributed ROMs are generated by using the optimal tree structure of LUT, MUXF5,
MUXF6, MUXF7 and MUXF8 primitives, which allows compact implementation
of large inferred ROMs.

• Block ROM
Block ROMs are generated by using block RAM resources. When a synchronous
ROM is identified, it can be inferred either as a distributed ROM plus a register, or it
can be inferred using block RAM resources.

Type of Synchronous ROM Inferred by XST
ROM Style (ROM_STYLE) specifies which type of synchronous ROM XST infers as
shown in the following table.

Option XST Behavior
block Infers the ROM using block RAM resources, provided the ROM fits entirely on a single block of

RAM.

distributed Infers a distributed ROM plus register.

auto (default) Determines the most efficient method to use, and infers the ROM accordingly.

Appl ying RAM Style
You can apply RAM Style (RAM_STYLE) as a VHDL attribute or a Verilog meta
comment to:
• An individual signal
• The entity or module of the ROM

Frontmatter
220 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=220

Chapter 4: XST FPGA Optimization

RAM Style (RAM_STYLE) can also be applied globally from:
• ISE® Design Suite in:

Process > Process Properties
• The command line

DSP48 Bloc k Resour ces
This section discusses DSP48 Block Resources, and includes:
• Macro Implementation on DSP48 Blocks
• Disabling Automatic DSP Resource Management
• Maximum Macro Configuration
• Asynchronous Set/Reset Signals
• Interconnected Macros

Macro Implementation on DSP48 Bloc ks
XST can automatically implement the following macros on a DSP48 block:
• Adders/subtractors
• Accumulators
• Multipliers
• Multiply adder/subtractors
• Multiply accumulate (MAC)

XST also supports the registered versions of these macros.

Macro implementation on DSP48 blocks is controlled by Use DSP48 (USE_DSP48) with
a default value of auto.

In auto mode, XST attempts to implement accumulators, multipliers, multiply
adder/subtractors and MACs on DSP48 resources. XST does not implement
adders/subtractors on DSP48 resources in automode. To push adder/subtractors into a
DSP48, set Use DSP48 (USE_DSP48) to yes.

XST performs automatic resource control in auto mode for all macros. Use the DSP
Utilization Ratio (DSP_UTILIZATION_RATIO) constraint in this mode to control
available DSP48 resources for the synthesis. By default, XST tries to utilize all available
DSP48 resources as much as possible.

Disab ling Automatic DSP Resour ce Management
If the number of user-specified DSP slices exceeds the number of available DSP resources
on the target FPGA device, XST issues a warning, and uses only available DSP resources
on the chip for synthesis. Disable automatic DSP resource management to see the
number of DSPs that XST can potentially infer for a specific design. To disable automatic
DSP resource management, set value = -1.

Maximum Macro Configuration
To deliver the best performance, XST by default tries to infer and implement the
maximum macro configuration, including as many registers in the DSP48 as possible.
Use Keep (KEEP) to shape a macro in a specific way. For example, if your design has a
multiplier with two register levels on each input, place Keep (KEEP) constraints on the
outputs of these registers to exclude the first register stage from the DSP48.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 221

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=221

Chapter 4: XST FPGA Optimization

Async hronous Set/Reset Signals
DSP48 blocks do not support registers with Asynchronous Set/Reset signals. Since such
registers cannot be absorbed by DSP48, this may lead to sub-optimal performance. The
Asynchronous to Synchronous (ASYNC_TO_SYNC) constraint allows you to replace
Asynchronous Set/Reset signals with Synchronous signals throughout the entire design.
This allows absorption of registers by DSP48, thereby improving quality of results.

Replacing Asynchronous Set/Reset signals by Synchronous signals makes the generated
NGC netlist NOT equivalent to the initial RTL description. You must ensure that
the synthesized design satisfies the initial specification. For more information, see
Asynchronous to Synchronous (ASYNC_TO_SYNC).

For more information on individual macro processing, see:

XST HDL Coding Techniques

Inter connected Macros
If your design contains several interconnected macros, where each macro can be
implemented on DSP48, XST attempts to interconnect DSP48 blocks using fast
BCIN/BCOUT and PCIN/PCOUT connections. Such situations are typical in filter and
complex multiplier descriptions.

XST can build complex DSP macros and DSP48 chains across the hierarchy when Keep
Hierarchy (KEEP_HIERARCHY) is set to no. This is the default in ISE® Design Suite.

Frontmatter
222 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=222

Chapter 4: XST FPGA Optimization

Mapping Logic Onto Bloc k RAM
If your design does not fit into the target device, you can place some of the design logic
into unused block RAM:

1. Put the part of the RTL description to be placed into block RAM in a separate
hierarchical block.

2. Attach a BRAM_MAP (Map Logic on BRAM) constraint to the separate hierarchical
block, either directly in Hardware Description Language (HDL) code, or in the XST
Constraint File (XCF).

XST cannot automatically decide which logic can be placed in block RAM.

Logic placed into a separate block must satisfy the following criteria:

• All outputs are registered.

• The block contains only one level of registers, which are output registers.

• All output registers have the same control signals.

• The output registers have a Synchronous Reset signal.

• The block does not contain multisources or tristate buses.

• Keep (KEEP) is not allowed on intermediate signals.

XST attempts to map the logic onto block RAM during the Advanced Synthesis step.
If any of the listed requirements are not satisfied, XST does not map the logic onto
block RAM, and issues a warning. If the logic cannot be placed in a single block RAM
primitive, XST spreads it over several block RAMs.

Mapping Logic Onto Bloc k RAM Log File Example One
...
===
* HDL Synthesis *
===
e is "bram_map_1.vhd".

Found 4-bit register for signal <RES>.
Found 4-bit adder for signal <$n0001> created at line 29.
Summary:

inferred 4 D-type flip-flop(s).
inferred 1 Adder/Subtractor(s).

Unit <logic_bram_1> synthesized.

===
* Advanced HDL Synthesis *
===
...
Entity <logic_bram_1> mapped on BRAM.
...
===
HDL Synthesis Report

Macro Statistics
Block RAMs : 1
256x4-bit single-port block RAM : 1

===
...

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 223

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=223

Chapter 4: XST FPGA Optimization

Mapping Logic Onto Bloc k RAM Log File Example Two
...
===
* Advanced HDL Synthesis *
===
...
INFO:Xst:1789 - Unable to map block <no_logic_bram> on BRAM.

Output FF <RES> must have a synchronous reset.

8-Bit Adders With Constant in a Single Bloc k Ram Primitive VHDL Coding
Example
--
-- The following example places 8-bit adders with
-- constant in a single block RAMprimitive
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity logic_bram_1 is
port (clk, rst : in std_logic;

A,B : in unsigned (3 downto 0);
RES : out unsigned (3 downto 0));

attribute bram_map: string;
attribute bram_map of logic_bram_1: entity is "yes";

end logic_bram_1;

architecture beh of logic_bram_1 is
begin

process (clk)
begin

if (clk’event and clk=’1’) then
if (rst = ’1’) then

RES <= "0000";
else

RES <= A + B + "0001";
end if;

end if;
end process;

end beh;

Frontmatter
224 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=224

Chapter 4: XST FPGA Optimization

8-Bit Adders With Constant in a Single Bloc k Ram Primitive Verilog Coding
Example
//
// The following example places 8-bit adders with
// constant in a single block RAMprimitive
//

(* bram_map="yes" *)
module v_logic_bram_1 (clk, rst, A, B, RES);

input clk, rst;
input [3:0] A, B;
output [3:0] RES;
reg [3:0] RES;

always @(posedge clk)
begin

if (rst)
RES <= 4’b0000;

else
RES <= A + B + 8’b0001;

end

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 225

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=225

Chapter 4: XST FPGA Optimization

Async hronous Reset VHDL Coding Example
--
-- In the following example, an asynchronous reset is used and
-- so, the logic is not mapped onto block RAM
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity logic_bram_2 is
port (clk, rst : in std_logic;

A,B : in unsigned (3 downto 0);
RES : out unsigned (3 downto 0));

attribute bram_map : string;
attribute bram_map of logic_bram_2 : entity is "yes";

end logic_bram_2;

architecture beh of logic_bram_2 is
begin

process (clk, rst)
begin

if (rst=’1’) then
RES <= "0000";

elsif (clk’event and clk=’1’) then
RES <= A + B + "0001";

end if;
end process;

end beh;

Async hronous Reset Verilog Coding Example
//
// In the following example, an asynchronous reset is used and
// so, the logic is not mapped onto block RAM
//

(* bram_map="yes" *)
module v_logic_bram_2 (clk, rst, A, B, RES);

input clk, rst;
input [3:0] A, B;
output [3:0] RES;
reg [3:0] RES;

always @(posedge clk or posedge rst)
begin

if (rst)
RES <= 4’b0000;

else
RES <= A + B + 8’b0001;

end

endmodule

Frontmatter
226 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=226

Chapter 4: XST FPGA Optimization

Flip-Flop Retiming
This section discusses Flip-Flop Retiming, and includes:
• About Flip-Flop Retiming
• Global Optimization
• Flip-Flop Retiming Messages
• Limitations of Flip-Flop Retiming
• Controlling Flip-Flop Retiming

About Flip-Flop Retiming
Flip-flop retiming consists of moving flip-flops and latches across logic for the purpose
of improving timing, thus increasing clock frequency.

Flip-flop retiming can be either forward or backward:
• Forward retiming moves a set of flip-flops that are the input of a LUT to a single

flip-flop at its output.
• Backward retiming moves a flip-flop that is at the output of a LUT to a set of

flip-flops at its input.

Flip-flop retiming can:
• Significantly increase the number of flip-flops
• Remove some flip-flops

Nevertheless, the behavior of the designs remains the same. Only timing delays are
modified.

Global Optimization
Flip-flop retiming is part of global optimization. It respects the same constraints as
all other optimization techniques. Since retiming is incremental, a flip-flop that is the
result of a retiming can be moved again in the same direction (forward or backward)
if it results in better timing. The only limit for the retiming occurs when the timing
constraints are satisfied, or if no more improvements in timing can be obtained.

Flip-Flop Retiming Messages
For each flip-flop moved, a message is printed specifying:

• The original and new flip-flop names
• Whether it is a forward or backward retiming

Limitations of Flip-Flop Retiming
Flip-flop retiming has the following limitations:
• Flip-flop retiming is not applied to flip-flops that have the IOB=TRUE property.
• Flip-flops are not moved forward if the flip-flop or the output signal has the Keep

(KEEP) property.
• Flip-flops are not moved backward if the input signal has the Keep (KEEP) property.
• Instantiated flip-flops are moved only if the Optimize Instantiated Primitives

constraint or command line option is set to yes.
• Flip-Flops are moved across instantiated primitives only if the Optimize Instantiated

Primitives command line option or constraint is set to yes.
• Flip-flops with both a set and a reset are not moved.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 227

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=227

Chapter 4: XST FPGA Optimization

Contr olling Flip-Flop Retiming
Use the following constraints to control flip-flop retiming:
• Register Balancing (REGISTER_BALANCING)
• Move First Stage (MOVE_FIRST_STAGE)
• Move Last Stage (MOVE_LAST_STAGE)

Partitions
XST now supports Partitions in place of Incremental Synthesis. Incremental Synthesis is
no longer supported. The incremental_synthesis and resynthesize constraints are no
longer supported. For more information on Partitions, see the ISE® Design Suite Help.

Speed Optimization Under Area Constraint
XST performs timing optimization under the area constraint. This option is named:
• LUT-FF Pairs Utilization Ratio

Virtex®-5 devices
• Slice (LUT-FF Pairs) Utilization Ratio (SLICE_UTILIZATION_RATIO)”

All other FPGA devices

Define in ISE® Design Suite with:

Process > Process Properties > XST Synthesis Options.

By default this constraint is set to 100% of the selected device size.

This constraint has influence at low level synthesis only It does not control inference.

If this constraint is specified, XST makes an area estimation. If the specified constraint
is met, XST continues timing optimization trying not to exceed the constraint. If the
design is larger than requested, XST tries to reduce the area first. If the area constraint
is met, XST begins timing optimization.

Example One (100%)
In the following example the area constraint was specified as 100% and initial estimation
shows that in fact it occupies 102% of the selected device. XST begins optimization and
reaches 95%.

...
==
*
* Low Level Synthesis
*
==

Found area constraint ratio of 100 (+ 5) on block tge,
actual ratio is 102.
Optimizing block <tge> to meet ratio 100 (+ 5) of 1536
slices :
Area constraint is met for block <tge>, final ratio is 95.

==

Frontmatter
228 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=228

Chapter 4: XST FPGA Optimization

Example Two (70%)
If the area constraint cannot be met, XST ignores it during timing optimization and runs
low level synthesis to achieve the best frequency. In the following example, the target
area constraint is set to 70%. Since XST was unable to satisfy the target area constraint,
XST issues the following warning:

...
==
*
* Low Level Synthesis
*
==
Found area constraint ratio of 70 (+ 5) on block fpga_hm,
actual ratio is 64.
Optimizing block <fpga_hm> to meet ratio 70 (+ 5) of 1536
slices :
WARNING:Xst - Area constraint could not be met for block <tge>,
final ratio is 94

...
==
...

Note (+5) stands for the max margin of the area constraint. If the area constraint is
not met, but the difference between the requested area and obtained area during area
optimization is less or equal then 5%, then XST runs timing optimization taking into
account the achieved area, not exceeding it.

Example Three (55%)
In the following example, the area was specified as 55%. XST achieved only 60%. But
taking into account that the difference between requested and achieved area is not more
than 5%, XST considers that the area constraint was met.

...
==
*
* Low Level Synthesis
*
==
Found area constraint ratio of 55 (+ 5) on block fpga_hm,
actual ratio is 64.
Optimizing block <fpga_hm> to meet ratio 55 (+ 5) of 1536
slices :
Area constraint is met for block <fpga_hm>, final ratio is 60.

==
...

In some situations, it is important to disable automatic resource management. To do so,
specify -1 as the value for SLICE_UTILIZATION_RATIO.

Slice (LUT-FF Pairs) Utilization Ratio (SLICE_UTILIZATION_RATIO) can be attached to
a specific block of a design. You can specify an absolute number of slices (or FF-LUT
pairs) as a percentage of the total number.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 229

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=229

Chapter 4: XST FPGA Optimization

FPGA Device Optimization Repor t Section
This section discusses FPGA Device Optimization Report Section, and includes:
• About FPGA Device Optimization Report Section
• Cell Usage Report
• Timing Report

About FPGA Device Optimization Repor t Section
During design optimization, XST reports:
• Potential removal of equivalent flip-flops

Two flip-flops (latches) are equivalent when they have the same data and control
pins.

• Register replication
Register replication is used to:
– Improve timing performance
– Satisfy MAX_FANOUT constraints
Use Register Duplication (REGISTER_DUPLICATION) to turn off register
replication.

FPGA Device Optimization Repor t Section Example
Starting low level synthesis ...
Optimizing unit <down4cnt> ...
Optimizing unit <doc_readwrite> ...
...

Optimizing unit <doc> ...
Building and optimizing final netlist ...
The FF/Latch <doc_readwrite/state_D2> in Unit <doc> is
equivalent to the following 2 FFs/Latches,
which will be removed : <doc_readwrite/state_P2>
<doc_readwrite/state_M2>Register
doc_reset_I_reset_out has been replicated 2 time(s)
Register wr_l has been replicated 2 time(s)

Cell Usage Repor t
The Cell Usage section of the Final Report gives the count of all the primitives used in
the design. The primitives are classified in the following groups:
• BELS Cell Usage
• Flip-Flops and Latches Cell Usage
• RAMS Cell Usage
• SHIFTERS Cell Usage
• Tristates Cell Usage
• Clock Buffers Cell Usage
• IO Buffers Cell Usage
• LOGICAL Cell Usage
• OTHER Cell Usage

Frontmatter
230 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=230

Chapter 4: XST FPGA Optimization

BELS Cell Usage
The BELS group in the Cell Usage section of the Final Report contains all the logical cells
that are basic elements of the targeted FPGA device family, for example:
• LUTs
• MUXCY
• MUXF5
• MUXF6
• MUXF7
• MUXF8

Flip-Flops and Latc hes Cell Usage
The Flip-Flops and Latches group in the Cell Usage section of the Final Report contains
all the flip-flops and latches that are primitives of the targeted FPGA device family, for
example:
• FDR
• FDRE
• LD

RAMS Cell Usage
The RAMS group in the Cell Usage section of the Final Report contains all the RAMs.

SHIFTERS Cell Usage
The SHIFTERS group in the Cell Usage section of the Final Report contains all the shift
registers that use the Virtex® device primitive:
• TSRL16
• SRL16_1
• SRL16E
• SRL16E_1
• SRLC

Tristates Cell Usage
The Tristates group in the Cell Usage section of the Final Report contains all the tristate
primitives:
BUFT

Clock Buff ers Cell Usage
The Clock Buffers group in the Cell Usage section of the Final Report contains all the
clock buffers:
• BUFG
• BUFGP
• BUFGDLL

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 231

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=231

Chapter 4: XST FPGA Optimization

IO Buff ers Cell Usage
The IO Buffers group in the Cell Usage section of the Final Report contains all the
standard I/O buffers (except the clock buffer):

• IBUF

• OBUF

• IOBUF

• OBUFT

• IBUF_GTL ...

LOGICAL Cell Usage
The LOGICAL group in the Cell Usage section of the Final Report contains all the logical
cells primitives that are not basic elements:

• AND2

• OR2 ...

OTHER Cell Usage
The OTHER group in the Cell Usage section of the Final Report contains all the cells that
have not been classified in the previous groups.

Cell Usage Repor t Example
==
...
Cell Usage :
BELS : 70
LUT2 : 34
LUT3 : 3
LUT4 : 34
FlipFlops/Latches : 9
FDC : 8
FDP : 1
Clock Buffers : 1
BUFGP : 1
IO Buffers : 24
IBUF : 16
OBUF : 8
==

Where XST estimates the number of slices and gives, for example, the number of
flip-flops, IOBs, and BRAMS. This report closely resembles the report produced by MAP.

Short tables give information about:

• The number of clocks in the design, how each clock is buffered, and how many
loads it has

• The number of asynchronous set/reset signals in the design, how each signal is
buffered, and how many loads it has

Frontmatter
232 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=232

Chapter 4: XST FPGA Optimization

Timing Repor t
This section discusses Timing Report, and includes:

• About Timing Report

• Timing Report Timing Summary Section

• Timing Report Timing Detail Section

• Timing Report Paths and Ports

About Timing Repor t
At the end of synthesis, XST reports the timing information for the design. The Timing
Report shows the information for all four possible domains of a netlist:

• register to register

• input to register

• register to outpad

• inpad to outpad

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 233

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=233

Chapter 4: XST FPGA Optimization

Timing Repor t Example
These timing numbers are only a synthesis estimate. For accurate timing information,
see the TRACE report generated after place-and-route.

Clock Information:

-----------------------------------+------------------------+-------+
Clock Signal | Clock buffer(FF name) | Load |
-----------------------------------+------------------------+-------+
CLK | BUFGP | 11 |
-----------------------------------+------------------------+-------+

Asynchronous Control Signals Information:
--
-------------------------------------+-------------------------------+-------+
Control Signal | Buffer(FF name) | Load |
-------------------------------------+-------------------------------+-------+
rstint(MACHINE/current_state_Out01:O)| NONE(sixty/lsbcount/qoutsig_3)| 4 |
RESET | IBUF | 3 |
sixty/msbclr(sixty/msbclr:O) | NONE(sixty/msbcount/qoutsig_3)| 4 |
-------------------------------------+-------------------------------+-------+

Timing Summary:

Speed Grade: -12

Minimum period: 2.644ns (Maximum Frequency: 378.165MHz)
Minimum input arrival time before clock: 2.148ns
Maximum output required time after clock: 4.803ns
Maximum combinational path delay: 4.473ns

Timing Detail:

All values displayed in nanoseconds (ns)

===
Timing constraint: Default period analysis for Clock ’CLK’

Clock period: 2.644ns (frequency: 378.165MHz)
Total number of paths / destination ports: 77 / 11

Delay: 2.644ns (Levels of Logic = 3)

Source: MACHINE/current_state_FFd3 (FF)
Destination: sixty/msbcount/qoutsig_3 (FF)
Source Clock: CLK rising
Destination Clock: CLK rising

Data Path: MACHINE/current_state_FFd3 to sixty/msbcount/qoutsig_3
Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)
-- ------------
FDC:C->Q 8 0.272 0.642 MACHINE/current_state_FFd3 (MACHINE/current_state_FFd3)
LUT3:I0->O 3 0.147 0.541 Ker81 (clkenable)
LUT4_D:I1->O 1 0.147 0.451 sixty/msbce (sixty/msbce)
LUT3:I2->O 1 0.147 0.000 sixty/msbcount/qoutsig_3_rstpot (N43)
FDC:D 0.297 sixty/msbcount/qoutsig_3

--
Total 2.644ns (1.010ns logic, 1.634ns route)

(38.2% logic, 61.8% route)

Frontmatter
234 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=234

Chapter 4: XST FPGA Optimization

Timing Repor t Timing Summar y Section
The Timing Summary section of the Timing Report summarizes the timing paths for all
four domains:

• The path from any clock to any clock in the design:

Minimum period: 7.523ns (Maximum Frequency: 132.926MHz)

• The maximum path from all primary inputs to the sequential elements:

Minimum input arrival time before clock: 8.945ns

• The maximum path from the sequential elements to all primary outputs:

Maximum output required time before clock: 14.220ns

• The maximum path from inputs to outputs:

Maximum combinational path delay: 10.899ns

If there is no path in the domain, No path found is printed instead of the value.

Timing Repor t Timing Detail Section
The Timing Detail section of the Timing Report describes the most critical path in detail
for each region:

• Start point of the path

• End point of the path

• Maximum delay of the path

• Slack

The start and end points can be:

• Clock (with the phase: rising/falling), or

• Port

Path from Clock ’sysclk’ rising to Clock ’sysclk’ rising : 7.523ns (Slack: -7.523ns)

The detailed path shows:

• Cell type

• Input and output of this gate

• Fanout at the output

• Gate delay

• Net delay estimate

• Name of the instance.

When entering a hierarchical block, begin scope is printed. When exiting a hierarchical
block, end scope is printed.

The preceding report corresponds to the following schematic.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 235

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=235

Chapter 4: XST FPGA Optimization

Timing Repor t Schematic

Timing Repor t Paths and Por ts
The Timing Report section shows the number of analyzed paths and ports. If XST is
run with timing constraints, it also shows the number of failed paths and ports. The
number of analyzed and failed paths shows how many timing problems there are in
the design. The number of analyzed and failed ports may show how they are spread in
the design. The number of ports in a timing report represent the number of destination
elements for a timing constraint.

For example, if you use the following timing constraints:

TIMESPEC "TSidentifier"=FROM "source_group" TO "dest_group" value
units;

then the number of ports corresponds to the number of elements in the destination
group.

For a given timing constraint, XST may report that the number of failed paths is 100,
but that the number of failed destination ports is only two flip-flops. In that case, it is
sufficient to analyze the design description for these two flip-flops only in order to
detect the changes necessary to meet timing.

Implementation Constraints
XST writes all implementation constraints generated from Hardware Description
Language (HDL) or constraint file attributes (such as LOC) into the output NGC file.

Keep (KEEP) properties are generated during buffer insertion for maximum fanout
control or for optimization.

Frontmatter
236 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=236

Chapter 4: XST FPGA Optimization

FPGA Device Primitive Suppor t
This section discusses FPGA Device Primitive Support, and includes:

• About FPGA Device Primitive Support

• Generating Primitives Through Attributes

• Primitives and Black Boxes

• VHDL and Verilog Device Primitives Libraries

• Reporting of Instantiated Device Primitives

• Primitives Related Constraints

• Primitives Coding Examples

• Using the UniMacro Library

About FPGA Device Primitive Suppor t
XST enables you to instantiate device primitives directly in VHDL or Verilog code.
Primitives such as the following can be manually inserted in a Hardware Description
Language (HDL) design through instantiation:

• MUXCY_L

• LUT4_L

• CLKDLL

• RAMB4_S1_S16

• IBUFG_PCI33_5

• NAND3b2

These primitives:

• Are compiled in the UNISIM library

• Are not optimized by XST by default

• Are available in the final NGC file

Use Optimize Instantiated Primitives synthesis to optimize instantiated primitives and
obtain better results. Timing information is available for most of the primitives, allowing
XST to perform efficient timing-driven optimization.

In order to simplify instantiation of complex primitives as RAMs, XST supports an
additional library called UniMacro.

For more information, see the Libraries Guides.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 237

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=237

Chapter 4: XST FPGA Optimization

Generating Primitives Through Attrib utes
Some primitives can be generated through attributes:

• Buffer Type (BUFFER_TYPE)

Can be assigned to the primary input or internal signal to force the use of the
following:

– BUFGDLL

– IBUFG

– BUFR

– BUFGP

The same constraints can be used to disable buffer insertion.

• I/O Standard (IOSTANDARD)

Can be used to assign an I/O standard to an I/O primitive.

For example, the following assigns PCI33_5 I/O standard to the I/O port:

// synthesis attribute IOSTANDARDof in1 is PCI33_5

Primitives and Black Boxes
The primitive support is based on the concept of the black box. For information on the
basics of black box support, see Safe FSM Implementation.

There is a significant difference between black box and primitive support. Assume you
have a design with a submodule called MUXF5. In general, the MUXF5 can be your own
functional block or a Xilinx® device primitive. To avoid confusion about how XST
interprets this module, attach BoxType (BOX_TYPE) to the component declaration of
MUXF5.

If BoxType (BOX_TYPE) is attached to the MUXF5 with a value of:

• primitive, or black_box

XST tries to interpret this module as a Xilinx device primitive and use its parameters,
for instance, in critical path estimation.

• user_black_box

XST processes it as a regular user black box.

If the name of the user black box is the same as that of a Xilinx device primitive, XST
renames it to a unique name and issues a warning. For example, MUX5 could be
renamed to MUX51 as shown in the following log file example.

...
==
* Low Level Synthesis *
==

WARNING:Xst:79 - Model ’muxf5’ has different characteristics in
destination library
WARNING:Xst:80 - Model name has been changed to ’muxf51’
...

If BoxType (BOX_TYPE) is not attached to the MUXF5, XST processes this block as a
user hierarchical block. If the name of the user black box is the same as that of a Xilinx
device primitive, XST renames it to a unique name and issues a warning.

Frontmatter
238 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=238

Chapter 4: XST FPGA Optimization

VHDL and Verilog Device Primitives Libraries
XST provides dedicated libraries, both in VHDL and Verilog, simplifying instantiation of
Xilinx® device primitives in your HDL source code These libraries contain the complete
set of Xilinx device primitives declarations with a BoxType (BOX_TYPE) constraint
attached to each component.

Device Libraries
In VHDL, declare library UNISIM with its package vcomponents in your source code:

library unisim;
use unisim.vcomponents.all;

The source code of this package can be found in the following file of the XST installation:

vhdl\src\ unisims\unisims_vcomp.vhd

In Verilog, the UNISIM library is precompiled. XST automatically links it with your
design.

Primitive Instantiation Guidelines
Use UPPERCASE for generic (VHDL) and parameter (Verilog) values when instantiating
primitives. For example the ODDR element has the following component declaration
in the UNISIM library:

component ODDR
generic

(DDR_CLK_EDGE: string := "OPPOSITE_EDGE";
INIT : bit := ’0’;
SRTYPE : string := "SYNC");

port(Q : out std_ulogic;
C : in std_ulogic;
CE : in std_ulogic;
D1 : in std_ulogic;
D2 : in std_ulogic;
R : in std_ulogic;
S : in std_ulogic);

end component;

When you instantiate this primitive in your code, the values of DDR_CLK_EDGE and
SRTYPE generics must be in UPPERCASE. If not, XST issues a warning stating that
unknown values are used.

Some primitives, such as LUT1, enable you to use an INIT during instantiation. The two
ways to pass an INIT to the final netlist are:

• Attach an INIT attribute to the instantiated primitive.

• Pass the INIT with the generics mechanism (VHDL), or the parameters mechanism
(Verilog). Xilinx recommends this method, since it allows you to use the same code
for synthesis and simulation.

Repor ting of Instantiated Device Primitives
XST does not issue any message concerning instantiation of instantiated device
primitives during HDL synthesis because the BoxType (BOX_TYPE) attribute with its
value, primitive, is attached to each primitive in the UNISIM library.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 239

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=239

Chapter 4: XST FPGA Optimization

XST issues a warning as shown in the log file example below if:
• You instantiate a block (non primitive) in your design

AND
• The block has no contents (no logic description)

OR
• The block has a logic description

AND
• You attach a BoxType (BOX_TYPE) constraint to it with a value of user_black_box.

Log File Example
...
Analyzing Entity <black_b> (Architecture <archi>).
WARNING: (VHDL_0103). c:\jm\des.vhd (Line 23).
Generating a Black Box for component <my_block>.
Entity <black_b> analyzed. Unit <black_b> generated.
...

Primitives Related Constraints
• BoxType (BOX_TYPE)
• The PAR constraints that can be passed from HDL to NGC without processing

Primitives Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

Passing an INIT Value Via the INIT Constraint VHDL Coding Example
--
-- Passing an INIT value via the INIT constraint.
--

library ieee;
use ieee.std_logic_1164.all;

library unisim;
use unisim.vcomponents.all;

entity primitive_1 is
port(I0,I1 : in std_logic;

O : out std_logic);
end primitive_1;

architecture beh of primitive_1 is

attribute INIT: string;
attribute INIT of inst: label is "1";

begin

inst: LUT2 port map (I0=>I0,I1=>I1,O=>O);

end beh;

Frontmatter
240 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=240

Chapter 4: XST FPGA Optimization

Passing an INIT Value Via the INIT Constraint Verilog Coding Example
//
// Passing an INIT value via the INIT constraint.
//

module v_primitive_1 (I0,I1,O);
input I0,I1;
output O;

(* INIT="1" *)
LUT2 inst (.I0(I0), .I1(I1), .O(O));

endmodule

Passing an INIT Value Via the Generics Mechanism VHDL Coding Example
--
-- Passing an INIT value via the generics mechanism.
--

library ieee;
use ieee.std_logic_1164.all;

library unisim;
use unisim.vcomponents.all;

entity primitive_2 is
port(I0,I1 : in std_logic;

O : out std_logic);
end primitive_2;

architecture beh of primitive_2 is
begin

inst: LUT2 generic map (INIT=>"1")
port map (I0=>I0,I1=>I1,O=>O);

end beh;

Passing an INIT Value Via the Parameter s Mechanism Verilog Coding
Example
//
// Passing an INIT value via the parameters mechanism.
//

module v_primitive_2 (I0,I1,O);
input I0,I1;
output O;

LUT2 #(4’h1) inst (.I0(I0), .I1(I1), .O(O));

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 241

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=241

Chapter 4: XST FPGA Optimization

Passing an INIT Value Via the Defparam Mechanism Verilog Coding
Example
//
// Passing an INIT value via the defparam mechanism.
//

module v_primitive_3 (I0,I1,O);
input I0,I1;
output O;

LUT2 inst (.I0(I0), .I1(I1), .O(O));
defparam inst.INIT = 4’h1;

endmodule

Using the UniMacr o Librar y
This section discusses Using the UniMacro Library, and includes:

• About Using the UniMacro Library

• UniMacro Library Device Support

• Using the UniMacro Library in VHDL

• Using the UniMacro Library in Verilog

About Using the UniMacr o Librar y
In order to simplify instantiation of such complex primitives as RAMs, XST supports an
additional library called UniMacro.

For more information, see the Libraries Guides.

UniMacr o Librar y Device Suppor t
The UniMacro library supports the following devices:

• Virtex®-4

• Virtex-5 and newer

Using the UniMacr o Librar y in VHDL
In VHDL, declare the library unimacro with its package vcomponents in your source
code:

library unimacro;
use unimacro.vcomponents.all;

The source code of this package is located in the following file in the XST installation:

vhdl\src\unisims\unisims_vcomp.vhd

Using the UniMacr o Librar y in Verilog
In Verilog, the UniMacro library is precompiled. XST automatically links it with your
design.

Frontmatter
242 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=242

Chapter 4: XST FPGA Optimization

Cores Processing
If a design contains cores represented by an Electronic Data Interchange Format (EDIF)
or an NGC file, XST can automatically read them for timing estimation and area
utilization control. Use ISE® Design Suite Process > Process Properties > Synthesis
Options > Read Cores to enable or disable this feature. Using the read_cores option of
the run command from the command line, you can also specify optimize. This enables
cores processing, and allows XST to integrate the core netlist into the overall design. XST
reads cores by default.

If Read Cores is disabled, XST estimates Maximum Combinational Path Delay as 6.639ns
(critical path goes through a simple AND function) and an area of one slice.

If Read Cores is enabled, XST issues the following messages during Low Level Synthesis:

...
==
*
* Low Level Synthesis
*
==

Launcher: Executing edif2ngd -noa "my_add.edn" "my_add.ngo"
INFO:NgdBuild - Release 6.1i - edif2ngd G.21
INFO:NgdBuild - Copyright (c) 1995-2003 Xilinx, Inc.
All rights reserved.
Writing the design to "my_add.ngo"...
Loading core <my_add> for timing and area information
for instance <inst>.

==
...

Estimation of Maximum Combinational Path Delay is 8.281ns with an area of five slices.

By default, XST reads Electronic Data Interchange Format (EDIF) and NGC cores from
the current (project) directory. If the cores are not in the project directory, specify the
directory in which the cores are located with Cores Search Directories (-sd).

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 243

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=243

Chapter 4: XST FPGA Optimization

Coding Example
In the following VHDL coding example, the block my_add is an adder, which is
represented as a black box in the design whose netlist was generated by the CORE
Generator™ software.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity read_cores is
port(

A, B : in std_logic_vector (7 downto 0);
a1, b1 : in std_logic;
SUM : out std_logic_vector (7 downto 0);
res : out std_logic);

end read_cores;

architecture beh of read_cores is
component my_add
port (

A, B : in std_logic_vector (7 downto 0);
S : out std_logic_vector (7 downto 0));

end component;

begin
res <= a1 and b1;
inst: my_add port map (A => A, B => B, S => SUM);

end beh;

Frontmatter
244 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=244

Chapter 4: XST FPGA Optimization

Specifying INIT and RLOC
Use the UNISIM library to directly instantiate LUT components in your Hardware
Description Language (HDL) code. To specify a function that a particular LUT must
execute, apply an INIT constraint to the instance of the LUT. To place an instantiated
LUT or register in a particular slice of the chip, attach an RLOC constraint to the same
instance.

It is not always convenient to calculate INIT functions and different methods that can be
used to achieve this. Instead, you can describe the function that you want to map onto a
single LUT in your VHDL or Verilog code in a separate block.

Attaching a Map Entity on a Single LUT (LUT_MAP) constraint to this block indicates to
XST that this block must be mapped on a single LUT. XST automatically calculates the
INIT value for the LUT and preserves this LUT during optimization.

XST automatically recognizes the XC_MAP constraint supported by Synopsys.

Passing an INIT Value Via the LUT_MAP Constraint Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

The following coding examples show how to pass an INIT value using the LUT_MAP
constraint.

In these examples, the top block contains the instantiation of two AND gates, described
in and_one and and_two blocks. XST generates two LUT2s and does not merge them.

For more information, see:

Map Entity on a Single LUT (LUT_MAP)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 245

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=245

Chapter 4: XST FPGA Optimization

Passing an INIT Value Via the LUT_MAP Constraint VHDL Coding Example
--
-- Mapping on LUTs via LUT_MAP constraint
--

library ieee;
use ieee.std_logic_1164.all;
entity and_one is

port (A, B : in std_logic;
REZ : out std_logic);

attribute LUT_MAP: string;
attribute LUT_MAP of and_one: entity is "yes";

end and_one;

architecture beh of and_one is
begin

REZ <= A and B;
end beh;

--

library ieee;
use ieee.std_logic_1164.all;
entity and_two is

port(A, B : in std_logic;
REZ : out std_logic);

attribute LUT_MAP: string;
attribute LUT_MAP of and_two: entity is "yes";

end and_two;

architecture beh of and_two is
begin

REZ <= A or B;
end beh;

--

library ieee;
use ieee.std_logic_1164.all;
entity inits_rlocs_1 is

port(A,B,C : in std_logic;
REZ : out std_logic);

end inits_rlocs_1;

architecture beh of inits_rlocs_1 is

component and_one
port(A, B : in std_logic;

REZ : out std_logic);
end component;

component and_two
port(A, B : in std_logic;

REZ : out std_logic);
end component;

signal tmp: std_logic;
begin

inst_and_one: and_one port map (A => A, B => B, REZ => tmp);
inst_and_two: and_two port map (A => tmp, B => C, REZ => REZ);

end beh;

Frontmatter
246 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=246

Chapter 4: XST FPGA Optimization

Passing an INIT Value Via the LUT_MAP Constraint Verilog Coding Example
//
// Mapping on LUTs via LUT_MAP constraint
//

(* LUT_MAP="yes" *)
module v_and_one (A, B, REZ);

input A, B;
output REZ;

and and_inst(REZ, A, B);

endmodule

// --

(* LUT_MAP="yes" *)
module v_and_two (A, B, REZ);

input A, B;
output REZ;

or or_inst(REZ, A, B);

endmodule

// --

module v_inits_rlocs_1 (A, B, C, REZ);
input A, B, C;
output REZ;

wire tmp;

v_and_one inst_and_one (A, B, tmp);
v_and_two inst_and_two (tmp, C, REZ);

endmodule

Specifying INIT Value for a Flip-Flop Coding Examples
If a function cannot be mapped on a single LUT, XST issues an error message and
interrupts synthesis. To define an INIT value for a flip-flop or a shift register, described
at RTL level, assign its initial value in the signal declaration stage. This value is not
ignored during synthesis and is propagated to the final netlist as an INIT constraint
attached to the flip-flop or shift register.

In the following coding examples, a 4-bit register is inferred for signal tmp.

An INIT value equal 1011 is attached to the inferred register and propagated to the
final netlist.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 247

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=247

Chapter 4: XST FPGA Optimization

Specifying INIT Value for a Flip-Flop VHDL Coding Example
--
-- Specification on an INIT value for a flip-flop,
-- described at RTL level
--

library ieee;
use ieee.std_logic_1164.all;

entity inits_rlocs_2 is
port (CLK : in std_logic;

DI : in std_logic_vector(3 downto 0);
DO : out std_logic_vector(3 downto 0));

end inits_rlocs_2;

architecture beh of inits_rlocs_2 is signal
tmp: std_logic_vector(3 downto 0):="1011";

begin

process (CLK)
begin

if (clk’event and clk=’1’) then
tmp <= DI;

end if;
end process;

DO <= tmp;

end beh;

Specifying INIT Value for a Flip-Flop Verilog Coding Example
//
// Specification on an INIT value for a flip-flop,
// described at RTL level
//

module v_inits_rlocs_2 (clk, di, do);
input clk;
input [3:0] di;
output [3:0] do;
reg [3:0] tmp;

initial begin
tmp = 4’b1011;

end

always @(posedge clk)
begin

tmp <= di;
end

assign do = tmp;

endmodule

Frontmatter
248 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=248

Chapter 4: XST FPGA Optimization

Specifying INIT and RLOC Values for a Flip-Flop Coding Examples
To infer a register and place it in a specific location of a chip, attach an RLOC constraint
to the tmp signal as shown in the following coding examples.

XST propagates it to the final netlist. XST supports this feature is supported for:

• Registers, and

• Inferred block RAM if it can be implemented on a single block RAM primitive

Specifying INIT and RLOC Values for a Flip-Flop VHDL Coding Example

--
-- Specification on an INIT and RLOC values for a flip-flop,
-- described at RTL level
--

library ieee;
use ieee.std_logic_1164.all;

entity inits_rlocs_3 is
port (CLK : in std_logic;

DI : in std_logic_vector(3 downto 0);
DO : out std_logic_vector(3 downto 0));

end inits_rlocs_3;

architecture beh of inits_rlocs_3 is
signal tmp: std_logic_vector(3 downto 0):="1011";

attribute RLOC: string;
attribute RLOC of tmp: signal is "X3Y0 X2Y0 X1Y0 X0Y0";

begin

process (CLK)
begin

if (clk’event and clk=’1’) then
tmp <= DI;

end if;
end process;

DO <= tmp;

end beh;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 249

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=249

Chapter 4: XST FPGA Optimization

Specifying INIT and RLOC Values for a Flip-Flop Verilog Coding Example
//
// Specification on an INIT and RLOC values for a flip-flop,
// described at RTL level
//

module v_inits_rlocs_3 (clk, di, do);
input clk;
input [3:0] di;
output [3:0] do;
(* RLOC="X3Y0 X2Y0 X1Y0 X0Y0" *)

reg [3:0] tmp;

initial begin
tmp = 4’b1011;

end

always @(posedge clk)
begin

tmp <= di;
end

assign do = tmp;

endmodule

Frontmatter
250 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=250

Chapter 4: XST FPGA Optimization

Using PCI Flow With XST
This section discusses Using PCI™ Flow With XST, and includes:
• Rules for Using PCI Flow With XST
• Preventing Logic and Flip-Flop Replication
• Disabling Read Cores

Rules for Using PCI Flow With XST
Follow these rules to satisfy placement constraints and meet timing requirements when
using PCI flow with XST.
• For VHDL, ensure that the names in the generated netlist are all in UPPER case.

The default case is lower.
Specify the case in ISE® Design Suite in:
Process > Process Properties > Synthesis Options > Case

• For Verilog, ensure that Case is set to maintain.
The default case is maintain.
Specify the case in ISE Design Suite in:
Process > Process Properties > Synthesis Options > Case

• Preserve the hierarchy of the design.
Specify the Keep Hierarchy (KEEP_HIERARCHY) setting in ISE Design Suite in:
Process > Process Properties > Synthesis Options > Keep Hierarchy

• Preserve equivalent flip-flops.
XST removes equivalent flip-flops by default.
Specify the Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL)
setting in ISE Design Suite in:
Process > Process Properties > Xilinx® Specific Options > Equivalent Register
Removal

Preventing Logic and Flip-Flop Replication
To prevent logic and flip-flop replication caused by a high fanout flip-flop set/reset
signal:
• Set a high maximum fanout value for the entire design in ISE® Design Suite in:

Process > Process Properties > Synthesis Options > Max Fanout, or
• Use Max Fanout (MAX_FANOUT) to set a high maximum fanout value for the

initialization signal connected to the RST port of the PCI™ core.
Example:
max_fanout=2048

Disab ling Read Cores
Disabling Read Cores prevents XST from automatically reading PCI™ cores for timing
and area estimation. In reading PCI cores, XST may perform logic optimization that
does not allow the design to meet timing requirements, or which might lead to errors
during MAP. By default, XST reads cores for timing and area estimation. To disable
Read Cores, uncheck it in ISE® Design Suite in:

Process > Process Properties > Synthesis Options > Read Cores

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 251

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=251

Frontmatter
252 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=252

Chapter 5

XST CPLD Optimization
This chapter discusses XST CPLD Optimization, and includes:
• CPLD Synthesis Options
• Implementation Details for Macro Generation
• CPLD Synthesis Log File Analysis
• CPLD Synthesis Constraints
• Improving Results in CPLD Synthesis

CPLD Synthesis Options
This section discusses the XST options related only to CPLD synthesis that can be set
ISE® Design Suite in:

Process > Process Properties

XST generates an NGC file ready for the CPLD fitter.

The general flow of XST for CPLD synthesis is:
1. Hardware Description Language (HDL) synthesis of VHDL or Verilog designs
2. Macro inference
3. Module optimization
4. NGC file generation

CPLD Synthesis Suppor ted Devices
XST supports CPLD synthesis for the following devices:
• CoolRunner™ XPLA3
• CoolRunner-II
• XC9500
• XC9500XL

The synthesis for CoolRunner XPLA3 device families and XC9500XL device families
includes clock enable processing. You can allow or invalidate the clock enable signal.
When invalidated, it is replaced by equivalent logic.

The selection of the macros that use the clock enable (counters, for instance) depends
on the device type. A counter with clock enable is accepted for the CoolRunner XPLA3
device families and XC9500XL device families, but rejected (replaced by equivalent
logic) for XC9500 devices.

Setting CPLD Synthesis Options
Set the following CPLD synthesis options in ISE® Design Suite in:

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 253

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=253

Chapter 5: XST CPLD Optimization

Process > Process Properties > Synthesis Options

• Keep Hierarchy (KEEP_HIERARCHY)
• Macro Preserve (-pld_mp)
• XOR Preserve (-pld_xp)
• Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL)
• Clock Enable (-pld_ce)
• WYSIWYG (-wysiwyg)
• No Reduce (NOREDUCE)

For more information, see:

XST CPLD Constraints (Non-Timing)

Implementation Details for Macro Generation
XST processes the following macros:
• Adders
• Subtractors
• Add/sub
• Multipliers
• Comparators
• Multiplexers
• Counters
• Logical shifters
• Registers (flip-flops and latches)
• XORs

The macro generation is decided by the Macro Preserve command line option, which
can take two values:
• yes

Macro generation is allowed.
• no

Macro generation is inhibited.

The general macro generation flow is:
1. Hardware Description Language (HDL) infers macros and submits them to the

low-level synthesizer.
2. Low-level synthesizer accepts or rejects the macros depending on the resources

required for the macro implementations.

An accepted macro is generated by an internal macro generator. A rejected macro is
replaced by equivalent logic generated by the HDL synthesizer. A rejected macro may
be decomposed by the HDL synthesizer into component blocks so that one component
may be a new macro requiring fewer resources than the initial one, and another smaller
macro may be accepted by XST. For instance, a flip-flop macro with clock enable (CE)
cannot be accepted when mapping onto the XC9500. In this case the HDL synthesizer
submits two new macros:
• A flip-flop macro without clock enable signal
• A MUX macro implementing the clock enable function

Frontmatter
254 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=254

Chapter 5: XST CPLD Optimization

A generated macro is optimized separately and then merged with surrounded logic
because optimization gives better results for larger components.

CPLD Synthesis Log File Anal ysis
XST messages related to CPLD synthesis are located after the following message:

Low Level Synthesis

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 255

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=255

Chapter 5: XST CPLD Optimization

The XST log file contains:

• Tracing of progressive unit optimizations

Optimizing unit unit_name ...

• Information, warnings or fatal messages related to unit optimization:

– When equation shaping is applied (XC9500 devices only):

Collapsing ...

– Removing equivalent flip-flops

Register ff1 equivalent to ff2 has been removed

– User constraints fulfilled by XST:

implementation constraint: constraint_name[=value]: signal_name

• Final results statistics

Final Results
Top Level Output file name : file_name
Output format : ngc
Optimization goal : {area | speed}
Target Technology : {9500 | 9500xl | 9500xv | xpla3 | xbr | cr2s}
Keep Hierarchy : {yes | soft | no}
Macro Preserve : {yes | no}
XOR Preserve : {yes | no}

Design Statistics
NGC Instances: nb_of_instances
I/Os: nb_of_io_ports

Macro Statistics
FSMs: nb_of_FSMs
Registers: nb_of_registers
Tristates: nb_of_tristates
Comparators: nb_of_comparators

n-bit comparator {equal | not equal | greater| less | greatequal | lessequal}:
nb_of_n_bit_comparators

Multiplexers: nb_of_multiplexers
n-bit m-to-1 multiplexer :
nb_of_n_bit_m_to_1_multiplexers

Adders/Subtractors: nb_of_adds_subs
n-bit adder: nb_of_n_bit_adds
n-bit subtractor: nb_of_n_bit_subs

Multipliers: nb_of_multipliers
Logic Shifters: nb_of_logic_shifters
Counters: nb_of_counters

n-bit {up | down | updown} counter: nb_of_n_bit_counters
XORs: nb_of_xors

Cell Usage :
BELS: nb_of_bels

AND...: nb_of_and ...
OR...: nb_of_or ...
INV: nb_of_inv
XOR2: nb_of_xor2
GND: nb_of_gnd # VCC: nb_of_vcc

FlipFlops/Latches: nb_of_ff_latch
FD...: nb_of_fd ...
LD...: nb_of_ld ...

Tri-States: nb_of_tristates
BUFE: nb_of_bufe
BUFT: nb_of_buft

IO Buffers: nb_of_iobuffers
IBUF: nb_of_ibuf
OBUF: nb_of_obuf
IOBUF: nb_of_iobuf
OBUFE: nb_of_obufe
OBUFT: nb_of_obuft # Others: nb_of_others

Frontmatter
256 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=256

Chapter 5: XST CPLD Optimization

CPLD Synthesis Constraints
The constraints (attributes) specified in the Hardware Description Language (HDL)
design or in the constraint files are written by XST into the NGC file as signal properties.

Improving Results in CPLD Synthesis
XST produces optimized netlists for the CPLD fitter, which:
• Fits them in specified devices
• Creates the download programmable files

The CPLD low-level optimization of XST consists of:
• Logic minimization
• Subfunction collapsing
• Logic factorization
• Logic decomposition

Optimization results in an NGC netlist corresponding to Boolean equations. The CPLD
fitter reassembles these equations to fit the best of the macrocell capacities. A special
XST optimization process, known as equation shaping, is applied for XC9500 and
XC9500XL devices when the following options are selected:
• Keep Hierarchy

No
• Optimization Effort

2 or High
• Macro Preserve

No

The equation shaping processing also includes a critical path optimization algorithm.
This algorithm tries to reduce the number of levels of critical paths.

Xilinx® recommends CPLD fitter multilevel optimization because of the special
optimizations done by the fitter:
• D to T flip-flop conversion
• De Morgan Boolean expression selection

Obtaining Better Frequenc y
The frequency depends on the number of logic levels (logic depth). To reduce the
number of levels, Xilinx® recommends the following options:
• Optimization Effort

Set Optimization Effort to 2 or High.
This value implies the calling of the collapsing algorithm, which tries to reduce the
number of levels without increasing the complexity beyond certain limits.

• Optimization Goal
Set Optimization Goal to Speed.
The priority is the reduction of number of levels.

Obtaining the best frequency depends on the CPLD fitter optimization. Xilinx
recommends running the multi-level optimization of the CPLD fitter with different
values for the -pterms options, beginning with 20 and finishing with 50 with a step of 5.
Statistically the value 30 gives the best results for frequency.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 257

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=257

Chapter 5: XST CPLD Optimization

The following tries, in this order, may give successively better results for frequency:
• Obtaining Better Frequency Try 1
• Obtaining Better Frequency Try 2
• Obtaining Better Frequency Try 3
• Obtaining Better Frequency Try 4

The CPU time increases from Try 1 to Try 4.

Obtaining Better Frequenc y Try 1
Select only optimization effort 2 and speed optimization. The other options have default
values.
• Optimization effort

2 or High
• Optimization Goal

Speed

Obtaining Better Frequenc y Try 2
Flatten the user hierarchy. In this case optimization has a global view of the design,
and the depth reduction may be better.
• Optimization effort

1/Normal or 2/High
• Optimization Goal

Speed
• Keep Hierarchy

no

Obtaining Better Frequenc y Try 3
Merge the macros with surrounded logic. The design flattening is increased.
• Optimization effort

1 or Normal
• Optimization Goal

Speed
• Keep Hierarchy

no
• Macro Preserve

no

Obtaining Better Frequenc y Try 4
Apply the equation shaping algorithm. Options to be selected:
• Optimization effort

2 or High
• Macro Preserve

no
• Keep Hierarchy

no

Frontmatter
258 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=258

Chapter 5: XST CPLD Optimization

Fitting a Large Design
A design may not fit in the target device because it exceeds the number of device
macrocells or device P-Term capacity. In that event, you may:

• Select an Area Optimization for XST, or

• Use the WYSIWYG Command Line Option

Select an Area Optimization for XST
When you select an area optimization for XST, statistically the best area results are
obtained with the following options:

• Optimization effort

1 (Normal) or 2 (High)

• Optimization Goal

area

• Default values for other options

Use the WYSIWYG Command Line Option
Another option for fitting a large design is to use the WYSIWYG (-wysiwyg) command
line option with the following setting:

-wysiwyg yes

The WYSIWYG command line option may be useful when:

• The design cannot be simplified by default optimization strategies, and

• The complexity (in number of P-Terms) is near the device capacity.

Default optimizations, by trying to reduce the number of logic levels, may create larger
equations. This increases the number of P-Terms and prevents the design from fitting.
Unlike those optimizations, the WYSIWYG (-wysiwyg) command line option enables an
approach that does not increase the number of P-Terms, ideally allowing the design to fit.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 259

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=259

Frontmatter
260 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=260

Chapter 6

XST Design Constraints
This chapter gives general information about XST Design Constraints, and includes:

• About XST Design Constraints

• Mechanisms for Specifying Constraints

• Global and Local Constraint Settings

• Rules for Applying Constraints

• Setting Global Constraints and Options

• VHDL Attribute Syntax

• Verilog-2001 Attributes

• XST Constraint File (XCF)

• Constraints Priority

• XST Specific Non-Timing Options

• XST Command Line Only Options

For information about specific XST design constraints, see:

• XST General Constraints

• XST HDL Constraints

• XST FPGA Constraints (Non-Timing)

• XST CPLD Constraints (Non-Timing)

• XST Timing Constraints

• XST Implementation Constraints

• XST-Supported Third Party Constraints

About XST Design Constraints
Constraints help you meet your design goals and obtain the best implementation of
your circuit. Constraints control various aspects of synthesis, as well as placement and
routing. Synthesis algorithms and heuristics automatically provide optimal results
in most situations. If synthesis fails to initially achieve optimal results, use available
constraints to try other synthesis alternatives.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 261

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=261

Chapter 6: XST Design Constraints

Mechanisms for Specifying Constraints
The following mechanisms are available to specify constraints:

• Options provide global control of most synthesis aspects. They can be set either in:

– ISE® Design Suite in Process > Properties > Synthesis Options, or

– by the run command from the command line

• In VHDL, attributes can be directly inserted into the VHDL code and attached to
individual elements of the design to control both synthesis, and placement and
routing.

• In Verilog, constraints can be added as:

– Verilog attributes (preferred)

– Verilog meta comments

• Constraints can be specified in a separate constraint file.

Global and Local Constraint Settings
Global synthesis settings are typically defined in ISE® Design Suite in Process >
Properties > Synthesis Options, or from the command line. VHDL and Verilog
attributes and Verilog meta comments can be inserted in your source code to specify
different choices for individual parts of the design.

The local specification of a constraint overrides its global setting. Similarly, if a constraint
is set both on a node (or an instance) and on the enclosing design unit, the former takes
precedence for the considered node (or instance).

Rules for Appl ying Constraints
Follow these general rules when applying constraints:

• Several constraints can be applied on signals. In this case, the constraint must be
placed in the block where the signal is declared and used.

• If a constraint can be applied on an entity (VHDL), then it can also be applied on
the component declaration. The ability to apply constraints on components is not
explicitly stated for each individual constraint, since it is a general XST rule.

• Some third party synthesis tools allow you to apply constraints on architectures.
XST allows constraints on architectures only for those third party constraints
automatically supported by XST.

Frontmatter
262 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=262

Chapter 6: XST Design Constraints

Setting Global Constraints and Options
This section discusses Setting Global Constraints and Options, and includes:

• Setting Synthesis Options

• Setting HDL Options

• Setting Xilinx Specific Options

• Setting Other XST Command Line Options

• Custom Compile File List

This section explains how to set global constraints and options in ISE® Design Suite
in Process > Process Properties.

For a description of each constraint that applies generally (that is, to FPGA devices,
CPLD devices, VHDL, and Verilog) see the Constraints Guide.

Except for Value fields with check boxes, there is a pulldown arrow or browse button in
each Value field. The arrow is not visible until you click in the Value field.

Setting Synthesis Options
To set Hardware Description Language (HDL) synthesis options from ISE® Design Suite:

1. Select a source file from the Source File window.

2. Right-click Synthesize - XST in the Process window.

3. Select Properties.

4. Select Synthesis Options.

5. Depending on the device type you have selected (FPGA or CPLD devices), one of
two dialog boxes opens.

6. Select any of the following synthesis options:

• Optimization Goal (OPT_MODE)

• Optimization Effort (OPT_LEVEL)

• Use Synthesis Constraints File (-iuc)

• Synthesis Constraint File (-uc)

• Library Search Order (-lso)

• Global Optimization Goal (-glob_opt)

• Generate RTL Schematic (-rtlview)

• Write Timing Constraints (-write_timing_constraints)

• Verilog 2001 (-verilog2001)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 263

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=263

Chapter 6: XST Design Constraints

Select Edit > Preferences > Processes > Property Display Level > Advanced to view the
following options:

• Keep Hierarchy (KEEP_HIERARCHY)

• Cores Search Directories (-sd)

• Cross Clock Analysis (-cross_clock_analysis)

• Hierarchy Separator (-hierarchy_separator)

• Bus Delimiter (-bus_delimiter)

• Case (-case)

• Work Directory (-xsthdpdir)

• HDL Library Mapping File (-xsthdpini)

• Verilog Include Directories (-vlgincdir)

• Slice (LUT-FF Pairs) Utilization Ratio (SLICE_UTILIZATION_RATIO)

Setting HDL Options
This section discusses Setting HDL Options, and includes:

• How to Set HDL Options

• Setting HDL Options for FPGA Devices

• Setting HDL Options for CPLD Devices

How to Set HDL Options
To set Hardware Description Language (HDL) options for FPGA devices and CPLD
devices in ISE® Design Suite select:

Process > Process Properties > Synthesize - XST > HDL Options

Frontmatter
264 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=264

Chapter 6: XST Design Constraints

Setting HDL Options for FPGA Devices
The following HDL Options can be set for FPGA devices:
• FSM Encoding Algorithm (FSM_ENCODING)
• Safe Implementation (SAFE_IMPLEMENTATION)
• Case Implementation Style (-vlgcase)
• FSM Style (FSM_STYLE)

To view FSM Style, select Edit > Preferences > Processes > Property Display Level
> Advanced

• RAM Extraction (RAM_EXTRACT)
• RAM Style (RAM_STYLE)
• ROM Extraction (ROM_EXTRACT)
• ROM Style (ROM_STYLE)
• Mux Extraction (MUX_EXTRACT)
• Mux Style (MUX_STYLE)
• Decoder Extraction (DECODER_EXTRACT)
• Priority Encoder Extraction (PRIORITY_EXTRACT)
• Shift Register Extraction (SHREG_EXTRACT)
• Logical Shifter Extraction (SHIFT_EXTRACT)
• XOR Collapsing (XOR_COLLAPSE)
• Resource Sharing (RESOURCE_SHARING)
• Multiplier Style (MULT_STYLE)

For later devices, Multiplier Style is renamed as follows:
– Use DSP48

Virtex®-4 devices
– Use DSP Block

Virtex-5 devices and Spartan®-3A DSP devices
• Use DSP48 (USE_DSP48)

Setting HDL Options for CPLD Devices
The following HDL Options can be set for CPLD devices:
• FSM Encoding Algorithm (FSM_ENCODING)
• Safe Implementation (SAFE_IMPLEMENTATION)
• Case Implementation Style (-vlgcase)
• Mux Extraction (MUX_EXTRACT)
• Resource Sharing (RESOURCE_SHARING)

Setting Xilinx Specific Options
This section discusses Setting Xilinx® Specific Options, and includes:
• How to Set Xilinx Specific Options
• Setting Xilinx Specific Options for FPGA Devices
• Setting Xilinx Specific Options for CPLD Devices

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 265

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=265

Chapter 6: XST Design Constraints

How to Set Xilinx Specific Options
To set Xilinx specific options in ISE® Design Suite, select:

Process > Process Properties > Synthesis Options > Xilinx Specific Options

Setting Xilinx Specific Options for FPGA Devices
The following Xilinx specific options can be set for FPGA devices:
• Add I/O Buffers (-iobuf)
• LUT Combining (LC)
• Max Fanout (MAX_FANOUT)
• Register Duplication (REGISTER_DUPLICATION)
• Reduce Control Sets (REDUCE_CONTROL_SETS)
• Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL)
• Register Balancing (REGISTER_BALANCING)
• Move First Stage (MOVE_FIRST_STAGE)
• Move Last Stage (MOVE_LAST_STAGE)
• Convert Tristates to Logic (TRISTATE2LOGIC)

Convert Tristate to Logic appears only when working with devices with internal
tristate resources.

• Use Clock Enable (USE_CLOCK_ENABLE)
• Use Synchronous Set (USE_SYNC_SET)
• Use Synchronous Reset (USE_SYNC_RESET)

Select Edit > Preferences > Processes > Property Display Level > Advanced in ISE
Design Suite to display the following options:
• Number of Global Clock Buffers (-bufg)
• Number of Regional Clock Buffers (-bufr)

Setting Xilinx Specific Options for CPLD Devices
The following Xilinx specific options can be set for CPLD devices:
• Add I/O Buffers (-iobuf)
• Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL)
• Clock Enable (-pld_ce)
• Macro Preserve (-pld_mp)
• XOR Preserve (-pld_xp)
• WYSIWYG (-wysiwyg)

Setting Other XST Command Line Options
This section discusses Setting Other XST Command Line Options, and includes:
• Setting Options in ISE Design Suite
• Tips for Setting Options
• Options Precedence
• Illegal or Unrecognized Options

Frontmatter
266 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=266

Chapter 6: XST Design Constraints

Setting Options in ISE Design Suite
Set other XST command line options in ISE® Design Suite in:

Process > Process Properties > Other XST Command Line Options

This is an advanced property.

Tips for Setting Options
When setting XST command line options:

• Use the syntax described in XST Command Line Mode.

• Separate multiple options with a space.

Options Precedence
While this property is intended for options not listed in Process > Process Properties, if
an option already listed is entered, precedence is given to that option.

Illegal or Unrecogniz ed Options
Illegal or unrecognized options cause XST to stop processing and generate a message
such as:

ERROR:Xst:1363 - Option "-verilog2002" is not available
for command run.

Custom Compile File List
Use the Custom Compile File List property to change the order in which XST processes
source files are processed. With this property, you select a user-defined compile list file
that XST uses to determine the order in which it processes libraries and design files.
Otherwise, XST uses an automatically generated list.

List all design files and their libraries in the order in which they are to be compiled,
from top to bottom. Type each file and library pair on its own line, with a semicolon
separating the library from the file as follows:

library_name; file_name [library_name;file_name] ...

Example:

work;stopwatch.vhd
work;statmach.vhd
...

Since this property is not connected to Simulation Properties > Custom Compile File
List, a different compile list file is used for synthesis than for simulation.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 267

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=267

Chapter 6: XST Design Constraints

VHDL Attrib ute Syntax
You can describe constraints with VHDL attributes in the VHDL code.

Declare as follows:

attribute AttributeName : Type;

Syntax Example One
attribute RLOC : string ;

The attribute type defines the type of the attribute value. The only allowed type for XST
is string. An attribute can be declared in an entity or architecture. If declared in the
entity, it is visible both in the entity and the architecture body. If the attribute is declared
in the architecture, it cannot be used in the entity declaration.

Specify as follows:

attribute AttributeName of ObjectList : ObjectType is AttributeValue ;

Syntax Example Two
attribute RLOC of u123 : label is R11C1.S0 ; attribute bufg of my_signal: signal is sr;

Accepted Object Types
The object list is a comma separated list of identifiers. Accepted object types are:
• entity
• component
• label
• signal
• variable
• type

General Rules
• If a constraint can be applied on an entity (VHDL), then it can also be applied on

the component declaration. The ability to apply constraints on components is not
explicitly stated for each individual constraint, since it is a general XST rule.

• Some third party synthesis tools allow you to apply constraints on architectures.
XST allows constraints on architectures only for those third party constraints
automatically supported by XST.

Verilog-2001 Attrib utes
XST supports Verilog-2001 attribute statements. Attributes are comments that pass
specific information to software tools such as synthesis tools. Verilog-2001 attributes
can be specified anywhere for operators or signals within module declarations and
instantiations. Other attribute declarations may be supported by the compiler, but
are ignored by XST.

Verilog-2001 Attrib utes Syntax
Verilog-2001 attributes are bounded by the asterisk character (*).

(* attribute_name = attribute_value *)

Frontmatter
268 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=268

Chapter 6: XST Design Constraints

where
• attribute precedes the signal, module, or instance declaration to which it refers.
• attribute_value is a string. No integer or scalar values are allowed.
• attribute_value is between quotes.
• The default is 1.
• (* attribute_name *) is the same as (* attribute_name = "1" *).

Syntax Example One
(* clock_buffer = "IBUFG" *) input CLK;

Syntax Example Two
(* INIT = "0000" *) reg [3:0] d_out;

Syntax Example Three
always@(current_state or reset) begin (* parallel_case *) (* full_case *) case
(current_state) ...

Syntax Example Four
(* mult_style = "pipe_lut" *) MULT my_mult (a, b, c);

Verilog-2001 Limitations
Verilog-2001 attributes are not supported for:
• Signal declarations
• Statements
• Port connections
• Expression operators

Verilog-2001 Meta Comments
Constraints can also be specified in Verilog code using meta comments. The Verilog-2001
format is the preferred syntax, but the meta comment style is still supported. Use the
following syntax:

// synthesis attribute AttributeName [of] ObjectName [is] AttributeValue

Verilog-2001 Meta Comments Examples
// synthesis attribute RLOC of u123 is R11C1.S0
// synthesis attribute HU_SET u1 MY_SET
// synthesis attribute bufg of my_clock is "clk"

The following constraints use a different syntax:
• Parallel Case (PARALLEL_CASE)
• Full Case (FULL_CASE)
• Translate Off (TRANSLATE_OFF) and Translate On (TRANSLATE_ON)

For more information, see:

Verilog Attributes and Meta Comments

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 269

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=269

Chapter 6: XST Design Constraints

XST Constraint File (XCF)
This section includes:
• Specifying Constraints in the XCF
• XCF Syntax and Utilization
• Native and Non-Native UCF Constraints Syntax
• XCF Syntax Limitations

Specifying Constraints in the XCF
XST constraints can be specified in the XST Constraint File (XCF).

The XCF has an extension of .xcf .

You can specify the XCF in:
• ISE® Design Suite

For more information, see:
ISE Design Suite Help

• Command Line Mode
To specify the XCF in command line mode, use Synthesis Constraint File (-uc) with
the run command.
For more information, see:
XST Command Line Mode

XCF Syntax and Utilization
This section discusses XCF Syntax and Utilization, and includes:

• About XCF Syntax and Utilization
• Syntax
• Syntax Examples and Settings
• XST Synthesis Constraints

About XCF Syntax and Utilization
The XST Constraint File (XCF) syntax enables you to specify a specific constraint for:
• The entire device (globally), or
• Specific modules

The XCF syntax is basically the same as the User Constraints File (UCF) syntax for
applying constraints to nets or instances, but with an extension to the syntax to allow
constraints to be applied to specific levels of hierarchy. Use the keywordMODELto define
the entity or module to which the constraint is applied. If a constraint is applied to an
entity or module, the constraint is applied to each instance of the entity or module.

Define constraints in ISE® Design Suite in Process > Process Properties, or the XST
run script, if running on the command line. Specify exceptions in the XCF file. The
constraints specified in the XCF file are applied only to the module listed, and not to
any submodules below it.

Syntax
To apply a constraint to the entire entity or module use the following syntax:

Frontmatter
270 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=270

Chapter 6: XST Design Constraints

MODEL entityname constraintname = constraintvalue;

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XCF Syntax Example One
MODEL top mux_extract = false; MODEL my_design max_fanout = 256;

If the entity my_design is instantiated several times in the design, the max_fanout=256
constraint is applied to each instance of my_design.

To apply constraints to specific instances or signals within an entity or module, use the
INST or NETkeywords. XST does not support constraints that are applied to VHDL
variables.

BEGIN MODEL entityname

INST instancename constraintname = constraintvalue;

NET signalname constraintname = constraintvalue;

END;

XCF Syntax Example Two
BEGIN MODELcrc32

INST stopwatch opt_mode = area ;
INST U2 ram_style = block ;
NET myclock clock_buffer = true ;
NET data_in iob = true ;

END;

XST Synthesis Constraints
For a complete list of XST synthesis constraints, see:

XST Specific Non-Timing Options

Native and Non-Native UCF Constraints Syntax
All constraints supported by XST can be divided into two groups:

• Native UCF Constraints

• Non-Native UCF Constraints

Native UCF Constraints
Only Timing and Area Group constraints use native User Constraints File (UCF) syntax.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 271

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=271

Chapter 6: XST Design Constraints

Use native UCF syntax, including wildcards and hierarchical names, for native UCF
constraints such as:
• Period (PERIOD)
• Offset (OFFSET)
• Timing Name on a Net (TNM_NET)
• Timegroup (TIMEGRP)
• Timing Ignore (TIG)
• From-To (FROM-TO)

Restriction Do not use these constraints inside the BEGIN MODEL... END construct.
If you do, XST issues an error.

Non-Native UCF Constraints
For all non-native User Constraints File (UCF) constraints, use theMODEL or BEGIN
MODEL... END; constructs. This includes:
• Pure XST constraints such as:

– Automatic FSM Extraction (FSM_EXTRACT)
– RAM Style (RAM_STYLE)

• Implementation non-timing constraints such as:
– RLOC
– Keep (KEEP)

If you specify timing constraints in the XST Constraint File (XCF), Xilinx® recommends
that you use a forward slash (/) as a hierarchy separator instead of an underscore (_).

For more information, see:

Hierarchy Separator (-hierarchy_separator)

XCF Syntax Limitations
XST Constraint File (XCF) syntax has the following limitations:
• Nested model statements are not supported.
• Instance or signal names listed between the BEGIN MODEL statement and the

END statement are only the ones visible inside the entity. Hierarchical instance or
signal names are not supported.

• Wildcards in instance and signal names are not supported, except in timing
constraints.

• Not all native User Constraints File (UCF) constraints are supported.

For more information, see the Constraints Guide.

Constraints Priority
Constraints priority depends on the file in which the constraint appears. A constraint in
a file accessed later in the design flow overrides a constraint in a file accessed earlier
in the design flow.

Priority is as follows, from highest to lowest:
1. Synthesis Constraint File
2. Hardware Description Language (HDL) file
3. ISE® Design Suite Process > Process Properties, or the command line

Frontmatter
272 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=272

Chapter 6: XST Design Constraints

XST Specific Non-Timing Options
The following table shows:

• Allowed values for each constraint

• Type of objects to which they can be applied

• Usage restrictions

In many cases, a particular constraint can be applied globally to an entire entity or
model, or alternatively, it can be applied locally to individual signals, nets or instances.

Constraint
Name

Constraint

Value

VHDL

Target

Verilog
Target

XCF Target Command
Line

Command
Value

BoxType primitive

black_box

user_black_box

entity

inst

module

inst

model

inst (in model)

N/A N/A

Map Logic on
BRAM

yes

no

entity module model N/A N/A

Buffer Type bufgdll

ibufg

bufg

bufgp

ibuf

bufr

none

signal signal net (in model) N/A N/A

Extract
BUFGCE

yes

no

primary

clock

signal

primary

clock

signal

net (in model) -bufgce yes

no

default: no

Clock Signal yes

no

clock

signal

clock

signal

clock

signal

net (in model)

N/A N/A

Decoder
Extraction

yes

no

entity

signal

entity

signal

model

net (in model)

-decoder
_extract

yes

no

default: yes

Enumerated
Encoding

string
containing
space-separated
binary codes

type signal net (in model) N/A N/A

Equivalent
Register
Removal

yes

no

entity

signal

module

signal

model

net (in model)

-equivalent
_register
_removal

yes

no

default: yes

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 273

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=273

Chapter 6: XST Design Constraints

Constraint
Name

Constraint

Value

VHDL

Target

Verilog
Target

XCF Target Command
Line

Command
Value

FSM Encoding
Algorithm

auto

one-hot

compact

sequential

gray

johnson

speed1

user

entity

signal

module

signal

model

net (in model)

-fsm
_encoding

auto

one-hot

compact

sequential

gray

johnson

speed1

user

default: auto

Automatic
FSM Extraction

yes

no

entity

signal

module

signal

model

net (in model)

-fsm
_extract

yes

no

default: yes

FSM Style lut

bram

entity

signal

module

signal

model

net (in model)

-fsm
_style

lut

bram

default: lut

Full Case N/A N/A case statement N/A N/A N/A

Pack I/O
Registers Into
IOBs

true

false

auto

signal

instance

signal

instance

net (in model)

inst (in model)

-iob true

false

auto

default: auto

I/O Standard string

For more
information,
see the
Constraints
Guide.

signal

instance

signal

instance

net (in model)

inst (in model)

N/A N/A

Keep true

false

soft

signal signal net (in model) N/A N/A

Keep
Hierarchy

yes

no

soft

entity module model -keep
_hierarchy

yes default
(CPLD)

no default
(FPGA)

soft

LOC string signal (primary
IO)

instance

signal (primary
IO)

instance

net (in model)

inst (in model)

N/A N/A

Map Entity on
a Single LUT

yes

no

entity

architecture

module model N/A N/A

Frontmatter
274 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=274

Chapter 6: XST Design Constraints

Constraint
Name

Constraint

Value

VHDL

Target

Verilog
Target

XCF Target Command
Line

Command
Value

Max Fanout integer entity

signal

module

signal

model

net (in model)

-max
_fanout

integer

default: see
detailed
description

Move First
Stage

yes

no

entity

primary

clock

signal

module

primary

clock

signal

model

primary clock

signal

net (in model)

-move
_first
_stage

yes

no

default: yes

Move Last
Stage

yes

no

entity

primary

clock

signal

module

primary

clock

signal

model

primary clock

signal

net (in model

-move
_last
_stage

yes

no

default: yes

Multiplier
Style

auto

block

pipe_block

kcm

csd

lut

pipe_lut

entity

signal

module

signal

model

net (in model)

-mult
_style

auto

block

pipe_block

kcm

csd

lut

pipe_lut

default: auto

Mux Extraction yes

no

force

entity

signal

module

signal

model

net (in model)

-mux
_extract

yes

no

force

default: yes

Mux Style auto

muxf

muxcy

entity

signal

module

signal

model

net (in model)

-mux
_style

auto

muxf

muxcy

default: auto

No Reduce yes

no

signal signal net (in model) N/A N/A

Optimization
Effort

1

2

entity module model -opt
_level

1

2

default: 1

Optimization
Goal

speed

area

entity module model -opt
_mode

speed

area

default: speed

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 275

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=275

Chapter 6: XST Design Constraints

Constraint
Name

Constraint

Value

VHDL

Target

Verilog
Target

XCF Target Command
Line

Command
Value

Optimize
Instantiated
Primitives

yes

no

entity

instance

module

instance

model

instance (in
model)

-optimize
_primitives

yes

no

default: no

Parallel Case N/A N/A case statement N/A N/A N/A

Power
Reduction

yes

no

entity module model -power yes

no

default: no

Priority
Encoder
Extraction

yes

no

force

entity

signal

module

signal

model

net (in model)

-priority
_extract

yes

no

force

default: yes

RAM
Extraction

yes

no

entity

signal

module

signal

model

net (in model)

-ram
_extract

yes

no

default: yes

RAM Style auto

block

distributed

pipe_distributed

block_power1

block_power2

entity

signal

module

signal

model

net (in model)

-ram
_style

auto

block

distributed

default: auto

Read Cores yes

no

optimize

entity

component

module

label

model

inst (in model)

-read
_cores

yes

no

optimize

default: yes

Register
Balancing

yes

no

forward

backward

entity

signal

FF

instance name

module

signal

FF

instance name

primary clock
signal

modelnet (in
model)inst (in
model)

-register
_balancing

yes

no

forward

backward

default: no

Register
Duplication

yes

no

entity

signal

module model

net (in model)

-register
_duplication

yes

no

default: yes

Resource
Sharing

yes

no

entity

signal

module

signal

model

net (in model)

-resource
_sharing

yes

no

default: yes

Frontmatter
276 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=276

Chapter 6: XST Design Constraints

Constraint
Name

Constraint

Value

VHDL

Target

Verilog
Target

XCF Target Command
Line

Command
Value

ROM
Extraction

yes

no

entity

signal

module

signal

model

net (in model)

-rom
_extract

yes

no

default: yes

ROM Style auto

block

distributed

entity

signal

module

signal

model

net (in model)

-rom
_style

auto

block

distributed

default: auto

Save yes

no

signal

inst of
primitive

signal

inst of
primitive

net (in model)

inst of
primitive (in
model)

N/A N/A

Safe
Implementation

yes

no

entity

signal

module

signal

model

net (in model)

-safe
_implementation

yes

no

default: no

Safe Recovery
State

string signal signal net (in model) N/A N/A

Logical Shifter
Extraction

yes

no

entity

signal

module

signal

model

net (in model)

-shift
_extract

yes

no

default: yes

Shift Register
Extraction

yes

no

entity

signal

module

signal

model

net (in model)

-shreg
extract

yes

no

default: yes

Signal
Encoding

auto

one-hot

user

entity

signal

module

signal

model

net (in model)

-signal
_encoding

auto

one-hot

user

default: auto

Slice
Utilization
Ratio

integer (range
-1 to 100)

integer%
(range -1 to
100)

integer#

entity module model -slice
_utilization
_ratio

integer (range
-1 to 100)

integer%
(range -1 to
100)

integer#

default: 100

Slice
Utilization
Ratio Delta

integer (range
0 to 100)

integer%
(range 0 to 100)

integer#

entity module model -slice
_utilization
_ratio
_maxmargin

integer (range
0 to 100)

integer%
(range 0 to 100)

integer#

default: 0

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 277

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=277

Chapter 6: XST Design Constraints

Constraint
Name

Constraint

Value

VHDL

Target

Verilog
Target

XCF Target Command
Line

Command
Value

Translate Off
and Translate
On

N/A local

no target

local

no target

N/A N/A N/A

Convert
Tristates to
Logic

yes

no

entity

signal

modulesignal model

net (in model)

-tristate2logic yes

no

default: yes

Use Carry
Chain

yes

no

entity

signal

module

signal

model

net (in model)

-use
_carry
_chain

yes

no

default: yes

Use Clock
Enable

auto

yes

no

entity

signal

FF

instance

name

module

signal

FF

instance

name

model

net (in model)

inst (in model)

-use
_clock
_enable

auto

yes

no

default: auto

Use DSP48 auto

yes

no

entity

signal

module

signal

model

net (in model)

-use
_dsp48

auto

yes

no

default: auto

Use
Synchronous
Reset

auto

yes

no

entity

signal

FF

instance

name

module

signal

FF

instance

name

model

net (in model)

inst (in model)

-use
_sync
_reset

auto

yes

no

default: auto

Use
Synchronous
Set

auto

yes

no

entity

signal

FF

instance

name

module

signal

FF

instance

name

model

net (in model)

inst (in model)

-use
_sync
_set

auto

yes

no

default: auto

XOR
Collapsing

yes

no

entity

signal

module

signal

model

net (in model)

-xor
_collapse

yes

no

default: yes

Frontmatter
278 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=278

Chapter 6: XST Design Constraints

XST Command Line Only Options
This section discusses XST Command Line Only Options, and includes:
• XST Specific Non-Timing Options Supported Only in the Command Line
• Invoking XST Timing Options
• XST Timing Constraints Supported Only in Process > Process Properties, or the

Command Line
• XST Timing Constraints Supported Only in the XCF

XST Specific Non-Timing Options Suppor ted Only in the Command
Line

Constraint Name Command Line Command Value
VHDL Top Level Architecture -arch architecture_name

default: N/A

Asynchronous to Synchronous -async_to_sync yes

no

default: no

Automatic BRAM Packing -auto_bram_packing yes

no

default: no

BRAM Utilization Ratio

(BRAM_UTILIZATION_RATIO)

-bram_utilization_

ratio

integer (range -1 to 100)

integer% (range -1 to 100)

integer#

default: 100

Maximum Global Clock Buffers -bufg Integer

default: max number of buffers in
target device

Maximum Regional Clock Buffers -bufr Integer

default: max number of buffers in
target device

Bus Delimiter -bus_delimiter <>

[]

{}

()

default: <>

Case -case upper

lower

maintain

default: maintain

Verilog Macros -define {name = value}

default: N/A

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 279

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=279

Chapter 6: XST Design Constraints

Constraint Name Command Line Command Value
DSP Utilization Ratio
(DSP_UTILIZATION_RATIO)

-dsp_utilization_ratio integer (range -1 to 100)

integer% (range -1 to 100)

integer#

default: 100

Duplication suffix -duplication_suffix string%dstring

default: _%d

VHDL Top-Level block

(Valid only when old VHDL project
format is used (-ifmt VHDL). Use
project format (-ifmt mixed) and - top
option to specify which top level block
to synthesize.)

-ent entity_name

default: N/A

Generics -generics {name = value}

default: N/A

HDL File Compilation Order -hdl_compilation_order auto

user

default: auto

Hierarchy Separator -hierarchy_separator _

/

default: /

Input Format -ifmt mixed

vhdl

verilog

default: mixed

Input/Project File Name -ifn file_name

default: N/A

Add I/O Buffers -iobuf yes

no

default: yes

Ignore User Constraints -iuc yes

no

default: no

Library Search Order -lso file_name.lso

default: N/A

LUT Combining -lc auto

area

off

default: off

Frontmatter
280 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=280

Chapter 6: XST Design Constraints

Constraint Name Command Line Command Value
Netlist Hierarchy -netlist_hierarchy as_optimized

rebuilt

default: as_optimized

Output File Format -ofmt ngc

default: ngc

Output File Name -ofn file_name

default: N/A

Target Device -p part-package-speed (For example:
xc5vfx30t-ff324-2)

default: N/A

Clock Enable -pld_ce yes

no

default: yes

Macro Preserve -pld_mp yes

no

default: yes

XOR Preserve -pld_xp yes

no

default: yes

Reduce Control Sets -reduce_control_sets auto

no

default: no

Generate RTL Schematic -rtlview yes

no

only

default: no

Cores Search Directories -sd directories

default: N/A

Slice Packing -slice_packing yes

no

default: yes

Top Level Block -top block_name

default: N/A

Synthesis Constraints File -uc file_name.xcf

default: N/A

Verilog 2001 -verilog2001 yes

no

default: yes

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 281

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=281

Chapter 6: XST Design Constraints

Constraint Name Command Line Command Value
Case Implementation Style -vlgcase full

parallel

full-parallel

default: N/A

Verilog Include Directories -vlgincdir directories

default: N/A

Work Library -work_lib directory

default: work

wysiwyg -wysiwyg yes

no

default: no

Work Directory -xsthdpdir Directory

default: ./xst

HDL Library Mapping File -xsthdpini file_name.ini

default: N/A

Invoking XST Timing Options
Invoke XST timing options from:

• ISE® Design Suite in Process > Process Properties

• Command line

• XST Constraint File (XCF)

XST Timing Constraints Suppor ted Only in Process > Process
Proper ties, or the Command Line

Option Process > Process Proper ties
(ISE® Design Suite)

Values

glob_opt Global Optimization Goal allclocknetsinpad
_to_outpadoffset
_in_beforeoffset
_out_aftermax
_delay

default: allclocknets

cross_clock_analysis Cross Clock Analysis yes

no (default)

write_timing_constraints Write Timing Constraints yes
no (default)

Frontmatter
282 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=282

Chapter 6: XST Design Constraints

XST Timing Constraints Suppor ted Only in the XCF
The following XST timing constraints can be applied for synthesis only through the
XST Constraint File (XCF):

• Period (PERIOD)

• Offset (OFFSET)

• From-To (FROM-TO)

• Timing Name (TNM)

• Timing Name on a Net (TNM_NET)

• Timegroup (TIMEGRP)

• Timing Ignore (TIG)

• Timing Specifications (TIMESPEC)

• Timing Specification Identifier (TSidentifier)

These timing constraints influence synthesis optimization, and can be passed on to place
and route by selecting the Write Timing Constraints command line option.

For more information, see the Constraints Guide.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 283

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=283

Frontmatter
284 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=284

Chapter 7

XST General Constraints
This chapter discusses the following constraints:

• Add I/O Buffers (-iobuf)

• BoxType (BOX_TYPE)

• Bus Delimiter (-bus_delimiter)

• Case (-case)

• Case Implementation Style (-vlgcase)

• Duplication Suffix (-duplication_suffix)

• Full Case (FULL_CASE)

• Generate RTL Schematic (-rtlview)

• Generics (-generics)

• HDL Library Mapping File (-xsthdpini)

• Hierarchy Separator (-hierarchy_separator)

• I/O Standard (IOSTANDARD)

• Keep (KEEP)

• Keep Hierarchy (KEEP_HIERARCHY)

• Library Search Order (-lso)

• LOC

• Netlist Hierarchy (-netlist_hierarchy)

• Optimization Effort (OPT_LEVEL)

• Optimization Goal (OPT_MODE)

• Parallel Case (PARALLEL_CASE)

• RLOC

• Save (S / SAVE)

• Synthesis Constraint File (-uc)

• Translate Off (TRANSLATE_OFF) and Translate On (TRANSLATE_ON)

• Use Synthesis Constraints File (-iuc)

• Verilog 2001 (-verilog2001)

• Verilog Include Directories (-vlgincdir)

• Verilog Macros (-define)

• Work Directory (-xsthdpdir)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 285

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=285

Chapter 7: XST General Constraints

Add I/O Buff ers (-iobuf)
The Add I/O Buffers (-iobuf) command line option:
• Enables or disables I/O buffer insertion.
• Can be used to synthesize a part of a design to be instantiated later on.

XST automatically inserts Input/Output Buffers into the design. If you manually
instantiate I/O Buffers for some or all the I/Os, XST inserts I/O Buffers only for the
remaining I/Os. If you do not want XST to insert I/O Buffers, set -iobuf to no.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Applies to design primary IOs.

Syntax
-iobuf {yes|no|true|false|soft}

• yes (default)
Tells XST to generate IBUF and OBUF primitives and connected them to I/O ports
of the top-level module.

• no
Tells XST not to generate IBUF and OBUF primitives, and must be used when XST is
called to synthesize an internal module that is instantiated later in a larger design.
If I/O buffers are added to a design, this design cannot be used as a submodule
of another design.

• true
• false
• soft

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -iobuf yes

Adds I/O buffers to the top level module of the design.

ISE® Design Suite
Process > Process Properties > Xilinx®-Specific Options > Add I/O Buffers

Frontmatter
286 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=286

Chapter 7: XST General Constraints

BoxType (BOX_TYPE)
The BoxType (BOX_TYPE) constraint is a synthesis constraint.

If BoxType is applied to at least a single instance of a block of a design, BoxType is
propagated to all other instances of the entire design. This feature was implemented
for Verilog and XST Constraint File (XCF) in order to have a VHDL-like support, where
BoxType can be applied to a component.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to the following design elements:
• VHDL

component, entity
• Verilog

module, instance
• XST Constraint File (XCF)

model, instance

Propagation Rules
Applies to the design element to which it is attached.

Syntax
• primitive
• black_box

Equivalent to primitive. Will eventually become obsolete.
• user_black_box

XST reports inference of a black box in the log file unless primitive is specified.

These values instruct XST not to synthesize the behavior of a module.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute box_type: string;

Specify as follows:

attribute box_type of {component_name|entity_name} : {component|entity} is
"{primitive|black_box|user_black_box}";

Verilog
Place immediately before the instantiation:

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 287

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=287

Chapter 7: XST General Constraints

(* box_type = "{primitive|black_box|user_black_box}" *)

XCF Syntax Example One
MODEL "entity_name" box_type = "{primitive|black_box|user_black_box}";

XCF Syntax Example Two
BEGIN MODEL" entity_name"

INST "instance_name"

box_type="{primitive|black_box|user_black_box}";

END;

Bus Delimiter (-bus_delimiter)
The Bus Delimiter (-bus_delimiter) command line option defines the format of signals
belonging to buses in the output netlist.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to syntax.

Propagation Rules
Not applicable.

Syntax
-bus_delimiter {<>|[]|{}|()}
• <> (default)
• []
• {}
• ()

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -bus_delimiter []

Defines bus delimiters globally as square braces ([]).

ISE® Design Suite
Process > Process Properties > Synthesis Options > Bus Delimiter

Frontmatter
288 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=288

Chapter 7: XST General Constraints

Case (-case)
The Case (-case) command line option determines if instance and net names are written
in the final netlist using all lowercase or uppercase letters, or if the case is maintained
from the source.

The case can be maintained for either Verilog or VHDL.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to syntax.

Propagation Rules
Not applicable.

Syntax
-case {upper|lower|maintain}

• upper
• lower
• maintain (default)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -case upper

Defines case globally to uppercase.

ISE® Design Suite
Process > Process Properties > Synthesis Options > Case

Case Implementation Style (-vlgcase)
The Case Implementation Style (-vlgcase) command line option:

• Is valid for Verilog designs only.
• Instructs XST how to interpret Verilog case statements.

For more information, see:

• Multiplexers HDL Coding Techniques
• FULL_CASE (Full Case)
• PARALLEL_CASE (Parallel Case)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 289

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=289

Chapter 7: XST General Constraints

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Syntax
-vlgcase {full|parallel|full-parallel}
• full

XST assumes that the case statements are complete, and avoids latch creation.
• parallel

XST assumes that the branches cannot occur in parallel, and does not use a priority
encoder.

• full-parallel
XST assumes that the case statements are complete, and that the branches cannot
occur in parallel, therefore saving latches and priority encoders.

By default, there is no value. If the option is not specified, XST implements the exact
behavior of the case statements.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -vlgcase full

Defines Case Implementation Style globally to full.

ISE® Design Suite
Process > Process Properties > HDL Options > Case Implementation Style

Duplication Suffix (-duplication_suffix)
The Duplication Suffix (-duplication_suffix) command line option controls how XST
names replicated flip-flops.

By default, when XST replicates a flip-flop, it creates a name for the new flip-flop by
taking the name of the original flip-flop and adding _n to the end of it, where n is an
index number.

Frontmatter
290 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=290

Chapter 7: XST General Constraints

For instance, if the original flip-flop name is my_ff, and this flip-flop was replicated
three times, XST generates flip-flops with the following names:
• my_ff_1
• my_ff_2
• my_ff_3

Duplication Suffix lets you change the string that is added to the original name.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to files.

Propagation Rules
Not applicable.

Syntax
-duplication_suffix string%dstring

The default is %d.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line Example One
xst run -duplication_suffix _dupreg_%d

If the flip-flop named my_ff is duplicated three times, this command tells XST to
generate the following names:
• my_ff_dupreg_1
• my_ff_dupreg_2
• my_ff_dupreg_3

XST Command Line Example Two
xst run -duplication_suffix _dup_%d_reg

The %d escape character can be placed anywhere in the suffix definition. If the
flip-flop named my_ff is duplicated three times, this command tells XST to generate
the following names:
• my_ff_dup_1_reg
• my_ff_dup_2_reg
• my_ff_dup_3_reg

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 291

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=291

Chapter 7: XST General Constraints

ISE® Design Suite
Process > Process Properties > Synthesis Options > Property display level > Advanced
> Other XST Command Line Options

Full Case (FULL_CASE)
The Full Case (FULL_CASE) constraint:
• Is valid for Verilog designs only.
• Indicates that all possible selector values have been expressed in a case, casex, or

casez statement.
• Prevents XST from creating additional hardware for those conditions not expressed.

For more information, see:

Multiplexers HDL Coding Techniques

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to case statements in Verilog meta comments.

Propagation Rules
Not applicable.

Syntax
-vlgcase [full|parallel|full-parallel]
• full
• parallel
• full-parallel

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

Verilog
The syntax is:

(* full_case *)

Since FULL_CASE does not contain a target reference, the attribute immediately
precedes the selector:

(* full_case *)
casex select
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;
endcase

Frontmatter
292 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=292

Chapter 7: XST General Constraints

FULL_CASE is also available as a meta comment in the Verilog code. The syntax differs
from the standard meta comment syntax as shown in the following:

// synthesis full_case

Since FULL_CASE does not contain a target reference, the meta comment immediately
follows the selector:

casex select // synthesis full_case
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;
endcase

XST Command Line
xst run -vlgcase [full|parallel|full-parallel]

ISE® Design Suite
Process > Process Properties > Synthesis Options > Full Case.

For Case Implementation Style, select full.

Generate RTL Schematic (-rtlvie w)
The Generate RTL Schematic (-rtlview) command line option tells XST to generate
a netlist file representing a Register Transfer Level (RTL) structure of the design. This
netlist can be viewed by the RTL and Technology Viewers.

The file containing the RTL view has an NGRfile extension.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to files.

Propagation Rules
Not applicable.

Syntax
-rtlview {yes|no|only}

• yes
Tells XST to generate an RTL view.

• no (default)
Tells XST not to generate the RTL view.

• only
Tells XST to stop the synthesis once the RTL view is generated.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 293

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=293

Chapter 7: XST General Constraints

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -rtlview yes

Tells XST to generate a netlist file representing the RTL structure of the design.

ISE® Design Suite
Process > Process Properties > Synthesis Options > Generate RTL Schematic

Generics (-generics)
The Generics (-generics) command line option allows you to redefine generics (VHDL)
or parameters (Verilog) values defined in the top-level design block.

This allows you to easily modify the design configuration without any Hardware
Description Language (HDL) source modifications, such as for IP core generation and
testing flows. If the defined value does not correspond to the data type defined in the
VHDL or Verilog code, then XST tries to detect the situation and issues a warning,
ignoring the command line definition.

In some situations, XST may fail to detect a type mismatch. In that case, XST attempts to
apply this value by adopting it to the type defined in the VHDL or Verilog file without
any warning. Be sure that the value you specified corresponds to the type defined in
the VHDL or Verilog code. If a defined generic or parameter name does not exist in the
design, no message is given, and the definition is ignored.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Syntax
-generics {name=valuename=value ...}

where
• name is the name of a generic or parameter of the top level design block
• value is the value of a generic or parameter of the top level design block

The default is an empty definition.

Frontmatter
294 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=294

Chapter 7: XST General Constraints

Follow these rules:
• Place the values inside curly braces ({...}).
• Separate the values with spaces.
• XST can accept as values only constants of scalar types. Composite data types

(arrays or records) are supported only in the following situations:
– string
– std_logic_vector
– std_ulogic_vector
– signed, unsigned
– bit_vector

• There are no spaces between the prefix and the corresponding value.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -generics {company="Xilinx" width=5 init_vector=b100101}

This command sets:
• company to Xilinx®
• width to 5
• init_vector to b100101

ISE® Design Suite
Process > Process Properties > Synthesis Options > Generics, Parameters

HDL Librar y Mapping File (-xsthdpini)
The HDL Library Mapping File (-xsthdpini) command line option defines the library
mapping.

XST maintains two library mapping files:
• The pre-installed (default) INI file, which is installed during the Xilinx® software

installation
• The user file, which you may define for your own projects

The pre-installed (default) INI file:
• Is named xhdp.ini .
• Is located in %XILINX%\vhdl\xst .
• Contains information about the locations of the standard VHDL and UNISIM

libraries.
• Should not be modified

Note You can copy the syntax for your own library mapping file

A library mapping file looks like the following:

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 295

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=295

Chapter 7: XST General Constraints

-- Default lib mapping for XST std=$XILINX/vhdl/xst/std
ieee=$XILINX/vhdl/xst/unisim unisim=$XILINX/vhdl/xst/unisim
aim=$XILINX/vhdl/xst/aim pls=$XILINX/vhdl/xst/pls

Use this file format to define where each of your own libraries must be placed. By
default, all compiled VHDL flies are stored in the xst subdirectory of the ISE Design
Suite project directory.

The library mapping file contains a list of libraries, one per line with the following
information:
• The library name
• The directory in which the library is compiled

You can give this library mapping file any name you wish, but it is best to keep the
.ini classification.

The format for each line is:

library_name=path_to_compiled_directory

Use a double dash (--) to start a comment line.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to files.

Propagation Rules
Not applicable.

Syntax
-xsthdpini file_name

You can specify only one library mapping file.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst set -xsthdpini c:/data/my_libraries/my.ini file_name

Specifies c:/data/my_libraries/my.ini as the file that will point to all of your
libraries.

You must run this set command before any run commands.

Following is an MY.INI example text:

work1=H:\Users\conf\my_lib\work1 work2=C:\mylib\work2

Frontmatter
296 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=296

Chapter 7: XST General Constraints

ISE® Design Suite
To set the library mapping file location in ISE Design Suite:
1. Select Process > Process Properties > Synthesis Options
2. From the Property display level list, select Advanced
3. Set the HDL INI File property.

Hierar chy Separator (-hierar chy_separator)
The Hierarchy Separator (-hierarchy_separator) command line option defines the
hierarchy separator character that is used in name generation when the design hierarchy
is flattened.

If a design contains a sub-block with instance INST1, and this sub-block contains a net
called TMP_NET, then the hierarchy is flattened and the hierarchy separator character
is / (forward slash). The name TMP_NET becomes INST1_TMP_NET. If the hierarchy
separator character is / (forward slash), the net name is INST1/TMP_NET.

Using / (forward slash) as a hierarchy separator is useful in design debugging because
the / (forward slash) separator makes it much easier to identify a name if it is hierarchical.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to files.

Propagation Rules
Not applicable.

Syntax
-hierarchy_separator {/ | _}

The two supported characters are:
• _ (underscore)
• / (forward slash)

The default is / (forward slash) for newly created projects.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -hierarchy_separator _

Sets the hierarchy separator to “_” (underscore)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 297

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=297

Chapter 7: XST General Constraints

ISE® Design Suite
1. Select Process > Process Properties > Synthesis Options.
2. From the Property display level list, select Advanced
3. Set the Hierarchy Separator property.

I/O Standar d (IOSTANDARD)
The I/O Standard (IOSTANDARD) constraint assigns an I/O standard to an I/O
primitive.

For more information about this constraint, see the Constraints Guide.

Keep (KEEP)
Keep (Keep) is an advanced mapping constraint.

When a design is mapped, some nets may be absorbed into logic blocks. When a net
is absorbed into a block, it can no longer be seen in the physical design database. This
may happen, for example, if the components connected to each side of a net are mapped
into the same logic block. The net may then be absorbed into the block containing the
components. Keep prevents this from happening.

In addition to true and false values supported by the implementation flow, XST supports
a soft value. If this value is specified XST preserves the designated net as in the case of
the true value, but does not attach the Keep constraint in the final netlist to this net.

Keep preserves the existence of the signal in the final netlist, but not its structure. For
example, if your design has a 2-bit multiplexer selector and you attach Keep to it, this
signal is preserved in the final netlist. But the multiplexer could be automatically
re-encoded by XST using one-hot encoding. As a consequence, this signal in the final
netlist is four bits wide instead of the original two. To preserve the structure of the signal,
in addition to Keep , you must also use Enumerated Encoding (ENUM_ENCODING)’

For more information about this constraint, see the Constraints Guide.

Keep Hierar chy (KEEP_HIERARCHY)
The Keep Hierarchy (KEEP_HIERARCHY) constraint is a synthesis and implementation
constraint.

If hierarchy is maintained during synthesis, the implementation tools use Keep
Hierarchy to preserve the hierarchy throughout implementation, and allow a simulation
netlist to be created with the desired hierarchy.

XST can flatten the design to obtain better results by optimizing entity or module
boundaries. You can set Keep Hierarchy to true so that the generated netlist is
hierarchical and respects the hierarchy and interface of any entity or module in your
design.

Keep Hierarchy is related to the hierarchical blocks (VHDL entities, Verilog modules)
specified in the Hardware Description Language (HDL) design, and does not concern
the macros inferred by the HDL synthesizer.

In general, a Hardware Description Language (HDL) design is a collection of hierarchical
blocks. Preserving the hierarchy gives the advantage of fast processing because the
optimization is done on separate pieces of reduced complexity. Nevertheless, very
often, merging the hierarchy blocks improves the fitting results (fewer PTerms and
device macrocells, better frequency) because the optimization processes (collapsing,
factorization) are applied globally on the entire logic.

Frontmatter
298 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=298

Chapter 7: XST General Constraints

In the following figure, if Keep Hierarchy is set to the entity or module I2, the hierarchy
of I2 is in the final netlist, but its contents I4, I5 are flattened inside I2. I1, I3, I6, and I7
are also flattened.

Keep Hierar chy Diagram

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to logical blocks, including blocks of hierarchy or symbols.

Propagation Rules
Applies to the entity or module to which it is attached.

Syntax
-keep_hierarchy {yes|no|soft}
• yes
• no
• true

Allows the preservation of the design hierarchy, as described in the HDL project. If
this value is applied to synthesis, it is also propagated to implementation.
The default is true for CPLD devices.

• false
Hierarchical blocks are merged in the top level module.
The default is false for FPGA devices.

• soft
Allows the preservation of the design hierarchy in synthesis, but KEEP_HIERARCHY
is not propagated to implementation.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 299

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=299

Chapter 7: XST General Constraints

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

Schematic Syntax Example
• Attach to the entity or module symbol.
• Attribute Name

KEEP_HIERARCHY
• Attribute Values

See Syntax section above.

VHDL
Declare as follows:

attribute keep_hierarchy : string;

Specify as follows:

attribute keep_hierarchy of architecture_name: architecture is "{yes|no|true|false|soft}";

Verilog
Place immediately before the module declaration or instantiation:

(* keep_hierarchy = "{yes|no|true|false|soft}" *)

XCF
MODEL "entity_name" keep_hierarchy={yes|no|true|false|soft};

XST Command Line
xst run -keep_hierarchy {yes|no|soft}

For more information, see:

XST Command Line Mode

ISE® Design Suite
Process > Process Properties > Synthesis Options > Keep Hierarchy

Librar y Search Order (-lso)
The Library Search Order (-lso) command line option specifies the location of the
library search order file.

For more information, see:

Library Search Order (LSO) Files in Mixed Language Projects

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to files.

Frontmatter
300 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=300

Chapter 7: XST General Constraints

Propagation Rules
Not applicable.

Syntax
-lso file_name.lso

There is no default file name. If not specified, XST uses the default search order.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst elaborate -lso c:/data/my_libraries/my.lso

Specifies c:/data/my_libraries/my.lso as the file that sets your library search
order.

ISE® Design Suite
To specify the library search order file in ISE Design Suite:
1. Select Process > Process Properties > Synthesis Options.
2. From the Property display level list, select Advanced
3. Set the Library Search Order property.

LOC
The LOC constraint defines where a design element can be placed within an FPGA or
CPLD device.

For more information about this constraint, see the Constraints Guide.

Netlist Hierar chy (-netlist_hierar chy)
The Netlist Hierarchy (-netlist_hierarchy) command line option:
• Controls the form in which the final NGC netlist is generated.
• Allows you to write the hierarchical netlist even if the optimization was done on a

partially or fully flattened design.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 301

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=301

Chapter 7: XST General Constraints

Syntax
-netlist_hierarchy {as_optimized|rebuilt}

• as_optimized (default)

XST takes into account the Keep Hierarchy (KEEP_HIERARCHY) constraint, and
generates the NGC netlist in the form in which it was optimized. In this mode, some
hierarchical blocks can be flattened, and some can maintain hierarchy boundaries.

• rebuilt

XST writes a hierarchical NGC netlist, regardless of the Keep Hierarchy
(KEEP_HIERARCHY) constraint.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
-netlist_hierarchy {as_optimized|rebuilt}

ISE® Design Suite
1. Select Process > Process Properties > Synthesis Options.

2. From the Property display level list, select Advanced

3. Set the Netlist Hierarchy property.

Optimization Effor t (OPT_LEVEL)
The Optimization Effort (OPT_LEVEL) constraint defines the synthesis optimization
effort level.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to the entire design, or to an entity or module.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Frontmatter
302 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=302

Chapter 7: XST General Constraints

Syntax
-opt_level {1|2}
• 1 (normal optimization) (default)

Use 1 (normal optimization) for very fast processing, especially for hierarchical
designs. In speed optimization mode, Xilinx® recommends using 1 (normal
optimization) for the majority of designs.

• 2 (higher optimization)
While 2 (higher optimization) is more time consuming, it sometimes gives better
results in the number of slices/macrocells or maximum frequency. Selecting 2
(higher optimization) usually results in increased synthesis run times, and does not
always bring optimization gain.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute opt_level: string;

Specify as follows:

attribute opt_level of entity_name: entity is "{1|2}";

Verilog
Place immediately before the module declaration or instantiation:

(* opt_level = "{1|2}" *)

XCF
MODEL "entity_name" opt_level={1|2};

XST Command Line
xst run -opt_level {1|2}

ISE® Design Suite
Process > Process Properties > Synthesis Options > Optimization Effort

Optimization Goal (OPT_MODE)
The Optimization Goal (OPT_MODE) constraint defines the synthesis optimization
strategy.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to the entire design, or to an entity or module.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 303

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=303

Chapter 7: XST General Constraints

Propagation Rules
Applies to the entity or module to which it is attached.

Syntax
-opt_mode {area|speed}
• speed (default)

The priority of speed is to reduce the number of logic levels and therefore to
increase frequency.

• area
The priority of area is to reduce the total amount of logic used for design
implementation and therefore improve design fitting.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute opt_mode: string;

Specify as follows:

attribute opt_mode of entity_name: entity is "{speed|area}";

Verilog
Place immediately before the module declaration or instantiation:

(* opt_mode = "{speed|area}" *)

XCF
MODEL "entity_name" opt_mode={speed|area};

XST Command Line
xst run -opt_mode {area|speed}

ISE® Design Suite
Process > Process Properties > Synthesis Options > Optimization Goal

Parallel Case (PARALLEL_CASE)
The Parallel Case (PARALLEL_CASE) constraint:
• Is valid for Verilog designs only.
• Forces a case statement to be synthesized as a parallel multiplexer.
• Prevents the case statement from being transformed into a prioritized if...elsif

cascade.

For more information, see:

Multiplexers HDL Coding Techniques.

Frontmatter
304 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=304

Chapter 7: XST General Constraints

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to case statements in Verilog meta comments only.

Propagation Rules
Not applicable.

Syntax
-vlgcase {full|parallel|full-parallel}

• full
• parallel
• full-parallel

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

Verilog
(* parallel_case *)

Since PARALLEL_CASE does not contain a target reference, the attribute immediately
precedes the selector.

(* parallel_case *)
casex select
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;
endcase

PARALLEL_CASE is also available as a meta comment in the Verilog code. The syntax
differs from the standard meta comment syntax as shown in the following:

// synthesis parallel_case

Since PARALLEL_CASE does not contain a target reference, the meta comment
immediately follows the selector:

casex select // synthesis parallel_case
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;
endcase

XST Command Line
xst run -vlgcase {full|parallel|full-parallel}

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 305

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=305

Chapter 7: XST General Constraints

RLOC (RLOC)
The RLOC (RLOC) constraint:
• Is a basic mapping and placement constraint.
• Groups logic elements into discrete sets.
• Allows you to define the location of any element within the set relative to other

elements in the set, regardless of eventual placement in the overall design.

For more information about this constraint, see the Constraints Guide.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

Verilog
Assuming an SRL16 instance named srl1 to be placed at location R9C0.S0, you may
specify the following in the Verilog code:

// synthesis attribute RLOC of srl1 : "R9C0.S0";

XCF
You may specify the same attribute in the XST Constraint File (XCF) as follows:

BEGIN MODEL ENTNAME

INST sr11 RLOC=R9C0.SO;

END;

The binary equivalent of the following line is written to the output NGC file:

INST srl1 RLOC=R9C0.S0;

Save (S)
The Save (S) constraint is an advanced mapping constraint.

When the design is mapped, some nets may be absorbed into logic blocks, and some
elements such as LUTs can be optimized away. When a net is absorbed into a block, or a
block is optimized away, it can no longer be seen in the physical design database. Save
(S) prevents this from happening. Several optimization techniques such as nets or blocks
replication and register balancing are also disabled by the Save (S) constraint.

If Save (S) is applied to a net, XST preserves the net with all elements directly connected
to it in the final netlist. This includes nets connected to these elements.

If Save (S) is applied to a block such as a LUT, XST preserves the LUT with all signals
connected to it.

For more information about this constraint, see the Constraints Guide.

Frontmatter
306 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=306

Chapter 7: XST General Constraints

Synthesis Constraint File (-uc)
The Synthesis Constraint File (-uc) command line option specifies the synthesis
constraint file for XST to use.

The XST Constraint File (XCF) has an extension of .xcf . If the extension is not .xcf ,
XST errors out and stops processing.

For more information, see:

XST Constraint File (XCF)

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to files.

Propagation Rules
Not applicable.

Syntax
-uc filename

filename is the only value.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -uc my_constraints.xcf

Specifies my_constraints.xcf as the constraint file for this project.

ISE® Design Suite
Process > Process Properties > Synthesis Options > Synthesis Constraint File

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 307

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=307

Chapter 7: XST General Constraints

Translate Off (TRANSLATE_OFF) and Translate On
(TRANSLATE_ON)

The Translate Off (TRANSLATE_OFF) and Translate On (TRANSLATE_ON)
constraints:
• Instruct XST to ignore portions of VHDL or Verilog code that are not relevant for

synthesis, such as simulation code.
• Are Synopsys directives that XST supports in Verilog. Automatic conversion is also

available in VHDL and Verilog
• Can be used with the following words

– synthesis
– Synopsys
– pragma

• Operate as follows:
– TRANSLATE_OFFmarks the beginning of the section to be ignored.
– TRANSLATE_ON instructs XST to resume synthesis from that point.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies locally.

Propagation Rules
Instructs the synthesis tool to enable or disable portions of code

Syntax
The following sections show the syntax for this constraint.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
-- synthesis translate_off
...code not synthesized...
-- synthesis translate_on

Verilog
The Verilog syntax differs from the standard meta comment syntax presented earlier, as
shown in the following coding example.

// synthesis translate_off
...code not synthesized...
// synthesis translate_on

Frontmatter
308 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=308

Chapter 7: XST General Constraints

Ignore Synthesis Constraints File (–iuc)
Use the Ignore Synthesis Constraints File (–iuc) command line option to ignore the
constraint file specified with Synthesis Constraints File (-uc) during synthesis.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to files.

Propagation Rules
Not applicable.

Syntax
-iuc {yes|no}

• yes
• no (default)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -iuc yes

ISE Design Suite
Caution! Ignore Synthesis Constraints File is shown as Synthesis Constraints File in
ISE® Design Suite. The constraint file is ignored if you uncheck this option. It is checked
by default (therefore resulting in a –iuc no command line switch), meaning that any
synthesis constraints file you specify is taken into account.

Process > Process Properties > Synthesis Options > Use Synthesis Constraints File

Verilog 2001 (-verilog2001)
The Verilog 2001 (-verilog2001) command line option enables or disables interpreting
Verilog source code by the Verilog 2001 standard.

By default Verilog source code is interpreted as the Verilog 2001 standard.

Architecture Suppor t
Architecture independent.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 309

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=309

Chapter 7: XST General Constraints

Applicab le Elements
Applies to syntax.

Propagation Rules
Not applicable.

Syntax
-verilog2001 {yes|no}

• yes (default)
• no

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst elaborate -verilog2001 no

XST does not interpret Verilog code according to the Verilog 2001 standard.

ISE® Design Suite
Process > Process Properties > Synthesis Options > Verilog 2001

Verilog Include Directories (-vlgincdir)
The Verilog Include Directories (-vlgincdir) command line option helps the parser find
files referenced by ‘include statements.

When an ‘include statement references a file, XST looks in different areas in this order:

• Relative to the current directory.
• Relative to the inc directories.
• Relative to the current file.

Note Verilog Include Directories should be used with ‘include

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to directories.

Propagation Rules
Not applicable.

Frontmatter
310 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=310

Chapter 7: XST General Constraints

Syntax
-vlgincdir { directory_path [directory_path]}

where

directory_path is the name of a directory

For more information, see:

Names With Spaces in Command Line Mode.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst elaborate -vlgincdir c:/my_verilog

Adds c:/my_verilog to the list of directories in which XST looks for a file.

ISE® Design Suite
Process > Process Properties > Synthesis Options > Property display level > Advanced
> Verilog Include Directories

Verilog Macros (-define)
The Verilog Macros (-define) command line option:
• Is valid for Verilog designs only.
• Allows you to define (or redefine) Verilog macros.
This allows you to easily modify the design configuration without modifying source
code, such as for IP core generation and testing flows. If the defined macro is not used in
the design, no message is given.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Syntax
-define {name[=value] name[=value]}

where
• name is a macro name
• value is the macro text

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 311

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=311

Chapter 7: XST General Constraints

The default is an empty definition.

Note
• Values for macros are not mandatory.
• Place the values inside curly braces ({...}).
• Separate the values with spaces.
• Macro text can be specified between quotation marks ("..."), or without them. If the

macro text contains spaces, you must use quotation marks ("...").
-define {macro1=Xilinx macro2="Xilinx Virtex4"}

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -define macro1=Xilinx macro2="Xilinx Virtex4"

Defines two macros named macro1 and macro2.

ISE Design Suite
To define Verilog macros in ISE® Design Suite:
1. Select Process > Process Properties > Synthesis Options.
2. From the Property display level list, select Advanced.
3. Set the Verilog Macros property.

Do not use curly braces ({...}) when specifying values in ISE Design Suite.

Work Director y (-xsthdpdir)
Work Directory (-xsthdpdir) defines the location in which VHDL-compiled files must be
placed if the location is not defined by library mapping files.

To access Work Directory:
• In ISE® Design Suite, select:

Process > Process Properties > Synthesis Options > VHDLWorking Directory
• In standalone mode, run the following command:

set -xsthdpdir directory

Assume for purposes of this example:
• Three different users are working on the same project.
• They share one standard, precompiled library, shlib.
• This library contains specific macro blocks for their project.
• Each user also maintains a local work library.
• User 3 places her local work library outside the project directory (for example, in

c:\temp).
• Users 1 and 2 share another library (lib12) between them, but not with User 3.

The settings required for the three users are as follows:

Frontmatter
312 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=312

Chapter 7: XST General Constraints

Example User One
Mapping file

schlib=z:\sharedlibs\shlib lib12=z:\userlibs\lib12

Example User Two
Mapping file

schlib=z:\sharedlibs\shlib lib12=z:\userlibs\lib12

Example User Three
Mapping file

schlib=z:\sharedlibs\shlib

User Three will also set:

XSTHDPDIR = c:\temp

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to directories.

Propagation Rules
Not applicable.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
Define Work Directory globally with set -xsthdpdirbefore running the run command:

set -xsthdpdir directory

Work Directory can accept a single path only. You must specify the directory. There
is no default.

ISE Design Suite
Process > Process Properties > Synthesis Options > VHDL Work Directory

To viewWork Directory, select:

Edit > Preferences > Processes > Property Display Level > Advanced

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 313

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=313

Frontmatter
314 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=314

Chapter 8

XST HDL Constraints
The following HDL constraints can be set globally in ISE® Design Suite in Process >
Process Properties > HDL Options:

• Automatic FSM Extraction (FSM_EXTRACT)

• Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL)

• FSM Encoding Algorithm (FSM_ENCODING)

• Mux Extraction (MUX_EXTRACT)

• Resource Sharing (RESOURCE_SHARING)

• Safe Implementation (SAFE_IMPLEMENTATION)

The following HDL constraints cannot be set in Process > Process Properties:

• Enumerated Encoding (ENUM_ENCODING)

• Safe Recovery State (SAFE_RECOVERY_STATE)

• Signal Encoding (SIGNAL_ENCODING)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 315

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=315

Chapter 8: XST HDL Constraints

Automatic FSM Extraction (FSM_EXTRACT)
The Automatic FSM Extraction (FSM_EXTRACT) constraint:
• Enables or disables Finite State Machine (FSM) extraction and specific synthesis

optimizations.
• Must be enabled in order to set values for FSM Encoding Algorithm

(FSM_ENCODING).

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-fsm_extract {yes|no}

• yes (default)
• no
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute fsm_extract: string;

Specify as follows:

attribute fsm_extract of {entity_name|signal_name} : {entity|signal} is "{yes|no}";

Verilog
Place immediately before the module or signal declaration:

(* fsm_extract = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name"fsm_extract={yes|no|true|false};

Frontmatter
316 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=316

Chapter 8: XST HDL Constraints

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name "fsm_extract={yes|no|true|false};

END;

XST Command Line
xst run -fsm_extract {yes|no}

ISE® Design Suite
Process > Process Properties > HDL Options > FSM Encoding Algorithm

This option defines both –fsm_extract and FSM Style (FSM_STYLE).
• When FSM Encoding Algorithm (FSM_ENCODING) is set to none:

– -fsm_extract is set to no
– -fsm_encoding is irrelevant and is left unspecified

• When FSM Encoding Algorithm (FSM_ENCODING) is set to any other value:
– -fsm_extract is set to yes
– -fsm_encoding is set to the selected value

For more information about -fsm_encoding, see :

FSM Encoding Algorithm (FSM_ENCODING)

Enumerated Encoding (ENUM_ENCODING)
The Enumerated Encoding (ENUM_ENCODING) constraint:
• Applies a specific encoding to a VHDL enumerated type. The value is a string

containing space-separated binary codes.
• Can be specified only as a VHDL constraint on the considered enumerated type.

When describing a Finite State Machine (FSM) using an enumerated type for the state
register, you may specify a particular encoding scheme with ENUM_ENCODING.
In order for this encoding to be used by XST, set FSM Encoding Algorithm
(FSM_ENCODING) to user for the considered state register.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to signals or types.

Because ENUM_ENCODING must preserve the external design interface, XST ignores
ENUM_ENCODING when it is used on a port.

Propagation Rules
Applies to the signal or type to which it is attached.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 317

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=317

Chapter 8: XST HDL Constraints

Syntax
The following sections show the syntax for this constraint.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Specify as a VHDL constraint on the considered enumerated type:

...

...
architecture behavior of example is
type statetype is (ST0, ST1, ST2, ST3);
attribute enum_encoding : string;
attribute enum_encoding of statetype : type is "001 010 100 111";
signal state1 : statetype;
signal state2 : statetype;
begin
...

XCF
BEGIN MODEL "entity_name"

NET "signal_name" enum_encoding="string";

END;

Equiv alent Register Removal
(EQUIVALENT_REGISTER_REMOVAL)

The Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL) constraint
enables or disables removal of equivalent registers described at the RTL Level.

By default, XST does not remove equivalent flip-flops if they are instantiated from a
Xilinx® primitive library.

Flip-flop optimization includes removing:
• Equivalent flip-flops for FPGA and CPLD devices
• Flip-flops with constant inputs for CPLD devices

This processing increases the fitting success as a result of the logic simplification implied
by the flip-flops elimination.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Frontmatter
318 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=318

Chapter 8: XST HDL Constraints

Propagation Rules
Removes equivalent flip-flops and flip-flops with constant inputs.

Syntax
-equivalent_register_removal {yes|no}

• yes (default)
• no
• true (XCF only)
• false (XCF only)

When the value is set to yes, flip-flop optimization is allowed.

When the value is set to no, flip-flop optimization is inhibited.

Tip The flip-flop optimization algorithm is time consuming. For fast processing, use no.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute equivalent_register_removal: string;

Specify as follows:

attribute equivalent_register_removal of {entity_name|signal_name} : {signal|entity}
is "{yes |no}";

Verilog
Place immediately before the module or signal declaration:

(* equivalent_register_removal="{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" equivalent_register_removal= {yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL " entity_name"

NET "signal_name" equivalent_register_removal= {yes|no|true|false};

END;

XST Command Line
xst run -equivalent_register_removal {yes|no}

ISE® Design Suite
Process > Process Properties > Xilinx®Specific Options > Equivalent Register Removal

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 319

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=319

Chapter 8: XST HDL Constraints

FSM Encoding Algorithm (FSM_ENCODING)
The FSM Encoding Algorithm (FSM_ENCODING) constraint selects the Finite State
Machine (FSM) coding technique.

In order to select a value for the FSM Encoding Algorithm, Automatic FSM Extraction
(FSM_EXTRACT) must be enabled.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-fsm_encoding {auto|one-hot|compact|sequential|gray|johnson|speed1|user}

• auto (default)
The best coding technique is automatically selected for each individual state
machine.

• one-hot
• compact
• sequential
• gray
• johnson
• speed1
• user

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute fsm_encoding: string;

Specify as follows:

attribute fsm_encoding of {entity_name|signal_name}: {entity|signal} is
"{auto|one-hot|compact|sequential|gray|johnson|speed1|user}";

Verilog
Place immediately before the module or signal declaration:

(* fsm_encoding = "{auto|one-hot|compact|sequential|gray|johnson|speed1|user}"
*)

Frontmatter
320 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=320

Chapter 8: XST HDL Constraints

XCF Syntax Example One
MODEL "entity_name"
fsm_encoding={auto|one-hot|compact|sequential|gray|johnson|speed1|user} ;

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" fsm_encoding={auto
|one-hot|compact|sequential|gray|johnson|speed1|user };

END;

XST Command Line
run xst -fsm_encoding
{auto|one-hot|compact|sequential|gray|johnson|speed1|user}

ISE® Design Suite
Process > Process Properties > HDL Options > FSM Encoding Algorithm

These options are:

• If the FSM Encoding Algorithm menu is set to none, and -fsm_extract is set to no,
-fsm_encoding has no influence on the synthesis.

• In all other cases, -fsm_extract is set to yes and -fsm_encoding is set to the value
selected in the menu.

For more information, see:

Automatic FSM Extraction (FSM_EXTRACT)

Mux Extraction (MUX_EXTRACT)
The Mux Extraction (MUX_EXTRACT) constraint enables or disables multiplexer macro
inference.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 321

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=321

Chapter 8: XST HDL Constraints

Syntax
-mux_extract {yes|no|force}

• yes (default)
• no
• force
• true (XCF only)
• false (XCF only)

By default, multiplexer inference is enabled with the yes option. For each identified
multiplexer description, based on some internal decision rules, XST actually creates a
macro or optimizes it with the rest of the logic. The force value overrides those decision
rules, and forces XST to create the MUX macro.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute mux_extract: string;

Specify as follows:

attribute mux_extract of {signal_name|entity_name}: {entity|signal} is "{yes|no|force}";

Verilog
Place immediately before the module or signal declaration:

(* mux_extract = "{yes|no|force}" *)

XCF Syntax Example One
MODEL "entity_name" mux_extract={yes|no|true|false|force};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" mux_extract={yes|no|true|false|force};

END;

XST Command Line
xst run -mux_extract {yes|no|force}

ISE® Design Suite
Process > Process Properties > HDL Options

Resour ce Sharing (RESOURCE_SHARING)
The Resource Sharing (RESOURCE_SHARING) constraint enables or disables resource
sharing of arithmetic operators.

Frontmatter
322 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=322

Chapter 8: XST HDL Constraints

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to the entire design, or to design elements.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-resource_sharing {yes|no}

• yes (default)
• no
• force
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute resource_sharing: string;

Specify as follows:

attribute resource_sharing of entity_name: entity is "{yes|no}";

Verilog
Place immediately before the module declaration or instantiation:

(* resource_sharing = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" resource_sharing={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" resource_sharing={yes|no|true|false};

END;

XST Command Line
xst run -resource_sharing {yes|no}

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 323

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=323

Chapter 8: XST HDL Constraints

ISE® Design Suite
HDL Options > Resource Sharing

Safe Implementation (SAFE_IMPLEMENTATION)
The Safe Implementation (SAFE_IMPLEMENTATION) constraint implements Finite
State Machine (FSM) components in Safe Implementation mode.

In Safe Implementation mode, XST generates additional logic that forces an FSM
to a valid state (recovery state) if the FSM enters an invalid state. By default, XST
automatically selects reset as the recovery state. If the FSM does not have an initialization
signal, XST selects power-up as the recovery state.

Define the recovery statemanuallywith Safe Recovery State (SAFE_RECOVERY_STATE).

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to:
• An entire design through the XST command line
• A particular block (entity, architecture, component)
• A signal

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-safe_implementation {yes|no}

• yes
• no (default)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute safe_implementation: string;

Specify as follows:

attribute safe_implementation of {entity_name|component_name|signal_name} :
{entity|component|signal} is "{yes|no}";

Verilog
Place immediately before the module or signal declaration:

(* safe_implementation = "{yes|no}" *)

Frontmatter
324 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=324

Chapter 8: XST HDL Constraints

XCF Syntax Example One
MODEL "entity_name" safe_implementation={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" safe_implementation={yes|no|true|false};

END;

XST Command Line
xst run -safe_implementation {yes|no}

ISE® Design Suite
To activate Safe Implementation in:
• ISE Design Suite

Select Process > Process Properties > HDL Options > Safe Implementation
• Hardware Description Language (HDL)

Apply Safe Implementation to the hierarchical block or signal that represents the
state register in the FSM.

Signal Encoding (SIGNAL_ENCODING)
The Signal Encoding (SIGNAL_ENCODING) constraint selects the coding technique to
use for internal signals.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-signal_encoding {auto|one-hot|user}
• auto (default)

The best coding technique is automatically selected for each individual signal.
• one-hot

Forces the encoding to a one-hot encoding.
• user

Forces XST to keep your encoding.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 325

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=325

Chapter 8: XST HDL Constraints

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute signal_encoding: string;

Specify as follows:

attribute signal_encoding of {component_name|signal_name|entity_name|label_name} :
{component|signal|entity|label} is "{auto|one-hot|user}";

Verilog
Place immediately before the signal declaration:

(* signal_encoding = "{auto|one-hot|user}" *)

XCF Syntax Example One
MODEL "entity_name" signal_encoding = {auto|one-hot|user};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" signal_encoding = {auto|one-hot|user};

END;

XST Command Line
xst run -signal_encoding {auto|one-hot|user}

Safe Recovery State (SAFE_RECOVERY_STATE)
The Safe Recovery State (SAFE_RECOVERY_STATE) constraint defines a recovery state
for use when a Finite State Machine (FSM) is implemented in Safe Implementation mode.

If the FSM enters an invalid state, XST uses additional logic to force the FSM to a
valid recovery state. By implementing FSM in safe mode, XST collects all code not
participating in the normal FSM behavior and treats it as illegal.

XST uses logic that returns the FSM synchronously to the:
• Known state
• Reset state
• Power up state
• State you specified using Safe Recovery State

For more information, see:

Safe Implementation (SAFE_IMPLEMENTATION)

Architecture Suppor t
Architecture independent.

Frontmatter
326 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=326

Chapter 8: XST HDL Constraints

Applicab le Elements
Applies to a signal representing a state register.

Propagation Rules
Applies to the signal to which it is attached.

Syntax
The following sections show the syntax for this constraint.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute safe_recovery_state: string;

Specify as follows:

attribute safe_recovery_state of {signal_name}:signal is "<value>";

Verilog
Place immediately before the signal declaration:

(* safe_recovery_state = "<value>" *)

XCF
BEGIN MODEL "entity_name"

NET "signal_name" safe_recovery_state="<value>";

END;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 327

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=327

Frontmatter
328 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=328

Chapter 9

XST FPGA Constraints (Non-Timing)
Impor tant! The constraints described in this chapter apply to FPGA devices only. They
do not apply to CPLD devices.

This chapter discusses the following constraints:

• Asynchronous to Synchronous (ASYNC_TO_SYNC)
• Automatic BRAM Packing (AUTO_BRAM_PACKING)
• BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO)
• Buffer Type (BUFFER_TYPE)
• Convert Tristates to Logic (TRISTATE2LOGIC)
• Cores Search Directories (-sd)
• Decoder Extraction (DECODER_EXTRACT)
• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)
• Extract BUFGCE (BUFGCE)
• FSM Style (FSM_STYLE)
• LUT Combining (LC)
• Power Reduction (POWER)
• Read Cores (READ_CORES)
• Logical Shifter Extraction (SHIFT_EXTRACT)
• Map Entity on a Single LUT (LUT_MAP)
• Map Logic on BRAM (BRAM_MAP)
• Max Fanout (MAX_FANOUT)
• Move First Stage (MOVE_FIRST_STAGE)
• Move Last Stage (MOVE_LAST_STAGE)
• Multiplier Style (MULT_STYLE)
• Mux Style (MUX_STYLE)
• Number of Global Clock Buffers (-bufg)
• Number of Regional Clock Buffers (-bufr)
• Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES)
• Pack I/O Registers Into IOBs (IOB)
• Priority Encoder Extraction (PRIORITY_EXTRACT)
• RAM Extraction (RAM_EXTRACT)
• RAM Style (RAM_STYLE)
• Reduce Control Sets (REDUCE_CONTROL_SETS)
• Register Balancing (REGISTER_BALANCING)
• Register Duplication (REGISTER_DUPLICATION)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 329

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=329

Chapter 9: XST FPGA Constraints (Non-Timing)

• ROM Extraction (ROM_EXTRACT)

• ROM Style (ROM_STYLE)

• Shift Register Extraction (SHREG_EXTRACT)

• Slice Packing (-slice_packing)

• Slice (LUT-FF Pairs) Utilization Ratio (SLICE_UTILIZATION_RATIO)

• Slice (LUT-FF Pairs) Utilization Ratio Delta
(SLICE_UTILIZATION_RATIO_MAXMARGIN)

• Use Carry Chain (USE_CARRY_CHAIN)

• Use Clock Enable (USE_CLOCK_ENABLE)

• Use Synchronous Set (USE_SYNC_SET)

• Use Synchronous Reset (USE_SYNC_RESET)

• Use DSP48 (USE_DSP48)

• XOR Collapsing (XOR_COLLAPSE)

Some constraints can be applied:

• globally to an entire entity or model, OR

• locally to individual signals, nets or instances

For valid constraint targets, see:

• XST Specific Non-Timing Options

• XST Specific Non-Timing Options Supported Only in the Command Line

Frontmatter
330 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=330

Chapter 9: XST FPGA Constraints (Non-Timing)

Async hronous to Synchronous (ASYNC_TO_SYNC)
The Asynchronous to Synchronous (ASYNC_TO_SYNC) constraint:
• Allows you to replace Asynchronous Set/Reset signals with Synchronous signals

throughout the entire design.
• Allows absorption of registers by DSP48 and BRAMs, thereby improving quality

of results.
• May have a positive impact on power optimization.

Although XST can place Finite State Machine (FSM) components on BRAMs, in most
cases an FSM has an Asynchronous Set/Reset signal, which does not allow FSM
implementation on BRAMs. ASYNC_TO_SYNC allows you to more easily place FSMs
on BRAMs by eliminating the need to manually change the design.

Replacing Asynchronous Set/Reset signals by Synchronous signals makes the generated
NGC netlist NOT equivalent to the initial RTL description. You must ensure that the
synthesized design satisfies the initial specification. XST issues the following warning:

WARNING: You have requested that asynchronous control signals
of sequential elements be treated as if they were synchronous.
If you haven’t done so yet, please carefully review the related
documentation material. If you have opted to asynchronously
control flip-flop initialization, this feature allows you
to better explore the possibilities offered by the Xilinx
solution without having to go through a painful rewriting
effort. However, be well aware that the synthesis result, while
providing you with a good way to assess final device usage and
design performance, is not functionally equivalent to your HDL
description. As a result, you will not be able to validate
your design by comparison of pre-synthesis and post-synthesis
simulation results. Please also note that in general we strongly
recommend synchronous flip-flop initialization.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Syntax
-async_to_sync {yes|no}

• yes
• no (default)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 331

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=331

Chapter 9: XST FPGA Constraints (Non-Timing)

XST Command Line
xst run -async_to_sync yes

ISE® Design Suite
Process > Process Properties > HDL Options > Asynchronous to Synchronous

Automatic BRAM Packing (AUTO_BRAM_PACKING)
The Automatic BRAM Packing (AUTO_BRAM_PACKING) constraint allows you to
pack two small BRAMs in a single BRAM primitive as dual-port BRAM.

XST packs BRAMs together only if they are situated in the same hierarchical level.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Syntax
-auto_bram_packing {yes|no}

• yes
• no (default)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -auto_bram_packing no

ISE® Design Suite
Process > Process Properties > Automatic BRAM Packing

BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO)
The BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO) constraint defines the
number of BRAM blocks that XST must not exceed during synthesis.

BRAMs in the design may come not only from BRAM inference processes, but from
instantiation and BRAMmapping optimizations. You may isolate an RTL description of
logic in a separate block, and then ask XST to map this logic to BRAM.

For more information, see:

Frontmatter
332 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=332

Chapter 9: XST FPGA Constraints (Non-Timing)

Mapping Logic Onto Block RAM

Instantiated BRAMs are the primary candidates for available BRAM resources. The
inferred RAMs are placed on the remaining BRAM resources. However, if the number
of instantiated BRAMs exceeds the number of available resources, XST does not modify
the instantiations and implement them as block RAMs. The same behavior occurs if
you force specific RAMs to be implemented as BRAMs. If there are no resources, XST
respects user constraints, even if the number of BRAM resources is exceeded.

If the number of user-specified BRAMs exceeds the number of available BRAM
resources on the target FPGA device, XST issues a warning, and uses only available
BRAM resources on the chip for synthesis. However, you may disable automatic BRAM
resource management by using value -1. This can be used to see the number of BRAMs
XST can potentially infer for a specific design.

You may experience significant synthesis time if the number of BRAMs in the design
significantly exceeds the number of available BRAMs on the target FPGA device
(hundreds of BRAMs). This may happen due to a significant increase in design
complexity when all non-fittable BRAMs are converted to distributed RAMs.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Syntax
• %
• #

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -bram_utilization_ratio<integer>[%][#]

where

<integer> range is [-1 to 100] when% is used or both% and # are omitted

The default is 100.

XST Command Line Syntax Example One
xst run -bram_utilization_ratio 50

where

50 means 50% of BRAM blocks in the target device

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 333

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=333

Chapter 9: XST FPGA Constraints (Non-Timing)

XST Command Line Syntax Example Two
xst run -bram_utilization_ratio 50%

where

50% means 50% of BRAM blocks in the target device

XST Command Line Syntax Example Three
xst run -bram_utilization_ratio 50#

where

50# means 50 BRAM blocks

There must be no space between the integer value and the percent (%) or pound (#)
characters.

In some situations, you can disable automatic BRAM resource management (for example,
to see how many BRAMs XST can potentially infer for a specific design). To disable
automatic resource management, specify -1 (or any negative value) as a constraint value.

ISE® Design Suite
Process > Process Properties > Synthesis Options > BRAM Utilization Ratio

In ISE Design Suite, you can define the value of BRAM Utilization Ratio only as a
percentage. The definition of the value in the form of absolute number of BRAMs is
not supported.

Buff er Type (BUFFER_TYPE)
The Buffer Type (BUFFER_TYPE) constraint selects the type of buffer to be inserted
on the input port or internal net.

XST supports the bufr value for Virtex®-4 devices and Virtex-5 devices only.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to signals.

Propagation Rules
Applies to the signal to which it is attached.

Syntax
• bufgdll
• ibufg
• bufgp
• ibuf
• bufr
• none

Frontmatter
334 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=334

Chapter 9: XST FPGA Constraints (Non-Timing)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute buffer_type: string;

Specify as follows:

attribute buffer_type of signal_name: signal is "
{bufgdll|ibufg|bufgp|ibuf|bufr|none}";

Verilog
Place immediately before the signal declaration:

(* buffer_type = "{bufgdll|ibufg|bufgp|ibuf|bufr|none}" *)

XCF
BEGIN MODEL "entity_name"

NET "signal_name" buffer_type={bufgdll|ibufg|bufgp|ibuf|bufr|none};

END;

Conver t Tristates to Logic (TRISTATE2LOGIC)
Since some devices do not support internal tristates, XST automatically replaces tristates
with equivalent logic. Because the logic generated from tristates can be combined and
optimized with surrounding logic, tristate to logic replacement for other devices can
lead to better speed, and in some cases, better area optimization. But in general tristate
to logic replacement may lead to area increase. If the optimization goal is Area, you
should apply Convert Tristates to Logic set to no.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 335

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=335

Chapter 9: XST FPGA Constraints (Non-Timing)

Limitations to Conver t Tristates to Logic
Following are limitations to Convert Tristates to Logic:
• Only internal tristates are replaced by logic. The tristates of the top module

connected to output pads are preserved.
• Convert Tristates to Logic does not apply to technologies that do not have internal

tristates, such as Spartan®-3 devices or Virtex®-4 devices. In this case, the
conversion of tristates to logic is performed automatically. In some situations XST
is unable to make the replacement automatically, due to the fact that this may lead
to wrong design behavior or multi-source. This may happen when the hierarchy
is preserved or XST does not have full design visibility (for example, design is
synthesized on a block-by-block basis). In these cases, XST issues a warning at the
low level optimization step. Depending on the particular design situation, you
may continue the design flow and the replacement could be done by MAP, or you
can force the replacement by applying Convert Tristates to Logic set to yes on a
particular block or signal.

• The situations in which XST is unable to replace a tristate by logic are:
– The tristate is connected to a black box.
– The tristate is connected to the output of a block, and the hierarchy of the block

is preserved.
– The tristate is connected to a top-level output.
– Convert Tristates to Logic is set to no on the block where tristates are placed,

or on the signals to which tristates are connected.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to:
• An entire design through the XST command line
• A particular block (entity, architecture, component)
• A signal

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-tristate2logic {yes|no}

• yes (default)
• no
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

Frontmatter
336 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=336

Chapter 9: XST FPGA Constraints (Non-Timing)

VHDL
Declare as follows:

attribute tristate2logic: string;

Specify as follows:

attribute tristate2logic of {entity_name|component_name|signal_name} :
{entity|component|signal} is "{yes|no}";

Verilog
Place immediately before the module or signal declaration:

(* tristate2logic = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" tristate2logic={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" tristate2logic={yes|no|true|false};

END;

XST Command Line
xst run -tristate2logic {yes|no}

ISE® Design Suite
Process > Process Properties > Xilinx® Specific Options > Convert Tristates to Logic

Cores Search Directories (-sd)
The Cores Search Directories (-sd) command line option tells XST to look for cores in
directories other than the default.

By default XST searches for cores in the directory specified in the -ifn option.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Syntax
-sd {directory_path [directory_path]]

The only value is directory_path. There is no default.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 337

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=337

Chapter 9: XST FPGA Constraints (Non-Timing)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -sd c:/data/cores c:/ise/cores

Tells XST to search for cores in c:/data/cores and c:/ise/cores in addition to
the default directory.

For more information, see:

Names With Spaces in Command Line Mode

ISE® Design Suite
Process > Process Properties > Synthesis Options > Cores Search Directory

Decoder Extraction (DECODER_EXTRACT)
The Decoder Extraction (DECODER_EXTRACT) constraint enables or disables decoder
macro inference.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
When attached to a net or signal, Decoder Extraction applies to the attached signal.

When attached to an entity or module, Decoder Extraction is propagated to all applicable
elements in the hierarchy within the entity or module.

Syntax
-decoder_extract {yes|no}

• yes (default)
• no

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

Frontmatter
338 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=338

Chapter 9: XST FPGA Constraints (Non-Timing)

attribute decoder_extract: string;

Specify as follows:

attribute decoder_extract of {entity_name|signal_name} : {entity|signal} is "{yes|no}";

Verilog
Place immediately before the module or signal declaration:

(* decoder_extract "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" decoder_extract={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" decoder_extract={yes|no|true|false};

END;

XST Command Line
xst run -decoder_extract {yes|no}

ISE® Design Suite
Process > Process Properties > HDL Options > Decoder Extraction

DSP Utilization Ratio (DSP_UTILIZATION_RATIO)
The DSP Utilization Ratio (DSP_UTILIZATION_RATIO) constraint defines the number
of DSP slices (in absolute number or percent of slices) that XST must not exceed during
synthesis optimization.

The default is 100% of the target device.

DSP slices in the design may come not only from DSP inference processes, but also
from instantiation. Instantiated DSP slices are the primary candidates for available DSP
resources. The inferred DSPs are placed on the remaining DSP resources. If the number
of instantiated DSPs exceeds the number of available resources, XST does not modify the
instantiations and implement them as block DSP slices. The same behavior occurs if you
force specific macro implementation to be implemented as DSP slices by using the Use
DSP48 (USE_DSP48) constraint. If there are no resources, XST respects user constraints
even if the number of DSP slices is exceeded.

If the number of user-specified DSP slices exceeds the number of available DSP resources
on the target FPGA device, XST issues a warning, and uses only available DSP resources
on the chip for synthesis.

You can disable automatic DSP resource management (for example, to see how many
DSPs XST can potentially infer for a specific design) by specifying -1 (or any negative
value) as a constraint value.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 339

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=339

Chapter 9: XST FPGA Constraints (Non-Timing)

Architecture Suppor t
Applies to the following devices only. Does not apply to any other devices.
• Virtex®-4
• Virtex-5
• Spartan®-3A DSP

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Syntax
The following sections show the syntax for this constraint.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
-dsp_utilization_ratio integer[%|#]

where
integer is [-1 to 100] when
– % is used, or
– both % and # are omitted

To specify a percent of total slices use%. To specify an absolute number of slices use #

The default is %.

For example:
• To specify 50% of DSP blocks of the target device enter :

-dsp_utilization_ratio 50
• To specify 50% of DSP blocks of the target device enter:

-dsp_utilization_ratio 50%
• To specify 50 DSP blocks enter:

-dsp_utilization_ratio 50#

Note There must be no space between the integer value and the percent (%) or pound
(#) characters.

ISE® Design Suite
Process > Process Properties > Synthesis Options > DSP Utilization Ratio

In ISE Design Suite, you can define the value of DSP Utilization Ratio only as a
percentage. You can not define the value as an absolute number of slices.

Frontmatter
340 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=340

Chapter 9: XST FPGA Constraints (Non-Timing)

Extract BUFGCE (BUFGCE)
The Extract BUFGCE (BUFGCE) constraint:
• Implements BUFGMUX functionality by inferring a BUFGMUX primitive.

This operation reduces the wiring. Clock and clock enable signals are driven to n
sequential components by a single wire.

• Must be attached to the primary clock signal.
• Is accessible through Hardware Description Language (HDL) code.

If bufgce=yes, XST implements BUFGMUX functionality if possible. All flip-flops
must have the same clock enable signal.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to clock signals.

Propagation Rules
Applies to the signal to which it is attached.

Syntax
• yes
• no

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL Syntax Example
Declare as follows:

attribute bufgce : string;

Specify as follows:

attribute bufgce of signal_name: signal is "{yes|no}";

Verilog
Place immediately before the signal declaration:

(* bufgce = "{yes|no}" *)

XCF
BEGIN MODEL "entity_name"

NET "primary_clock_signal" bufgce={yes|no|true|false};

END;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 341

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=341

Chapter 9: XST FPGA Constraints (Non-Timing)

FSM Style (FSM_STYLE)
The FSM Style (FSM_STYLE) constraint:
• Is both a global and a local constraint.
• Can make large Finite State Machine (FSM) components more compact and faster

by implementing them in the block RAM resources provided in Virtex® devices
and later.

• Can be used to direct XST to use block RAM resources rather than LUTs (default) to
implement FSMs.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
• lut (default)
• bram

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute fsm_style: string;

Declare as follows:

attribute fsm_style of {entity_name|signal_name} : {entity|signal} is "{lut|bram}";

Verilog
Place immediately before the module or signal declaration:

(* fsm_style = "{lut|bram}" *)

XCF Syntax Example One
MODEL "entity_name" fsm_style = {lut|bram};

XCF Syntax Example Two
BEGIN MODEL "entity_name”

NET "signal_name" fsm_style = {lut|bram};

END;

Frontmatter
342 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=342

Chapter 9: XST FPGA Constraints (Non-Timing)

XCF Syntax Example Three
BEGIN MODEL "entity_name"

INST "instance_name" fsm_style = {lut|bram};

END;

ISE® Design Suite
Process > Process Properties > Synthesis Options > FSM Style

Logical Shifter Extraction (SHIFT_EXTRACT)
The Logical Shifter Extraction (SHIFT_EXTRACT) constraint enables or disables logical
shifter macro inference.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design, or to design elements and nets.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-shift_extract {yes|no}

• yes (default)
• no
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute shift_extract: string;

Specify as follows:

attribute shift_extract of {entity_name|signal_name}: {signal|entity} is "{yes|no}";

Verilog
Place immediately before the module declaration or instantiation:

(* shift_extract = "{yes|no}" *)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 343

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=343

Chapter 9: XST FPGA Constraints (Non-Timing)

XCF Syntax Example One
MODEL "entity_name" shift_extract={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" shift_extract={yes|no|true|false};

END;

XST Command Line
xst run -shift_extract {yes|no}

ISE® Design Suite
Process > Process Properties > HDL Options > Logical Shifter Extraction

LUT Combining (LC)
The LUT Combining (LC) constraint enables the merging of LUT pairs with common
inputs into single dual-output LUT6s in order to improve design area. This optimization
process may reduce design speed.

Architecture Suppor t
Applies to Virtex®-5 devices only. Does not apply to any other devices.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Syntax
-lc {auto|area|off}
• auto

XST tries to make a trade-off between area and speed.
• area

XST performs maximum LUT combining to provide as small an implementation as
possible.

• off (default)
Disables LUT Combining.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

Frontmatter
344 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=344

Chapter 9: XST FPGA Constraints (Non-Timing)

XST Command Line
xst run -lc {auto|area|off}

ISE® Design Suite
Process > Process Properties > Xilinx® Specific Options > LUT Combining

Map Entity on a Single LUT (LUT_MAP)
The Map Entity on a Single LUT (LUT_MAP) constraint forces XST to map a single block
into a single LUT. If a described function on an RTL level description does not fit in a
single LUT, XST issues an error message.

Use the UNISIM library to directly instantiate LUT components in your Hardware
Description Language (HDL) code. To specify a function that a particular LUT must
execute, apply an INIT constraint to the instance of the LUT. To place an instantiated
LUT or register in a particular slice, attach an RLOC constraint to the same instance.

It is not always convenient to calculate INIT functions and different methods can be
used to achieve this. Instead, you can describe the function that you want to map onto a
single LUT in your VHDL or Verilog code in a separate block. Attaching a LUT_MAP
constraint to this block indicates to XST that this block must be mapped on a single
LUT. XST automatically calculates the INIT value for the LUT and preserves this LUT
during optimization.

For more information, see:

Specifying INIT and RLOC

XST automatically recognizes the XC_MAP constraint supported by Synopsys.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to a VHDL entity or Verilog module.

Propagation Rules
Applies to the entity or module to which it is attached.

Syntax
• yes (default)
• no
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 345

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=345

Chapter 9: XST FPGA Constraints (Non-Timing)

attribute lut_map: string;

Specify as follows:

attribute lut_map of entity_name : entity is "{yes|no}";

Verilog
Place immediately before the module declaration or instantiation:

(* lut_map = "{yes|no}" *)

XCF
MODEL "entity_name" lut_map={yes|no|true|false};

Map Logic on BRAM (BRAM_MAP)
The Map Logic on BRAM (BRAM_MAP) constraint:
• Is both a global and a local constraint.
• Is used to map an entire hierarchical block on the block RAM resources available in

Virtex® devices and later technologies.

For more information, see:

Mapping Logic Onto Block RAM

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
BRAMs.

Propagation Rules
Isolate the logic (including output register) to be mapped on RAM in a separate
hierarchical level. Logic that does not fit on a single block RAM is not mapped. Ensure
that the whole entity fits, not just part of it.

The attribute BRAM_MAP is set on the instance or entity. If no block RAM can be
inferred, the logic is passed to Global Optimization, where it is optimized. The macros
are not inferred. Be sure that XST has mapped the logic.

Syntax
• yes
• no (default)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

Frontmatter
346 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=346

Chapter 9: XST FPGA Constraints (Non-Timing)

VHDL
Declare as follows:

attribute bram_map: string;

Specify as follows:

attribute bram_map of component_name: component is "{yes|no}";

Verilog
Place immediately before the module declaration or instantiation:

(* bram_map = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" bram_map = {yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

INST "instance_name" bram_map = {yes|no|true|false};

END;

Max Fanout (MAX_FANOUT)
The Max Fanout (MAX_FANOUT) constraint:
• Is both a global and a local constraint.

• Limits the fanout of nets or signals.

Large fanouts can cause routability problems. See Constraint Values below. XST tries to
limit fanout by duplicating gates or by inserting buffers. This limit is not a technology
limit, but only a guide to XST. This limit may not be precisely respected, especially when
the limit is small (less than 30).

In most cases, fanout control is performed by duplicating the gate driving the net with a
large fanout. If the duplication cannot be performed, buffers are inserted. These buffers
are protected against logic trimming at the implementation level by defining a Keep
(KEEP) attribute in the NGC file.

If the register replication option is set to no, only buffers are used to control fanout
of flip-flops and latches.

Max Fanout is global for the design, but you can control maximum fanout independently
for each entity or module or for given individual signals by using constraints.

If the actual net fanout is less than the Max Fanout value, XST behavior depends on how
Max Fanout is specified.

• If the value of Max Fanout is set in ISE® Design Suite or in the command line, or is
attached to a specific hierarchical block, XST interprets its value as a guidance.

• If Max Fanout is attached to a specific net, XST does not perform logic replication.
Placing Max Fanout on the net may prevent XST from improving timing
optimization.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 347

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=347

Chapter 9: XST FPGA Constraints (Non-Timing)

For example, suppose the following:
• The critical path goes through the net.
• The actual fanout is 80.
• The Max Fanout value is set to 100.

In that instance:
• If Max Fanout is specified in ISE Design Suite, XST may replicate it, trying to

improve timing.
• If Max Fanout is attached to the net itself, XST does not perform logic replication.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-max_fanout integer

The constraint value is an integer. The default value varies depending on the targeted
device family as shown in the following table.

Max Fanout Default Value
Devices Default Value
Spartan®-3

Spartan-3E

Spartan-3A

Spartan-3A DSP

500

Virtex®-4 500

Virtex-5 100000 (One Hundred Thousand)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute max_fanout: string;

Specify as follows:

attribute max_fanout of {signal_name|entity_name}: {signal|entity} is "integer";

Frontmatter
348 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=348

Chapter 9: XST FPGA Constraints (Non-Timing)

Verilog
Place immediately before the signal declaration:

(* max_fanout = "integer" *)

XCF Syntax Example One
MODEL "entity_name" max_fanout=integer;

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" max_fanout=integer;

END;

XST Command Line
xst run -max_fanout integer

ISE Design Suite
Process > Process Properties > Xilinx® Specific Options > Max Fanout

Move First Stage (MOVE_FIRST_STAGE)
The Move First Stage (MOVE_FIRST_STAGE) constraint controls the retiming of
registers with paths coming from primary inputs.

Both Move First Stage and Move Last Stage (MOVE_LAST_STAGE) relate to Register
Balancing.

Several constraints influence register balancing.

For more information, see:

Register Balancing (REGISTER_BALANCING)

Note
• A flip-flop (FF in the diagram) belongs to the First Stage if it is on the paths coming

from primary inputs.

• A flip-flop belongs to the Last Stage if it is on the paths going to primary outputs.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 349

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=349

Chapter 9: XST FPGA Constraints (Non-Timing)

Move First Stage Diagram

During Register Balancing
During register balancing:
• First Stage flip-flops are moved forward
• Last Stage flip-flops are moved backward.

This process can dramatically increase input-to-clock and clock-to-output timing,
which is not desirable. To prevent this, you may use OFFSET_IN_BEFORE and
OFFSET_IN_AFTER constraints.

If:
• The design does not have a strong requirements, or
• You want to see the first results without touching the first and last flip-flop stages,

You can use two additional constraints:
• Move First Stage
• Move Last Stage

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the following only:
• Entire design
• Single modules or entities
• Primary clock signal

Propagation Rules
For Move First Stage propagation rules, see the figure above.

Frontmatter
350 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=350

Chapter 9: XST FPGA Constraints (Non-Timing)

Syntax
-move_first_stage {yes|no}

Both Move First Stage and Move Last Stage may have either of two values:
• yes
• no

– MOVE_FIRST_STAGE=no
Prevents the first flip-flop stage from moving

– MOVE_LAST_STAGE=no
Prevents the last flip-flop stage from moving

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute move_first_stage : string;

Specify as follows:

attribute move_first_stage of {entity_name|signal_name } : {signal|entity} is "{yes|no}";

Verilog
Place immediately before the module or signal declaration:

(* move_first_stage = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" move_first_stage={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "primary_clock_signal" move_first_stage={yes|no|true|false};

END;

XST Command Line
xst run -move_first_stage {yes|no}

ISE® Design Suite
Process > Process Properties > Xilinx® Specific Options > Move First Flip-Flop Stage

Move Last Stage (MOVE_LAST_STAGE)
The Move Last Stage (MOVE_LAST_STAGE) constraint controls the retiming of
registers with paths going to primary outputs.

Both Move Last Stage and Move First Stage (MOVE_FIRST_STAGE) relate to Register
Balancing.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 351

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=351

Chapter 9: XST FPGA Constraints (Non-Timing)

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the following:
• Entire design
• Single modules or entities
• Primary clock signal

Propagation Rules
See Move First Stage (MOVE_FIRST_STAGE).

Syntax
-move_last_stage {yes|no}

• yes (default)
• no
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute move_last_stage : string;

Specify as follows:

attribute move_last_stage of {entity_name|signal_name} : {signal|entity} is "{yes|no}";

Verilog
Place immediately before the module or signal declaration:

(* move_last_stage = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" move_last_stage={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "primary_clock_signal" move_last_stage={yes|no|true|false};

END;

Frontmatter
352 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=352

Chapter 9: XST FPGA Constraints (Non-Timing)

XST Command Line
xst run -move_last_stage {yes|no}

ISE® Design Suite
Process > Process Properties > Xilinx® Specific Options > Move Last Stage

Multiplier Style (MULT_STYLE)
The Multiplier Style (MULT_STYLE) constraint controls the way the macrogenerator
implements the multiplier macros.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-mult_style {auto|block|kcm|csd|lut|pipe_lut}

• auto (default)
Instructs XST to look for the best implementation for each considered macro.

• block
• pipe_block

– Used to pipeline DSP48 based multipliers.
– Available for the following devices only:

♦ Virtex®-4
♦ Virtex-5
♦ Spartan®-3A DSP

• kcm
• csd
• lut
• pipe_lut

For pipeline slice-based multipliers only.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 353

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=353

Chapter 9: XST FPGA Constraints (Non-Timing)

attribute mult_style: string;

Specify as follows:

attribute mult_style of {signal_name|entity_name} : {signal|entity} is
"{auto|block|pipe_block|kcm|csd|lut|pipe_lut}";

Verilog
Place immediately before the module or signal declaration:

(* mult_style = "{auto|block|pipe_block|kcm|csd|lut|pipe_lut}" *)

XCF Syntax Example One
MODEL "entity_name" mult_style={auto|block|pipe_block|kcm|csd|lut|pipe_lut};

XCF Syntax Example Two
BEGIN MODEL "entity_name”

NET "signal_name" mult_style={auto|block|pipe_block|kcm|csd|lut|pipe_lut} ;

END;

XST Command Line
xst run -mult_style {auto|block|kcm|csd|lut|pipe_lut}

The -mult_style command line option is not supported for the following devices:

• Virtex-4

• Virtex-5

• Spartan-3A

For those devices, use:

-use_dsp48

ISE® Design Suite
Process > Process Properties > HDL Options > Multiplier Style

Mux Style (MUX_STYLE)
The Mux Style (MUX_STYLE) constraint controls the way the macrogenerator
implements the multiplexer macros.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Frontmatter
354 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=354

Chapter 9: XST FPGA Constraints (Non-Timing)

Availab le Devices
Devices Resour ces
Spartan®-3

Spartan-3E

Spartan-3A

Spartan-3A DSP

Virtex®-4

Virtex-5

MUXF

MUXF6

MUXCY

MUXF7

MUXF8

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
mux_style {auto|muxf|muxcy}
• auto (default)

XST looks for the best implementation for each considered macro.
• muxf
• muxcy

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute mux_style: string;

Specify as follows:

attribute mux_style of {signal_name|entity_name} : {signal|entity} is
"{auto|muxf|muxcy}";

Verilog
Place immediately before the module or signal declaration:

(* mux_style = "{auto|muxf|muxcy}" *)

XCF Syntax Example One
MODEL "entity_name" mux_style={auto|muxf|muxcy};

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 355

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=355

Chapter 9: XST FPGA Constraints (Non-Timing)

XCF Syntax Example Two
BEGIN MODEL "entity_name”

NET "signal_name" mux_style={auto|muxf|muxcy};

END;

XST Command Line
xst run -mux_style {auto|muxf|muxcy}

ISE® Design Suite
Process > Process Properties > HDL Options > Mux Style

Number of Global Clock Buff ers (-bufg)
The Number of Global Clock Buffers (-bufg) command line option controls the
maximum number of BUFG components created by XST.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Syntax
-bufg integer

The value is an integer. The default value depends on the target device, and is equal
to the maximum number of available BUFG components. Defaults for selected
architectures are shown below.

Devices Default Value
Virtex®-4

Virtex-5

32

Spartan®-3 8

Spartan-3E

Spartan-3A

Spartan-3A DSP

24

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

Frontmatter
356 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=356

Chapter 9: XST FPGA Constraints (Non-Timing)

XST Command Line
xst run -bufg 8

Sets the number of global clock buffers to 8.

ISE® Design Suite
To set the number of global clock buffers in ISE Design Suite:
1. Select Process > Process Properties > Xilinx®-Specific Options.
2. From the Property display level list, select Advanced
3. Set the Number of Clock Buffers property.

Number of Regional Clock Buff ers (-bufr)
The Number of Regional Clock Buffers (-bufr) command line option controls the
maximum number of BUFRs created by XST.

Architecture Suppor t
• May be used with Virtex®-4 devices only.
• May NOT be used with Virtex-5 devices.
• May NOT be used with Spartan®-3 devices.
• May NOT be used with CPLD devices.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Syntax
-bufr integer

The value is an integer. The default value depends on the target device, and is equal to
the maximum number of available BUFRs.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -bufr 6 6

Sets the number of regional clock buffers to 6.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 357

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=357

Chapter 9: XST FPGA Constraints (Non-Timing)

ISE® Design Suite
To set the number of regional clock buffers in ISE Design Suite:
1. Select Process > Process Properties > Xilinx®-Specific Options
2. From the Property display level list, select Advanced
3. Set the Number of Regional Clock Buffers property.

Optimiz e Instantiated Primitives (OPTIMIZE_PRIMITIVES)
The Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES) constraint:
• Switches off the default by which XST does not optimize instantiated primitives in

Hardware Description Language (HDL) designs.
• Allows XST to optimize Xilinx® library primitives that have been instantiated in an

HDL design.

Optimization of instantiated primitives is limited by the following factors:
• If an instantiated primitive has specific constraints such as RLOC attached, XST

preserves it as is.
• Not all primitives are considered by XST for optimization. Such hardware elements

as the following are not optimized (modified) even if optimization of instantiated
primitives is enabled:
– MULT18x18
– BRAM
– DSP48

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to hierarchical blocks, components, and instances.

Propagation Rules
Applies to the component or instance to which it is attached.

Syntax
• yes
• no (default)
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

Frontmatter
358 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=358

Chapter 9: XST FPGA Constraints (Non-Timing)

Schematic Syntax Examples
• Attach to a valid instance
• Attribute Name

OPTIMIZE_PRIMITIVES
• Attribute Values

See Syntax section above.

VHDL
Declare as follows:

attribute optimize_primitives: string;

Specify as follows:

attribute optimize_primitives of {component_name|entity_name|label_name} :
{component|entity|label} is "{yes|no}";

Verilog
Place immediately before the module or signal declaration:

(* optimize_primitives = "{yes|no}" *)

XCF
MODEL "entity_name" optimize_primitives = {yes|no|true|false};

ISE® Design Suite
Process > Process Properties > Xilinx® Specific Options > Optimize Instantiated
Primitives

Pack I/O Register s Into IOBs (IOB)
The Pack I/O Registers Into IOBs (IOB) constraint packs flip-flops in the I/Os to improve
input/output path timing.

When IOB is set to auto, the action XST takes depends on the Optimization setting:
• If Optimization is set to area, XST packs registers as tightly as possible to the IOBs in

order to reduce the number of slices occupied by the design.
• If Optimization is set to speed, XST packs registers to the IOBs provided they are

not covered by timing constraints (in other words, they are not taken into account
by timing optimization). For example, if you specify a period constraint, XST packs
a register to the IOB if it is not covered by the period constraint. If a register is
covered by timing optimization, but you do want to pack it to an IOB, you must
apply the IOB constraint locally to the register.

For more information about this constraint, see the Constraints Guide.

Power Reduction (POWER)
The Power Reduction (POWER) constraint instructs XST to optimize the design to
consume as little power as possible.

Macro processing decisions are made to implement functions in a manner than uses
minimal power. Although POWER is allowed in both AREA and SPEED modes, it may
negatively impact the final overall area and speed of the design.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 359

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=359

Chapter 9: XST FPGA Constraints (Non-Timing)

In the current release, power optimization done by XST is dedicated to DSP48 and
BRAM blocks.

XST supports two BRAM optimization methods:
• Method One does not significantly impact area and speed. Method One is used by

default when power optimization is enabled.
• Method Two saves more power, but may significantly impact area and speed.

Both methods can be controlled by using the RAM Style (RAM_STYLE) constraint with
block_power1 for Method One and block_power2 for Method Two.

In some situations, XST may issue an HDL Advisor message giving you tips on how
to improve your design. For example, if XST detects that Read First mode is used for
BRAM, XST recommends that you use Write First or No Change modes.

Architecture Suppor t
Applies to Virtex®-4 devices and Virtex-5 devices only. Does not apply to any other
FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to:
• A component or entity (VHDL)
• A model or label (instance) (Verilog)
• A model or INST (in model) (XCF)
• The entire design (XST command line)

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-power {yes|no}

• yes
• no (default)
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute power: string;

Specify as follows:

attribute power of {component_name|entity_name} : {component_name|entity_name} is
"{yes|no}";

Frontmatter
360 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=360

Chapter 9: XST FPGA Constraints (Non-Timing)

Verilog
Place immediately before the module declaration or instantiation:

(* power = "{yes|no}" *)

XCF
MODEL "entity_name" power = {yes|no|true|false};

The default is false.

XST Command Line
xst run -power {yes|no}

ISE® Design Suite
Process > Process Properties > Synthesis Options > Power Reduction

Priority Encoder Extraction (PRIORITY_EXTRACT)
The Priority Encoder Extraction (PRIORITY_EXTRACT) constraint enables or disables
priority encoder macro inference.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
• yes (default)
• no
• force
• true (XCF only)
• false (XCF only)

For each identified priority encoder description, based on internal decision rules, XST
creates a macro or optimizes it with the rest of the logic. The force value allows you to
override those internal decision rules and force XST to extract the macro.

-priority_extract {yes|no|force}

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 361

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=361

Chapter 9: XST FPGA Constraints (Non-Timing)

VHDL
Declare as follows:

attribute priority_extract: string;

Specify as follows:

attribute priority_extract of {signal_name|entity_name} : {signal|entity} is
"{yes|no|force}";

Verilog
Place immediately before the module or signal declaration:

(* priority_extract = "{yes|no|force}" *)

XCF Syntax Example One
MODEL "entity_name" priority_extract={yes|no|true|false|force};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" priority_extract={yes|no|true|false|force};

END;

XST Command Line
xst run -priority_extract {yes|no|force}

ISE® Design Suite
Process > Process Properties > HDL Options > Priority Encoder Extraction

RAM Extraction (RAM_EXTRACT)
The RAM Extraction (RAM_EXTRACT) constraint enables or disables RAM macro
inference.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Frontmatter
362 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=362

Chapter 9: XST FPGA Constraints (Non-Timing)

Syntax
-ram_extract {yes|no}

• yes (default)
• no
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute ram_extract: string;

Specify as follows:

attribute ram_extract of {signal_name|entity_name} : {signal|entity} is "{yes|no}";

Verilog
Place immediately before the module declaration or instantiation:

(* ram_extract = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" ram_extract={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" ram_extract={yes|no|true|false};

END;

XST Command Line
xst run -ram_extract {yes|no}

ISE® Design Suite
Process > Process Properties > HDL Options > RAM Extraction

RAM Style (RAM_STYLE)
The RAM Style (RAM_STYLE) constraint controls the way the macrogenerator
implements the inferred RAM macros.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 363

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=363

Chapter 9: XST FPGA Constraints (Non-Timing)

The following are supported for Virtex®-4 devices and Virtex-5 devices only:
• block_power1
• block_power2

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
ram_style {auto|block|distributed}
• auto (default)
• block
• distributed
• pipe_distributed
• block_power1
• block_power2

XST looks for the best implementation for each inferred RAM.

You must use block_power1 and block_power2 in order to achieve power-oriented
BRAM optimization.

For more information, see:

Power Reduction (POWER)

The implementation style can be manually forced to use block RAM or distributed
RAM resources.

You can specify the following only through VHDL, Verilog, or XCF constraints:
• pipe_distributed
• block_power1
• block_power2

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute ram_style: string;

Specify as follows:

attribute ram_style of {signal_name|entity_name} : {signal|entity} is
"{auto|block|distributed|pipe_distributed|block_power1|block_power2}";

Verilog
Place immediately before the module or signal declaration:

Frontmatter
364 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=364

Chapter 9: XST FPGA Constraints (Non-Timing)

(* ram_style =
"{auto|block|distributed|pipe_distributed|block_power1|block_power2}" *)

XCF Syntax Example One
MODEL "entity_name"
ram_style={auto|block|distributed|pipe_distributed|block_power1|block_power2};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name"
ram_style={auto|block|distributed|pipe_distributed|block_power1|block_power2};

END;

XST Command Line
xst run -ram_style {auto|block|distributed}

The pipe_distributed value is not accessible through the command line.

ISE® Design Suite
Process > Process Properties > HDL Options > RAM Style

Read Cores (READ_CORES)
The Read Cores (READ_CORES) constraint enables or disables the ability of XST to
read Electronic Data Interchange Format (EDIF) or NGC core files for timing estimation
and device utilization control.

By reading a specific core, XST is better able to optimize logic around the core, since it
sees how the logic is connected. However, in some cases the Read Cores operation must
be disabled in XST in order to obtain the desired results. For example, the PCI™ core
must not be visible to XST, since the logic directly connected to the PCI core must be
optimized differently as compared to other cores. Read Cores allows you to enable or
disable read operations on a core by core basis.

For more information, see:

Cores Processing

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Since this constraint can be used with BoxType (BOX_TYPE) the set of objects on which
the both constraints can be applied must be the same.

Apply Read Cores to:
• A component or entity (VHDL)
• A model or label (instance) (Verilog)
• A model or INST (in model) (XCF)
• The entire design (XST command line)

If Read Cores is applied to at least a single instance of a block, then Read Cores is applied
to all other instances of this block for the entire design.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 365

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=365

Chapter 9: XST FPGA Constraints (Non-Timing)

Propagation Rules
Not applicable.

Syntax
-read_cores {yes|no|optimize}
• no (false)

Disables cores processing
• yes (true) (default)

Enables cores processing, but maintains the core as a black box and does not further
incorporate the core into the design

• optimize
Enables cores processing, and merges the cores netlist into the overall design. This
value is available through the XST command line mode only.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute read_cores: string;

Specify as follows:

attribute read_cores of {component_name|entity_name} : {component|entity} is
"{yes|no|optimize}";

Verilog
Place immediately before the module declaration or instantiation:

(* read_cores = "{yes|no|optimize}" *)

XCF Syntax Example One
MODEL "entity_name" read_cores = {yes|no|true|false|optimize};

XCF Syntax Example Two
BEGIN MODEL "entity_name" END;

INST "instance_name" read_cores = {yes|no|true|false|optimize};

END;

XST Command Line
xst run -read_cores {yes|no|optimize}

ISE® Design Suite
Process > Process Properties > Synthesis Options > Read Cores

Note The optimize option is not available in ISE Design Suite.

Frontmatter
366 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=366

Chapter 9: XST FPGA Constraints (Non-Timing)

Reduce Contr ol Sets (REDUCE_CONTROL_SETS)
The Reduce Control Sets (REDUCE_CONTROL_SETS) constraint allows you to reduce
the number of control sets and, as a consequence, reduce the design area.

Reducing the number of control sets should:
• Improve the packing process in map.
• Reduce the number of used slices even if the number of LUTs is increased.

Architecture Suppor t
Applies to Virtex®-5 devices only. Does not apply to any other devices.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Syntax
-reduce_control_sets {auto|no}

• auto
XST optimizes automatically, and reduces the existing control sets in the design.

• no (default)
XST performs no control set optimization.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -reduce_control_sets {auto|no}

ISE® Design Suite
Process > Process Properties > Xilinx Specific Options > Reduce Control Sets

Register Balancing (REGISTER_BALANCING)
The Register Balancing (REGISTER_BALANCING) constraint enables flip-flop
retiming.

The main goal of register balancing is to move flip-flops and latches across logic to
increase clock frequency.

The two categories of REGISTER_BALANCING are:
• Forward Register Balancing
• Backward Register Balancing

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 367

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=367

Chapter 9: XST FPGA Constraints (Non-Timing)

Forwar d Register Balancing

Forward Register Balancing moves a set of flip-flops at the inputs of a LUT to a single
flip-flop at its output.

When replacing several flip-flops with one, select the name based on the name of the
LUT across which the flip-flops are moving as shown in the following:

LutName _FRBId

Backward Register Balancing

Backward Register Balancing moves a flip-flop at the output of a LUT to a set of
flip-flops at its inputs.

As a consequence the number of flip-flops in the design can be increased or decreased.

The new flip-flop has the same name as the original flip-flop with an indexed suffix as
shown in the following:

OriginalFFName _BRBId

Additional Constraints That Impact Register Balancing
Two additional constraints control register balancing:

• Move First Stage (MOVE_FIRST_STAGE)

• Move Last Stage (MOVE_LAST_STAGE)

Frontmatter
368 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=368

Chapter 9: XST FPGA Constraints (Non-Timing)

Several other constraints also influence register balancing:
• Keep Hierarchy (KEEP_HIERARCHY)

– If the hierarchy is preserved, flip-flops are moved only inside the block
boundaries.

– If the hierarchy is flattened, flip-flops may leave the block boundaries.
• Pack I/O Registers Into IOBs (IOB)

If IOB=TRUE, register balancing is not applied to the flip-flops having this property.
• Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES)

Instantiated flip-flops are moved only if OPTIMIZE_PRIMITIVES=YES.
• Flip-flops are moved across instantiated primitives only if

OPTIMIZE_PRIMITIVES=YES.
• Keep (KEEP)

If applied to the output flip-flop signal, the flip-flop is not moved forward.

Applied to the Input Flip-Flop Signal

If applied to the input flip-flop signal, the flip-flop is not moved backward.

If applied to both the input and output of the flip-flop, it is equivalent to
REGISTER_BALANCING=no

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to:
• The entire design using the command line or ISE® Design Suite
• An entity or module
• A signal corresponding to the flip-flop description (RTL)
• A flip-flop instance
• The Primary Clock Signal

In this case the register balancing is performed only for flip-flops synchronized
by this clock.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 369

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=369

Chapter 9: XST FPGA Constraints (Non-Timing)

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-register_balancing {yes|no|forward|backward}
• yes

Both forward and backward retiming are allowed.
• no (default)

Neither forward nor backward retiming is allowed.
• forward

Only forward retiming is allowed
• backward

Only backward retiming is allowed.
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute register_balancing: string;

Specify as follows:

attribute register_balancing of {signal_name|entity_name}: {signal|entity} is
"{yes|no|forward|backward}";

Verilog
Place immediately before the module or signal declaration:

(* register_balancing = "{yes|no|forward|backward}" *)

XCF Syntax Example One
MODEL "entity_name" register_balancing={yes|no|true|false|forward|backward};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "primary_clock_signal"
register_balancing={yes|no|true|false|forward|backward};"

END;

XCF Example Three
BEGIN MODEL "entity_name”

Frontmatter
370 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=370

Chapter 9: XST FPGA Constraints (Non-Timing)

INST "instance_name" register_balancing={yes|no|true|false|forward|backward};

END;

XST Command Line
xst run -register_balancing {yes|no|forward|backward}

ISE Design Suite
Process > Process Properties > Xilinx Specific Options > Register Balancing

Register Duplication (REGISTER_DUPLICATION)
The Register Duplication (REGISTER_DUPLICATION) constraint:
• Enables or disables register replication.
• Is enabled, and is performed during timing optimization and fanout control.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity or module to which it is attached.

Syntax
• yes (default)
• no
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute register_duplication: string;

Specify as follows:

attribute register_duplication of entity_name: entity is "{yes|no}";

Verilog
Place immediately before the module declaration or instantiation:

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 371

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=371

Chapter 9: XST FPGA Constraints (Non-Timing)

(* register_duplication = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" register_duplication={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" register_duplication={yes|no|true|false};

END;

ISE® Design Suite
Process > Process Properties > Xilinx Specific Options > Register Duplication

ROM Extraction (ROM_EXTRACT)
The ROM Extraction (ROM_EXTRACT) constraint enables or disables ROM macro
inference.

Typically, a ROM can be inferred from a case statement where all assigned contexts
are constant values.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design, or to a design element or signal.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-rom_extract {yes|no}

• yes (default)
• no
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

Frontmatter
372 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=372

Chapter 9: XST FPGA Constraints (Non-Timing)

attribute rom_extract: string;

Specify as follows:

attribute rom_extract of {signal_name|entity_name } : {signal|entity} is "{yes|no}";

Verilog
Place immediately before the module or signal declaration:

(* rom_extract = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" rom_extract={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" rom_extract={yes|no|true|false};

END;

XST Command Line
xst run -rom_extract {yes|no}

ISE® Design Suite
Process > Process Properties > HDL Options > ROM Extraction

ROM Style (ROM_STYLE)
The ROM Style (ROM_STYLE) constraint controls the way the macrogenerator
implements the inferred ROM macros.

Caution! ROM Extraction (ROM_EXTRACT) must be set to yes in order to use ROM
Style (ROM_STYLE).

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 373

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=373

Chapter 9: XST FPGA Constraints (Non-Timing)

Syntax
-rom_style {auto|block|distributed}

• auto (default)
XST looks for the best implementation for each inferred ROM. The implementation
style can be manually forced to use block ROM or distributed ROM resources.

• block
• distributed

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute rom_style: string;

Specify as follows:

attribute rom_style of {signal_name|entity_name} : {signal|entity} is
"{auto|block|distributed}";

Verilog
Declare as follows:

(* rom_style = "{auto|block|distributed}" *)

XCF Syntax Example One
MODEL "entity_name" rom_style={auto|block|distributed};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" rom_style={auto|block|distributed};

END;

XST Command Line
xst run -rom_style {auto|block|distributed}

ISE® Design Suite
Process > Process Properties > HDL Options > ROM Style

Shift Register Extraction (SHREG_EXTRACT)
The Shift Register Extraction (SHREG_EXTRACT) constraint:
• Enables or disables shift register macro inference.
• Results in the usage of dedicated hardware resources such as SRL16 and SRLC16.

For more information, see:

Frontmatter
374 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=374

Chapter 9: XST FPGA Constraints (Non-Timing)

Shift Registers HDL Coding Techniques

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design, or to a design element or signal.

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-shreg_extract {yes|no}

• yes (default)
• no
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute shreg_extract : string;

Specify as follows:

attribute shreg_extract of {signal_name|entity_name} : {signal|entity} is "{yes|no}";

Verilog
Place immediately before the module or signal declaration:

(* shreg_extract = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name"shreg_extract={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" shreg_extract={yes|no|true|false};

END;

XST Command Line
xst run -shreg_extract {yes|no}

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 375

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=375

Chapter 9: XST FPGA Constraints (Non-Timing)

ISE® Design Suite
Process > Process Properties > HDL Options > Shift Register Extraction

Slice (LUT-FF Pairs) Utilization Ratio (SLICE_UTILIZATION_RATIO)
The Slice (LUT-FF Pairs) Utilization Ratio (SLICE_UTILIZATION_RATIO) constraint
defines the area size in absolute numbers or percent of total numbers of the following
components that XST must not exceed during timing optimization:
• LUT-FF pairs (Virtex®-5 devices)
• slices (all other devices)

If the area constraint cannot be satisfied, XST makes timing optimization regardless
of the area constraint. To disable automatic resource management, specify -1 as a
constraint value.

For more information, see:

Speed Optimization Under Area Constraint

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity or module to which it is attached.

Syntax
The following sections show the syntax for this constraint.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute slice_utilization_ratio: string;

Specify as follows:

attribute slice_utilization_ratio of entity_name : entity is "integer";

attribute slice_utilization_ratio of entity_name : entity is "integer%";

attribute slice_utilization_ratio of entity_name : entity is "integer#";

XST interprets the integer values in the first two examples above as a percentage and in
the last example as an absolute number of slices or FF-LUT pairs.

The integer value range is 0 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

Frontmatter
376 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=376

Chapter 9: XST FPGA Constraints (Non-Timing)

Verilog
Place immediately before the module declaration or instantiation:

(* slice_utilization_ratio = "integer" *)

(* slice_utilization_ratio = "integer%" *)

(* slice_utilization_ratio = "integer#" *)

XST interprets the integer values in the first two examples above as a percentage and in
the last example as an absolute number of slices or FF-LUT pairs.

The integer value range is 0 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

XCF
MODEL "entity_name" slice_utilization_ratio=integer;

MODEL "entity_name" slice_utilization_ratio=integer%;

MODEL "entity_name" slice_utilization_ratio=integer#;

XST interprets the integer values in the first two examples above as a percentage and in
the last example as an absolute number of slices or FF-LUT pairs.

The integer value range is 0 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

There must be no space between the integer value and the percent (%) or pound (#)
characters.

You must surround the integer value and the percent (%) and pound (#) characters
with double quotes ("...") because the percent (%) and pound (#) characters are special
characters in the XST Constraint File (XCF).

XST Command Line
xst run -slice_utilization_ratio integer

xst run -slice_utilization_ratio integer%

xst run -slice_utilization_ratio integer#

XST interprets the integer values in the first two examples above as a percentage and in
the last example as an absolute number of slices or FF-LUT pairs.

The integer value range is 0 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

ISE® Design Suite
Process > Process Properties > Synthesis Options > Slice Utilization Ratio or Process >
Process Properties > Synthesis Options > LUT-FF Pairs Utilization Ratio

In ISE Design Suite, you can define the value of Slice (LUT-FF Pairs) Utilization Ratio
only as a percentage. You can not define the value as an absolute number of slices.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 377

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=377

Chapter 9: XST FPGA Constraints (Non-Timing)

Slice (LUT-FF Pairs) Utilization Ratio Delta
(SLICE_UTILIZATION_RATIO_MAXMARGIN)

The Slice (LUT-FF Pairs) Utilization Ratio Delta
(SLICE_UTILIZATION_RATIO_MAXMARGIN) constraint:
• Is closely related to Slice (LUT-FF Pairs) Utilization Ratio

(SLICE_UTILIZATION_RATIO).
• Defines the tolerance margin for Slice (LUT-FF Pairs) Utilization Ratio

(SLICE_UTILIZATION_RATIO).
The value of the parameter can be defined in the form of percentage as well as an absolute
number of slices or LUT-FF pairs.

If the ratio is within the margin set, the constraint is met and timing optimization can
continue.

For more information, see:

Speed Optimization Under Area Constraint

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design, or to an entity, component, module, or signal.

Propagation Rules
Applies to the entity or module to which it is attached.

Syntax
The following sections show the syntax for this constraint.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute slice_utilization_ratio_maxmargin: string;

Specify as follows:

attribute slice_utilization_ratio_maxmargin of entity_name : entity is "integer";

attribute slice_utilization_ratio_maxmargin of entity_name : entity is "integer%";

attribute slice_utilization_ratio_maxmargin of entity_name : entity is "integer#";

XST interprets the integer values in the first two examples above as a percentage and in
the last example as an absolute number of slices or FF-LUT pairs.

The integer value range is 0 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

Frontmatter
378 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=378

Chapter 9: XST FPGA Constraints (Non-Timing)

Verilog
Place immediately before the module declaration or instantiation:

(* slice_utilization_ratio_maxmargin = "integer" *)

(* slice_utilization_ratio_maxmargin = "integer%" *)

(* slice_utilization_ratio_maxmargin = "integer#" *)

XST interprets the integer values in the first two examples above as a percentage and in
the last example as an absolute number of slices or FF-LUT pairs.

The integer value range is 0 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

XCF
MODEL "entity_name" slice_utilization_ratio_maxmargin=integer;

MODEL "entity_name" slice_utilization_ratio_maxmargin="integer%";

MODEL "entity_name" slice_utilization_ratio_maxmargin="integer#";

XST interprets the integer values in the first two examples above as a percentage and in
the last example as an absolute number of slices or FF-LUT pairs.

The integer value range is 0 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

There must be no space between the integer value and the percent (%) or pound (#)
characters.

You must surround the integer value and the percent (%) and pound (#) characters
with double quotes ("...") because the percent (%) and pound (#) characters are special
characters in the XST Constraint File (XCF).

XST Command Line
xst run -slice_utilization_ratio_maxmargin integer

xst run -slice_utilization_ratio_maxmargin integer%

xst run -slice_utilization_ratio_maxmargin integer#

XST interprets the integer values in the first two examples above as a percentage and in
the last example as an absolute number of slices or FF-LUT pairs.

The integer value range is 0 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

Slice Packing (-slice_pac king)
The Slice Packing (-slice_packing) command line option enables the XST internal packer.

The packer attempts to pack critical LUT-to-LUT connections within a slice or a CLB.
This exploits the fast feedback connections among the LUTs in a CLB.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 379

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=379

Chapter 9: XST FPGA Constraints (Non-Timing)

Propagation Rules
Not applicable.

Syntax
-slice_packing {yes|no}

• yes
• no

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -slice_packing no

Disables the XST internal slice packer.

ISE® Design Suite
Process > Process Properties > Xilinx® Specific Options > Slice Packing

Use Low Skew Lines (USELOWSKEWLINES)
The Use Low Skew Lines (USELOWSKEWLINES) constraint:
• Is a basic routing constraint.
• Prevents XST from using dedicated clock resources and logic replication during

synthesis, based on the value of the Max Fanout (MAX_FANOUT) constraint.
• Specifies the use of low skew routing resources for any net.

For more information about this constraint, see the Constraints Guide.

Use Carry Chain (USE_CARRY_CHAIN)
The Use Carry Chain (USE_CARRY_CHAIN) constraint:
• Is both a global and a local constraint
• Can deactivate carry chain use for macro generation

XST uses carry chain resources to implement certain macros, but there are situations
where you can obtain better results by not using carry chain.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design, or to signals.

Frontmatter
380 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=380

Chapter 9: XST FPGA Constraints (Non-Timing)

Propagation Rules
Applies to the signal to which it is attached.

Syntax
-use_carry_chain {yes|no}

• yes (default)
• no
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

Schematic
• Attach to a valid instance
• Attribute Name

USE_CARRY_CHAIN
• Attribute Values

See Syntax section above.

VHDL
Declare as follows:

attribute use_carry_chain: string;

Specify as follows:

attribute use_carry_chain of signal_name: signal is "{yes|no}";

Verilog
Place immediately before the signal declaration:

(* use_carry_chain = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" use_carry_chain={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" use_carry_chain={yes|no|true|false};

END;

XST Command Line
xst run -use_carry_chain {yes|no}

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 381

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=381

Chapter 9: XST FPGA Constraints (Non-Timing)

Use Clock Enable (USE_CLOCK_ENABLE)
The Use Clock Enable (USE_CLOCK_ENABLE) constraint enables or disables the clock
enable function in flip-flops.

The disabling of the clock enable function is typically used for ASIC prototyping on
FPGA devices.

By detecting Use Clock Enable with a value of no or false, XST avoids using CE
resources in the final implementation. Moreover, for some designs, putting the Clock
Enable function on the data input of the flip-flop allows better logic optimization and
therefore better quality of results.

In automode, XST tries to estimate a trade off between using a dedicated clock enable
input of a flip-flop input and putting clock enable logic on the D input of a flip-flop. In a
case where a flip-flop is instantiated by you, XST removes the clock enable only if the
Optimize Instantiated Primitives option is set to yes.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to:
• An entire design through the XST command line
• A particular block (entity, architecture, component)
• A signal representing a flip-flop
• An instance representing an instantiated flip-flop

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-use_clock_enable {auto|yes|no}

• auto (default)
• yes
• no
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute use_clock_enable: string;

Specify as follows:

Frontmatter
382 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=382

Chapter 9: XST FPGA Constraints (Non-Timing)

attribute use_clock_enable of {entity_name|component_name|signal_name|instance_name}
: {entity|component|signal|label} is "{auto|yes|no}";

Verilog
Place immediately before the instance, module, or signal declaration:

(* use_clock_enable = "{auto|yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" use_clock_enable={auto|yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" use_clock_enable={auto|yes|no|true|false};

END

XCF Syntax Example Three
BEGIN MODEL "entity_name ;"

INST "instance_name" use_clock_enable={auto|yes|no|true|false};

END

XST Command Line
xst run -use_clock_enable {auto|yes|no}

ISE® Design Suite
Process > Process Properties > Xilinx Specific Options > Use Clock Enable

USE_DSP48 (Use DSP48)
This constraint is called:
• Use DSP48

Virtex®-4 devices
• Use DSP Block

Virtex-5 devices and Spartan®-3A DSP devices

XST enables you to use the resources of the DSP48 blocks introduced in Virtex-4 devices.

In automode, XST automatically implements such macros as MAC and accumulates on
DSP48, but some of them as adders are implemented on slices. You have to force their
implementation on DSP48 using a value of yes or true.

For more information on supported macros and their implementation control, see:

XST HDL Coding Techniques

Several macros (for example, MAC) that can be placed on DSP48 are in fact a
composition of simpler macros such as multipliers, accumulators, and registers. To
achieve the best performance, XST by default tries to infer and implement the maximum
macro configuration. To shape a macro in a specific way, use the Keep (KEEP) constraint.
For example, DSP48 allows you to implement a multiple with two input registers. To
leave the first register stage outside of the DSP48, place the Keep (KEEP) constraint in
their outputs.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 383

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=383

Chapter 9: XST FPGA Constraints (Non-Timing)

Architecture Suppor t
Applies to the following devices only. Does not apply to any other devices.
• Spartan-3A DSP
• Virtex-4
• Virtex-5

Applicab le Elements
Applies to:
• An entire design through the XST command line
• A particular block (entity, architecture, component)
• A signal representing a macro described at the RTL level

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-use_dsp48 {auto|yes|no}

• auto (default)
• yes
• no
• true (XCF only)
• false (XCF only)

In auto mode you can control the number of available DSP48 resources for synthesis
using DSP Utilization Ratio (DSP_UTILIZATION_RATIO). By default, XST tries to
utilize, as much as possible, all available DSP48 resources.

For more information, see:

DSP48 Block Resources

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute use_dsp48: string;

Specify as follows:

attribute use_dsp48 of {"entity_name|component_name|signal_name"} :
{entity|component|signal} is "{auto|yes|no}";

Verilog
Place immediately before the module or signal declaration:

(* use_dsp48 = "{auto|yes|no}" *)

Frontmatter
384 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=384

Chapter 9: XST FPGA Constraints (Non-Timing)

XCF Syntax Example One
MODEL "entity_name" use_dsp48={auto|yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name”

NET "signal_name" use_dsp48={auto|yes|no|true|false};

END;"

XST Command Line
xst run -use_dsp48 {auto|yes|no}

ISE® Design Suite
Process > Process Properties > HDL Options > Use DSP48

Use Synchronous Set (USE_SYNC_SET)
The Use Synchronous Set (USE_SYNC_SET) constraint enables or disables the
synchronous set function in flip-flops.

Disabling the synchronous set function is typically used for ASIC prototyping on FPGA
devices. When XST detects Use Synchronous Set with a value of no or false, XST avoids
using synchronous reset resources in the final implementation. For some designs,
putting synchronous reset function on data input of the flip-flop allows better logic
optimization and therefore gives better quality of results.

In automode, XST tries to estimate a trade off between using dedicated Synchronous Set
input of a flip-flop input and putting Synchronous Set logic on the D input of a flip-flop.
When a flip-flop is instantiated by the designer, XST removes the synchronous reset only
if Optimize Instantiated Primitives is set to yes.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to:

• An entire design through the XST command line

• A particular block (entity, architecture, component)

• A signal representing a flip-flop

• An instance representing an instantiated flip-flop

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 385

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=385

Chapter 9: XST FPGA Constraints (Non-Timing)

Syntax
-use_sync_set {auto|yes|no}

• auto (default)
• yes
• no
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute use_sync_set: string;

Specify as follows:

attribute use_sync_set of {entity_name|component_name|signal_name|instance_name}:
{entity|component|signal|label} is "{auto|yes|no}";

Verilog
Place immediately before the module or signal declaration:

(* use_sync_set = "{auto|yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" use_sync_set={auto|yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" use_sync_set={auto|yes|no|true|false};

END;

XCF Syntax Example Three
BEGIN MODEL "entity_name"

INST "instance_name" use_sync_set={auto|yes|no|true|false};

END;

XST Command Line
xst run -use_sync_set {auto|yes|no}

ISE® Design Suite
Process > Process Properties > Xilinx® Specific Options > Use Synchronous Set

Frontmatter
386 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=386

Chapter 9: XST FPGA Constraints (Non-Timing)

Use Synchronous Reset (USE_SYNC_RESET)
The Use Synchronous Reset (USE_SYNC_RESET) constraint enables or disables the
usage of synchronous reset function of flip-flops.

Disabling synchronous reset can be used for ASIC prototyping flow on FPGA devices.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to:
• An entire design through the XST command line
• A particular block (entity, architecture, component)
• A signal representing a flip-flop
• An instance representing an instantiated flip-flop

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Syntax
-use_sync_reset {auto|yes|no}

• auto (default)
• yes
• no
• true (XCF only)
• false (XCF only)

When XST detects Use Synchronous Reset with a value of no or false, XST avoids using
synchronous reset resources in the final implementation. For some designs, putting
synchronous reset function on data input of the flip-flop allows better logic optimization
and therefore better quality of results.

In automode, XST tries to estimate a trade off between using a dedicated Synchronous
Reset input on a flip-flop input and putting Synchronous Reset logic on the D input of a
flip-flop. When a flip-flop is instantiated by a designer, XST removes the synchronous
reset only if the Optimize Instantiated Primitives option is set to yes.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute use_sync_reset: string;

Specify as follows:

attribute use_sync_reset of {entity_name|component_name|signal_name|instance_name}
: {entity|component|signal|label} is "{auto|yes|no}";

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 387

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=387

Chapter 9: XST FPGA Constraints (Non-Timing)

Verilog
Place immediately before the module or signal declaration:

(* use_sync_reset = "{auto|yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" use_sync_reset={auto|yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" use_sync_reset={auto|yes|no|true|false};

END;

XCF Syntax Example Three
BEGIN MODEL "entity_name"

INST "instance_name" use_sync_reset={auto|yes|no|true|false};

END;

XST Command Line
xst run -use_sync_reset {auto|yes|no}

ISE® Design Suite
Process > Process Properties > Xilinx Specific Options > Use Synchronous Reset

XOR Collapsing (XOR_COLLAPSE)
The XOR Collapsing (XOR_COLLAPSE) constraint controls whether cascaded XORs
should be collapsed into a single XOR.

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to cascaded XORs.

Propagation Rules
Not applicable.

Frontmatter
388 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=388

Chapter 9: XST FPGA Constraints (Non-Timing)

Syntax
-xor_collapse {yes|no}

• yes (default)

• no

• true (XCF only)

• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute xor_collapse: string;

Specify as follows:

attribute xor_collapse {signal_name|entity_name} : {signal|entity} is "{yes|no}";

Verilog
Place immediately before the module or signal declaration:

(* xor_collapse = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" xor_collapse={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" xor_collapse={yes|no|true|false};

END;

XST Command Line
xst run -xor_collapse {yes|no}

ISE® Design Suite
Process > Process Properties > HDL Options > XOR Collapsing

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 389

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=389

Frontmatter
390 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=390

Chapter 10

XST CPLD Constraints (Non-Timing)
Impor tant! The constraints described in this chapter apply to CPLD devices only. They
do not apply to FPGA devices.

This chapter discusses the following constraints:

• Clock Enable (-pld_ce)
• Data Gate (DATA_GATE)
• Macro Preserve (-pld_mp)
• No Reduce (NOREDUCE)
• WYSIWYG (-wysiwyg)
• XOR Preserve (-pld_xp)

Clock Enable (-pld_ce)
The Clock Enable (-pld_ce) command line option specifies how sequential logic should
be implemented when it contains a clock enable, either using the specific device
resources available for the clock enable or generating equivalent logic.

Keeping or not keeping the clock enable signal depends on the design logic. When
the clock enable is the result of a Boolean expression, setting Clock Enable to no may
improve the fitting result. The input data of the flip-flop is simplified when it is merged
with the clock enable expression.

Architecture Suppor t
Applies to all CPLD devices. Does not apply to FPGA devices.

Applicab le Elements
Applies to an entire design through the XST command line.

Propagation Rules
Not applicable.

Syntax
-pld_ce {yes|no}
• yes (default)

The synthesizer implements the clock enable signal of the device.
• no

The clock enable function is implemented through equivalent logic.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 391

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=391

Chapter 10: XST CPLD Constraints (Non-Timing)

Syntax Examples and Settings
xst run -pld_ce yes

Defines Clock Enable globally to yes. The clock enable function is implemented through
equivalent logic.

ISE® Design Suite
Process > Process Properties > Xilinx-Specific Options > Clock Enable

Data Gate (DATA_GATE)
The Data Gate (DATA_GATE) constraint:

• Applies to CoolRunner™-II devices only.

• Provides a direct means of reducing power consumption in your design.

Each I/O pin input signal passes through a latch that can block the propagation of
incident transitions during periods when such transitions are not of interest to your
CPLD design.

Input transitions that do not affect the CPLD design function still consume power, if not
latched, since they are routed among the CPLD’s Function Blocks. By asserting the Data
Gate control I/O pin on the device, selected I/O pin inputs become latched, eliminating
the power dissipation associated with external transitions on those pins.

For more information about this constraint, see the Constraints Guide.

Macro Preser ve (-pld_mp)
The Macro Preserve (-pld_mp) command line option:

• Makes macro handling independent of design hierarchy processing.

• Allows you to merge all hierarchical blocks in the top module, while still keeping
the macros as hierarchical modules

You can keep the design hierarchy except for the macros, which are merged with the
surrounding logic. Merging the macros sometimes gives better results for design fitting.

Architecture Suppor t
Applies to all CPLD devices. Does not apply to FPGA devices.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Frontmatter
392 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=392

Chapter 10: XST CPLD Constraints (Non-Timing)

Syntax
-pld_mp {yes|no}

• yes (default)
Macros are preserved and generated by Macro+.

• no
Macros are rejected and generated by HDL synthesizer

Depending on the Flatten Hierarchy value, a rejected macro is either merged in the
design logic, or becomes a hierarchical block as shown in the following table.

Flatten Hierar chy Value Disposition
yes Merged in the design logic
no Becomes a hierarchical block

Very small macros such as 2-bit adders and 4-bit multiplexers are always merged,
independent of the Macro Preserve or Flatten Hierarchy options.

Syntax and Settings Examples
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -pld_mp no

Macros are rejected and generated by HDL synthesizer.

ISE® Design Suite
Process > Process Properties > Xilinx®-Specific Options > Macro Preserve

No Reduce (NOREDUCE)
The No Reduce (NOREDUCE) constraint:
• Prevents minimization of redundant logic terms that are typically included in a

design to avoid logic hazards or race conditions.
• Identifies the output node of a combinatorial feedback loop to ensure correct

mapping.

For more information about this constraint, see the Constraints Guide.

WYSIWYG (-wysiwyg)
The WYSIWYG (-wysiwyg) command line option makes a netlist reflect the user
specification as closely as possible. That is, all the nodes declared in the Hardware
Description Language (HDL) design are preserved.

If WYSIWYG mode is enabled (yes), XST:
• Preserves all user internal signals (nodes)
• Creates SOURCE_NODE constraints in the NGC file for all these nodes
• Skips design optimization (collapse, factorization)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 393

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=393

Chapter 10: XST CPLD Constraints (Non-Timing)

Only Boolean equation minimization is performed.

Architecture Suppor t
Applies to all CPLD devices. Does not apply to FPGA devices.

Applicab le Elements
Applies to an entire design through the XST command line.

Propagation Rules
Not applicable.

Syntax
• yes
• no (default)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -wysiwyg {yes|no}

ISE® Design Suite
Process > Process Properties > Xilinx® Specific Options > WYSIWYG

XOR Preser ve (-pld_xp)
The XOR Preserve (-pld_xp) command line option enables or disables hierarchical
flattening of XOR macros.

The XORs inferred by Hardware Description Language (HDL) synthesis are also
considered as macro blocks in the CPLD flow. They are processed separately to give
more flexibility for using device macrocells XOR gates. You can flatten its design (Flatten
Hierarchy yes, Macro Preserve no) but Xilinx® recommends preserving the XORs to:
• Reduce design complexity
• Reduce the number of PTerms

Set the value no to obtain completely flat netlists. Applying global optimization on a
completely flat design sometimes improves design fitting.

Architecture Suppor t
Applies to all CPLD devices. Does not apply to FPGA devices.

Applicab le Elements
Applies to the entire design.

Frontmatter
394 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=394

Chapter 10: XST CPLD Constraints (Non-Timing)

Propagation Rules
Not applicable.

Syntax
-pld_xp {yes|no}

• yes (default)

• no

yes preserves XOR macros.

no merges XOR macros with surrounded logic.

Select the following options to obtain a completely flattened design:

• Flatten Hierarchy

yes

• Macro Preserve

no

• XOR Preserve

no

The no value does not guarantee the elimination of the XOR operator from the Electronic
Data Interchange Format (EDIF) netlist. During the netlist generation, the netlist
mapper tries to recognize and infer XOR gates in order to decrease the logic complexity.
This process is independent of the XOR preservation done by Hardware Description
Language (HDL) synthesis, and is guided only by the goal of complexity reduction.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -pld_xp yes

Preserves XOR macros.

ISE® Design Suite
Process > Process Properties > Xilinx-Specific Options > XOR Preserve

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 395

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=395

Frontmatter
396 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=396

Chapter 11

XST Timing Constraints
This chapter discusses the following constraints:

• Clock Signal (CLOCK_SIGNAL)

• Cross Clock Analysis (-cross_clock_analysis)

• From-To (FROM-TO)

• Global Optimization Goal (-glob_opt)

• Offset (OFFSET)

• Period (PERIOD)

• Timing Name (TNM)

• Timing Name on a Net (TNM_NET)

• Timegroup (TIMEGRP)

• Timing Ignore (TIG)

• Write Timing Constraints (-write_timing_constraints)

For more information, see:

• Applying Timing Constraints

• XCF Timing Constraint Support

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 397

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=397

Chapter 11: XST Timing Constraints

Appl ying Timing Constraints
This section includes:
• About Applying Timing Constraints
• Applying Timing Constraints Using Global Optimization Goal
• Applying Timing Constraints Using the UCF
• Writing Constraints to the NGC File
• Additional Options Affecting Timing Constraint Processing

About Appl ying Timing Constraints
Apply XST-supported timing constraints with:
• Global Optimization Goal (-glob_opt)
• ISE® Design Suite in:

Process > Properties > Synthesis Options > Global Optimization Goal
• User Constraints File (UCF)

Appl ying Timing Constraints Using Global Optimization Goal
Global Optimization Goal (-glob_opt) allows you to apply the five global timing
constraints:
• ALLCLOCKNETS
• OFFSET_IN_BEFORE
• OFFSET_OUT_AFTER
• INPAD_TO_OUTPAD
• MAX_DELAY

These constraints are applied globally to the entire design. You cannot specify a value for
these constraints, since XST optimizes them for the best performance. These constraints
are overridden by constraints specified in the User Constraints File (UCF).

Appl ying Timing Constraints Using the UCF
The User Constraints File (UCF) allows you to specify timing constraints using native
UCF syntax. XST supports constraints such as:
• Timing Name (TNM)
• Timegroup (TIMEGRP)
• Period (PERIOD)
• Timing Ignore (TIG)
• From-To (FROM-TO)

XST supports wildcards and hierarchical names with these constraints.

Writing Constraints to the NGC File
Timing constraints are not written to the NGC file by default. Timing constraints are
written to the NGC file only when:
• Write Timing Constraints is checked yes in ISE Design Suite in Process > Process

Properties, or
• The -write_timing_constraints option is specified when using the command line.

Frontmatter
398 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=398

Chapter 11: XST Timing Constraints

Additional Options Aff ecting Timing Constraint Processing
Three additional options affect timing constraint processing, regardless of how the
timing constraints are specified:
• Cross Clock Analysis (-cross_clock_analysis)
• Write Timing Constraints (-write_timing_constraints)
• Clock Signal (CLOCK_SIGNAL)

XCF Timing Constraint Suppor t
This section discusses XST Constraint File (XCF) Timing Constraint Support and
includes:
• Hierarchy Separator
• Supported Timing Constraints
• Unsupported Timing Constraints

Hierar chy Separator
If you specify timing constraints in the XST Constraint File (XCF), Xilinx® recommends
that you use a forward slash (/) as a hierarchy separator instead of an underscore (_).

For more information, see:

Hierarchy Separator (-hierarchy_separator)

Suppor ted Timing Constraints
The XST Constraint File (XCF) supports the following timing constraints:

• Period (PERIOD)
• Offset (OFFSET)
• From-To (FROM-TO)
• Timing Name (TNM)
• Timing Name on a Net (TNM_NET)
• Timegroup (TIMEGRP)
• Timing Ignore (TIG)

Unsuppor ted Timing Constraints
If XST does not support all or part of a specified timing constraint, then XST:
• Issues a warning, and
• Ignores the unsupported timing constraint (or unsupported part of it) in the Timing

Optimization step

If Write Timing Constraints is set to yes, XST propagates the entire constraint to the final
netlist, even if it was ignored at the Timing Optimization step.

Clock Signal (CLOCK_SIGNAL)
The Clock Signal (CLOCK_SIGNAL) constraint allows you to define a clock signal
when the signal goes through combinatorial logic before being connected to the clock
input of a flip-flop.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 399

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=399

Chapter 11: XST Timing Constraints

In that instance, XST cannot identify which input pin or internal signal is the real clock
signal. You must define it manually

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to signals.

Propagation Rules
Applies to clock signals.

Syntax
• yes (default)
• no
• true (XCF only)
• false (XCF only)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

VHDL
Declare as follows:

attribute clock_signal : string;

Specify as follows:

attribute clock_signal of signal_name : signal is {yes|no};

Verilog
Place immediately before the signal declaration:

(* clock_signal = "{yes|no}" *)

XCF
BEGIN MODEL "entity_name"

NET "primary_clock_signal" clock_signal={yes|no|true|false};

END;

Cross Clock Anal ysis (-cross_c loc k_anal ysis)
The Cross Clock Analysis (-cross_clock_analysis) command line option tells XST to
perform inter-clock domain analysis during timing optimization.

Frontmatter
400 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=400

Chapter 11: XST Timing Constraints

Architecture Suppor t
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicab le Elements
Applies to the entire design.

Propagation Rules
Not applicable.

Syntax
-cross_clock_analysis {yes|no}

• yes
• no (default)

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -cross_clock_analysis yes

Tells XST to perform inter-clock domain analysis during timing optimization.

ISE® Design Suite
Process > Process Properties > Synthesis Options > Cross Clock Analysis

From-To (FROM-TO)
The From-To (FROM-TO) constraint defines a timing constraint between two groups.

A group can be user-defined or predefined:
• FF
• PAD
• RAM

For more information about this constraint, see the Constraints Guide.

Syntax Example
TIMESPEC TSname = FROM group1 TO group2 value;

Global Optimization Goal (-glob_opt)
The Global Optimization Goal (-glob_opt) command line option selects the global
optimization goal.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 401

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=401

Chapter 11: XST Timing Constraints

Depending on the Global Optimization Goal, XST can optimize the following design
regions:
• Register to Register
• Inpad to Register
• Register to Outpad
• Inpad to Outpad

For a detailed description of supported timing constraints, see:

Partitions

Apply the following constraints with Global Optimization Goal:
• ALLCLOCKNETS (Register to Register)

Optimizes the period of the entire design.
XST identifies, by default, all paths from register to register on the same clock for all
clocks in a design. To take inter-clock domain delays into account, set Cross Clock
Analysis (-cross_clock_analysis) to yes.

• OFFSET_IN_BEFORE (Inpad to Register)
Optimizes the maximum delay from input pad to clock, either for a specific clock
or for an entire design.
XST identifies all paths from either all sequential elements or the sequential elements
driven by the given clock signal name to all primary output ports.

• OFFSET_OUT_AFTER (Register to Outpad)
Optimizes the maximum delay from clock to output pad, either for a specific clock
or for an entire design.
XST identifies all paths from all primary input ports to either all sequential elements
or the sequential elements driven by the given clock signal name.

• INPAD_TO_OUTPAD (Inpad to Outpad)
Optimizes the maximum delay from input pad to output pad throughout an entire
design.

• MAX_DELAY
Incorporates all previously mentioned constraints

These constraints affect the entire design. They apply only if no timing constraints are
specified in the constraint file.

Syntax
-glob_opt
{allclocknets|offset_in_before|offset_out_after|inpad_to_outpad|max_delay}

You cannot specify a value for Global Optimization Goal. XST optimizes the entire
design for the best performance.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -glob_opt OFFSET_OUT_AFTER

Frontmatter
402 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=402

Chapter 11: XST Timing Constraints

Optimizes the maximum delay from clock to output pad for the entire design

ISE® Design Suite
Process > Process Properties > Synthesis Options > Global Optimization Goal

Global Optimization Goal Domain Definitions
The possible domains are shown in the following schematic.

• ALLCLOCKNETS (register to register)

Identifies, by default, all paths from register to register on the same clock for all
clocks in a design. To take inter-clock domain delays into account, set Cross Clock
Analysis (–cross_clock_analysis) to yes.

• OFFSET_IN_BEFORE (inpad to register)

Identifies all paths from all primary input ports to either all sequential elements or
the sequential elements driven by the given clock signal name.

• OFFSET_OUT_AFTER (register to outpad)

Similar to the previous constraint, but sets the constraint from the sequential
elements to all primary output ports.

• INPAD_TO_OUTPAD (inpad to outpad)

Sets a maximum combinatorial path constraint.

• MAX_DELAY

Identifies all paths defined by the following timing constraints:

– ALLCLOCKNETS

– OFFSET_IN_BEFORE

– OFFSET_OUT_AFTER

– INPAD_TO_OUTPAD

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 403

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=403

Chapter 11: XST Timing Constraints

Offset (OFFSET)
The Offset (OFFSET) constraint:

• Is a basic timing constraint.

• Specifies the timing relationship between an external clock and its associated data-in
or data-out pin.

• Is used only for pad-related signals.

• Cannot be used to extend the arrival time specification method to the internal
signals in a design.

• Allows you to:

– Calculate whether a setup time is being violated at a flip-flop whose data and
clock inputs are derived from external nets.

– Specify the delay of an external output net derived from the Q output of an
internal flip-flop being clocked from an external device pin.

For more information about this constraint, see the Constraints Guide.

Syntax
OFFSET = {IN|OUT} offset_time [units] {BEFORE|AFTER} clk_name [TIMEGRP
group_name];

Period (PERIOD)
The Period (PERIOD) constraint is a basic timing constraint and synthesis constraint.

A clock period specification checks timing between all synchronous elements within the
clock domain as defined in the destination element group. The group may contain paths
that pass between clock domains if the clocks are defined as a function of one or the other.

For more information about this constraint, see the Constraints Guide.

Syntax
NET netname PERIOD = value [{HIGH|LOW} value];

Frontmatter
404 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=404

Chapter 11: XST Timing Constraints

Timing Name (TNM)
The Timing Name (TNM) constraint:
• Is a basic grouping constraint.
• Identifies the elements that make up a group to be used in a timing specification.
• Tags the following specific elements as members of a group to simplify the

application of timing specifications to the group.
– FF
– RAM
– LATCH
– PAD
– CPU
– BRAM_PORTA
– BRAM_PORTB
– HSIO
– MULT

The RISING and FALLING keywords may be used with TNM constraints.

For more information about this constraint, see the Constraints Guide.

Syntax
{INST|NET|PIN} inst_net_or_pin_name TNM = [predefined_group:] identifier;

Timing Name on a Net (TNM_NET)
The Timing Name on a Net (TNM_NET) constraint:
• Is essentially equivalent to Timing Name (TNM) on a net except for input pad nets.

Note Special rules apply when using Timing Name on a Net with the Period
(PERIOD) constraint for DLL and DCM components.

For more information, see:

PERIOD Specifications on CLKDLLs and DCMs in the Constraints Guide

• Is a property that you normally use in conjunction with a Hardware Description
Language (HDL) design to tag a specific net.

Note All downstream synchronous elements and pads tagged with the Timing
Name on a Net identifier are considered a group.

For more information about this constraint, see the Constraints Guide.

Syntax
NET netname TNM_NET = [predefined_group:] identifier;

Timegr oup (TIMEGRP)
The Timegroup (TIMEGRP) constraint is a basic grouping constraint.

In addition to naming groups using the TNM identifier, you can also define groups in
terms of other groups. You can create a group that is a combination of existing groups
by defining a Timegroup constraint.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 405

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=405

Chapter 11: XST Timing Constraints

Place Timegroup constraints in an XST Constraint File (XCF) or a Netlist Constraints
File (NCF).

Use Timegroup attributes to create groups using the following methods:
• Combining multiple groups into one
• Defining flip-flop subgroups by clock sense

For more information about this constraint, see the Constraints Guide.

Syntax
TIMEGRP newgroup = existing_grp1 existing_grp2 [existing_grp3 ...];

Timing Ignore (TIG)
The Timing Ignore (TIG) constraint:
• Causes all paths going through a specific net to be ignored for timing analyses and

optimization purposes.
• Can be applied to the name of the signal affected.

For more information about this constraint, see the Constraints Guide.

Syntax
NET net_name TIG;

Write Timing Constraints (-write_timing_constraints)
The Write Timing Constraints (-write_timing_constraints) command line option
specifies when timing constraints are written to the NGC file.

Timing constraints are written to the NGC file only when:
• Write Timing Constraints is checked yes in ISE® Design Suite in Process > Process

Properties, or
• The -write_timing_constraints option is specified when using the command line.

Timing constraints are not written to the NGC file by default.

Architecture Suppor t
Architecture independent.

Applicab le Elements
Applies to an entire design through the XST command line.

Propagation Rules
Not applicable.

Syntax
-write_timing_constraints {yes|no}

• yes (default)
• no

Frontmatter
406 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=406

Chapter 11: XST Timing Constraints

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XST Command Line
xst run -write_timing_constraints yes

Timing constraints are written to the NGC file.

ISE Design Suite
Process > Process Properties > Synthesis Options > Write Timing Constraints

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 407

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=407

Frontmatter
408 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=408

Chapter 12

XST Implementation Constraints
This chapter discusses the following constraints:

• No Reduce (NOREDUCE)
• Power Mode (PWR_MODE)
• RLOC

Implementation constraints control placement and routing. They are not directly used
by XST, but are propagated and made available to the implementation tools. The object
to which an implementation constraint is attached is preserved.

A binary equivalent of the implementation constraint is written to the NGC file. Since
the file is binary, you cannot edit an implementation constraint in the NGC file.

You can code an implementation constraint in the XST Constraint File (XCF) as
illustrated in Implementation Constraints Syntax Examples.

For more information, see the Constraints Guide.

Implementation Constraints Syntax Examples
This section gives the following Implementation Constraints syntax examples:
• XCF Syntax Examples
• VHDL Syntax Examples
• Verilog Syntax Examples

XCF Syntax Examples
This section gives two XCF Syntax Examples, including, for each example, one for
Method One and one for Method Two.

XCF Syntax Example One
To apply an implementation constraint to an entire entity, use either of the following
XST Constraint File (XCF) syntaxes:

Method One
MODEL EntityName PropertyName;

Method Two
MODEL EntityName PropertyName=PropertyValue;

XCF Syntax Example Two
To apply an implementation constraint to specific instances, nets, or pins within an
entity, use either of the following syntaxes:

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 409

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=409

Chapter 12: XST Implementation Constraints

Method One
BEGIN MODEL EntityName {NET|INST|PIN} {NetName|InstName|SigName}
PropertyName;

END;

Method Two
BEGIN MODEL EntityName {NET|INST|PIN} {NetName|InstName|SigName}
PropertyName=Propertyvalue;

END;

VHDL Syntax Examples
Specify implementation constraints in VHDL as follows:

attribute PropertyName of {NetName|InstName|PinName} : {signal|label} is
"PropertyValue";

Verilog Syntax Examples
Specify implementation constraints in Verilog as follows:

// synthesis attribute PropertyName of {NetName|InstName|PinName} is "PropertyValue";

In Verilog-2001, where descriptions precede the signal, module, or instance to which
they refer, specify implementation constraints as follows:

(* PropertyName="PropertyValue" *)

No Reduce (NOREDUCE)
Applies to all CPLD devices. Does not apply to FPGA devices.

No Reduce (NOREDUCE) prevents the optimization of the Boolean equation generating
a given signal. Assuming a local signal is assigned the arbitrary function below, and No
Reduce attached to the signal s:

signal s : std_logic;
attribute NOREDUCE: boolean;
attribute NOREDUCEof s : signal is "true";
...
s <= a or (a and b);

Specify No Reduce in the XST Constraint File (XCF) as follows:

BEGIN MODELENTNAME
NET s NOREDUCE;
NET s KEEP;

END;

XST writes the following statements to the NGC file:

NET s NOREDUCE;
NET s KEEP;

For more information, see the Constraints Guide.

Frontmatter
410 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=410

Chapter 12: XST Implementation Constraints

Power Mode (PWR_MODE)
The Power Mode (PWR_MODE) constraint controls the power consumption
characteristics of macrocells.

The following VHDL statement specifies that the function generating signal s should be
optimized for low power consumption:

attribute PWR_MODE: string;
attribute PWR_MODEof s : signal is "LOW";

XST writes the following statement to the NGC file:

NET s PWR_MODE=LOW;
NET s KEEP;

The HDL attribute can be applied to the signal on which XST infers the instance if:

• The attribute applies to an instance, and

• The instance is not available (not instantiated) in the HDL source

Examples of instances include:

• Pack I/O Registers Into IOBs (IOB)

• DRIVE

• IOSTANDARD

Architecture Suppor t
Applies to all CPLD devices. Does not apply to FPGA devices.

Syntax Examples and Settings
The following syntax examples and settings show how to use this constraint or
command line option with particular tools or methods. If a tool or method is not listed,
you cannot use this constraint or command line option with it.

XCF
MODELENTNAME

NET s PWR_MODE=LOW;
NET s KEEP;

END;

RLOC (RLOC)
See:

RLOC (RLOC)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 411

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=411

Frontmatter
412 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=412

Chapter 13

XST Supported Third Party Constraints
This chapter describes XST Supported Third Party Constraints, and includes:
• XST Equivalents to Third Party Constraints
• Third Party Constraints Syntax Examples

XST Equiv alents to Thir d Party Constraints
This section shows the XST equivalent for each of the third party constraints. For specific
information on these constraints, see the vendor documentation.

Several third party constraints are automatically supported by XST, as shown in the
table below. Constraints marked yes are fully supported. If a constraint is only partially
supported, the support conditions are shown in the Automatic Recognition column.

The following rules apply:
• VHDL uses standard attribute syntax. No changes are needed to the Hardware

Description Language (HDL) code.
• For Verilog with third party meta-comment syntax, the meta-comment syntax must

be changed to conform to XST conventions. The constraint name and its value can
be used as shown in the third party tool.

• For Verilog 2001 attributes, no changes are needed to the HDL code. The constraint
is automatically translated as in the case of VHDL attribute syntax.

XST Equiv alents to Thir d Party Constraints

Name Vendor XST Equiv alent
Automatic
Recognition Availab le For

black_box Synopsys BoxType N/A VHDL, Verilog

black_box_pad_pin Synopsys N/A N/A N/A

black_box_tri_pins Synopsys N/A N/A N/A

cell_list Synopsys N/A N/A N/A

clock_list Synopsys N/A N/A N/A

Enum Synopsys N/A N/A N/A

full_case Synopsys Full Case N/A Verilog

ispad Synopsys N/A N/A N/A

map_to_module Synopsys N/A N/A N/A

net_name Synopsys N/A N/A N/A

parallel_case Synopsys Parallel Case N/A Verilog

return_port_name Synopsys N/A N/A N/A

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 413

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=413

Chapter 13: XST Suppor ted Thir d Party Constraints

Name Vendor XST Equiv alent
Automatic
Recognition Availab le For

resource_sharing
directives

Synopsys Resource Sharing N/A VHDL, Verilog

set_dont_touch_networkSynopsys not required N/A N/A

set_dont_touch Synopsys not required N/A N/A

set_dont_use_cel_name Synopsys not required N/A N/A

set_prefer Synopsys N/A N/A N/A

state_vector Synopsys N/A N/A N/A

syn_allow_retiming Synopsys Register Balancing N/A VHDL, Verilog

syn_black_box Synopsys BoxType Yes VHDL, Verilog

syn_direct_enable Synopsys N/A N/A N/A

syn_edif_bit_format Synopsys N/A N/A N/A

syn_edif_scalar_format Synopsys N/A N/A N/A

syn_encoding Synopsys FSM Encoding
Algorithm

Yes (The value safe
is not supported
for automatic
recognition. Use
Safe Implementation
in XST to activate this
mode.)

VHDL, Verilog

syn_enum_encoding Synopsys Enumerated Encoding N/A VHDL

syn_hier Synopsys Keep Hierarchy Yes

syn_hier =
hardrecognized
askeep_hierarchy =
soft

syn_hier =
removerecognized
askeep_hierarchy = no

(XST supports only
the values hard
and remove for
syn_hier in automatic
recognition.)

VHDL, Verilog

syn_isclock Synopsys N/A N/A N/A

syn_keep Synopsys Keep Yes (XST preserves the
designated net in the
final netlist, but does
not attach any KEEP
constraint to it.)

VHDL, Verilog

syn_maxfan Synopsys Max Fanout Yes VHDL, Verilog

syn_netlist_hierarchy Synopsys Netlist Hierarchy N/A VHDL, Verilog

syn_noarrayports Synopsys N/A N/A N/A

syn_noclockbuf Synopsys Buffer Type Yes VHDL, Verilog
syn_noprune Synopsys Optimize Instantiated

Primitives
Yes VHDL, Verilog

Frontmatter
414 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=414

Chapter 13: XST Suppor ted Thir d Party Constraints

Name Vendor XST Equiv alent
Automatic
Recognition Availab le For

syn_pipeline Synopsys Register Balancing N/A VHDL, Verilog
syn_preserve Synopsys Equivalent Register

Removal
Yes VHDL, Verilog

syn_ramstyle Synopsys ram_extract and
ram_style

Yes

XST implements
RAMs in
no_rw_check
mode regardless
if no_rw_check is
specified or not

the area value is
ignored

VHDL, Verilog

syn_reference_clock Synopsys N/A N/A N/A

syn_replicate Synopsys Register Duplication Yes VHDL, Verilog

syn_romstyle Synopsys rom_extract and
rom_style

Yes VHDL, Verilog

syn_sharing Synopsys N/A N/A VHDL, Verilog

syn_state_machine Synopsys Automatic FSM
Extraction

Yes VHDL, Verilog

syn_tco <n> Synopsys N/A N/A N/A

syn_tpd <n> Synopsys N/A N/A N/A

syn_tristate Synopsys N/A N/A N/A

syn_tristatetomux Synopsys N/A N/A N/A

syn_tsu <n> Synopsys N/A N/A N/A

syn_useenables Synopsys N/A N/A N/A

syn_useioff Synopsys Pack I/O Registers Into
IOBs

N/A VHDL, Verilog

synthesis translate_off

synthesis translate_on

Synopsys Translate Off

Translate On

Yes VHDL, Verilog

xc_alias Synopsys N/A N/A N/A

xc_clockbuftype Synopsys Buffer Type N/A VHDL, Verilog

xc_fast Synopsys FAST N/A VHDL, Verilog

xc_fast_auto Synopsys FAST N/A VHDL, Verilog

xc_global_buffers Synopsys BUFG (XST) N/A VHDL, Verilog

xc_ioff Synopsys Pack I/O Registers Into
IOBs

N/A VHDL, Verilog

xc_isgsr Synopsys N/A N/A N/A

xc_loc Synopsys LOC Yes VHDL, Verilog
xc_map Synopsys LUT_MAP Yes (XST supports

only the value
lut for automatic
recognition.)

VHDL, Verilog

xc_ncf_auto_relax Synopsys N/A N/A N/A

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 415

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=415

Chapter 13: XST Suppor ted Thir d Party Constraints

Name Vendor XST Equiv alent
Automatic
Recognition Availab le For

xc_nodelay Synopsys NODELAY N/A VHDL, Verilog

xc_padtype Synopsys I/O Standard N/A VHDL, Verilog
xc_props Synopsys N/A N/A N/A

xc_pullup Synopsys PULLUP N/A VHDL, Verilog

xc_rloc Synopsys RLOC Yes VHDL, Verilog

xc_fast Synopsys FAST N/A VHDL, Verilog

xc_slow Synopsys N/A N/A N/A

xc_uset Synopsys U_SET Yes VHDL, Verilog

Thir d Party Constraints Syntax Examples
The following third party constraints syntax examples are the only ways to:

• Preserve a signal/net in a Hardware Description Language (HDL) design, and

• Prevent optimization on the signal or net during synthesis

Thir d Party Constraints Verilog Syntax Example
module testkeep (in1, in2, out1);
input in1;
input in2;
output out1;
(* keep = "yes" *) wire aux1;
(* keep = "yes" *) wire aux2;
assign aux1 = in1;
assign aux2 = in2;
assign out1 = aux1 & aux2;

endmodule

Thir d Party Constraints XCF Syntax Example
Keep (KEEP) can also be applied through the separate synthesis constraint file:

BEGIN MODELtestkeep
NET aux1 KEEP=true;

END;

Frontmatter
416 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=416

Chapter 14

XST VHDL Language Support
This chapter:
• Explains how XST supports the VHSIC Hardware Description Language (VHDL)
• Provides details on VHDL supported constructs and synthesis options

This chapter includes:
• VHDL Logic Descriptions
• VHDL IEEE Support
• VHDL File Type Support
• VHDL Debugging Using Write Operation
• VHDL Data Types
• VHDL Record Types
• VHDL Initial Values
• VHDL Objects
• VHDL Operators
• VHDL Entity and Architecture Descriptions
• VHDL Combinatorial Circuits
• VHDL Sequential Circuits
• VHDL Functions and Procedures
• VHDL Assert Statements
• VHDL Models Defined Using Packages
• VHDL Constructs Supported in XST
• VHDL Reserved Words

VHDL Logic Descriptions
VHDL offers a broad set of constructs for compactly describing complicated logic:
• Allows the description of the structure of a system:

– How it is decomposed into subsystems
– How those subsystems are interconnected

• Allows the specification of the function of a system using familiar programming
language forms.

• Allows the design of a system to be simulated before being implemented and
manufactured. This feature allows you to test for correctness without the delay
and expense of hardware prototyping.

• Provides a mechanism for easily producing a detailed, device-dependent version of
a design to be synthesized from a more abstract specification. This feature allows

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 417

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=417

Chapter 14: XST VHDL Langua ge Suppor t

you to concentrate on more strategic design decisions, and reduce the overall time to
market for the design.

For more information, see:

• IEEE VHDL Language Reference Manual
• XST Design Constraints
• VHDL Attribute Syntax

VHDL IEEE Suppor t
This section discusses VHDL IEEE Support, and includes:
• Supported VHDL IEEE Standards
• VHDL IEEE Conflicts
• Non-LRM Compliant Constructs in VHDL

Suppor ted VHDL IEEE Standar ds
XST supports the following VHDL IEEE standards:
• Std 1076-1987
• Std 1076-1993
• Std 1076-2006

Note Std 1076-2006 is only partially implemented. XST allows instantiation for Std
1076-2006 as shown in the following table.

Formal Por t Associated Actual
buffer out

out buffer

VHDL IEEE Conflicts
VHDL IEEE Std 1076-1987 constructs are accepted if they do not conflict with VHDL
IEEE Std 1076-1993. In case of a conflict, Std 1076-1993 behavior overrides Std 1076-1987.

In cases where:
• Std 1076-1993 requires a construct to be an erroneous case, but
• Std 1076-1987 accepts it,

XST issues a warning instead of an error. An error would stop analysis.

VHDL IEEE Conflict Example
Following is an example of a VHDL IEEE conflict:
• Std 1076-1993 requires an impure function to use the impure keyword while

declaring a function.
• Std 1076-1987 has no such requirement.

In this case, XST:
• Accepts the VHDL code written for Std 1076-1987
• Issues a warning stating Std 1076-1993 behavior

Frontmatter
418 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=418

Chapter 14: XST VHDL Langua ge Suppor t

Non-LRM Compliant Constructs in VHDL
XST supports some non-LRM compliant constructs. XST supports a specific non-LRM
compliant construct when:
• A majority of synthesis or simulation third-party tools support the construct, and
• It is a real language limitation for design coding, and has no impact on quality of

results or problem detection in the design.

For example, the LRM does not allow instantiation when the formal port is a buffer and
the effective one is an out (and vice-versa).

VHDL File Type Suppor t
XST supports a limited File Read and File Write capability for VHDL as shown in the
following table.

Capability Usage Examples
File Read Initialize RAMs from an external file

File Write • Debug processes

• Write a specific constant or generic value to an external file

For more information, see:

Initializing RAM Coding Examples

Use any of the read functions shown in the following table. These read functions are
supported by the following packages:
• standard
• std.textio
• ieee.std_logic_textio

Function Package
file (type text only) standard

access (type line only) standard

file_open (file, name, open_kind) standard

file_close (file) standard

endfile (file) standard

text std.textio

line std.textio

width std.textio

readline (text, line) std.textio

readline (line, bit, boolean) std.textio

read (line, bit) std.textio

readline (line, bit_vector, boolean) std.textio

read (line, bit_vector) std.textio

read (line, boolean, boolean) std.textio

read (line, boolean) std.textio

read (line, character, boolean) std.textio

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 419

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=419

Chapter 14: XST VHDL Langua ge Suppor t

Function Package
read (line, character) std.textio

read (line, string, boolean) std.textio

read (line, string) std.textio

write (file, line) std.textio

write (line, bit, boolean) std.textio

write (line, bit) std.textio

write (line, bit_vector, boolean) std.textio

write (line, bit_vector) std.textio

write (line, boolean, boolean) std.textio

write (line, boolean) std.textio

write (line, character, boolean) std.textio

write (line, character) std.textio

write (line, integer, boolean) std.textio

write (line, integer) std.textio

write (line, string, boolean) std.textio

write (line, string) std.textio

read (line, std_ulogic, boolean) ieee.std_logic_textio

read (line, std_ulogic) ieee.std_logic_textio

read (line, std_ulogic_vector), boolean ieee.std_logic_textio

read (line, std_ulogic_vector) ieee.std_logic_textio

read (line, std_logic_vector, boolean) ieee.std_logic_textio

read (line, std_logic_vector) ieee.std_logic_textio

write (line, std_ulogic, boolean) ieee.std_logic_textio

write (line, std_ulogic) ieee.std_logic_textio

write (line, std_ulogic_vector, boolean) ieee.std_logic_textio

write (line, std_ulogic_vector) ieee.std_logic_textio

write (line, std_logic_vector, boolean) ieee.std_logic_textio

write (line, std_logic_vector) ieee.std_logic_textio

hread ieee.std_logic_textio

VHDL Debugging Using Write Operation
This section discusses VHDL Debugging Using Write Operation, and includes:

• Rules for Debugging

• Using the Endfile Function

Frontmatter
420 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=420

Chapter 14: XST VHDL Langua ge Suppor t

Rules for Debugging
Follow these rules for debugging using write operation in VHDL:

• During a std_logic read operation, the only allowed characters are 0 and 1. Other
values such as X and Z are not allowed. XST rejects the design if the file includes
characters other than 0 and 1, except that XST ignores a blank space character.

• Do not use identical names for files placed in different directories.

• Do not use conditional calls to read procedures, as shown in the following coding
example.

if SEL = ’1’ then
read (MY_LINE, A(3 downto 0));

else
read (MY_LINE, A(1 downto 0));

end if;

Using the Endfile Function
XST rejects the design if you use the following description style with the endfile function:

while (not endfile (MY_FILE)) loop
readline (MY_FILE, MY_LINE);
read (MY_LINE, MY_DATA);

end loop;

XST issues the following error message:

Line <MY_LINE> has not enough elements for target <MY_DATA>.

To fix the problem, add exit when endfile (MY_FILE); to the while loop.

while (not endfile (MY_FILE)) loop
readline (MY_FILE, MY_LINE);
exit when endfile (MY_FILE);
read (MY_LINE, MY_DATA);

end loop;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 421

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=421

Chapter 14: XST VHDL Langua ge Suppor t

Coding Example
--
-- Print 2 constants to the output file
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_arith.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use STD.TEXTIO.all;
use IEEE.STD_LOGIC_TEXTIO.all;

entity file_support_1 is
generic (data_width: integer:= 4);
port(clk, sel: in std_logic;

din: in std_logic_vector (data_width - 1 downto 0);
dout: out std_logic_vector (data_width - 1 downto 0));

end file_support_1;

architecture Behavioral of file_support_1 is
file results : text is out "test.dat";
constant base_const: std_logic_vector(data_width - 1 downto 0):= conv_std_logic_vector(3,data_width);
constant new_const: std_logic_vector(data_width - 1 downto 0):= base_const + "1000";

begin

process(clk)
variable txtline : LINE;

begin
write(txtline,string’("--------------------"));
writeline(results, txtline);
write(txtline,string’("Base Const: "));
write(txtline,base_const);
writeline(results, txtline);

write(txtline,string’("New Const: "));
write(txtline,new_const);
writeline(results, txtline);
write(txtline,string’("--------------------"));
writeline(results, txtline);

if (clk’event and clk=’1’) then
if (sel = ’1’) then

dout <= new_const;
else

dout <= din;
end if;

end if;
end process;

end Behavioral;

Frontmatter
422 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=422

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Data Types
This section discusses VHDL Data Types, and includes:
• Accepted VHDL Data Types
• VHDL Overloaded Data Types
• VHDL Multi-Dimensional Array Types

Accepted VHDL Data Types
XST accepts the following VHDL data types:
• VHDL Enumerated Types
• VHDL User-Defined Enumerated Types
• VHDL Bit Vector Types
• VHDL Integer Types
• VHDL Predefined Types
• VHDL STD_LOGIC_1164 IEEE Types

VHDL Enumerated Types
Type Values Meaning Comment
BIT 0, 1 -- --

BOOLEAN false, true -- --

REAL $-. to $+. -- --

STD_LOGIC U unitialized Not accepted by XST

X unknown Treated as don’t care

0 low Treated identically to L

1 high Treated identically to H

Z high impedance Treated as high impedance

W weak unknown Not accepted by XST

L weak low Treated identically to 0

H weak high Treated identically to 1
- don’t care Treated as don’t care

VHDL User-Defined Enumerated Types
type COLOR is (RED, GREEN, YELLOW) ;

VHDL Bit Vector Types
• BIT_VECTOR
• STD_LOGIC_VECTOR

VHDL Integ er Types
INTEGER

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 423

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=423

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Predefined Types
• BIT
• BOOLEAN
• BIT_VECTOR
• INTEGER
• REAL

VHDL STD_LOGIC_1164 IEEE Types
The following types are declared in the STD_LOGIC_1164 IEEE package:
• STD_LOGIC
• STD_LOGIC_VECTOR

This package is compiled in the IEEE library. To use one of these types, add the following
two lines to the VHDL specification:

library IEEE; use IEEE.STD_LOGIC_1164.all;

VHDL Overloaded Data Types
The following data types can be overloaded:
• VHDL Overloaded Enumerated Types
• VHDL Overloaded Bit Vector Types
• VHDL Overloaded Integer Types
• VHDL Overloaded STD_LOGIC_1164 IEEE Types
• VHDL Overloaded STD_LOGIC_ARITH IEEE Types

VHDL Overloaded Enumerated Types
• STD_ULOGIC

Contains the same nine values as the STD_LOGIC type, but does not contain
predefined resolution functions

• X01
Subtype of STD_ULOGIC containing the X, 0 and 1 values

• X01Z
Subtype of STD_ULOGIC containing the X, 0, 1 and Z values

• UX01
Subtype of STD_ULOGIC containing the U, X, 0 and 1 values

• UX01Z
Subtype of STD_ULOGIC containing the U, X, 0, 1, and Z values

VHDL Overloaded Bit Vector Types
• STD_ULOGIC_VECTOR
• UNSIGNED
• SIGNED

Unconstrained types (types whose length is not defined) are not accepted.

Frontmatter
424 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=424

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Overloaded Integ er Types
• NATURAL
• POSITIVE

Any integer type within a user-defined range. For example:

type MSB is range 8 to 15;

means any integer:

• greater than 7, or
• less than 16

The types NATURAL and POSITIVE are VHDL predefined types.

VHDL Overloaded STD_LOGIC_1164 IEEE Types
The following types are declared in the STD_LOGIC_1164 IEEE package:
• STD_ULOGIC (and subtypes X01, X01Z, UX01, UX01Z)
• STD_LOGIC
• STD_ULOGIC_VECTOR
• STD_LOGIC_VECTOR

This package is compiled in the library IEEE. To use one of these types, add the following
two lines to the VHDL specification:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

VHDL Overloaded STD_LOGIC_ARITH IEEE Types
The types UNSIGNED and SIGNED (defined as an array of STD_LOGIC) are declared
in the STD_LOGIC_ARITH IEEE package.

This package is compiled in the library IEEE. To use these types, add the following two
lines to the VHDL specification:

library IEEE;
use IEEE.STD_LOGIC_ARITH.all;

VHDL Multi-Dimensional Arra y Types
XST supports multi-dimensional array types of up to three dimensions. BRAMs are not
inferred. Arrays can be:
• Signals
• Constants
• VHDL variables

You can do assignments and arithmetic operations with arrays. You can also pass
multi-dimensional arrays to functions, and use them in instantiations.

Coding Example One
The array must be fully constrained in all dimensions, as shown in the following coding
example.

subtype WORD8is STD_LOGIC_VECTOR(7 downto 0);
type TAB12 is array (11 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB12;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 425

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=425

Chapter 14: XST VHDL Langua ge Suppor t

Coding Example Two
You can also declare an array as a matrix, as shown in the following coding example.

subtype TAB13 is array (7 downto 0,4 downto 0) of
STD_LOGIC_VECTOR(8 downto 0);

Consider the following declarations:

subtype WORD8is STD_LOGIC_VECTOR(7 downto 0);
type TAB05 is array (4 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB05;

signal WORD_A: WORD8;
signal TAB_A, TAB_B : TAB05;
signal TAB_C, TAB_D : TAB03;
constant CNST_A : TAB03 := (
("00000000","01000001","01000010","10000011","00001100"),

("00100000","00100001","00101010","10100011","00101100"),

("01000010","01000010","01000100","01000111","01000100"));

The following can now be specified:

• A multi-dimensional array signal or variable

TAB_A <= TAB_B; TAB_C <= TAB_D; TAB_C <= CNST_A;

• An index of one array

TAB_A (5) <= WORD_A;TAB_C (1) <= TAB_A;

• Indexes of the maximum number of dimensions

TAB_A (5) (0) <= ’1’; TAB_C (2) (5) (0) <= ’0’

• A slice of the first array

TAB_A (4 downto 1) <= TAB_B (3 downto 0);

• An index of a higher level array and a slice of a lower level array:

TAB_C (2) (5) (3 downto 0) <= TAB_B (3) (4 downto 1); TAB_D
(0) (4) (2 downto 0) <= CNST_A (5 downto 3)

Coding Example Three
Add the following declaration:

subtype MATRIX15 is array(4 downto 0, 2 downto 0) of
STD_LOGIC_VECTOR(7 downto 0); signal MATRIX_A : MATRIX15;

Frontmatter
426 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=426

Chapter 14: XST VHDL Langua ge Suppor t

The following can now be specified:

• A multi-dimensional array signal or variable

MATRIXA <= CNST_A;

• An index of one row of the array

MATRIXA (5) <= TAB_A;

• Indexes of the maximum number of dimensions

MATRIXA (5,0) (0) <= ’1’;

Indexes may be variable.

VHDL Record Types
XST supports VHDL record types, as shown in the following Coding Example.

• Record types can contain other record types.

• Constants can be record types.

• Record types cannot contain attributes.

• XST supports aggregate assignments to record signals.

Coding Example
type REC1 is record

field1: std_logic;
field2: std_logic_vector (3 downto 0)

end record;

VHDL Initial Values
This section discusses VHDL Initial Values, and includes:

• Initializing Registers

• VHDL Local Reset/Global Reset

• Default Initial Values on Memory Elements in VHDL

Initializing Register s
In VHDL, you can initialize registers when you declare them.

The value:

• Is a constant

• Cannot depend on earlier initial values

• Cannot be a function or task call

• Can be a parameter value propagated to a register

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 427

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=427

Chapter 14: XST VHDL Langua ge Suppor t

Coding Example One
When you give a register an initial value in a declaration, XST sets this value:
• On the output of the register at global reset, or
• At power up
The assigned value:
• Is carried in the NGC file as an INIT attribute on the register
• Is independent of any local reset

signal arb_onebit : std_logic := ’0’;
signal arb_priority : std_logic_vector(3 downto 0) := "1011";

Coding Example Two
You can also assign a set/reset value to a register in behavioral VHDL code. Assign a
value to a register when the register reset line goes to the appropriate value.

process (clk, rst)
begin

if rst=’1’ then
arb_onebit <= ’0’;

end if;
end process;

When you set the initial value of a variable in the behavioral code, it is implemented in
the design as a flip-flop whose output can be controlled by a local reset. As such, it is
carried in the NGC file as an FDP or FDC flip-flop.

VHDL Local Reset/Global Reset
Local reset is independent of global reset. Registers controlled by a local reset may be set
to a different value from registers whose value is only reset at global reset (power up).
In the following coding example, the register arb_onebit is set to 1 at global reset, but
a pulse on the local reset (rst) can change its value to 0.

Local Reset/Global Reset VHDL Coding Example
The following coding example sets the initial value on the register output to 1 (one) at
initial power up, but since this is dependent upon a local reset, the value changes to 0
(zero) whenever the local set/reset is activated.

entity top is
Port (

clk, rst : in std_logic;
a_in : in std_logic;
dout : out std_logic);

end top;
architecture Behavioral of top is
signal arb_onebit : std_logic := ’1’;

begin
process (clk, rst)
begin

if rst=’1’ then
arb_onebit <= ’0’;

elsif (clk’event and clk=’1’) then
arb_onebit <= a_in;

end if;

Frontmatter
428 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=428

Chapter 14: XST VHDL Langua ge Suppor t

end process;

dout <= arb_onebit;
end Behavioral;

Default Initial Values on Memor y Elements in VHDL
Because every memory element in a Xilinx® FPGA device must come up in a known
state, in certain cases, XST does not use IEEE standards for initial values. In the Local
Reset/Global Reset VHDL Coding Example, if signal arb_onebit were not initialized
to 1 (one), XST would assign it a default of 0 (zero) as its initial state. In this case, XST
does not follow the IEEE standard, where U is the default for std_logic. This process of
initialization is the same for both registers and RAMs.

Where possible, XST adheres to the IEEE VHDL standard when initializing signal
values. If no initial values are supplied in the VHDL code, XST uses the default values
(where possible) as shown in the XST column in the following table.

Type IEEE XST
bit ’0’ ’0’

std_logic ’U’ ’0’

bit_vector (3 downto 0) 0000 0000

std_logic_vector (3 downto 0) 0000 0000

integer (unconstrained) integer’left integer’left

integer range 7 downto 0 integer’left = 7 integer’left = 7 (coded as 111)

integer range 0 to 7 integer’left = 0 integer’left = 0 (coded as 000)

Boolean FALSE FALSE (coded as 0)

enum(S0,S1,S2,S3) type’left = S0 type’left = S0 (coded as 000)

Unconnected output ports default to the values shown in the XST column of VHDL
Initial Values. If the output port has an initial condition, XST ties the unconnected
output port to the explicitly defined initial condition. According to the IEEE VHDL
specification, input ports cannot be left unconnected. As a result, XST issues an error
message if an input port is not connected. Even the open keyword is not sufficient
for an unconnected input port.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 429

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=429

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Objects
This section discusses VHDL Objects, and include:

• Signals in VHDL

• Variables in VHDL

• Constants in VHDL

Signals in VHDL
Signals in VHDL can be:

• Declared in an architecture declarative part.

• Used anywhere within the architecture.

• Declared in a block.

• Used within that block.

• Assigned by the assignment operator <=.

Coding Example
signal sig1 : std_logic; sig1 <= ’1’;

Variab les in VHDL
Variables in VHDL:

• Are declared in a process or a subprogram.

• Are used within that process or that subprogram.

• Can be assigned by the assignment operator:

:=

Coding Example
variable var1 : std_logic_vector (7 downto 0); var1 := "01010011";

Constants in VHDL
Constants in VHDL:

• Can be declared in any declarative region.

• Can be used within that region.

• Cannot have their values be changed once declared.

Coding Example
signal sig1 : std_logic_vector (5 downto 0);
constant init0 : std_logic_vector (5 downto 0) := "010111";
sig1 <= init0;

Frontmatter
430 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=430

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Operator s
Supported operators are listed in VHDL Expressions. This section provides coding
examples for each shift operator.

Shift Left Logical VHDL Coding Example
sll (Shift Left Logical) sig1 <= A(4 downto 0) sll 2

logically equivalent to:

sig1 <= A(2 downto 0) & "00";

Shift Right Logical VHDL Coding Example
srl (Shift Right Logical) sig1 <= A(4 downto 0) srl 2

logically equivalent to:

sig1 <= "00" & A(4 downto 2);

Shift Left Arithmetic VHDL Coding Example
sla (Shift Left Arithmetic) sig1 <= A(4 downto 0) sla 2

logically equivalent to:

sig1 <= A(2 downto 0) & A(0) & A(0);

Shift Right Arithmetic VHDL Coding Example
sra (Shift Right Arithmetic) sig1 <= A(4 downto 0) sra 2

logically equivalent to:

sig1 <= <= A(4) & A(4) & A(4 downto 2);

Rotate Left VHDL Coding Example
rol (Rotate Left) sig1 <= A(4 downto 0) rol 2

logically equivalent to:

sig1 <= A(2 downto 0) & A(4 downto 3);

Rotate Right VHDL Coding Example
ror (Rotate Right) A(4 downto 0) ror 2

logically equivalent to:

sig1 <= A(1 downto 0) & A(4 downto 2);

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 431

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=431

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Entity and Architecture Descriptions
VHDL entity and architecture descriptions include:
• Circuit Descriptions
• Entity Declarations
• Architecture Declarations
• Component Instantiation
• Recursive Component Instantiation
• Component Configuration
• Generic Parameter Declarations
• Generic and Attribute Conflict

VHDL Circuit Descriptions
A circuit description in VHDL consists of two parts:
• The interface (defining the I/O ports)
• The body

In VHDL:
• The entity corresponds to the interface
• The architecture describes the behavior

VHDL Entity Declarations
The I/O ports of the circuit are declared in the entity. Each port has:
• A name
• A mode

– in
– out
– inout
– buffer

• A type (one of the following ports in the Entity and Architecture Declaration VHDL
Coding Example)
– A
– B
– C
– D
– E

Not more than one-dimensional array types are accepted as ports.

VHDL Architecture Declarations
Internal signals may be declared in the architecture. Each internal signal has:
• A name
• A type

Signal T as shown below in the following coding example

Frontmatter
432 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=432

Chapter 14: XST VHDL Langua ge Suppor t

Coding Example
Library IEEE;
use IEEE.std_logic_1164.all;
entity EXAMPLEis

port (
A,B,C : in std_logic;
D,E : out std_logic);

end EXAMPLE;

architecture ARCHI of EXAMPLEis
signal T : std_logic;

begin
...
end ARCHI;

VHDL Component Instantiation
Structural descriptions assemble several blocks, and allow the introduction of hierarchy
in a design.

Concept Description
Component Building or basic block

Port Component I/O connector

Signal Corresponds to a wire between components

In VHDL, a component is represented by a design entity. The design entity is a
composite consisting of the concepts shown in the following table.

Concept View Describes
Entity declaration External What can be seen from

the outside, including the
component ports

Architecture body Internal The behavior or the structure
of the component

The connections between components are specified within component instantiation
statements. These statements specify an instance of a component occurring inside an
architecture of another component. Each component instantiation statement is labeled
with an identifier.

Besides naming a component declared in a local component declaration, a component
instantiation statement contains an association list -- the parenthesized list following the
reserved word port map. The association list specifies which actual signals or ports are
associated with which local ports of the component declaration.

XST supports unconstrained vectors in component declarations.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 433

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=433

Chapter 14: XST VHDL Langua ge Suppor t

Coding Example
The following coding example shows the structural description of a half adder
composed of four nand2 components:

entity NAND2 is
port (

A,B : in BIT;
Y : out BIT);

end NAND2;

architecture ARCHI of NAND2 is
begin

Y <= A nand B;
end ARCHI;

entity HALFADDERis
port (

X,Y : in BIT;
C,S : out BIT);

end HALFADDER;

architecture ARCHI of HALFADDERis
component NAND2

port (
A,B : in BIT;
Y : out BIT);

end component;

for all : NAND2 use entity work.NAND2(ARCHI);
signal S1, S2, S3 : BIT;
begin

NANDA: NAND2 port map (X,Y,S3);
NANDB: NAND2 port map (X,S3,S1);
NANDC: NAND2 port map (S3,Y,S2);
NANDD: NAND2 port map (S1,S2,S);
C <= S3;

end ARCHI;

Synthesiz ed Top Level Netlist Diagram

Frontmatter
434 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=434

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Recur sive Component Instantiation
XST supports recursive component instantiation. Direct instantiation is not supported
for recursion. To prevent endless recursive calls, the number of recursions is limited
by default to 64. Use -recursion_iteration_limit to control the number of allowed
recursive calls.

4-Bit Shift Register With Recur sive Component Instantiation VHDL Coding
Example
library ieee;
use ieee.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;

entity single_stage is
generic (sh_st: integer:=4);
port (

CLK : in std_logic;
DI : in std_logic;
DO : out std_logic);

end entity single_stage;

architecture recursive of single_stage is
component single_stage

generic (sh_st: integer);
port (

CLK : in std_logic;
DI : in std_logic;
DO : out std_logic);

end component;

signal tmp : std_logic;

begin
GEN_FD_LAST: if sh_st=1 generate

inst_fd: FD port map (D=>DI, C=>CLK, Q=>DO);
end generate;
GEN_FD_INTERM: if sh_st /= 1 generate

inst_fd: FD port map (D=>DI, C=>CLK, Q=>tmp);
inst_sstage: single_stage generic map (sh_st => sh_st-1)

port map (DI=>tmp, CLK=>CLK, DO=>DO);
end generate;

end recursive;

VHDL Component Configuration
Associating an entity and architecture pair to a component instance provides the means
of linking components with the appropriate model (entity and architecture pair).

XST supports component configuration in the declarative part of the architecture:

for instantiation_list: component_name use LibName.entity_Name(Architecture_Name);

Coding Example
The following coding example shows how to use a configuration clause for component
instantiation. The example contains a for all statement.

for all : NAND2 use entity work.NAND2(ARCHI);

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 435

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=435

Chapter 14: XST VHDL Langua ge Suppor t

This statement indicates that all NAND2 components use the entity NAND2 and
Architecture ARCHI.

When the configuration clause is missing for a component instantiation, XST links the
component to the entity with the same name (and same interface) and the selected
architecture to the most recently compiled architecture. If no entity or architecture is
found, a black box is generated during synthesis.

In command line mode, you may also use a dedicated configuration declaration to link
component instantiations in your design to design entities and architectures. In this case,
the value of the mandatory Top Module Name (-top) option in the run command is the
configuration name instead of the top level entity name.

VHDL Generic Parameter Declarations
The Generics (-generics) VHDL command line option allows you to redefine generics
values defined in the top-level design block. This allows you to easily modify the
design configuration without any Hardware Description Language (HDL) source
modifications, such as for IP core generation and testing flows.

Generic parameters may be declared in the entity declaration part. XST supports all
types for generics including, for example:
• Integer
• Boolean
• String
• Real
• std_logic_vector

An example of using generic parameters is setting the width of the design.

Coding Example
By describing circuits with generic ports, the same component can be instantiated
repeatedly with different values of generic ports as shown in the following coding
example.

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity addern is
generic (width : integer := 8);
port (

A,B : in std_logic_vector (width-1 downto 0);
Y : out std_logic_vector (width-1 downto 0));

end addern;

architecture bhv of addern is
begin

Y <= A + B;
end bhv;

Library IEEE;
use IEEE.std_logic_1164.all;

entity top is
port (

X, Y, Z : in std_logic_vector (12 downto 0);
A, B : in std_logic_vector (4 downto 0);

Frontmatter
436 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=436

Chapter 14: XST VHDL Langua ge Suppor t

S :out std_logic_vector (16 downto 0));
end top;

architecture bhv of top is
component addern

generic (width : integer := 8);
port (

A,B : in std_logic_vector (width-1 downto 0);
Y : out std_logic_vector (width-1 downto 0));

end component;

for all : addern use entity work.addern(bhv);
signal C1 : std_logic_vector (12 downto 0);
signal C2, C3 : std_logic_vector (16 downto 0);
begin

U1 : addern generic map (n=>13) port map (X,Y,C1);
C2 <= C1 & A;
C3 <= Z & B;
U2 : addern generic map (n=>17) port map (C2,C3,S);

end bhv;

VHDL Generic and Attrib ute Conflicts
Since generics and attributes can be applied to both instances and components in the
VHDL code, and attributes can also be specified in a constraints file, from time to time,
conflicts may arise. To resolve these conflicts, XST uses the following rules of precedence:

1. Whatever is specified on an instance (lower level) takes precedence over what is
specified on a component (higher level).

2. If a generic and an attribute are specified on either the same instance or the same
component, the generic takes precedence, and XST issues a message warning of the
conflict.

3. An attribute specified in the XST Constraint File (XCF) always takes precedence over
attributes or generics specified in the VHDL code.

When an attribute specified on an instance overrides a generic specified on a component
in XST, it is possible that your simulation tool may nevertheless use the generic. This
may cause the simulation results to not match the synthesis results.

Precedence in VHDL
Generic on an Instance Generic on a Component

Attribute on an Instance Apply Generic (XST issues
warning)

Apply Attribute (possible
simulation mismatch)

Attribute on a Component Apply Generic Apply Generic (XST issues
warning)

Attribute in XCF Apply Attribute XST issues
warning)

Apply Attribute

Security attributes on the block definition always have higher precedence than any
other attribute or generic.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 437

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=437

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Combinatorial Circuits
XST supports the following VHDL combinatorial circuits:
• Concurrent Signal Assignments
• Generate Statements
• Combinatorial Processes
• If...Else Statements
• Case Statements
• For...Loop Statements

VHDL Concurrent Signal Assignments
Combinatorial logic in VHDL may be described using concurrent signal assignments.
These can be defined within the body of the architecture. VHDL offers three types of
concurrent signal assignments:
• Simple
• Selected
• Conditional

You can describe as many concurrent statements as needed. The order of concurrent
signal definition in the architecture is irrelevant.

A concurrent assignment consists of two sides:
• Left-hand
• Right-hand

The assignment changes when any signal in the right side changes. In this case, the
result is assigned to the signal on the left side.

Simple Signal Assignment VHDL Coding Example
T <= A and B;

MUX Description Using Selected Signal Assignment VHDL Coding Example
library IEEE;
use IEEE.std_logic_1164.all;

entity select_bhv is
generic (width: integer := 8);
port (

a, b, c, d : in std_logic_vector (width-1 downto 0);
selector : in std_logic_vector (1 downto 0);
T : out std_logic_vector (width-1 downto 0));

end select_bhv;

architecture bhv of select_bhv is
begin

with selector select
T <= a when "00",

b when "01",
c when "10",
d when others;

end bhv;

Frontmatter
438 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=438

Chapter 14: XST VHDL Langua ge Suppor t

MUX Description Using Conditional Signal Assignment VHDL Coding
Example
entity when_ent is

generic (width: integer := 8);
port (

a, b, c, d : in std_logic_vector (width-1 downto 0);
selector : in std_logic_vector (1 downto 0);
T : out std_logic_vector (width-1 downto 0));

end when_ent;

architecture bhv of when_ent is
begin

T <= a when selector = "00" else
b when selector = "01" else
c when selector = "10" else
d;

end bhv;

VHDL Generate Statements
Repetitive structures are declared with the generate VHDL statement. For this purpose,
for I in 1 to N generatemeans that the bit slice description is repeated N times.

8-Bit Adder Described With For...Generate Statement VHDL Coding
Example
The following coding example describes an 8-bit adder by declaring the bit slice
structure.

entity EXAMPLEis
port (

A,B : in BIT_VECTOR (0 to 7);
CIN : in BIT;
SUM : out BIT_VECTOR (0 to 7);
COUT : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLEis
signal C : BIT_VECTOR (0 to 8);
begin

C(0) <= CIN;
COUT<= C(8);
LOOP_ADD: for I in 0 to 7 generate
SUM(I) <= A(I) xor B(I) xor C(I);
C(I+1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));
end generate;

end ARCHI;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 439

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=439

Chapter 14: XST VHDL Langua ge Suppor t

N-Bit Adder Described With If...Generate and For… Generate Statement
VHDL Coding Example
XST supports the if condition generate statement for static (non-dynamic) conditions.
The following coding example shows a generic N-bit adder with a width ranging
between 4 and 32.

entity EXAMPLEis
generic (N : INTEGER := 8);
port (

A,B : in BIT_VECTOR (N downto 0);
CIN : in BIT;
SUM : out BIT_VECTOR (N downto 0);
COUT : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLEis
signal C : BIT_VECTOR (N+1 downto 0);
begin
L1: if (N>=4 and N<=32) generate

C(0) <= CIN;
COUT<= C(N+1);
LOOP_ADD: for I in 0 to N generate

SUM(I) <= A(I) xor B(I) xor C(I);
C(I+1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));

end generate;
end generate;

end ARCHI;

VHDL Combinatorial Processes
A process assigns values to signals differently than when using concurrent signal
assignments. The value assignments are made in a sequential mode. Later assignments
may cancel previous ones. See Assignments in a Process VHDL Coding Example. First the
signal S is assigned to 0, but later on (for (A and B) =1), the value for S is changed to 1.

A process is combinatorial when its inferred hardware does not involve any memory
elements. Said differently, when all assigned signals in a process are always explicitly
assigned in all paths of the Process statements, the process is combinatorial.

A combinatorial process has a sensitivity list appearing within parentheses after the
word process. A process is activated if an event (value change) appears on one of the
sensitivity list signals. For a combinatorial process, this sensitivity list must contain:

• All signals in conditions (for example, if and case)

• All signals on the right-hand side of an assignment

If one or more signals are missing from the sensitivity list, XST issues a warning message
for the missing signals and adds them to the sensitivity list. In this case, the result of the
synthesis may be different from the initial design specification.

A process may contain local variables. The variables are handled in a similar manner
as signals (but are not, of course, outputs to the design).

In Combinatorial Process VHDL Coding Example One, a variable named AUX is declared in
the declarative part of the process, and is assigned to a value (with :=) in the statement
part of the process.

In combinatorial processes, if a signal is not explicitly assigned in all branches of if or
case statements, XST generates a latch to hold the last value. To avoid latch creation,
ensure that all assigned signals in a combinatorial process are always explicitly assigned
in all paths of the Process statements.

Frontmatter
440 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=440

Chapter 14: XST VHDL Langua ge Suppor t

Different statements can be used in a process:

• Variable and signal assignment

• If statement

• Case statement

• For...Loop statement

• Function and procedure call

Assignments in a Process VHDL Coding Example
entity EXAMPLEis

port (
A, B : in BIT;
S : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLEis
begin

process (A, B)
begin

S <= ’0’ ;
if ((A and B) = ’1’) then

S <= ’1’ ;
end if;

end process;
end ARCHI;

Coding Example One
library ASYL;
use ASYL.ARITH.all;

entity ADDSUBis
port (

A,B : in BIT_VECTOR (3 downto 0);
ADD_SUB: in BIT;
S : out BIT_VECTOR (3 downto 0));

end ADDSUB;

architecture ARCHI of ADDSUBis
begin

process (A, B, ADD_SUB)
variable AUX : BIT_VECTOR (3 downto 0);

begin
if ADD_SUB= ’1’ then

AUX := A + B ;
else

AUX := A - B ;
end if;
S <= AUX;

end process;
end ARCHI;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 441

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=441

Chapter 14: XST VHDL Langua ge Suppor t

Coding Example Two
entity EXAMPLEis

port (
A, B : in BIT;
S : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLEis
begin

process (A,B)
variable X, Y : BIT;

begin
X := A and B;
Y := B and A;
if X = Y then

S <= ’1’ ;
end if;

end process;
end ARCHI;

VHDL If...Else Statements
If...else statements:
• Use true and false conditions to execute statements.
• May be nested.
• May be executed in a block of multiple statements using begin and end keywords.

Expression Evaluates To Statement Executed
true First statement

false else statement
x else statement
z else statement

Coding Example
library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (

a, b, c, d : in std_logic_vector (7 downto 0);
sel1, sel2 : in std_logic;
outmux : out std_logic_vector (7 downto 0));

end mux4;

architecture behavior of mux4 is
begin

process (a, b, c, d, sel1, sel2)
begin

if (sel1 = ’1’) then
if (sel2 = ’1’) then

outmux <= a;
else

outmux <= b;

Frontmatter
442 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=442

Chapter 14: XST VHDL Langua ge Suppor t

end if;
else

if (sel2 = ’1’) then
outmux <= c;

else
outmux <= d;

end if;
end if;

end process;
end behavior;

VHDL Case Statements
Case statements perform a comparison to an expression to evaluate one of a number
of parallel branches. The case statement evaluates the branches in the order they are
written. The first branch that evaluates to true is executed. If none of the branches
match, the default branch is executed.

VHDL Case Statement Coding Example
library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (

a, b, c, d : in std_logic_vector (7 downto 0);
sel : in std_logic_vector (1 downto 0);
outmux : out std_logic_vector (7 downto 0));

end mux4;
architecture behavior of mux4 is
begin

process (a, b, c, d, sel)
begin

case sel is
when "00" => outmux <= a;
when "01" => outmux <= b;
when "10" => outmux <= c;
when others => outmux <= d; -- case statement

-- must be complete
end case;

end process;
end behavior;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 443

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=443

Chapter 14: XST VHDL Langua ge Suppor t

VHDL For...Loop Statements
XST supports the for statement for:
• Constant bounds
• Stop test condition using any of the following operators:

– <
– <=
– >
– >=

• Next step computation falling within one of the following specifications:
– var = var + step
– var = var - step

where
♦ var is the loop variable
♦ step is a constant value

• Next and exit statements

VHDL For...Loop Statement Coding Example
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity countzeros is
port (

a : in std_logic_vector (7 downto 0);
Count : out std_logic_vector (2 downto 0));

end mux4;

architecture behavior of mux4 is
signal Count_Aux: std_logic_vector (2 downto 0);
begin

process (a)
begin

Count_Aux <= "000";
for i in a’range loop

if (a[i] = ’0’) then
Count_Aux <= Count_Aux + 1; -- operator "+" defined

-- in std_logic_unsigned
end if;

end loop;
Count <= Count_Aux;

end process;
end behavior;

VHDL Sequential Circuits
Sequential circuits can be described using sequential processes. XST allows:
• VHDL Sequential Process With a Sensitivity List
• VHDL Sequential Process Without a Sensitivity List

Frontmatter
444 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=444

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Sequential Process With a Sensitivity List
A process is sequential when it is not a combinatorial process. In other words, a process
is sequential when some assigned signals are not explicitly assigned in all paths of
the statements. In this case, the hardware generated has an internal state or memory
(flip-flops or latches).

The following coding example provides a template for describing sequential circuits.

For more information, see:

XST HDL Coding Techniques

This topic describes macro inference (for example, registers and counters).

Coding Example
Declare asynchronous signals in the sensitivity list. Otherwise, XST issues a warning
and adds them to the sensitivity list. In this case, the behavior of the synthesis result
may be different from the initial specification.

process (CLK, RST) ...
begin

if RST = <’0’ | ’1’> then
-- an asynchronous part may appear here
-- optional part
.......

elsif <CLK’EVENT | not CLK’STABLE>
and CLK = <’0’ | ’1’> then
-- synchronous part
-- sequential statements may appear here

end if;
end process;

VHDL Sequential Process Without a Sensitivity List
Sequential processes without a sensitivity list must contain aWait statement. TheWait
statement must be the first statement of the process. The condition in theWait statement
must be a condition on the clock signal. SeveralWait statements in the same process are
accepted, but a set of specific conditions must be respected.

For more information, see:

VHDL Multiple Wait Statements Descriptions

An asynchronous part cannot be specified within processes without a sensitivity list.

VHDL Sequential Process Without a Sensitivity List Coding Example
The following VHDL coding example shows the skeleton of the process described in this
section. The clock condition may be a falling or a rising edge.

process ...
begin

wait until <CLK’EVENT | not CLK’ STABLE> and CLK = <’0’ | ’1’>;
... -- a synchronous part may be specified here.

end process;

XST does not support clock and clock enable descriptions within the sameWait
statement. Instead, code these descriptions as shown in Clock and Clock Enable (Supported)
VHDL Coding Example.

XST does not support Wait statements for latch descriptions.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 445

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=445

Chapter 14: XST VHDL Langua ge Suppor t

Clock and Clock Enable (Not Suppor ted) VHDL Coding Example
Caution! This coding style is NOT supported.

wait until CLOCK’event and CLOCK= ’0’ and ENABLE = ’1’ ;

Clock and Clock Enable (Suppor ted) VHDL Coding Example
"8 Bit Counter Description Using a Process with a Sensitivity List" if ENABLE = ’1’ then ...

Register and Counter Descriptions VHDL Coding Examples
Coding examples can be downloaded in text format from
http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip

8-Bit Register Description Using a Process With a Sensitivity List VHDL
Coding Example
entity EXAMPLEis

port (
DI : in BIT_VECTOR (7 downto 0);
CLK : in BIT;
DO : out BIT_VECTOR (7 downto 0));

end EXAMPLE;

architecture ARCHI of EXAMPLEis
begin

process (CLK)
begin

if CLK’EVENT and CLK = ’1’ then
DO <= DI ;

end if;
end process;

end ARCHI;

8 Bit Register Description Using a Process Without a Sensitivity List
Containing a Wait Statement VHDL Coding Example
entity EXAMPLEis

port (
DI : in BIT_VECTOR (7 downto 0);
CLK : in BIT;
DO : out BIT_VECTOR (7 downto 0));

end EXAMPLE;

architecture ARCHI of EXAMPLEis
begin

process begin
wait until CLK’EVENT and CLK = ’1’;
DO <= DI;

end process;
end ARCHI;

Frontmatter
446 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=446

Chapter 14: XST VHDL Langua ge Suppor t

8-Bit Register With Clock Signal and Async hronous Reset Signal VHDL
Coding Example
entity EXAMPLEis

port (
DI : in BIT_VECTOR (7 downto 0);
CLK : in BIT;
RST : in BIT;
DO : out BIT_VECTOR (7 downto 0));

end EXAMPLE;

architecture ARCHI of EXAMPLEis
begin

process (CLK, RST)
begin

if RST = ’1’ then
DO <= "00000000";

elsif CLK’EVENT and CLK = ’1’ then
DO <= DI ;

end if;
end process;

end ARCHI;

8-Bit Counter Description Using a Process With a Sensitivity List VHDL
Coding Example
library ASYL;
use ASYL.PKG_ARITH.all;

entity EXAMPLEis
port (

CLK : in BIT;
RST : in BIT;
DO : out BIT_VECTOR (7 downto 0));

end EXAMPLE;

architecture ARCHI of EXAMPLEis
begin

process (CLK, RST)
variable COUNT: BIT_VECTOR (7 downto 0);

begin
if RST = ’1’ then

COUNT:= "00000000";
elsif CLK’EVENT and CLK = ’1’ then

COUNT:= COUNT+ "00000001";
end if;
DO <= COUNT;

end process;
end ARCHI;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 447

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=447

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Multiple Wait Statements Descriptions
Sequential circuits can be described in VHDL with multiplewait statements in a process.
Follow these rules when using multiple wait statements:

• The process contains only one loop statement.

• The first statement in the loop is a wait statement.

• After each wait statement, a next or exit statement is defined.

• The condition in the wait statements is the same for each wait statement.

• This condition use only one signal — the clock signal.

• This condition has the following form:

"wait [on clock_signal] until [(clock_signal’EVENT | not clock_signal’STABLE) and]
clock_signal = {’0’ | ’1’};"

Frontmatter
448 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=448

Chapter 14: XST VHDL Langua ge Suppor t

Coding Example
The following VHDL coding example uses multiple wait statements. This example
describes a sequential circuit performing four different operations in sequence.
The design cycle is delimited by two successive rising edges of the clock signal. A
synchronous reset is defined providing a way to restart the sequence of operations at
the beginning. The sequence of operations consists of assigning each of the following
four inputs to the output RESULT:

• DATA1

• DATA2

• DATA3

• DATA4

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity EXAMPLEis
port (

DATA1, DATA2, DATA3, DATA4 : in STD_LOGIC_VECTOR(3 downto 0);
RESULT : out STD_LOGIC_VECTOR(3 downto 0);
CLK : in STD_LOGIC;
RST : in STD_LOGIC);

end EXAMPLE;

architecture ARCHof EXAMPLEis
begin

process begin
SEQ_LOOP: loop

wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOPwhen RST = ’1’;
RESULT <= DATA1;

wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOPwhen RST = ’1’;
RESULT <= DATA2;

wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOPwhen RST = ’1’;
RESULT <= DATA3;

wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOPwhen RST = ’1’;
RESULT <= DATA4;

end loop;
end process;

end ARCH;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 449

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=449

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Functions and Procedures
The declaration of a function or a procedure in VHDL provides a mechanism for
handling blocks used multiple times in a design. Functions and procedures can be
declared in the declarative part of an entity, in an architecture or in packages. The
heading part contains:
• Input parameters for functions and input
• Output and inout parameters for procedures.

These parameters can be unconstrained. They are not constrained to a given bound. The
content is similar to the combinatorial process content.

Resolution functions are not supported except the one defined in the IEEE std_logic_1164
package.

Function Declaration and Function Call VHDL Coding Example
The following VHDL coding example shows a function declared within a package. The
ADD function declared here is a single bit adder. This function is called four times with
the proper parameters in the architecture to create a 4-bit adder. The same example using
a procedure is shown in Procedure Declaration and Procedure Call VHDL Coding Example.

package PKG is
function ADD (A,B, CIN : BIT)
return BIT_VECTOR;

end PKG;

package body PKG is
function ADD (A,B, CIN : BIT)
return BIT_VECTOR is

variable S, COUT : BIT;
variable RESULT : BIT_VECTOR (1 downto 0);

begin
S := A xor B xor CIN;
COUT := (A and B) or (A and CIN) or (B and CIN);
RESULT := COUT& S;
return RESULT;

end ADD;
end PKG;

use work.PKG.all;

entity EXAMPLEis
port (

A,B : in BIT_VECTOR (3 downto 0);
CIN : in BIT;
S : out BIT_VECTOR (3 downto 0);
COUT : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLEis
signal S0, S1, S2, S3 : BIT_VECTOR (1 downto 0);
begin
S0 <= ADD (A(0), B(0), CIN);
S1 <= ADD (A(1), B(1), S0(1));
S2 <= ADD (A(2), B(2), S1(1));
S3 <= ADD (A(3), B(3), S2(1));
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT<= S3(1);

end ARCHI;

Frontmatter
450 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=450

Chapter 14: XST VHDL Langua ge Suppor t

Procedure Declaration and Procedure Call VHDL Coding Example
package PKG is
procedure ADD (
A,B, CIN : in BIT;
C : out BIT_VECTOR (1 downto 0));

end PKG;

package body PKG is
procedure ADD (

A,B, CIN : in BIT;
C : out BIT_VECTOR (1 downto 0)
) is
variable S, COUT : BIT;

begin
S := A xor B xor CIN;
COUT := (A and B) or (A and CIN) or (B and CIN);
C := COUT& S;

end ADD;
end PKG;

use work.PKG.all;

entity EXAMPLEis
port (

A,B : in BIT_VECTOR (3 downto 0);
CIN : in BIT;
S : out BIT_VECTOR (3 downto 0);
COUT : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLEis
begin
process (A,B,CIN)

variable S0, S1, S2, S3 : BIT_VECTOR (1 downto 0);
begin

ADD (A(0), B(0), CIN, S0);
ADD (A(1), B(1), S0(1), S1);
ADD (A(2), B(2), S1(1), S2);
ADD (A(3), B(3), S2(1), S3);
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT<= S3(1);

end process;
end ARCHI;

Recur sive Function VHDL Coding Example
XST supports recursive functions. The following coding example represents n! function:

function my_func(x : integer) return integer is
begin

if x = 1 then
return x;

else
return (x*my_func(x-1));

end if;
end function my_func;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 451

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=451

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Asser t Statements
XST supports VHDL Assert statements. Assert statements enable you to detect
undesirable conditions in VHDL designs, such as bad values for:

• conditions:

– generics

– constants

– generate

• parameters in called functions

For any failed condition in an Assert statement, XST (depending on the severity level)
either:

• Issues a warning message, or

• Rejects the design and issues an error message.

XST supports the Assert statement only with static condition.

Coding Example
The following coding example contains a block SINGLE_SRL which describes a shift
register. The size of the shift register depends on the SRL_WIDTH generic value. The
Assert statement ensures that the implementation of a single shift register does not
exceed the size of a single Shift Register LUT (SRL).

Frontmatter
452 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=452

Chapter 14: XST VHDL Langua ge Suppor t

Since the size of the SRL is 16 bit, and XST implements the last stage of the shift register
using a flip-flop in a slice, then the maximum size of the shift register cannot exceed 17
bits. The SINGLE_SRL block is instantiated twice in the entity named TOP:

• first with SRL_WIDTH equal to 13

• second with SRL_WIDTH equal to 18
library ieee;
use ieee.std_logic_1164.all;

entity SINGLE_SRL is
generic (SRL_WIDTH : integer := 16);
port (

clk : in std_logic;
inp : in std_logic;
outp : out std_logic);

end SINGLE_SRL;

architecture beh of SINGLE_SRL is
signal shift_reg : std_logic_vector (SRL_WIDTH-1 downto 0);

begin

assert SRL_WIDTH <= 17
report "The size of Shift Register exceeds the size of a single SRL"
severity FAILURE;

process (clk)
begin

if (clk’event and clk = ’1’) then
shift_reg <= shift_reg (SRL_WIDTH-1 downto 1) & inp;

end if;
end process;

outp <= shift_reg(SRL_WIDTH-1);
end beh;

library ieee;
use ieee.std_logic_1164.all;

entity TOP is
port (

clk : in std_logic;
inp1, inp2 : in std_logic;
outp1, outp2 : out std_logic);

end TOP;

architecture beh of TOP is
component SINGLE_SRL is
generic (SRL_WIDTH : integer := 16);
port(

clk : in std_logic;
inp : in std_logic;
outp : out std_logic);

end component;
begin

inst1: SINGLE_SRL generic map (SRL_WIDTH => 13)
port map(

clk => clk,
inp => inp1,
outp => outp1);

inst2: SINGLE_SRL generic map (SRL_WIDTH => 18)
port map(

clk => clk,
inp => inp2,
outp => outp2);

end beh;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 453

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=453

Chapter 14: XST VHDL Langua ge Suppor t

Error Message
If you run the coding example above, XST issues the following error message:

...
==
* HDL Analysis *
==
Analyzing Entity <top> (Architecture <beh>).
Entity <top> analyzed. Unit <top> generated.

Analyzing generic Entity <single_srl> (Architecture <beh>).
SRL_WIDTH = 13

Entity <single_srl> analyzed. Unit <single_srl> generated.

Analyzing generic Entity <single_srl> (Architecture <beh>).
SRL_WIDTH = 18

ERROR:Xst - assert_1.vhd line 15: FAILURE:
The size of Shift Register exceeds the size of a single SRL
...

Frontmatter
454 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=454

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Models Defined Using Packages
This section discusses VHDL Models Defined Using Packages, and includes:

• About VHDL Models Defined Using Packages

• Using Standard Packages to Define VHDL Models

• Using IEEE Packages to Define VHDL Models

• Using Synopsys Packages to Define VHDL Models

About VHDL Models Defined Using Packages
VHDL models may be defined using packages. Packages contain:

• Type and subtype declarations

• Constant definitions

• Function and procedure definitions

• Component declarations

Using packages to define VHDL models provides the ability to change parameters and
constants of the design, such as constant values and function definitions.

Packages may contain two declarative parts:

• Body declaration

• Package declaration

The body declaration includes the description of function bodies declared in the package
declaration.

library lib_pack ;
-- lib_pack is the name of the library specified
-- where the package has been compiled (work by default)
use lib_pack . pack_name .all;
-- pack_name is the name of the defined package.

XST also supports predefined packages. These packages are pre-compiled and can be
included in VHDL designs. These packages are intended for use during synthesis, but
may also be used for simulation.

Using Standar d Packages to Define VHDL Models
The Standard package:

• Is included by default

• Contains basic types:

– bit

– bit_vector

– integer

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 455

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=455

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Models Defined Using IEEE Packages
XST supports the following IEEE packages:

• std_logic_1164

Supports the following types:

– std_logic

– std_ulogic

– std_logic_vector

– std_ulogic_vector

XST also supports conversion functions based on these types.

• numeric_bit

Supports the following types based on type bit:

– Unsigned vectors

– Signed vectors

XST also supports:

♦ All overloaded arithmetic operators on these types

♦ Conversion and extended functions for these types

• numeric_std

Supports the following types based on type std_logic:

– Unsigned vectors

– Signed vectors

This package is equivalent to std_logic_arith.

• math_real

Supports the following:

– Real number constants as shown in VHDL Real Number Constants

– Real number functions as shown in VHDL Real Number Constants

– The procedure uniform, which generates successive values between 0.0 and 1.0

VHDL Real Number Constants
Constant Value Constant Value

math_e e math_log_of_2 ln2

math_1_over_e 1/e math_log_of_10 ln10

math_pi math_log2_of_e log2e

math_2_pi math_log10_of_e log10e

math_1_over_pi math_sqrt_2

math_pi_over_2 math_1_oversqrt_2

math_pi_over_3 math_sqrt_pi

math_pi_over_4 math_deg_to_rad

math_3_pi_over_2 math_rad_to_deg

Frontmatter
456 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=456

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Real Number Functions
ceil(x) realmax(x,y) exp(x) cos(x) cosh(x)

floor(x) realmin(x,y) log(x) tan(x) tanh(x)

round(x) sqrt(x) log2(x) arcsin(x) arcsinh(x)

trunc(x) cbrt(x) log10(x) arctan(x) arccosh(x)

sign(x) "**"(n,y) log(x,y) arctan(y,x) arctanh(x)

"mod"(x,y) "**"(x,y) sin(x) sinh(x)

Functions and procedures in the math_real packages, as well as the real type, are for
calculations only. They are not supported for synthesis in XST.

Coding Example
library ieee;
use IEEE.std_logic_signed.all;
signal a, b, c : std_logic_vector (5 downto 0);
c <= a + b;
-- this operator "+" is defined in package std_logic_signed.
-- Operands are converted to signed vectors, and function "+"
-- defined in package std_logic_arith is called with signed
-- operands.

Using Synopsys Packages to Define VHDL Models
The following Synopsys packages are supported in the IEEE library:

• std_logic_arith

Supports types unsigned, signed vectors, and all overloaded arithmetic operators on
these types. It also defines conversion and extended functions for these types.

• std_logic_unsigned

Defines arithmetic operators on std_ulogic_vector and considers them as unsigned
operators.

• std_logic_signed

Defines arithmetic operators on std_logic_vector and considers them as signed
operators.

• std_logic_misc

Defines supplemental types, subtypes, constants, and functions for the
std_logic_1164 package, such as:

– and_reduce

– or_reduce

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 457

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=457

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Constructs Suppor ted in XST
XST supports the following VHDL Constructs:
• Design Entities and Configurations
• Expressions
• Statements

VHDL Design Entities and Configurations
Note XST does not allow underscores as the first character of signal names (for
example, _DATA_1).

XST supports VHDL design entities and configurations except as shown in the following
sections:
• VHDL Entity Headers
• VHDL Packages
• VHDL Physical Types
• VHDL Modes
• VHDL Declarations
• VHDL Objects
• VHDL Specifications

VHDL Entity Headers
• Generics

Supported
• Ports

Supported
• Entity Statement Part

Partial support. Allowed statements include:
– Attribute declarations
– Attribute specifications
– Constant declarations

VHDL Packages
STANDARD
Type TIME is not supported

VHDL Physical Types
• TIME

Ignored
• REAL

Supported, but only in functions for constant calculations

VHDL Modes
Linkage
Unsupported

Frontmatter
458 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=458

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Declarations
Type
Supported for:
– enumerated types
– types with positive range having constant bounds
– bit vector types
– multi-dimensional arrays

VHDL Objects
• Constant Declaration

Supported except for deferred constant
• Signal Declaration

Supported except for register and bus type signals
• Attribute Declaration

Supported for some attributes, otherwise skipped
For more information, see:
XST Design Constraints

VHDL Specifications
• Attribute

Supported for some predefined attributes only:
– HIGH
– LOW
– LEFT
– RIGHT
– RANGE
– REVERSE_RANGE
– LENGTH
– POS
– ASCENDING
– EVENT
– LAST_VALUE

• Configuration
Supported only with the all clause for instances list. If no clause is added, XST looks
for the entity or architecture compiled in the default library

• Disconnection
Unsupported

VHDL Expressions
XST supports the following expressions:
• VHDL Operators
• VHDL Operands

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 459

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=459

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Operator s
Operator Suppor ted/Unsuppor ted
Logical Operators:

and, or, nand, nor, xor, xnor, not

Supported

Relational Operators:

=, /=, <, <=, >, >=

Supported

& (concatenation) Supported

Adding Operators: +, - Supported

* Supported

/,rem Supported if the right operand is a constant power of 2

mod Supported if the right operand is a constant power of 2

Shift Operators:

sll, srl, sla, sra, rol, ror

Supported

abs Supported

** Only supported if the left operand is 2

Sign: +, - Supported

VHDL Operands
Operand Suppor ted/Unsuppor ted
Abstract Literals Only integer literals are supported

Physical Literals Ignored

Enumeration Literals Supported

String Literals Supported

Bit String Literals Supported

Record Aggregates Supported

Array Aggregates Supported

Function Call Supported

Qualified Expressions Supported for accepted predefined attributes

Types Conversions Supported

Allocators Unsupported

Static Expressions Supported

VHDL Statements
XST supports all VHDL statements except as shown in the following sections:

• VHDL Wait Statements

• VHDL Loop Statements

• VHDL Concurrent Statements

Frontmatter
460 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=460

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Wait Statements
Wait Statement Suppor ted/Unsuppor ted
Wait on sensitivity_list until Boolean_expression.

For more information, see:

VHDL Sequential Circuits

Supported with one signal in the sensitivity list and in the
Boolean expression. In case of multiple Wait statements,
the sensitivity list and the Boolean expression must be the
same for each Wait statement.

Note XST does not support Wait statements for latch
descriptions.

Wait for time_expression ...

For more information, see:

VHDL Sequential Circuits

Unsupported

Assertion Statement Supported (only for static conditions)

Signal Assignment

Statement

Supported (delay is ignored)

VHDL Loop Statements
Loop Statement Suppor ted/Unsuppor ted
for... loop... end loop Supported for constant bounds only. Disable statements

are not supported.

loop ... end loop Only supported in the particular case of multiple Wait
statements

VHDL Concurrent Statements
Concurrent Statement Suppor ted/Unsuppor ted
Concurrent Signal

Assignment Statement

Supported (no after clause, no transport or guarded options,
no waveforms) UNAFFECTED is supported.

For ... Generate Statement supported for constant bounds only

If ... Generate Statement supported for static condition only

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 461

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=461

Chapter 14: XST VHDL Langua ge Suppor t

VHDL Reserved Words
abs access after alias

all and architecture array

assert attribute begin block

body buffer bus case

component configuration constant disconnect

downto else elsif end

entity exit file for

function generate generic group

guarded if impure in

inertial inout is label

library linkage literal loop
map mod nand new

next nor not null

of on open or

others out package port

postponed procedure process pure

range record register reject
rem report return rol
ror select severity signal

shared sla sll sra

srl subtype then to

transport type unaffected units

until use variable wait

when while with xnor

xor

Frontmatter
462 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=462

Chapter 15

XST Verilog Language Support
This chapter discusses XST Verilog Language Support, and includes:
• About XST Verilog Language Support
• Behavioral Verilog
• Variable Part Selects
• Structural Verilog Features
• Verilog Parameters
• Verilog Parameter and Attribute Conflicts
• Verilog Limitations in XST
• Verilog Attributes and Meta Comments
• Verilog Constructs Supported in XST
• Verilog System Tasks and Functions Supported in XST
• Verilog Primitives
• Verilog Reserved Keywords
• Verilog-2001 Support in XST

About XST Verilog Langua ge Suppor t
Complex circuits are commonly designed using a top down methodology. Various
specification levels are required at each stage of the design process. For example, at the
architectural level, a specification may correspond to a block diagram or an Algorithmic
State Machine (ASM) chart. A block or ASM stage corresponds to a register transfer
block where the connections are N-bit wires, such as:
• Register
• Adder
• Counter
• Multiplexer
• Glue logic
• Finite State Machine (FSM)

A Hardware Description Language (HDL) such as Verilog allows the expression of
notations such as ASM charts and circuit diagrams in a computer language.

Verilog provides both behavioral and structural language structures. These structures
allow expressing design objects at high and low levels of abstraction. Designing
hardware with a language such as Verilog allows using software concepts such as
parallel processing and object-oriented programming. Verilog has a syntax similar to C
and Pascal. XST supports it as IEEE 1364.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 463

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=463

Chapter 15: XST Verilog Langua ge Suppor t

The Verilog support in XST provides an efficient way to describe both the global circuit
and each block according to the most efficient style. Synthesis is then performed with
the best synthesis flow for each block. Synthesis in this context is the compilation of
high-level behavioral and structural Verilog Hardware Description Language (HDL)
statements into a flattened gate-level netlist, which can then be used to custom program
a programmable logic device such as a Virtex® device. Different synthesis methods are
used for arithmetic blocks, glue logic, and Finite State Machine (FSM) components.

The XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices assumes that
you are familiar with basic Verilog concepts.

For more information, see:

• Verilog design constraints and options
XST Design Constraints

• Verilog attribute syntax
Verilog-2001 Attributes

• Setting Verilog options in the Process window of ISE® Design Suite
XST General Constraints

• General Verilog information
IEEE Verilog HDL Reference Manual

Behavioral Verilog
For information about Behavioral Verilog, see:

XST Behavioral Verilog Language Support

Variab le Part Selects
Verilog 2001 adds the capability of using variables to select a group of bits from a vector.
A variable part select is defined by the starting point of its range and the width of the
vector, instead of being bounded by two explicit values. The starting point of the part
select can vary, but the width of the part select remains constant.

Variab le Part Select Symbols
Symbol Meaning
+ (plus) The part select increases from the starting point

- (minus) The part select decreases from the starting point

Coding Example
reg [3:0] data;

reg [3:0] select; // a value from 0 to 7
wire [7:0] byte = data[select +: 8];

Structural Verilog Features
This section discusses Structural Verilog Features, and includes:
• About Structural Verilog Features
• Instantiating Pre-Defined Primitives

Frontmatter
464 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=464

Chapter 15: XST Verilog Langua ge Suppor t

About Structural Verilog Features
Structural Verilog descriptions assemble several blocks of code and allow the
introduction of hierarchy in a design. The basic concepts of hardware structure are:
• Component

The building or basic block
• Port

A component I/O connector
• Signal

Corresponds to a wire between components

In Verilog, a component is represented by a design module. The module declaration
provides the external view of the component. It describes what can be seen from the
outside, including the component ports. The module body provides an internal view. It
describes the behavior or the structure of the component.

The connections between components are specified within component instantiation
statements. These statements specify an instance of a component occurring within
another component or the circuit. Each component instantiation statement is labeled
with an identifier.

Besides naming a component declared in a local component declaration, a component
instantiation statement contains an association list (the parenthesized list) that specifies
which actual signals or ports are associated with which local ports of the component
declaration.

Verilog provides a large set of built-in logic gates which can be instantiated to build
larger logic circuits. The set of logical functions described by the built-in gates includes:
• AND
• OR
• XOR
• NAND
• NOR
• NOT

Building a Basic XOR Function Structural Verilog Coding Example
Following is an example of building a basic XOR function of two single bit inputs
a and b:

module build_xor (a, b, c);
input a, b;
output c;
wire c, a_not, b_not;

not a_inv (a_not, a);
not b_inv (b_not, b);
and a1 (x, a_not, b);
and a2 (y, b_not, a);
or out (c, x, y);

endmodule

Each instance of the built-in modules has a unique instantiation name such as:
• a_inv
• b_inv
• out

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 465

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=465

Chapter 15: XST Verilog Langua ge Suppor t

Structural Description of a Half Adder Structural Verilog Coding Example
The following coding example shows the structural description of a half adder
composed of four, 2 input nand modules:

module halfadd (X, Y, C, S);
input X, Y;
output C, S;
wire S1, S2, S3;
nand NANDA(S3, X, Y);
nand NANDB(S1, X, S3);
nand NANDC(S2, S3, Y);
nand NANDD(S, S1, S2);
assign C = S3;

endmodule

Synthesiz ed Top Level Netlist Diagram

Instantiating Pre-Defined Primitives
The structural features of Verilog also allow you to design circuits by instantiating
pre-defined primitives such as:

• gates

• registers

• Xilinx® specific primitives such as:

– CLKDLL

– BUFG

These primitives are other than those included in Verilog. These pre-defined primitives
are supplied with the XST Verilog libraries (unisim_comp.v).

Frontmatter
466 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=466

Chapter 15: XST Verilog Langua ge Suppor t

Structural Instantiation of REGISTER and BUFG Structural Verilog Coding
Example
module foo (sysclk, in, reset, out);
input sysclk, in, reset;
output out;
reg out;
wire sysclk_out;
FDC register (out, sysclk_out, reset, in);
//position based referencing
BUFG clk (.O(sysclk_out),.I(sysclk));
//name based referencing
...
endmodule

The unisim_comp.v library file supplied with XST, includes the definitions for:

• FDC

• BUFG

(* BOX_TYPE="PRIMITIVE" *) // Verilog-2001
module FDC (Q, C, CLR, D);
parameter INIT = 1’b0;
output Q;
input C;
input CLR;
input D;
endmodule

(* BOX_TYPE="PRIMITIVE" *) // Verilog-2001
module BUFG (O, I);
output O;
input I;

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 467

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=467

Chapter 15: XST Verilog Langua ge Suppor t

Verilog Parameter s
Verilog modules allow you to define constants known as parameters. Parameters can be
passed to module instances to define circuits of arbitrary widths. Parameters form the
basis of creating and using parameterized blocks in a design to achieve hierarchy.

Coding Example
The following Verilog coding example shows the use of parameters. Null string
parameters are not supported.

module lpm_reg (out, in, en, reset, clk);
parameter SIZE = 1;
input in, en, reset, clk;
output out;
wire [SIZE-1 : 0] in;
reg [SIZE-1 : 0] out;

always @(posedge clk or negedge reset)
begin

if (!reset)
out <= 1’b0;

else
if (en)

out <= in;
else

out <= out; //redundant assignment
end

endmodule
module top (); //portlist left blank intentionally

...
wire [7:0] sys_in, sys_out;
wire sys_en, sys_reset, sysclk;
lpm_reg #8 buf_373 (sys_out, sys_in, sys_en, sys_reset, sysclk);
...

endmodule

Instantiation of the module lpm_reg with a instantiation width of 8 causes the instance
buf_373 to be 8 bits wide.

The Generics (-generics) command line option allows you to redefine parameters
(Verilog) values defined in the top-level design block. This allows you to easily modify
the design configuration without any Hardware Description Language (HDL) source
modifications, such as for IP core generation and testing flows.

Frontmatter
468 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=468

Chapter 15: XST Verilog Langua ge Suppor t

Verilog Parameter and Attrib ute Conflicts
This section discusses Verilog Parameter and Attribute Conflicts, and includes:

• Resolving Verilog Parameter and Attribute Conflicts

• Verilog Parameter and Attribute Conflicts Precedence

Resolving Verilog Parameter and Attrib ute Conflicts
Since parameters and attributes can be applied to both instances and modules in Verilog
code, and attributes can also be specified in a constraints file, conflicts will occasionally
arise.

XST uses the following rules of precedence to resolve these conflicts:

1. Specifications on an instance (lower level) takes precedence over specifications on a
module (higher level).

2. If a parameter and an attribute are specified on either the same instance or the same
module, the parameter takes precedence. XST issues a warning message.

3. An attribute specified in the XST Constraint File (XCF) takes precedence over
attributes or parameters specified in the Verilog code.

When an attribute specified on an instance overrides a parameter specified on a module
in XST, the simulation tool may use the parameter anyway. If that happens, the
simulation results may not match the synthesis results.

Verilog Parameter and Attrib ute Conflicts Precedence
Parameter on an Instance Parameter on a Module

Attribute on an Instance Apply Parameter (XST issues
warning)

Apply Attribute (possible
simulation mismatch)

Attribute on a Module Apply Parameter Apply Parameter (XST issues
warning)

Attribute in XCF Apply Attribute (XST issues
warning)

Apply Attribute

Security attributes on the module definition always have higher precedence than any
other attribute or parameter.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 469

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=469

Chapter 15: XST Verilog Langua ge Suppor t

Verilog Limitations in XST
This section describes Verilog Limitations in XST, and includes:
• Verilog Case Sensitivity
• Verilog Blocking and Nonblocking Assignments
• Verilog Integer Handling

Verilog Case Sensitivity
Since Verilog is case sensitive, module and instance names can be made unique by
changing capitalization. However, for compatibility with file names, mixed language
support, and other tools, Xilinx® recommends that you do not rely on capitalization
only to make instance names unique.

XST does not allow module names to differ by capitalization only. It renames instances
and signal names to ensure that lack of case sensitivity support in other tools in your
flow does not adversely impact your design.

XST Suppor t for Verilog Case Sensitivity
XST supports Verilog case sensitivity as follows:
• Designs can use case equivalent names for I/O ports, nets, regs and memories.
• Equivalent names are renamed using a postfix (rnm<Index>).
• A rename construct is generated in the NGC file.
• Designs can use Verilog identifiers that differ in case only. XST renames them using

a postfix as with equivalent names.

For instance:

module upperlower4 (input1, INPUT1, output1, output2);
input input1;
input INPUT1;

For this example, INPUT1 is renamed to INPUT1_rnm0.

Verilog Restrictions Within XST
XST rejects code using equivalent names (named blocks, tasks, and functions) such as
the following:

...
always @(clk)
begin: fir_main5

reg [4:0] fir_main5_w1;
reg [4:0] fir_main5_W1;

XST issues the following error message:

ERROR:Xst:863 - "design.v", line 6: Name conflict
(<fir_main5/fir_main5_w1> and <fir_main5/fir_main5_W1>)

Code using case equivalent module names such as the following is rejected:

module UPPERLOWER10(...);
...
module upperlower10 (...);
...

XST issues the following error message:

Frontmatter
470 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=470

Chapter 15: XST Verilog Langua ge Suppor t

ERROR:Xst:909 - Module name conflict (UPPERLOWER10and
upperlower10)

Verilog Bloc king and Nonb locking Assignments
This section gives two rejected coding examples for blocking and nonblocking
assignments.

Rejected Coding Example One
XST rejects Verilog designs if a given signal is assigned through both blocking and
nonblocking assignments as shown in the following coding example.

always @(in1)
begin

if (in2)
out1 = in1;

else
out1 <= in2;

end

Rejected Coding Example Two
The following coding example is rejected even if there is no real mixing of blocking
and nonblocking assignments.

if (in2)
begin

out1[0] = 1’b0;
out1[1] <= in1;

end
else

begin
out1[0] = in2;
out1[1] <= 1’b1;

end

If a variable is assigned in both a blocking and nonblocking assignment, XST issues the
following error message:

ERROR:Xst:880 - "design.v", line n:
Cannot mix blocking and non-blocking assignments on signal <out1>.

There are also restrictions when mixing blocking and nonblocking assignments on
bits and slices.

Errors are checked at the signal level, not at the bit level.

If there is more than one blocking or nonblocking error, only the first is reported.

In some cases, the line number for the error might be incorrect (as there might be
multiple lines where the signal has been assigned).

Verilog Integ er Handling
XST handles Verilog integers differently from other synthesis tools in several instances.
They must be coded in a particular way. Unsized integers in Verilog case item
expressions and concatenations may cause unpredictable results

Unsiz ed Integ ers in Verilog Case Item Expressions
Unsized integers in Verilog case item expressions may cause unpredictable results.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 471

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=471

Chapter 15: XST Verilog Langua ge Suppor t

In the following coding example, the case item expression 4 is an unsized integer that
causes unpredictable results. To avoid problems, size the 4 to 3 bits as follows:

reg [2:0] condition1;

always @(condition1)
begin

case(condition1)
4 : data_out = 2; // < will generate bad logic
3’d4 : data_out = 2; // < will work

endcase
end

Unsiz ed Integ ers in Verilog Concatenations
Unsized integers in Verilog concatenations may cause unpredictable results.

If you use an expression that results in an unsized integer:

1. Assign the expression to a temporary signal.

2. Use the temporary signal in the concatenation as follows:

reg [31:0] temp;
assign temp = 4’b1111 % 2;
assign dout = {12/3,temp,din};

Frontmatter
472 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=472

Chapter 15: XST Verilog Langua ge Suppor t

Verilog Attrib utes and Meta Comments
XST supports both of the following in Verilog:

• Verilog-2001 style attributes

Xilinx® recommends Verilog-2001 attributes since they are more generally accepted.

• Verilog meta comments

Meta comments are comments that are understood by the Verilog parser.

Verilog-2001 Attrib utes
XST supports Verilog-2001 attribute statements. Attributes are comments that pass
specific information to software tools such as synthesis tools. Verilog-2001 attributes
can be specified anywhere for operators or signals within module declarations and
instantiations. Other attribute declarations may be supported by the compiler, but
are ignored by XST.

Verilog Meta Comments
Use Verilog meta comments to:

• Set constraints on individual objects such as:

– module

– instance

– net

• Set directives on synthesis:

– parallel_case and full_case directives

– translate_on and translate_off directives

– all tool specific directives

Example:

syn_sharing

For more information, see:

XST Design Constraints

XST supports both C-style and Verilog style meta comments.

Writing Verilog Meta Comments
Style Syntax Line Rules
C-style /* ... */ Comments can be multiple

line

Verilog style // ... Comments end at the end of
the line

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 473

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=473

Chapter 15: XST Verilog Langua ge Suppor t

Suppor ted Constraints
XST supports the following constraints:

• Translate Off (TRANSLATE_OFF) and Translate On (TRANSLATE_ON)

// synthesis translate_on
// synthesis translate_off

• Parallel Case (PARALLEL_CASE)

// synthesis parallel_case full_case
// synthesis parallel_case
// synthesis full_case

• Constraints on individual objects

Syntax
// synthesis attribute [of] ObjectName [is] AttributeValue

Coding Example
// synthesis attribute RLOC of u123 is R11C1.S0
// synthesis attribute HUSET u1 MY_SET
// synthesis attribute fsm_extract of State2 is "yes"
// synthesis attribute fsm_encoding of State2 is "gray"

Frontmatter
474 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=474

Chapter 15: XST Verilog Langua ge Suppor t

Verilog Constructs Suppor ted in XST
This section discusses Verilog Constructs Supported in XST, including:
• Constants
• Data Types
• Continuous Assignments
• Procedural Assignments
• Design Hierarchies
• Compiler Directives

Note XST does not allow underscores as the first character of signal names (for
example, _DATA_1)

Verilog Constants Suppor ted in XST
Constant Suppor ted/Unsuppor ted
Integer Constants Supported

Real Constants Supported

Strings Constants Unsupported

Verilog Data Types Suppor ted in XST
XST supports all Verilog data types except as shown in the following table.

Net Types Drive Strengths Register s Named Events
tri0, tri1, and trireg
are unsupported.

All drive strengths
are ignored.

Real and realtime
registers are
unsupported.

All named events are
unsupported.

Verilog Contin uous Assignments Suppor ted in XST
Contin uous Assignment Suppor ted/Unsuppor ted
Drive Strength Ignored

Delay Ignored

Verilog Procedural Assignments Suppor ted in XST
XST supports Verilog Procedural Assignments except as noted below:
• assign

Supported with limitations
For more information, see:
Behavioral Verilog Assign and Deassign Statements

• deassign
Supported with limitations.
For more information, see:
Behavioral Verilog Assign and Deassign Statements

• force
Unsupported

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 475

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=475

Chapter 15: XST Verilog Langua ge Suppor t

• release

Unsupported

• forever statements

Unsupported

• repeat statements

Supported, but repeat value must be constant

• for statements

Supported, but bounds must be static

• delay (#)

Ignored

• event (@)

Unsupported

• wait

Unsupported

• Named Events

Unsupported

• Parallel Blocks

Unsupported

• Specify Blocks

Ignored

• Disable

Supported except in For and Repeat Loop statements.

Verilog Design Hierar chies Suppor ted in XST
Design Hierar chy Suppor ted/Unsuppor ted
module definition Supported

macromodule definition Unsupported

hierarchical names Unsupported

defparam Supported

array of instances Supported

Frontmatter
476 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=476

Chapter 15: XST Verilog Langua ge Suppor t

Verilog Compiler Directives Suppor t in XST
Compiler Directive Suppor ted/Unsuppor ted
‘celldefine ‘endcelldefine Ignored

‘default_nettype Supported

‘define Supported

‘ifdef ‘else ‘endif Supported

‘undef, ‘ifndef, ‘elsif, Supported

‘include Supported

‘resetall Ignored

‘timescale Ignored

‘unconnected_drive

‘nounconnected_drive

Ignored

‘uselib Unsupported

‘file, ‘line Supported

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 477

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=477

Chapter 15: XST Verilog Langua ge Suppor t

Verilog System Tasks and Functions Suppor ted in XST
This section discusses Verilog System Tasks and Functions Supported in XST, and
includes:

• Supported System Tasks and Functions

• Unsupported System Tasks

• Signed and Unsigned System Tasks

• Readmemb and Readmemh System Tasks

• Other System Tasks

• Verilog Display Syntax Example

Suppor ted System Tasks and Functions
System Task or Function Suppor ted/Unsuppor ted Comment
$display Supported Escape sequences are limited to %d,

%b, %h, %o, %c and %s

$fclose Supported

$fdisplay Supported

$fgets Supported

$finish Supported $finish is supported for statically never
active conditional branches only

$fopen Supported

$fscanf Supported Escape sequences are limited to %b and
%d

$fwrite Supported

$monitor Ignored

$random Ignored

$readmemb Supported

$readmemh Supported

$signed Supported

$stop Ignored

$strobe Ignored

$time Ignored

$unsigned Supported

$write Supported Escape sequences are limited to %d,
%b, %h, %o, %c and %s

all others Ignored

Unsuppor ted System Tasks
The XST Verilog compiler ignores unsupported system tasks.

Frontmatter
478 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=478

Chapter 15: XST Verilog Langua ge Suppor t

Signed and Unsigned System Tasks
The $signed and $unsigned system tasks can be called on any expression using the
following syntax:

• $signed(expr) or

• $unsigned(expr)

The return value from these calls is the same size as the input value. Its sign is forced
regardless of any previous sign.

Readmemb and Readmemh System Tasks
The $readmemb and $readmemh system tasks can be used to initialize block memories.

For more information, see:

Initializing RAM From an External File Coding Examples

Use $readmemb for binary and $readmemh for hexadecimal representation. To avoid
the possible difference between XST and simulator behavior, Xilinx® recommends that
you use index parameters in these system tasks. See the following coding example.

$readmemb("rams_20c.data",ram, 0, 7);

Other System Tasks
The remainder of the system tasks can be used to display information to your computer
screen and log file during processing, or to open and use a file during synthesis.
You must call these tasks from within initial blocks. XST supports a subset of escape
sequences, specifically:

• %h

• %d

• %o

• %b

• %c

• %s

Verilog Displa y Syntax Example
The following example shows the syntax for $display that reports the value of a binary
constant in decimal format:

parameter c = 8’b00101010;
initial

begin
$display ("The value of c is %d", c);

end

The following information is written to the log file during the HDL Analysis phase:

Analyzing top module <example>.
c = 8’b00101010
"foo.v" line 9: $display : The value of c is 42

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 479

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=479

Chapter 15: XST Verilog Langua ge Suppor t

Verilog Primitives
This section discusses Verilog Primitives, and includes:

• Supported Primitives

• Unsupported Primitives

• Syntax

Suppor ted Primitives
XST supports the following Verilog gate-level primitives except as indicated:

• Pulldown and Pullup

Unsupported

• Drive strength and delay

Ignored

• Arrays of primitives

Unsupported

Unsuppor ted Primitives
XST does not support:

• Verilog switch-level primitives, such as:

– cmos, nmos, pmos, rcmos, rnmos, rpmos

– rtran, rtranif0, rtranif1, tran, tranif0, tranif1

• Verilog user-defined primitives

Syntax
gate_type instance_name (output, inputs,...);

Coding Example
and U1 (out, in1, in2); bufif1 U2 (triout, data, trienable);

Frontmatter
480 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=480

Chapter 15: XST Verilog Langua ge Suppor t

Verilog Reserved Keywords
Keywords marked with an asterisk (*) are reserved by Verilog, but are not supported by
XST.

always and assign automatic

begin buf bufif0 bufif1
case casex casez cell*
cmos config* deassign default

defparam design* disable edge

else end endcase endconfig*

endfunction endgenerate endmodule endprimitive

endspecify endtable endtask event

for force forever fork

function generate genvar highz0

highz1 if ifnone incdir*

include* initial inout input

instance* integer join large

liblist* library* localparam* macromodule

medium module nand negedge
nmos nor noshow-cancelled* not

notif0 notif1 or output

parameter pmos posedge primitive

pull0 pull1 pullup pulldown

pulsestyle- _ondetect* pulsestyle- _onevent* rcmos real

realtime reg release repeat

rnmos rpmos rtran rtranif0

rtranif1 scalared show-cancelled* signed

small specify specparam strong0

strong1 supply0 supply1 table

task time tran tranif0

tranif1 tri tri0 tri1

triand trior trireg use*

vectored wait wand weak0

weak1 while wire wor

xnor xor

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 481

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=481

Chapter 15: XST Verilog Langua ge Suppor t

Verilog-2001 Suppor t in XST
XST supports the following Verilog-2001 features:

• Generate statements

• Combined port/data type declarations

• ANSI-style port lists

• Module parameter port lists

• ANSI C style task/function declarations

• Comma separated sensitivity list

• Combinatorial logic sensitivity

• Default nets with continuous assigns

• Disable default net declarations

• Indexed vector part selects

• Multi-dimensional arrays

• Arrays of net and real data types

• Array bit and part selects

• Signed reg, net, and port declarations

• Signed based integer numbers

• Signed arithmetic expressions

• Arithmetic shift operators

• Automatic width extension past 32 bits

• Power operator

• N sized parameters

• Explicit in-line parameter passing

• Fixed local parameters

• Enhanced conditional compilation

• File and line compiler directives

• Variable part selects

• Recursive Tasks and Functions

• Constant Functions

For more information, see:

• Sutherland, Stuart. Verilog 2001: A Guide to the New Features of the VERILOG Hardware
Description Language (2002)

• IEEE Standards Association. 1364-2001: IEEE Standard Verilog Hardware Description
Language (2001)

Frontmatter
482 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=482

Chapter 16

XST Behavioral Verilog Language
Support

This chapter discusses XST Behavioral Verilog Language Support, and includes:

• Behavioral Verilog Variable Declarations

• Behavioral Verilog Initial Values

• Behavioral Verilog Local Reset

• Behavioral Verilog Arrays

• Behavioral Verilog Multi-Dimensional Arrays

• Behavioral Verilog Data Types

• Behavioral Verilog Legal Statements

• Behavioral Verilog Expressions

• Behavioral Verilog Blocks

• Behavioral Verilog Modules

• Behavioral Verilog Module Declarations

• Behavioral Verilog Continuous Assignments

• Behavioral Verilog Procedural Assignments

• Behavioral Verilog Constants

• Behavioral Verilog Macros

• Behavioral Verilog Include Files

• Behavioral Verilog Comments

• Behavioral Verilog Generate Statements

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 483

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=483

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Variab le Declarations
Variables in Verilog may be declared as integers or real. These declarations are intended
for use in test code only. Verilog provides data types such as reg and wire for actual
hardware description.

Variab les in Verilog
Data Type Variab le Given

Value In
Default Width Verilog-2001

reg procedural block one bit (scalar) signed or unsigned

wire continuous
assignment

one bit (scalar) signed or unsigned

Coding Example
To specify an N-bit width (vectors) for a declared reg or wire, the left and right bit
positions are defined in square brackets separated by a colon.

reg [3:0] arb_priority;
wire [31:0] arb_request;
wire signed [8:0] arb_signed;

where

• arb_request[31] is the MSB

• arb_request[0] is the LSB

Frontmatter
484 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=484

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Initial Values
In Verilog-2001, you can initialize registers when you declare them.

The value:

• Is a constant

• Cannot depend on earlier initial values

• Cannot be a function or task call

• Can be a parameter value propagated to the register

• Specifies all bits of a vector

When you assign a register an initial value in a declaration, XST sets this initial value on
the output of the register:

• At global reset, or

• At power up

An initial value assigned in this manner:

• Is carried in the NGC file as an INIT attribute on the register

• Is independent of any local reset

reg arb_onebit = 1’b0;
reg [3:0] arb_priority = 4’b1011;

You can also assign a set/reset (initial) value to a register in the behavioral Verilog code.
Assign a value to a register when the register reset line goes to the appropriate value as
shown in the following coding example.

always @(posedge clk)
begin

if (rst)
arb_onebit <= 1’b0;

end
end

When you set the initial value of a variable in the behavioral code, it is implemented in
the design as a flip-flop whose output can be controlled by a local reset. As such, it is
carried in the NGC file as an FDP or FDC flip-flop.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 485

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=485

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Local Reset
Local reset is independent of global reset. Registers controlled by a local reset may be set
to a different value than ones whose value is only reset at global reset (power up). In
the following coding example, the register, arb_onebit, is set to 0 at global reset, but
a pulse on the local reset (rst) can change its value to 1.

Coding Example
module mult(clk, rst, A_IN, B_OUT);

input clk,rst,A_IN;
output B_OUT;

reg arb_onebit = 1’b0;

always @(posedge clk or posedge rst)
begin

if (rst)
arb_onebit <= 1’b1;

else
arb_onebit <= A_IN;

end
end

B_OUT <= arb_onebit;
endmodule

This sets the set/reset value on the register output at initial power up, but since this is
dependent upon a local reset, the value changes whenever the local set/reset is activated.

Frontmatter
486 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=486

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Arra ys
Verilog allows arrays of reg and wires to be defined as shown in the following coding
examples.

Behavioral Verilog Arra ys Coding Example
The following coding example describes an array of 32 elements each, 4 bits wide which
can be assigned in behavioral Verilog code:

reg [3:0] mem_array [31:0];

Structural Verilog Arra ys Coding Example
The following coding example describes an array of 64 elements each 8 bits wide which
can be assigned only in structural Verilog code:

wire [7:0] mem_array [63:0];

Behavioral Verilog Multi-Dimensional Arra ys
XST supports multi-dimensional array types of up to two dimensions. Multi-dimensional
arrays can be any net or any variable data type. You can code assignments and
arithmetic operations with arrays, but you cannot select more than one element of
an array at one time. You cannot pass multi-dimensional arrays to system tasks or
functions, or to regular tasks or functions.

Coding Example One
The following Verilog coding example describes an array of 256 x 16 wire elements each
8 bits wide, which can be assigned only in structural Verilog code:

wire [7:0] array2 [0:255][0:15];

Coding Example Two
The following Verilog coding example describes an array of 256 x 8 register elements,
each 64 bits wide, which can be assigned in behavioral Verilog code:

reg [63:0] regarray2 [255:0][7:0];

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 487

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=487

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Data Types
This section discusses Behavioral Verilog Data Types, and includes:
• Bit Data Type Values
• Supported Verilog Data Types
• Nets and Registers

Bit Data Type Values
The Verilog representation of the bit data type contains the following values:

• 0

logic zero
• 1

logic one
• x

unknown logic value
• z

high impedance

Suppor ted Verilog Data Types
XST supports the following Verilog data types:
• Net

– wire
– tri
– triand/wand
– trior/wor

• Registers
– reg
– integer

• Supply nets
– supply0
– supply1

• Constants
parameter

• Multi-Dimensional Arrays (Memories)

Nets and Register s
Nets and registers can be either:
• Single bit (scalar)
• Multiple bit (vectors)

Frontmatter
488 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=488

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Coding Example
The following Behavioral Verilog coding example shows sample Verilog data types
found in the declaration section of a Verilog module.

wire net1; // single bit net
reg r1; // single bit register
tri [7:0] bus1; // 8 bit tristate bus
reg [15:0] bus1; // 15 bit register
reg [7:0] mem[0:127]; // 8x128 memory register
parameter state1 = 3’b001; // 3 bit constant
parameter component = "TMS380C16"; // string

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 489

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=489

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Legal Statements
The following statements are legal in Behavioral Verilog.

• Variable and signal assignments

– Variable = expression

– if (condition) statement

– else statement

– case (expression)

expression: statement
...

default: statement
endcase

– for (variable = expression; condition; variable = variable + expression) statement

– while (condition) statement

– forever statement

– functions and tasks

• All variables are declared as integer or reg.

Note A variable cannot be declared as a wire.

Frontmatter
490 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=490

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Expressions
An expression involves constants and variables with arithmetic, logical, relational, and
conditional operators as shown in Operators Supported in Behavioral Verilog.

The logical operators are further divided as bit-wise versus logical, depending on
whether it is applied to an expression involving several bits or a single bit.

Operator s Suppor ted in Behavioral Verilog
Arithmetic Logical Relational Conditional
+ & < ?
- && ==

* | ===

** || <=

/ ^ >=

% ~ >=

~^ !=

^~ !==
<< >
>>
<<<
>>>

Expressions Suppor ted in Behavioral Verilog
Expression Symbol Suppor ted/Unsuppor ted
Concatenation {} Supported

Replication {{}} Supported

Arithmetic

+, -, *,** Supported

/ Supported only if second operand is a
power of 2

Modulus % Supported only if second operand is a
power of 2

Addition + Supported

Subtraction - Supported

Multiplication * Supported

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 491

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=491

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Expression Symbol Suppor ted/Unsuppor ted
Power ** Supported

• Both operands are constants,
with the second operand being
non-negative.

• If the first operand is a 2, then the
second operand may be a variable.

• XST does not support the real
data type. Any combination of
operands that results in a real type
causes an error.

• The values X (unknown) and Z
(high impedance) are not allowed.

Division / Supported

XST generates incorrect logic for the
division operator between signed
and unsigned constants. Example:
-1235/3’b111

Relational >, <, >=, <= Supported

Logical Negation ! Supported

Logical AND && Supported

Logical OR || Supported

Logical Equality == Supported

Logical Inequality != Supported

Case Equality === Supported

Case Inequality !== Supported

Bitwise Negation ~ Supported

Bitwise AND & Supported

Bitwise Inclusive OR | Supported

Bitwise Exclusive OR ^ Supported

Bitwise Equivalence ~^, ^~ Supported

Reduction AND & Supported

Reduction NAND ~& Supported

Reduction OR | Supported

Reduction NOR ~| Supported

Reduction XOR ^ Supported

Reduction XNOR ~^, ^~ Supported

Left Shift << Supported

Right Shift Signed >>> Supported

Left Shift Signed <<< Supported

Right Shift >> Supported

Conditional ?: Supported

Event OR or, ’,’ Supported

Frontmatter
492 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=492

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Results of Evaluating Expressions in Behavioral Verilog
The following table lists the results of evaluating expressions using the more frequently
used operators supported by XST.

The (===) and (!==) operators are special comparison operators useful in simulations to
check if a variable is assigned a value of (x) or (z). They are treated as (==) or (!=) in
synthesis.

a b a==b a===b a!=b a!==b a&b a&&b a|b a||b a^b
0 0 1 1 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 1 1 1

0 x x 0 x 1 0 0 x x x

0 z x 0 x 1 0 0 x x x

1 0 0 0 1 1 0 0 1 1 1

1 1 1 1 0 0 1 1 1 1 0

1 x x 0 x 1 x x 1 1 x

1 z x 0 x 1 x x 1 1 x

x 0 x 0 x 1 0 0 x x x

x 1 x 0 x 1 x x 1 1 x

x x x 1 x 0 x x x x x

x z x 0 x 1 x x x x x

z 0 x 0 x 1 0 0 x x x

z 1 x 0 x 1 x x 1 1 x

z x x 0 x 1 x x x x x

z z x 1 x 0 x x x x x

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 493

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=493

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Bloc ks
Block statements are used to group statements together.

XST supports sequential blocks only. Within these blocks, the statements are executed
in the order listed.

Block statements are designated by begin and end keywords.

XST does not support parallel blocks.

Behavioral Verilog Modules
In Verilog a design component is represented by a module. The connections between
components are specified within module instantiation statements. Such a statement
specifies an instance of a module. Each module instantiation statement has a name
(instance name). In addition to the name, a module instantiation statement contains an
association list that specifies which actual nets or ports are associated with which local
ports (formals) of the module declaration.

All procedural statements occur in blocks that are defined inside modules. The two
kinds of procedural blocks are:

• initial block

• always block

Within each block, Verilog uses a begin and end to enclose the statements. Since initial
blocks are ignored during synthesis, only always blocks are discussed. The always
blocks usually take the following format:

always
begin
statement
....

end

Each statement is a procedural assignment line terminated by a semicolon.

Frontmatter
494 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=494

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Module Declarations
The I/O ports of the circuit are declared in the module declaration. Each port has:

• A name

• A mode

– in

– out

– inout

The input and output ports defined in the module declaration called EXAMPLE in the
following coding example are the basic input and output I/O signals for the design. The
in-out port in Verilog is analogous to a bi-directional I/O pin on the device with the data
flow for output versus input being controlled by the enable signal to the tristate buffer.

The following coding example describes E as a tristate buffer with a high-true output
enable signal.

• If oe = 1, the value of signal A is output on the pin represented by E.

• If oe = 0, the buffer is in high impedance (Z), and any input value driven on the
pin E (from the external logic) is brought into the device and fed to the signal
represented by D.

Coding Example
module EXAMPLE(A, B, C, D, E);

input A, B, C;
output D;
inout E;
wire D, E;
...
assign E = oe ? A : 1’bz;
assign D = B & E;
...

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 495

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=495

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Contin uous Assignments
Continuous assignments model combinatorial logic in a concise way.

XST supports both explicit and implicit continuous assignments.

• Explicit continuous assignments are introduced by the assign keyword after the net
has been separately declared.

• Implicit continuous assignments combine declaration and assignment.

• XST ignores delays and strengths given to a continuous assignment.

• Continuous assignments are allowed on wire and tri data types only.

Explicit Contin uous Assignment Coding Example
wire par_eq_1;
....
assign par_eq_1 = select ? b : a;

Implicit Contin uous Assignment Coding Example
wire temp_hold = a | b;

Frontmatter
496 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=496

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Procedural Assignments
This section discusses Behavioral Verilog Procedural Assignments, and includes:
• About Behavioral Verilog Procedural Assignments
• Behavioral Verilog Combinatorial Always Blocks
• Behavioral Verilog If... Else Statement
• Behavioral Verilog Case Statements
• Behavioral Verilog For and Repeat Loops
• Behavioral Verilog While Loops
• Behavioral Verilog Sequential Always Blocks
• Behavioral Verilog Assign and Deassign Statements
• Behavioral Verilog Assignment Extension Past 32 Bits
• Behavioral Verilog Tasks and Functions
• Behavioral Verilog Recursive Tasks and Functions
• Behavioral Verilog Constant Functions
• Behavioral Verilog Blocking Versus Non-Blocking Procedural Assignments

About Behavioral Verilog Procedural Assignments
Behavioral Verilog procedural assignments are:
• Used to assign values to variables declared as regs.
• Introduced by always blocks, tasks, and functions
• Usually used to model registers and Finite State Machine (FSM) components.

XST supports:
• Combinatorial functions
• Combinatorial and sequential tasks
• Combinatorial and sequential always blocks

Behavioral Verilog Combinatorial Always Bloc ks
Combinatorial logic can be modeled efficiently using two forms of Verilog time control
statements:
• # (pound)
• * (asterisk)

Since the # (pound) time control statement is ignored for synthesis, this discussion
describes modeling combinatorial logic with the * (asterisk) time control statement.

A combinatorial always block has a sensitivity list appearing within parentheses after
the word always. An always block is activated if an event (value change or edge)
appears on one of the sensitivity list signals. This sensitivity list can contain any signal
that appears in conditions (if or case, for example), and any signal appearing on the
right-hand side of an assignment. By substituting an * (asterisk) without parentheses for
a list of signals, the always block is activated for an event in any of the always block’s
signals as described above.

In combinatorial processes, if a signal is not explicitly assigned in all branches of if or
case statements, XST generates a latch to hold the last value. To avoid latch creation, be
sure that all assigned signals in a combinatorial process are always explicitly assigned in
all paths of the process statements.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 497

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=497

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

The following statements can be used in a process:
• Variable and signal assignment
• if...else statement
• case statement
• for and while loop statement
• Function and task call

Behavioral Verilog If... Else Statement
If... else statements use true/false conditions to execute statements.
• If the expression evaluates to true, the first statement is executed.
• If the expression evaluates to false (or x or z) the else statement is executed.

A block of multiple statements may be executed using begin and end keywords.

If... else statements may be nested.

Coding Example
The following coding example shows how a MUX can be described using an if... else
statement:

module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin

if (sel[1])
if (sel[0])

outmux = d;
else

outmux = c;
else

if (sel[0])
outmux = b;

else
outmux = a;

end
endmodule

Behavioral Verilog Case Statements
A case statement:
• Performs a comparison to an expression to evaluate one of a number of parallel

branches.
• Evaluates the branches in the order they are written.

– The first branch that evaluates to true is executed.
– If none of the branches match, the default branch is executed.

Do not use unsized integers in case statements. Always size integers to a specific number
of bits, or results can be unpredictable.

casez treats all z values in any bit position of the branch alternative as a dont care.

casex treats all x and z values in any bit position of the branch alternative as a dont care.

Frontmatter
498 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=498

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

The question mark (?) can be used as a dont care in either the casez or casex case
statements.

Coding Example
The following coding example shows how a MUX can be described using a case
statement:

module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin

case (sel)
2’b00: outmux = a;
2’b01: outmux = b;
2’b10: outmux = c;
default: outmux = d;

endcase
end

endmodule

The preceding case statement evaluates the values of the input sel in priority order. To
avoid priority processing, Xilinx® recommends that you use a parallel-case Verilog
attribute to ensure parallel evaluation of the sel inputs as shown in the following:

(* parallel_case *) case(sel)

Behavioral Verilog For and Repeat Loops
When using always blocks, repetitive or bit slice structures can also be described using
the for statement or the repeat statement.

For Statement
The for statement is supported for:
• Constant bounds
• Stop test condition using one of the following operators:

– <
– <=
– >
– >=

• Next step computation falling in one of the following specifications:
– var = var + step
– var = var - step

where
♦ var is the loop variable
♦ step is a constant value

Repeat Statement
The repeat statement is supported for constant values only.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 499

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=499

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Disab le Statements
Disable statements are not supported.

Coding Example
module countzeros (a, Count);
input [7:0] a;
output [2:0] Count;
reg [2:0] Count;
reg [2:0] Count_Aux;
integer i;

always @(a)
begin

Count_Aux = 3’b0;
for (i = 0; i < 8; i = i+1)

begin
if (!a[i])

Count_Aux = Count_Aux+1;
end

Count = Count_Aux;
end

endmodule

Behavioral Verilog While Loops
When using always blocks, use the while statement to execute repetitive procedures. A
while loop executes other statements until its test expression becomes false. It is not
executed if the test expression is initially false.

• The test expression is any valid Verilog expression.

• To prevent endless loops, use -loop_iteration_limit.

• while loops can have disable statements. The disable statement is used inside a
labeled block, since the syntax is disable <blockname>.

Coding Example
parameter P = 4;
always @(ID_complete)

begin : UNIDENTIFIED
integer i;
reg found;
unidentified = 0;
i = 0;
found = 0;
while (!found && (i < P))

begin
found = !ID_complete[i];
unidentified[i] = !ID_complete[i];
i = i + 1;

end
end

Frontmatter
500 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=500

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Sequential Always Bloc ks
Sequential circuit description is based on always blocks with a sensitivity list. The
sensitivity list contains a maximum of three edge-triggered events:

• A clock signal event (mandatory)

• A reset signal event (possibly)

• A set signal event

One, and only one, if...else statement is accepted in such an always block.

An asynchronous part may appear before the synchronous part in the first and the
second branch of the if...else statement. Signals assigned in the asynchronous part are
assigned to the following constant values:

• 0

• 1

• X

• Z

• Any vector composed of these values

These same signals are also assigned in the synchronous part (that is, the last branch
of the if...else statement). The clock signal condition is the condition of the last branch
of the if...else statement.

8 Bit Register Using an Always Bloc k Behavioral Verilog Coding Example
module seq1 (DI, CLK, DO);

input [7:0] DI;
input CLK;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK)
DO <= DI ;

8 Bit Register with Async hronous Reset (High-True) Using an Always Bloc k
Behavioral Verilog Coding Example
module EXAMPLE(DI, CLK, RST, DO);

input [7:0] DI;
input CLK, RST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge RST)
if (RST == 1’b1)

DO <= 8’b00000000;
else

DO <= DI;
endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 501

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=501

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

8 Bit Counter with Async hronous Reset (Low-True) Using an Always Bloc k
Behavioral Verilog Coding Example
module seq2 (CLK, RST, DO);

input CLK, RST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge RST)
if (RST == 1’b1)

DO <= 8’b00000000;
else

DO <= DO + 8’b00000001;
endmodule

Behavioral Verilog Assign and Deassign Statements
Assign and deassign statements are supported within simple templates.

Behavioral Verilog Assign and Deassign Statements General Template
module assig (RST, SELECT, STATE, CLOCK, DATA_IN);

input RST;
input SELECT;
input CLOCK;
input [0:3] DATA_IN;
output [0:3] STATE;
reg [0:3] STATE;

always @ (RST)
if(RST)

begin
assign STATE = 4’b0;

end
else

begin
deassign STATE;

end

always @ (posedge CLOCK)
begin

STATE <= DATA_IN;
end

endmodule

The main limitations on support of the assign/deassign statement in XST are:

• For a given signal, there is only one assign/deassign statement.

• The assign/deassign statement is performed in the same always block through an
if/else statement.

• You cannot assign a bit/part select of a signal through an assign/deassign statement.

Frontmatter
502 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=502

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Assign/Deassign Statement
For a given signal, there is only one assign/deassign statement. For example, XST rejects
the following design:

module dflop (RST, SET, STATE, CLOCK, DATA_IN);
input RST;
input SET;
input CLOCK;
input DATA_IN;
output STATE;
reg STATE;

always @ (RST) // block b1
if(RST)

assign STATE = 1’b0;
else

deassign STATE;

always @ (SET) // block b1
if(SET)

assign STATE = 1’b1;
else

deassign STATE;

always @ (posedge CLOCK) // block b2
begin

STATE <= DATA_IN;
end

endmodule

Behavioral Verilog Assign/Deassign Statement Performed in Same
Always Bloc k

The assign/deassign statement is performed in the same always block through an
if...else statement. For example, XST rejects the following design:

module dflop (RST, SET, STATE, CLOCK, DATA_IN);
input RST;
input SET;
input CLOCK;
input DATA_IN;
output STATE;

reg STATE;

always @ (RST or SET) // block b1
case ({RST,SET})

2’b00: assign STATE = 1’b0;
2’b01: assign STATE = 1’b0;
2’b10: assign STATE = 1’b1;
2’b11: deassign STATE;

endcase

always @ (posedge CLOCK) // block b2
begin

STATE <= DATA_IN;
end

endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 503

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=503

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Cannot Assign Bit/Part Select of Signal Through Assign/Deassign
Statement

You cannot assign a bit/part select of a signal through an assign/deassign statement. For
example, XST rejects the following design:

module assig (RST, SELECT, STATE, CLOCK, DATA_IN);
input RST;
input SELECT;
input CLOCK;
input [0:7] DATA_IN;
output [0:7] STATE;

reg [0:7] STATE;

always @ (RST) // block b1
if(RST)

begin
assign STATE[0:7] = 8’b0;

end
else

begin
deassign STATE[0:7];

end

always @ (posedge CLOCK) // block b2
begin

if (SELECT)
STATE [0:3] <= DATA_IN[0:3];

else
STATE [4:7] <= DATA_IN[4:7];

end

Behavioral Verilog Assignment Extension Past 32 Bits
If the expression on the left-hand side of an assignment is wider than the expression on
the right-hand side, the left-hand side is padded to the left according to the following
rules:

• If the right-hand expression is signed, the left-hand expression is padded with the
sign bit:

– 0 for positive

– 1 for negative

– z for high impedance

– x for unknown

• If the right-hand expression is unsigned, the left-hand expression is padded with
0(zeros).

• For unsized x or z constants only, the following rule applies. If the value of
the right-hand expression’s leftmost bit is z (high impedance) or x (unknown),
regardless of whether the right-hand expression is signed or unsigned, the left-hand
expression is padded with that value (z or x, respectively).

These rules follow the Verilog-2001 standard. They are not backwardly compatible
with Verilog-1995.

Frontmatter
504 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=504

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Tasks and Functions
The declaration of a function or task is intended for handling blocks used multiple times
in a design. They must be declared and used in a module. The heading part contains the
parameters: input parameters (only) for functions and input/output/inout parameters
for tasks. The return value of a function can be declared either signed or unsigned. The
content is similar to the combinatorial always block content.

Coding Example One
The following coding example shows a function declared within a module.

• The ADD function declared is a single-bit adder.

• This function is called four times with the proper parameters in the architecture
to create a 4-bit adder.

module comb15 (A, B, CIN, S, COUT);
input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
wire [1:0] S0, S1, S2, S3;
function signed [1:0] ADD;

input A, B, CIN;
reg S, COUT;
begin

S = A ^ B ^ CIN;
COUT= (A&B) | (A&CIN) | (B&CIN);
ADD = {COUT, S};

end
endfunction

assign S0 = ADD (A[0], B[0], CIN),
S1 = ADD (A[1], B[1], S0[1]),
S2 = ADD (A[2], B[2], S1[1]),
S3 = ADD (A[3], B[3], S2[1]),
S = {S3[0], S2[0], S1[0], S0[0]},

COUT= S3[1];
endmodule

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 505

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=505

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Coding Example Two
The following coding example shows Coding Example One described with a task.

module EXAMPLE(A, B, CIN, S, COUT);
input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
reg [3:0] S;
reg COUT;
reg [1:0] S0, S1, S2, S3;

task ADD;
input A, B, CIN;
output [1:0] C;
reg [1:0] C;
reg S, COUT;

begin
S = A ^ B ^ CIN;
COUT= (A&B) | (A&CIN) | (B&CIN);
C = {COUT, S};

end
endtask

always @(A or B or CIN)
begin

ADD (A[0], B[0], CIN, S0);
ADD (A[1], B[1], S0[1], S1);
ADD (A[2], B[2], S1[1], S2);
ADD (A[3], B[3], S2[1], S3);
S = {S3[0], S2[0], S1[0], S0[0]};
COUT= S3[1];

end
endmodule

Frontmatter
506 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=506

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Recur sive Tasks and Functions
Verilog-2001 supports recursive tasks and functions.

You can use recursion only with the automatic keyword.

To prevent endless recursive calls, the number of recursions is limited by default to 64.
Use -recursion_iteration_limit to control the number of allowed recursive calls.

Coding Example
function automatic [31:0] fac;
input [15:0] n;
if (n == 1)

fac = 1;
else

fac = n * fac(n-1); //recursive function call
endfunction

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 507

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=507

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Constant Functions
Verilog-2001 adds support for constant functions. XST supports function calls to
calculate constant values.

Coding Example

module rams_cf (clk, we, a, di, do);
parameter DEPTH=1024;
input clk;
input we;
input [4:0] a;
input [3:0] di;
output [3:0] do;

reg [3:0] ram [size(DEPTH):0];

always @(posedge clk) begin
if (we)
ram[a] <= di;
end
assign do = ram[a];

function integer size;
input depth;
integer i;
begin

size=1;
for (i=0; 2**i<depth; i=i+1)

size=i+1;
end
endfunction

endmodule

Frontmatter
508 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=508

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Bloc king Versus Non-Bloc king Procedural
Assignments

The pound (#) and at symbol (@) time control statements delay execution of the
statement following them until the specified event is evaluated as true. Blocking and
non-blocking procedural assignments have time control built into their respective
assignment statement. The pound (#) delay is ignored for synthesis.

Behavioral Verilog Bloc king Procedural Assignment Syntax Example
The syntax for a blocking procedural assignment is shown in the following example.

reg a; a = #10 (b | c);

or

if (in1) out = 1’b0; else out = in2;

As the name implies, these types of assignments block the current process from
continuing to execute additional statements at the same time. These should mainly be
used in simulation.

Non-blocking assignments, on the other hand, evaluate the expression when the
statement executes, but allow other statements in the same process to execute as well at
the same time. The variable change occurs only after the specified delay.

Behavioral Verilog Non-Bloc king Procedural Assignment Syntax Example
The following syntax example shows the syntax for a non-blocking procedural
assignment.

variable <= @(posedge_or_negedge_bit) expression;

Coding Example
The following coding example shows how to use a non-blocking procedural assignment.

if (in1) out <= 1’b1; else out <= in2;

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 509

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=509

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Constants
By default, constants in Verilog are assumed to be decimal integers. They can be
specified explicitly in binary, octal, decimal, or hexadecimal by prefacing them with the
appropriate syntax. For example, the following all represent the same value:

• 4’b1010

• 4’o12

• 4’d10

• 4’ha

Behavioral Verilog Macros
Verilog provides a way to define macros as shown in the following coding example.

‘define TESTEQ1 4’b1101

Later in the design code, a reference to the defined macro is made as follows:

if (request == ‘TESTEQ1)

This is shown in the following coding example.

‘define myzero 0
assign mysig = ‘myzero;

The Verilog ‘ifdef and ‘endif constructs determine whether or not a macro is defined.
These constructs are used to define conditional compilation. If the macro called out by
the ‘ifdef command has been defined, that code is compiled. If not, the code following
the ‘else command is compiled. The ‘else is not required, but ‘endif must complete
the conditional statement.

The ‘ifdef and ‘endif constructs are shown in the following coding example.

‘ifdef MYVAR
module if_MYVAR_is_declared;
...
endmodule
‘else
module if_MYVAR_is_not_declared;
...
endmodule
‘endif

Verilog Macros (-define) allows you to define (or redefine) Verilog macros. This allows
you to easily modify the design configuration without any Hardware Description
Language (HDL) source modifications, such as for IP core generation and testing flows.

Frontmatter
510 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=510

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Include Files
Verilog allows you to separate source code into more than one file. To reference the code
contained in another file, use the following syntax in the current file:

‘include "path/file-to-be-included"

The path can be relative or absolute.

Multiple ‘include statements are allowed in a single Verilog file. This feature makes
your code more manageable in a team design environment where different files describe
different modules of the design.

Identifying the Director y
To enable the file in your ‘include statement to be recognized, identify the directory
where it resides, either to ISE® Design Suite or to XST.

• Since ISE Design Suite searches the ISE Design Suite project directory by default,
adding the file to your project directory identifies the file to ISE Design Suite

• To direct ISE Design Suite to a different directory, include a path (relative or
absolute) in the ‘include statement in your source code.

• To point XST directly to your include file directory, use Verilog Include Directories
(-vlgincdir)

• If the ‘include file is required for ISE Design Suite to construct the design hierarchy,
the file need not be added to the project, but the file must either:

– Reside in the project directory

or

– Be referenced by a relative or absolute path

Include File Conflicts
Conflicts may occur when the specified file:

• Has been added to an ISE Design Suite project directory

and

• Is specified with ‘include

Coding Example
‘timescale 1 ns/1 ps
‘include "modules.v"
...

XST issues an error message:

ERROR:Xst:1068 - fifo.v, line 2. Duplicate declarations of
module’RAMB4_S8_S8’

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 511

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=511

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Comments
Behavioral Verilog supports two forms of comments as shown in the following table.
Behavioral Verilog comments are similar to the comments used in a language such as
C++.

Symbol Description Used for Example
// Double forward

slash
One-line comments // Define a one-line comment as illustrated by this sentence

/* Slash asterisk Multi-line comments /* Define a multi-line comment by enclosing it as illustrated
by this sentence */

Frontmatter
512 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=512

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Behavioral Verilog Generate Statements
A generate statement allows you to dynamically create Verilog code from conditional
statements. This allows you to create repetitive structures or structures that are
appropriate only under certain conditions.

Structures likely to be created using a generate statement are:

• Primitive or module instances

• Initial or always procedural blocks

• Continuous assignments

• Net and variable declarations

• Parameter redefinitions

• Task or function definitions

Generate For Statements
Use a Behavioral Verilog generate for loop to create one or more instances that can be
placed inside a module. Use the generate for loop the same way you would a normal
Verilog for loop, with the following limitations:

• The index for a generate for loop has a genvar variable.

• The assignments in the for loop control refers to the genvar variable.

• The contents of the for loop are enclosed by begin and end statements. The begin
statement is named with a unique qualifier.

Coding Example
Following is an 8-bit adder using a generate for loop behavioral Verilog coding example.

generate
genvar i;

for (i=0; i<=7; i=i+1)
begin : for_name

adder add (a[8*i+7 : 8*i], b[8*i+7 : 8*i], ci[i], sum_for[8*i+7 : 8*i], c0_or[i+1]); end
endgenerate

Generate If... else Statements
Use a Behavioral Verilog generate if... else statement inside a generate block to
conditionally control which objects are generated.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 513

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=513

Chapter 16: XST Behavioral Verilog Langua ge Suppor t

Coding Example
In the following coding example of a generate if... else statement:

• generate controls the type of multiplier that is instantiated

• The contents of each branch of the if... else statement are enclosed by begin and
end statements.

• The begin statement is named with a unique qualifier.

generate
if (IF_WIDTH < 10)
begin : if_name
adder # (IF_WIDTH) u1 (a, b, sum_if);

end
else
begin : else_name
subtractor # (IF_WIDTH) u2 (a, b, sum_if);

end
endgenerate

Generate Case Statements
Use a Behavioral Verilog generate case statement inside a generate block to conditionally
control which objects are generated. Use a generate case statement when there are
several conditions to be tested to determine what the generated code would be.

• Each test statement in a generate case is enclosed by begin and end statements.

• The begin statement is named with a unique qualifier.

Coding Example
In the following coding example of a generate case statement, generate controls the
type of adder that is instantiated:

generate
case (WIDTH)

1:
begin : case1_name

adder #(WIDTH*8) x1 (a, b, ci, sum_case, c0_case);
end

2:
begin : case2_name

adder #(WIDTH*4) x2 (a, b, ci, sum_case, c0_case);
end

default:
begin : d_case_name

adder x3 (a, b, ci, sum_case, c0_case);
end

endcase
endgenerate

Frontmatter
514 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=514

Chapter 17

XST Mixed Language Support
This chapter discusses XST Mixed Language Support, and includes:
• About XST Mixed Language Support
• Mixed Language Project Files
• VHDL and Verilog Boundary Rules in Mixed Language Projects
• Port Mapping in Mixed Language Projects
• Generics Support in Mixed Language Projects
• LSO Files in Mixed Language Projects

About XST Mixed Langua ge Suppor t
XST supports mixed VHDL and Verilog projects.
• Mixing VHDL and Verilog is restricted to design unit (cell) instantiation only.

– A VHDL design can instantiate a Verilog module.
– A Verilog design can instantiate a VHDL entity.
– No other mixing between VHDL and Verilog is not supported.

• In a VHDL design, a restricted subset of VHDL types, generics, and ports is allowed
on the boundary to a Verilog module.

• In a Verilog design, a restricted subset of Verilog types, parameters, and ports is
allowed on the boundary to a VHDL entity or configuration.

• XST binds VHDL design units to a Verilog module during Elaboration.
• Component instantiation based on default binding is used for binding Verilog

modules to a VHDL design unit.
• Configuration specification, direct instantiation and component configurations are

not supported for a Verilog module instantiation in VHDL.
• VHDL and Verilog project files are unified.
• VHDL and Verilog libraries are logically unified.
• Specification of the work directory for compilation (xsthdpdir), previously

available only for VHDL, is now available for Verilog.
• The xhdp.inimechanism for mapping a logical library name to a physical directory

name on the host file system, previously available only for VHDL, is now available
for Verilog.

• Mixed language projects accept a search order used for searching unified logical
libraries in design units (cells). During Elaboration, XST follows this search order
for picking and binding a VHDL entity or a Verilog module to the mixed language
project.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 515

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=515

Chapter 17: XST Mixed Langua ge Suppor t

Mixed Langua ge Project Files
XST uses dedicated mixed language project files to support mixed VHDL and Verilog
designs. You can use this mixed language format not only for mixed projects, but also
for purely VHDL or Verilog projects.

• If you run XST from ISE® Design Suite, XST creates the project file. It is always
a mixed language project file.

• If you run XST from the command line, you must create the mixed language project
file yourself.

Project Type Set -ifmt to
command line mixed or value omitted

VHDL vhdl

Verilog verilog

The VHDL and Verilog formats can be used for existing designs.

The syntax for invoking a library or any external file in a mixed language project is:

language library file_name.ext

Coding Example
The following example shows how to invoke libraries in a mixed language project.

vhdl work my_vhdl1.vhd
verilog work my_vlg1.v
vhdl my_vhdl_lib my_vhdl2.vhd
verilog my_vlg_lib my_vlg2.v

• Each row specifies a single Hardware Description Language (HDL) design file.

• Each column has the meaning shown in the following table.

Column Syntax Example Specifies
First language vhdl Whether the HDL file

is VHDL or Verilog

Second library work The logic library
where the HDL is
compiled. The default
logic library is work.

Third file_name.ext my_vhdl1.vhd The name of the HDL
file.

Frontmatter
516 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=516

Chapter 17: XST Mixed Langua ge Suppor t

VHDL and Verilog Boundar y Rules in Mixed Langua ge Projects
The boundary between VHDL and Verilog is enforced at the design unit level.

A VHDL design can instantiate a Verilog module.

A Verilog design can instantiate a VHDL entity.

Instantiating a Verilog Module in a VHDL Design
To instantiate a Verilog module in a VHDL design:
1. Declare a VHDL component with the same name (respecting case sensitivity) as

the Verilog module you want to instantiate. If the Verilog module name is not all
lowercase, use the case property to preserve the case of your Verilog module.
a. In ISE® Design Suite, select:

Process > Process Properties > Synthesis Options > Case > Maintain
or

b. Set the -case command line option to maintain
2. Instantiate the Verilog component as if you were instantiating a VHDL component.

Using a VHDL configuration declaration, you could attempt to bind this component to a
particular design unit from a particular library. Such binding is not supported. Only
default Verilog module binding is supported.

The only Verilog construct that can be instantiated in a VHDL design is a Verilog
module. No other Verilog constructs are visible to VHDL code.

During elaboration, all components subject to default binding are regarded as design
units with the same name as the corresponding component name. During binding, XST
treats a component name as a VHDL design unit name and searches for it in the logical
library work. If XST finds a VHDL design unit, XST binds it. If XST cannot find a VHDL
design unit, it treats the component name as a Verilog module name, and searches for it
using a case sensitive search. XST searches for the Verilog module in the user-specified
list of unified logical libraries in the user-specified search order.

For more information, see:

Library Search Order (LSO) Files in Mixed Language Projects

XST selects the first Verilog module matching the name, and binds it.

Since libraries are unified, a Verilog cell by the same name as that of a VHDL design
unit cannot co-exist in the same logical library. A newly compiled cell/unit overrides a
previously compiled one.

Instantiating a VHDL Design Unit in a Verilog Design
This section includes:
• How to Instantiate a VHDL Entity
• Binding
• Limitations

How to Instantiate a VHDL Entity
To instantiate a VHDL entity:
1. Declare a module name with the same as name as the VHDL entity (optionally

followed by an architecture name) that you want to instantiate.
2. Perform a normal Verilog instantiation.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 517

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=517

Chapter 17: XST Mixed Langua ge Suppor t

The only VHDL construct that can be instantiated in a Verilog design is a VHDL entity.
No other VHDL constructs are visible to Verilog code. When you do this, XST uses the
entity/architecture pair as the Verilog/VHDL boundary.

Binding
XST performs the binding during elaboration.

XST first:

1. Searches for a Verilog module as follows:

• Uses the name of the instantiated module.

• Searches in the user-specified list of unified logical libraries.

• Searches in the user-specified order.

• Ignores any architecture name specified in the module instantiation.

2. Binds the name if found.

If XST cannot find a Verilog module, then XST:

1. Treats the name of the instantiated module as a VHDL entity.

2. Searches for the VHDL entity as follows:

• Performs a case sensitive search

• Searches in the user-specified list of unified logical libraries

• Searches in the user-specified order

Note This assumes that a VHDL design unit was stored with an extended identifier.

3. Selects the first VHDL entity matching the name.

4. Binds the entity.

For more information, see:

Library Search Order (LSO) Files in Mixed Language Projects

Limitations
XST has the following limitations when instantiating a VHDL design unit from a Verilog
module:

• Use explicit port association. Specify formal and effective port names in the port
map.

• All parameters are passed at instantiation, even if they are unchanged.

• The parameter override is named and not ordered. The parameter override occurs
through instantiation, and not through defparams.

Correct Use of Parameter Override Coding Example
ff #(.init(2’b01)) u1 (.sel(sel), .din(din), .dout(dout));

Incorrect Use of Parameter Override Coding Example
XST does not accept the following:

ff u1 (.sel(sel), .din(din), .dout(dout));
defparam u1.init = 2’b01;

Frontmatter
518 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=518

Chapter 17: XST Mixed Langua ge Suppor t

Por t Mapping in Mixed Langua ge Projects
Port Mapping in mixed language projects includes:
• VHDL in Verilog Port Mapping
• Verilog in VHDL Port Mapping
• VHDL in Mixed Language Port Mapping
• Verilog in Mixed Language Port Mapping

VHDL in Verilog Por t Mapping
For VHDL entities instantiated in Verilog designs, XST supports the following port types:
• in
• out
• inout

XST does not support VHDL buffer and linkage ports.

Verilog in VHDL Por t Mapping
For Verilog modules instantiated in VHDL designs, XST supports the following port
types:
• input
• output
• inout

XST does not support connection to bi-directional pass options in Verilog.

XST does not support unnamed Verilog ports for mixed language boundaries.

Use an equivalent component declaration for connecting to a case sensitive port in a
Verilog module. By default, XST assumes Verilog ports are in all lowercase.

VHDL in Mixed Langua ge Por t Mapping
XST supports the following VHDL data types for mixed language designs:
• bit
• bit_vector
• std_logic
• std_ulogic
• std_logic_vector
• std_ulogic_vector

Verilog in Mixed Langua ge Por t Mapping
XST supports the following Verilog data types for mixed language designs:
• wire
• reg

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 519

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=519

Chapter 17: XST Mixed Langua ge Suppor t

Generics Suppor t in Mixed Langua ge Projects
XST supports the following VHDL generic types and their Verilog equivalents for mixed
language designs:
• integer
• real
• string
• boolean

LSO Files in Mixed Langua ge Projects
The Library Search Order (LSO) file specifies the search order that XST uses to link the
libraries used in VHDL and Verilog mixed language designs. By default, XST searches
the files specified in the project file in the order in which they appear in that file.

XST uses the default search order when:
• The DEFAULT_SEARCH_ORDER keyword is used in the LSOfile, or
• The LSOfile is not specified

Specifying the LSO File in ISE Design Suite
In ISE® Design Suite, the default name for the Library Search Order (LSO) file is
project_name.lso . If a project_name.lso file does not already exist, ISE Design
Suite automatically creates one.

If ISE Design Suite detects an existing project_name.lso file, this file is preserved and
used as is. In ISE Design Suite, the name of the project is the name of the top-level block.
In creating a default LSO file, ISE Design Suite places the DEFAULT_SEARCH_ORDER
keyword in the first line of the file.

Specifying the LSO File in the Command Line
Library Search Order (LSO) (-lso) specifies the Library Search Order (LSO) file when
running XST from the command line. If -lso is omitted, XST uses the default library
search order without using an LSO file.

LSO Rules
When processing a mixed language project, XST obeys the following search order rules,
depending on the contents of the Library Search Order (LSO) file:
• Library Search Order (LSO) Empty
• DEFAULT_SEARCH_ORDER Keyword Only
• DEFAULT_SEARCH_ORDER Keyword and List of Libraries
• List of Libraries Only
• DEFAULT_SEARCH_ORDER Keyword and Non-Existent Library Name”

Librar y Search Order (LSO) Empty
When the Library Search Order (LSO) file is empty, XST:
• Issues a warning stating that the LSO file is empty
• Searches the files specified in the project file using the default library search order
• Updates the LSO file by adding the list of libraries in the order that they appear

in the project file.

Frontmatter
520 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=520

Chapter 17: XST Mixed Langua ge Suppor t

DEFAULT_SEARCH_ORDER Keyword Only
When the Library Search Order (LSO) file contains only the DEFAULT_SEARCH_ORDER
keyword, XST:
• Searches the specified library files in the order in which they appear in the project file
• Updates the LSO file by:

– Removing the DEFAULT_SEARCH_ORDERkeyword
– Adding the list of libraries to the LSO file in the order in which they appear

in the project file

For a project file, my_proj.prj , with the following contents:

vhdl vhlib1 f1.vhd verilog rtfllib f1.v vhdl vhlib2 f3.vhd LSO
file Created by ProjNav

and an LSO file, my_proj.lso , created by ISE® Design Suite, with the following
contents:

DEFAULT_SEARCH_ORDER

XST uses the following search order.

vhlib1 rtfllib vhlib2

After processing, the contents of my_proj.lso is:

vhlib1 rtfllib vhlib2

DEFAULT_SEARCH_ORDER Keyword and List of Libraries
When the Library Search Order (LSO) file contains the DEFAULT_SEARCH_ORDER
keyword, and a list of the libraries, XST:
• Searches the specified library files in the order in which they appear in the project file
• Ignores the list of library files in the LSO file
• Leaves the LSO file unchanged

For a project file, my_proj.prj , with the following contents:

vhdl vhlib1 f1.vhd verilog rtfllib f1.v vhdl vhlib2 f3.vhd

and an LSO file, my_proj.lso , created with the following contents:

rtfllib vhlib2 vhlib1 DEFAULT_SEARCH_ORDER

XST uses the following search order:

vhlib1 rtfllib vhlib2

After processing, the contents of my_proj.lso is:

rtfllib vhlib2 vhlib1 DEFAULT_SEARCH_ORDER

List of Libraries Only
When the Library Search Order (LSO) file contains a list of the libraries without the
DEFAULT_SEARCH_ORDERkeyword, XST:
• Searches the library files in the order in which they appear in the LSO file
• Leaves the LSO file unchanged

For a project file, my_proj.prj , with the following contents:

vhdl vhlib1 f1.vhd verilog rtfllib f1.v vhdl vhlib2 f3.vhd

and an LSO file, my_proj.lso , created with the following contents:

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 521

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=521

Chapter 17: XST Mixed Langua ge Suppor t

rtfllib vhlib2 vhlib1

XST uses the following search order:

rtfllib vhlib2 vhlib1

After processing, the contents of my_proj.lso is:

rtfllib vhlib2 vhlib1

DEFAULT_SEARCH_ORDER Keyword and Non-Existent Librar y Name
When the Library Search Order (LSO) file contains a library name that does not exist in
the project or INI file, and the LSO file does not contain the DEFAULT_SEARCH_ORDER
keyword, XST ignores the library.

For a project file, my_proj.prj , with the following contents:

vhdl vhlib1 f1.vhd verilog rtfllib f1.v vhdl vhlib2 f3.vhd

and an LSO file, my_proj.lso , created with the following contents:

personal_lib rtfllib vhlib2 vhlib1

XST uses the following search order:

rtfllib vhlib2 vhlib1

After processing, the contents of my_proj.lso is:

rtfllib vhlib2 vhlib1

Frontmatter
522 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=522

Chapter 18

XST Log File
This chapter discusses the XST Log File, and includes:

• XST Log File Contents

• Reducing the Size of the XST Log File

• Macros in XST Log Files

• XST Log File Examples

XST FPGA Log File Contents
The XST FPGA log file contains:

• Copyright Statement

• Table of Contents

• Synthesis Options Summary

• HDL Compilation

• Design Hierarchy Analyzer

• HDL Analysis

• HDL Synthesis Report

• Advanced HDL Synthesis Report

• Low Level Synthesis

• Partition Report

• Final Report

Copyright Statement
The XST FPGA log file copyright statement contains:

• ISE® Design Suite release number

• Xilinx® notice of copyright

Table of Contents
The XST FPGA log file table of contents lists the major sections in the log file. These
headings are not linked. Use the Find function in your text editor.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 523

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=523

Chapter 18: XST Log File

Synthesis Options Summar y
The XST FPGA log file Synthesis Options Summary contains information relating to:
• Source Parameters
• Target Parameters
• Source Options
• Target Options
• General Options
• Other Options

HDL Compilation
For information on Hardware Description Language (HDL) Compilation, see:

XST FPGA Log File HDL Analysis

Design Hierar chy Anal yzer
For information on Design Hierarchy Analyzer, see:

XST FPGA Log File HDL Analysis

HDL Anal ysis
During Hardware Description Language (HDL) Compilation, Design Hierarchy
Analyzer, and HDL Analysis, XST:
• Parses and analyzes VHDL and Verilog files
• Recognizes the design hierarchy
• Gives the names of the libraries into which they are compiled

During this step, XST may report:
• Potential mismatches between synthesis and simulation results
• Potential multi-sources
• Other issues

HDL Synthesis Repor t
During Hardware Description Language (HDL) Synthesis, XST tries to recognize as
many basic macros as possible to create a technology-specific implementation. This is
done on a block by block basis. At the end of this step, XST issues the HDL Synthesis
Report.

For more information about the processing of each macro and the corresponding
messages issued during synthesis, see:

XST HDL Coding Techniques

Advanced HDL Synthesis Repor t
XST performs advanced macro recognition and inference. In this step, XST:
• Recognizes, for example, dynamic shift registers
• Implements pipelined multipliers
• Codes state machines

Frontmatter
524 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=524

Chapter 18: XST Log File

The Advanced HDL Synthesis Report contains a summary of recognized macros in
the overall design, sorted by macro type.

Low Level Synthesis
In the XST FPGA Log File Low Level Synthesis phase, XST reports the potential removal
of, for example:

• equivalent flip-flops

• register replication

For more information, see:

FPGA Optimization Report Section

Partition Repor t
If the design is partitioned, the XST FPGA log file Partition Report contains information
detailing the design partitions.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 525

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=525

Chapter 18: XST Log File

Final Repor t
The XST FPGA log file Final Report includes:

• Final Results, including

– RTL Top Level Output File Name (for example, stopwatch.ngr)

– Top Level Output File Name (for example, stopwatch)

– Output Format (for example, NGC)

– Optimization Goal (for example, Speed)

– Whether the Keep Hierarchy constraint is used (for example, No)

• Cell usage

Cell usage reports on, for example, the number and type of BELS, Clock Buffers,
and IO Buffers.

• Device Utilization Summary

The Device Utilization Summary estimates the number of slices, and gives, for
example, the number of flip-flops, IOBs, and BRAMS. The Device Utilization
Summary closely approximates the report produced by MAP.

• Partition Resource Summary

The Partition Resource Summary estimates the number of slices, and gives, for
example, the number of flip-flops, IOBs, and BRAMS for each partition. The
Partition Resource Summary closely resembles the report produced by MAP.

• Timing Report

At the end of synthesis, XST reports the timing information for the design. The
Timing Report shows the information for all four possible domains of a netlist:

– register to register

– input to register

– register to outpad

– inpad to outpad

For an example, see:

Timing Report section in XST FPGA Log File Example

For more information, see:

FPGA Optimization Report Section

• Encrypted Modules

If a design contains encrypted modules, XST hides the information about these
modules.

Frontmatter
526 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=526

Chapter 18: XST Log File

Reducing the Size of the XST Log File
To reduce the size of the XST Log File:
• Use Message Filtering
• Use Quiet Mode
• Use Silent Mode
• Hide Specific Messages

Use Message Filtering
When running XST from ISE® Design Suite, use the Message Filtering wizard to filter
specific messages out of the log file.

For more information, see:

Using the Message Filters in the ISE Design Suite Help

Use Quiet Mode
Quiet Mode limits the number of messages printed to the computer screen (stdout).

To invoke Quiet Mode, set -intstyle to either of the following:
• ise

Formats messages for ISE® Design Suite
• xflow

Formats messages for XFLOW

Normally, XST prints the entire log to stdout. In Quiet Mode, XST does not print the
following portions of the log to stdout:
• Copyright Message
• Table of Contents
• Synthesis Options Summary
• The following portions of the Final Report

– Final Results header for CPLD devices
– Final Results section for FPGA devices
– A note in the Timing Report stating that the timing numbers are only a synthesis

estimate.
– Timing Detail
– CPU (XST runtime)
– Memory usage

The following sections are still available for FPGA devices:
• Device Utilization Summary
• Clock Information
• Timing Summary

Use Silent Mode
Silent Mode prevents any messages from being sent to the computer screen (stdout),
although XST continues to generate the entire log file.

To invoke Silent Mode, set the -intstyle command line option to:

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 527

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=527

Chapter 18: XST Log File

silent

Hide Specific Messages
This section includes:

• XIL_XST_HIDEMESSAGES Environment Variable Values

• Messages Hidden When Value is Set to hdl_level and hdl_and_low_levels

• Messages Hidden When Value is Set to low_level or hdl_and_low_levels

XIL_XST_HIDEMESSAGES Envir onment Variab le Values
To hide specific messages at the HDL or Low Level Synthesis steps, set the
XIL_XST_HIDEMESSAGES environment variable to one of the values shown in the
following table.

Value Meaning
none (default) Maximum verbosity. All messages are printed

out.

hdl_level Reduce verbosity during VHDL or Verilog
Analysis and HDL Basic and Advanced
Synthesis.

low_level Reduce verbosity during Low-level Synthesis.

hdl_and_low_levels Reduce verbosity at all stages.

Messages Hidden When Value is Set to hdl_le vel and hdl_and_lo w_levels
The following messages are hidden when the value of the XIL_XST_HIDEMESSAGES
environment variable is set to hdl_level and hdl_and_low_levels:

• WARNING:HDLCompilers:38 - design.v line 5 Macro ’my_macro’
redefined

Note This message is issued by the Verilog compiler only.

• WARNING:Xst:916 - design.vhd line 5: Delay is ignored for
synthesis.

• WARNING:Xst:766 - design.vhd line 5: Generating a Black Box
for component comp.

• Instantiating component comp from Library lib.

• Set user-defined property "LOC = X1Y1" for instance inst in
unit block.

• Set user-defined property "RLOC = X1Y1" for instance inst in
unit block.

• Set user-defined property "INIT = 1" for instance inst in unit
block.

• Register reg1 equivalent to reg2 has been removed.

Frontmatter
528 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=528

Chapter 18: XST Log File

Messages Hidden When Value is Set to low_level or hdl_and_lo w_levels
The following messages are hidden when the value of the XIL_XST_HIDEMESSAGES
environment variable is set to low_level or hdl_and_low_levels:

• WARNING:Xst:382 - Register reg1 is equivalent to reg2.
Register reg1 equivalent to reg2 has been removed.

• WARNING:Xst:1710 - FF/Latch reg (without init value) is
constant in block block.

• WARNING:Xst 1293 - FF/Latch reg is constant in block block.

• WARNING:Xst:1291 - FF/Latch reg is unconnected in block block.

• WARNING:Xst:1426 - The value init of the FF/Latch reg hinders
the constant cleaning in the block block. You could achieve
better results by setting this init to value.

Macros in XST Log Files
XST Log Files contain detailed information about the set of macros and associated
signals inferred by XST from the VHDL or Verilog source on a block by block basis.

Macro inference is done in two steps:

1. HDL Synthesis

XST recognizes as many simple macro blocks as possible, such as adders,
subtractors, and registers.

2. Advanced HDL Synthesis

XST does additional macro processing by improving the macros (for example,
pipelining of multipliers) recognized at the HDL synthesis step, or by creating
the new, more complex ones, such as dynamic shift registers. The Macro
Recognition report at the Advanced HDL Synthesis step is formatted the same as
the corresponding report at the HDL Synthesis step.

XST gives overall statistics of recognized macros twice:

• After the HDL Synthesis step

• After the Advanced HDL Synthesis step

XST no longer lists statistics of preserved macros in the final report.

XST Log File Examples
This section includes:

• Recognized Macros XST Log File Example

• Additional Macro Processing XST Log File Example

• XST FPGA Log File Example

• XST CPLD Log File Example

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 529

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=529

Chapter 18: XST Log File

Recogniz ed Macros XST Log File Example
The following log file example shows the set of recognized macros on a block by block
basis, as well as the overall macro statistics after this step.

===
* HDL Synthesis *
===
...
Synthesizing Unit <decode>.

Related source file is "decode.vhd".
Found 16x10-bit ROMfor signal <one_hot>.
Summary:

inferred 1 ROM(s).
Unit <decode> synthesized.

Synthesizing Unit <statmach>.
Related source file is "statmach.vhd".
Found finite state machine <FSM_0> for signal <current_state>.
--
States	6
Transitions	11
Inputs	1
Outputs	2
Clock	CLK (rising_edge)
Reset	RESET (positive)
Reset type	asynchronous
Reset State	clear
Power Up State	clear
Encoding	automatic
Implementation	LUT
--
Summary:

inferred 1 Finite State Machine(s).
Unit <statmach> synthesized.
...
==
HDL Synthesis Report

Macro Statistics
ROMs : 3
16x10-bit ROM : 1
16x7-bit ROM : 2

Counters : 2
4-bit up counter : 2

==
...

Frontmatter
530 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=530

Chapter 18: XST Log File

Additional Macro Processing XST Log File Example
The following XST FPGA log file example shows the additional macro processing done
during the Advanced HDL Synthesis step and the overall macro statistics after this step.

===
* Advanced HDL Synthesis *
===

Analyzing FSM <FSM_0> for best encoding.
Optimizing FSM <MACHINE/current_state/FSM_0> on signal <current_state[1:3]> with gray encoding.

State | Encoding

clear | 000
zero | 001
start | 011
counting | 010
stop | 110
stopped | 111

==
Advanced HDL Synthesis Report

Macro Statistics
FSMs : 1
ROMs : 3
16x10-bit ROM : 1
16x7-bit ROM : 2

Counters : 2
4-bit up counter : 2

Registers : 3
Flip-Flops/Latches : 3

==
...

XST FPGA Log File Example
The following is an example of an XST log file for FPGA synthesis. Release 10.1 - xst
K.31 (nt64)

Copyright (c) 1995-2008 Xilinx, Inc. All rights reserved.

TABLE OF CONTENTS

1) Synthesis Options Summary

2) HDL Compilation

3) Design Hierarchy Analysis

4) HDL Analysis

5) HDL Synthesis

5.1) HDL Synthesis Report

6) Advanced HDL Synthesis

6.1) Advanced HDL Synthesis Report

7) Low Level Synthesis

8) Partition Report

9) Final Report

9.1) Device utilization summary

9.2) Partition Resource Summary

9.3) TIMING REPORT

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 531

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=531

Chapter 18: XST Log File

=============================

* Synthesis Options Summary *

=============================

---- Source Parameters

Input File Name : "stopwatch.prj"

Input Format : mixed

Ignore Synthesis Constraint File : NO

---- Target Parameters

Output File Name : "stopwatch"

Output Format : NGC

Target Device : xc4vlx15-12-sf363

---- Source Options

Top Module Name : stopwatch

Automatic FSM Extraction : YES

FSM Encoding Algorithm : Auto

Safe Implementation : No

FSM Style : lut

RAMExtraction : Yes

RAMStyle : Auto

ROMExtraction : Yes

Mux Style : Auto

Decoder Extraction : YES

Priority Encoder Extraction : YES

Shift Register Extraction : YES

Logical Shifter Extraction : YES

XOR Collapsing : YES

ROMStyle : Auto

Mux Extraction : YES

Resource Sharing : YES

Asynchronous To Synchronous : NO

Use DSP Block : auto

Automatic Register Balancing : No

---- Target Options

Add IO Buffers : YES

Global Maximum Fanout : 500

Add Generic Clock Buffer(BUFG) : 32

Number of Regional Clock Buffers : 16

Register Duplication : YES

Frontmatter
532 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=532

Chapter 18: XST Log File

Slice Packing : YES

Optimize Instantiated Primitives : NO

Use Clock Enable : Auto

Use Synchronous Set : Auto

Use Synchronous Reset : Auto

Pack IO Registers into IOBs : auto

Equivalent register Removal : YES

---- General Options

Optimization Goal : Speed

Optimization Effort : 1

Power Reduction : NO

Library Search Order : stopwatch.lso

Keep Hierarchy : NO

Netlist Hierarchy : as_optimized

RTL Output : Yes

Global Optimization : AllClockNets

Read Cores : YES

Write Timing Constraints : NO

Cross Clock Analysis : NO

Hierarchy Separator : /

Bus Delimiter : <>

Case Specifier : maintain

Slice Utilization Ratio : 100

BRAMUtilization Ratio : 100

DSP48 Utilization Ratio : 100

Verilog 2001 : YES

Auto BRAMPacking : NO

Slice Utilization Ratio Delta : 5

===

===

* HDL Compilation *

===

Compiling verilog file "smallcntr.v" in library work

Compiling verilog file "statmach.v" in library work

Module <smallcntr> compiled

Compiling verilog file "hex2led.v" in library work

Module <statmach> compiled

Compiling verilog file "decode.v" in library work

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 533

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=533

Chapter 18: XST Log File

Module <hex2led> compiled

Compiling verilog file "cnt60.v" in library work

Module <decode> compiled

Compiling verilog file "stopwatch.v" in library work

Module <cnt60> compiled

Module <stopwatch> compiled

No errors in compilation

Analysis of file <"stopwatch.prj"> succeeded.

Compiling vhdl file "C:/xst/watchver/tenths.vhd" in Library work.

Entity <tenths> compiled.

Entity <tenths> (Architecture <tenths_a>) compiled.

Compiling vhdl file "C:/xst/watchver/dcm1.vhd" in Library work.

Entity <dcm1> compiled.

Entity <dcm1> (Architecture <BEHAVIORAL>) compiled.

===

* Design Hierarchy Analysis *

===

Analyzing hierarchy for module <stopwatch> in library <work>.

Analyzing hierarchy for entity <dcm1> in library <work>
(architecture <BEHAVIORAL>).

Analyzing hierarchy for module <statmach> in library <work> with
parameters.

clear = "000001"

counting = "001000"

start = "000100"

stop = "010000"

stopped = "100000"

zero = "000010"

Analyzing hierarchy for module <decode> in library <work>.

Analyzing hierarchy for module <cnt60> in library <work>.

Analyzing hierarchy for module <hex2led> in library <work>.

Analyzing hierarchy for module <smallcntr> in library <work>.

===

* HDL Analysis *

===

Analyzing top module <stopwatch>.

Module <stopwatch> is correct for synthesis.

Analyzing Entity <dcm1> in library <work> (Architecture
<BEHAVIORAL>).

Frontmatter
534 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=534

Chapter 18: XST Log File

Set user-defined property "CAPACITANCE = DONT_CARE"for instance
<CLKIN_IBUFG_INST> in unit <dcm1>.

Set user-defined property "IBUF_DELAY_VALUE = 0" for instance
<CLKIN_IBUFG_INST> in unit <dcm1>.

Set user-defined property "IOSTANDARD = DEFAULT" for instance
<CLKIN_IBUFG_INST> in unit <dcm1>.

Set user-defined property "CLKDV_DIVIDE = 2.0000000000000000" for
instance <DCM_INST> in unit <dcm1>.

Set user-defined property "CLKFX_DIVIDE = 1" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "CLKFX_MULTIPLY = 4" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "CLKIN_DIVIDE_BY_2 = FALSE" for
instance <DCM_INST> in unit <dcm1>.

Set user-defined property "CLKIN_PERIOD = 20.0000000000000000"
for instance <DCM_INST> in unit <dcm1>.

Set user-defined property "CLKOUT_PHASE_SHIFT = NONE" for
instance <DCM_INST> in unit <dcm1>.

Set user-defined property "CLK_FEEDBACK= 1X" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "DESKEW_ADJUST= SYSTEM_SYNCHRONOUS"
for instance <DCM_INST> in unit <dcm1>.

Set user-defined property "DFS_FREQUENCY_MODE= LOW" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "DLL_FREQUENCY_MODE= LOW" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "DSS_MODE= NONE" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "DUTY_CYCLE_CORRECTION= TRUE" for
instance <DCM_INST> in unit <dcm1>.

Set user-defined property "FACTORY_JF = C080" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "PHASE_SHIFT = 0" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "SIM_MODE = SAFE" for instance
<DCM_INST> in unit <dcm1>.

Set user-defined property "STARTUP_WAIT = TRUE" for instance
<DCM_INST> in unit <dcm1>.

Entity <dcm1> analyzed. Unit <dcm1> generated.

Analyzing module <statmach> in library <work>.

clear = 6’b000001

counting = 6’b001000

start = 6’b000100

stop = 6’b010000

stopped = 6’b100000

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 535

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=535

Chapter 18: XST Log File

zero = 6’b000010

Module <statmach> is correct for synthesis.

Analyzing module <decode> in library <work>.

Module <decode> is correct for synthesis.

Analyzing module <cnt60> in library <work>.

Module <cnt60> is correct for synthesis.

Analyzing module <smallcntr> in library <work>.

Module <smallcntr> is correct for synthesis.

Analyzing module <hex2led> in library <work>.

Module <hex2led> is correct for synthesis.

===

* HDL Synthesis *

===

Performing bidirectional port resolution...

Synthesizing Unit <statmach>.

Related source file is "statmach.v".

Found finite state machine <FSM_0> for signal <current_state>.

| States | 6 |

| Transitions | 15 |

| Inputs | 2 |

| Outputs | 2 |

| Clock | CLK (rising_edge) |

| Reset | RESET (positive) |

| Reset type | asynchronous |

| Reset State | 000001 |

| Encoding | automatic |

| Implementation | LUT |

Found 1-bit register for signal <CLKEN>.

Found 1-bit register for signal <RST>.

Summary:

inferred 1 Finite State Machine(s).

inferred 2 D-type flip-flop(s).

Unit <statmach> synthesized.

Synthesizing Unit <decode>.

Related source file is "decode.v".

Found 16x10-bit ROMfor signal <ONE_HOT>.

Frontmatter
536 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=536

Chapter 18: XST Log File

Summary:

inferred 1 ROM(s).

Unit <decode> synthesized.

Synthesizing Unit <hex2led>.

Related source file is "hex2led.v".

Found 16x7-bit ROMfor signal <LED>.

Summary:

inferred 1 ROM(s).

Unit <hex2led> synthesized.

Synthesizing Unit <smallcntr>.

Related source file is "smallcntr.v".

Found 4-bit up counter for signal <QOUT>.

Summary:

inferred 1 Counter(s).

Unit <smallcntr> synthesized.

Synthesizing Unit <dcm1>.

Related source file is "C:/xst/watchver/dcm1.vhd".

Unit <dcm1> synthesized.

Synthesizing Unit <cnt60>.

Related source file is "cnt60.v".

Unit <cnt60> synthesized.

Synthesizing Unit <stopwatch>.

Related source file is "stopwatch.v".

Unit <stopwatch> synthesized.

=======================================

HDL Synthesis Report

Macro Statistics

ROMs : 3

16x10-bit ROM: 1

16x7-bit ROM: 2

Counters : 2

4-bit up counter : 2

Registers : 2

1-bit register : 2

===

===

* Advanced HDL Synthesis *

===

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 537

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=537

Chapter 18: XST Log File

Analyzing FSM <FSM_0> for best encoding.

Optimizing FSM <MACHINE/current_state/FSM> on signal
<current_state[1:3]> with sequential encoding.

State | Encoding

000001 | 000

000010 | 001

000100 | 010

001000 | 011

010000 | 100

100000 | 101

Loading device for application Rf_Device from file ’4vlx15.nph’
in environment C:\xilinx.

Executing edif2ngd -noa "tenths.edn" "tenths.ngo"

Release 10.1 - edif2ngd K.31 (nt64)

Copyright (c) 1995-2008 Xilinx, Inc. All rights reserved.

INFO:NgdBuild - Release 10.1 edif2ngd K.31 (nt64)

INFO:NgdBuild - Copyright (c) 1995-2008 Xilinx, Inc. All rights
reserved.

Writing module to "tenths.ngo"...

Reading core <tenths_c_counter_binary_v8_0_xst_1.ngc>.

Loading core <tenths_c_counter_binary_v8_0_xst_1> for timing and
area information for instance <BU2>.

Loading core <tenths> for timing and area information for
instance <xcounter>.

===

Advanced HDL Synthesis Report

Macro Statistics

ROMs : 3

16x10-bit ROM: 1

16x7-bit ROM: 2

Counters : 2

4-bit up counter : 2

Registers : 5

Flip-Flops : 5

===

===

* Low Level Synthesis *

Frontmatter
538 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=538

Chapter 18: XST Log File

===

Optimizing unit <stopwatch> ...

Mapping all equations...

Building and optimizing final netlist ...

Found area constraint ratio of 100 (+ 5) on block stopwatch,
actual ratio is 0.

Number of LUT replicated for flop-pair packing : 0

Final Macro Processing ...

===

Final Register Report

Macro Statistics

Registers : 13

Flip-Flops : 13

===

===

* Partition Report *

===

Partition Implementation Status

No Partitions were found in this design.

===

* Final Report *

===

Final Results

RTL Top Level Output File Name : stopwatch.ngr

Top Level Output File Name : stopwatch

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : NO

Design Statistics

IOs : 27

Cell Usage :

BELS : 70

GND : 2

INV : 1

LUT1 : 3

LUT2 : 1

LUT2_L : 1

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 539

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=539

Chapter 18: XST Log File

LUT3 : 8

LUT3_D : 1

LUT3_L : 1

LUT4 : 37

LUT4_D : 1

LUT4_L : 4

MUXCY: 3

MUXF5 : 2

VCC : 1

XORCY: 4

FlipFlops/Latches : 17

FDC : 13

FDCE : 4

Clock Buffers : 1

BUFG : 1

IO Buffers : 27

IBUF : 2

IBUFG : 1

OBUF : 24

DCM_ADVs: 1

DCM_ADV: 1

===

Device utilization summary:

Selected Device : 4vlx15sf363-12

Number of Slices: 32 out of 6144 0%

Number of Slice Flip Flops: 17 out of 12288 0%

Number of 4 input LUTs: 58 out of 12288 0%

Number of IOs: 27

Number of bonded IOBs: 27 out of 240 11%

Number of GCLKs: 1 out of 32 3%

Number of DCM_ADVs: 1 out of 4 25%

Partition Resource Summary:

No Partitions were found in this design.

===

Frontmatter
540 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=540

Chapter 18: XST Log File

TIMING REPORT

NOTE: THESE TIMING NUMBERSARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATETIMING INFORMATIONPLEASE REFER TO THE TRACE REPORT

GENERATEDAFTER PLACE-and-ROUTE.

Clock Information:

-----------------------------------+-----------

Clock Signal | Clock buffer (FF name) | Load |

-----------------------------------+-----------

CLK | Inst_dcm1/DCM_INST:CLK0| 17 |

-----------------------------------+-----------

Asynchronous Control Signals Information:

--

-----------------------------------+---------------

Control Signal | Buffer (FF name) | Load |

-----------------------------------+---------------

MACHINE/RST(MACHINE/RST:Q) | NONE(sixty/lsbcount/QOUT_1)| 8 |

RESET | IBUF | 5 |

sixty/msbclr(sixty/msbclr_f5:O) | NONE(sixty/msbcount/QOUT_0)|
4 |

-----------------------------------+---------------

Timing Summary:

Speed Grade: -12

Minimum period: 2.282ns (Maximum Frequency: 438.212MHz)

Minimum input arrival time before clock: 1.655ns

Maximum output required time after clock: 4.617ns

Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

===

Timing constraint: Default period analysis for Clock ’CLK’

Clock period: 2.282ns (frequency: 438.212MHz)

Total number of paths / destination ports: 134 / 21

Delay: 2.282ns (Levels of Logic = 4)

Source: xcounter/BU2/U0/q_i_1 (FF)

Destination: sixty/msbcount/QOUT_1 (FF)

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 541

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=541

Chapter 18: XST Log File

Source Clock: CLK rising

Destination Clock: CLK rising

Data Path: xcounter/BU2/U0/q_i_1 to sixty/msbcount/QOUT_1

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

-- ------------

FDCE:C->Q 12 0.272 0.672 U0/q_i_1 (q(1))

LUT4:I0->O 11 0.147 0.492 U0/thresh0_i_cmp_eq00001 (thresh0)

end scope: ’BU2’

end scope: ’xcounter’

LUT4_D:I3->O 1 0.147 0.388 sixty/msbce (sixty/msbce)

LUT3:I2->O 1 0.147 0.000 sixty/msbcount/QOUT_1_rstpot
(sixty/msbcount/QOUT_1_rstpot)

FDC:D 0.017 sixty/msbcount/QOUT_1

--

Total 2.282ns (0.730ns logic, 1.552ns route)

(32.0% logic, 68.0% route)

===

Timing constraint: Default OFFSET IN BEFOREfor Clock ’CLK’

Total number of paths / destination ports: 4 / 3

Offset: 1.655ns (Levels of Logic = 3)

Source: STRTSTOP(PAD)

Destination: MACHINE/current_state_FSM_FFd3 (FF)

Destination Clock: CLK rising

Data Path: STRTSTOPto MACHINE/current_state_FSM_FFd3

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

-- ------------

IBUF:I->O 4 0.754 0.446 STRTSTOP_IBUF (STRTSTOP_IBUF)

LUT4:I2->O 1 0.147 0.000 MACHINE/current_state_FSM_FFd3-In_F
(N48)

MUXF5:I0->O 1 0.291 0.000 MACHINE/current_state_FSM_FFd3-In
(MACHINE/current_state_FSM_FFd3-In)

FDC:D 0.017 MACHINE/current_state_FSM_FFd3

--

Total 1.655ns (1.209ns logic, 0.446ns route)

(73.0% logic, 27.0% route)

===

Frontmatter
542 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=542

Chapter 18: XST Log File

Timing constraint: Default OFFSET OUT AFTER for Clock ’CLK’

Total number of paths / destination ports: 96 / 24

Offset: 4.617ns (Levels of Logic = 2)

Source: sixty/lsbcount/QOUT_1 (FF)

Destination: ONESOUT<6>(PAD)

Source Clock: CLK rising

Data Path: sixty/lsbcount/QOUT_1 to ONESOUT<6>

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

-- ------------

FDC:C->Q 13 0.272 0.677 sixty/lsbcount/QOUT_1
(sixty/lsbcount/QOUT_1)

LUT4:I0->O 1 0.147 0.266 lsbled/Mrom_LED21 (lsbled/Mrom_LED2)

OBUF:I->O 3.255 ONESOUT_2_OBUF(ONESOUT<2>)

--

Total 4.617ns (3.674ns logic, 0.943ns route)

(79.6% logic, 20.4% route)

===

Total REAL time to Xst completion: 20.00 secs

Total CPU time to Xst completion: 19.53 secs

-->

Total memory usage is 333688 kilobytes

Number of errors : 0 (0 filtered)

)Number of warnings : 0 (0 filtered

Number of infos : 1 (0 filtered)

XST CPLD Log File Example
The following is an example of an XST log file for CPLD
synthesis.

Release 10.1 - xst K.31 (nt64)

Copyright (c) 1995-2008 Xilinx, Inc. All rights reserved.

TABLE OF CONTENTS

1) Synthesis Options Summary

2) HDL Compilation

3) Design Hierarchy Analysis

4) HDL Analysis

5) HDL Synthesis

5.1) HDL Synthesis Report

6) Advanced HDL Synthesis

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 543

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=543

Chapter 18: XST Log File

6.1) Advanced HDL Synthesis Report

7) Low Level Synthesis

8) Partition Report

9) Final Report

==

* Synthesis Options Summary *

==

---- Source Parameters

Input File Name : "stopwatch.prj"

Input Format : mixed

Ignore Synthesis Constraint File : NO

---- Target Parameters

Output File Name : "stopwatch"

Output Format : NGC

Target Device : CoolRunner2 CPLDs

---- Source Options

Top Module Name : stopwatch

Automatic FSM Extraction : YES

FSM Encoding Algorithm : Auto

Safe Implementation : No

Mux Extraction : YES

Resource Sharing : YES

---- Target Options

Add IO Buffers : YES

MACROPreserve : YES

XOR Preserve : YES

Equivalent register Removal : YES

---- General Options

Optimization Goal : Speed

Optimization Effort : 1

Library Search Order : stopwatch.lso

Keep Hierarchy : YES

Netlist Hierarchy : as_optimized

RTL Output : Yes

Hierarchy Separator : /

Bus Delimiter : <>

Case Specifier : maintain

Verilog 2001 : YES

Frontmatter
544 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=544

Chapter 18: XST Log File

---- Other Options

Clock Enable : YES

wysiwyg : NO

==

==

* HDL Compilation *

==

Compiling verilog file "smallcntr.v" in library work

Compiling verilog file "tenths.v" in library work

Module <smallcntr> compiled

Compiling verilog file "statmach.v" in library work

Module <tenths> compiled

Compiling verilog file "hex2led.v" in library work

Module <statmach> compiled

Compiling verilog file "decode.v" in library work

Module <hex2led> compiled

Compiling verilog file "cnt60.v" in library work

Module <decode> compiled

Compiling verilog file "stopwatch.v" in library work

Module <cnt60> compiled

Module <stopwatch> compiled

No errors in compilation

Analysis of file <"stopwatch.prj"> succeeded.

==

* Design Hierarchy Analysis *

==

Analyzing hierarchy for module <stopwatch> in library <work>.

Analyzing hierarchy for module <statmach> in library <work> with
parameters.

clear = "000001"

counting = "001000"

start = "000100"

stop = "010000"

stopped = "100000"

zero = "000010"

Analyzing hierarchy for module <tenths> in library <work>.

Analyzing hierarchy for module <decode> in library <work>.

Analyzing hierarchy for module <cnt60> in library <work>.

Analyzing hierarchy for module <hex2led> in library <work>.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 545

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=545

Chapter 18: XST Log File

Analyzing hierarchy for module <smallcntr> in library <work>.

==

* HDL Analysis *

==

Analyzing top module <stopwatch>.

Module <stopwatch> is correct for synthesis.

Analyzing module <statmach> in library <work>.

clear = 6’b000001

counting = 6’b001000

start = 6’b000100

stop = 6’b010000

stopped = 6’b100000

zero = 6’b000010

Module <statmach> is correct for synthesis.

Analyzing module <tenths> in library <work>.

Module <tenths> is correct for synthesis.

Analyzing module <decode> in library <work>.

Module <decode> is correct for synthesis.

Analyzing module <cnt60> in library <work>.

Module <cnt60> is correct for synthesis.

Analyzing module <smallcntr> in library <work>.

Module <smallcntr> is correct for synthesis.

Analyzing module <hex2led> in library <work>.

Module <hex2led> is correct for synthesis.

==

* HDL Synthesis *

==

Performing bidirectional port resolution...

Synthesizing Unit <statmach>.

Related source file is "statmach.v".

Found finite state machine <FSM_0> for signal <current_state>.

| States | 6 |

| Transitions | 15 |

| Inputs | 2 |

| Outputs | 2 |

| Clock | CLK (rising_edge) |

| Reset | RESET (positive) |

Frontmatter
546 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=546

Chapter 18: XST Log File

| Reset type | asynchronous |

| Reset State | 000001 |

| Encoding | automatic |

| Implementation | automatic |

Found 1-bit register for signal <CLKEN>.

Found 1-bit register for signal <RST>.

Summary:

inferred 1 Finite State Machine(s).

inferred 2 D-type flip-flop(s).

Unit <statmach> synthesized.

Synthesizing Unit <tenths>.

Related source file is "tenths.v".

Found 4-bit up counter for signal <Q>.

Summary:

inferred 1 Counter(s).

Unit <tenths> synthesized.

Synthesizing Unit <decode>.

Related source file is "decode.v".

Found 16x10-bit ROMfor signal <ONE_HOT>.

Summary:

inferred 1 ROM(s).

.Unit <decode> synthesized

Synthesizing Unit <hex2led>.

Related source file is "hex2led.v".

Found 16x7-bit ROMfor signal <LED>.

Summary:

inferred 1 ROM(s).

Unit <hex2led> synthesized.

Synthesizing Unit <smallcntr>.

Related source file is "smallcntr.v".

Found 4-bit up counter for signal <QOUT>.

Summary:

inferred 1 Counter(s).

Unit <smallcntr> synthesized.

Synthesizing Unit <cnt60>.

Related source file is "cnt60.v".

Unit <cnt60> synthesized.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 547

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=547

Chapter 18: XST Log File

Synthesizing Unit <stopwatch>.

Related source file is "stopwatch.v".

Found 1-bit register for signal <strtstopinv>.

Summary:

inferred 1 D-type flip-flop(s).

Unit <stopwatch> synthesized.

==

HDL Synthesis Report

Macro Statistics

ROMs : 3

16x10-bit ROM: 1

16x7-bit ROM: 2

Counters : 3

4-bit up counter : 3

Registers : 3

1-bit register : 3

==

==

* Advanced HDL Synthesis *

==

Analyzing FSM <FSM_0> for best encoding.

Optimizing FSM <MACHINE/current_state/FSM> on signal
<current_state[1:3]> with sequential encoding.

State | Encoding

000001 | 000

000010 | 001

000100 | 010

001000 | 011

010000 | 100

100000 | 101

==

Advanced HDL Synthesis Report

Macro Statistics

ROMs : 3

16x10-bit ROM: 1

16x7-bit ROM: 2

Frontmatter
548 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=548

Chapter 18: XST Log File

Counters : 3

4-bit up counter : 3

Registers : 6

Flip-Flops : 6

==

==

* Low Level Synthesis *

==

Optimizing unit <stopwatch> ...

Optimizing unit <statmach> ...

Optimizing unit <decode> ...

Optimizing unit <hex2led> ...

Optimizing unit <tenths> ...

Optimizing unit <smallcntr> ...

Optimizing unit <cnt60> ...

==

* Partition Report *

==

Partition Implementation Status

No Partitions were found in this design.

==

* Final Report *

==

Final Results

RTL Top Level Output File Name : stopwatch.ngr

Top Level Output File Name : stopwatch

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : YES

Target Technology : CoolRunner2 CPLDs

Macro Preserve : YES

XOR Preserve : YES

Clock Enable : YES

wysiwyg : NO

Design Statistics

IOs : 28

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 549

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=549

Chapter 18: XST Log File

Cell Usage :

BELS : 413

AND2 : 120

AND3 : 10

AND4 : 6

INV : 174

OR2 : 93

OR3 : 1

XOR2 : 9

FlipFlops/Latches : 18

FD : 1

FDC : 5

FDCE : 12

IO Buffers : 28

IBUF : 4

OBUF : 24

==

Total REAL time to Xst completion: 7.00 secs

Total CPU time to Xst completion: 6.83 secs

-->

Total memory usage is 196636 kilobytes

Number of errors : 0 (0 filtered)

Number of warnings : 0 (0 filtered)

Number of infos : 0 (0 filtered)

Frontmatter
550 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=550

Chapter 19

XST Naming Conventions
This chapter discusses XST Naming Conventions, and includes:

• XST Net Naming Conventions

• XST Instance Naming Conventions

• XST Name Generation Control

XST Net Naming Conventions
The following XST net naming conventions are listed in order of naming priority:

1. Maintain external pin names.

2. Keep hierarchy in signal names, using forward slashes (/) or underscores (_) as
hierarchy designators.

3. Maintain output signal names of registers, including state bits. Use the hierarchical
name from the level where the register was inferred.

4. Ensure that output signals of clock buffers get _clockbuffertype (such as _BUFGP
or _IBUFG) follow the clock signal name.

5. Maintain input nets to registers and tristates names.

6. Maintain names of signals connected to primitives and black boxes.

7. Name output net names of IBUFs using the form net_name_IBUF. For example, for
an IBUF with an output net name of DIN , the output IBUF net name is DIN_IBUF .

8. Name input net names to OBUFs using the form net_name_OBUF. For example,
for an OBUF with an input net name of DOUT, the input OBUF net name is
DOUT_OBUF.

9. Base names for internal (combinatorial) nets on user HDL signal names where
possible.

XST Instance Naming Conventions
Xilinx® highly recommends that you use the following instance naming conventions.

To use instance naming conventions from previous releases of ISE® Design Suite, insert
the following command line option in the XST command line:

-old_instance_names 1

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 551

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=551

Chapter 19: XST Naming Conventions

The following rules are listed in order of naming priority:

1. Keep hierarchy in instance names, using forward slashes (/) or underscores (_) as
hierarchy designators.

When instance names are generated from VHDL or Verilog generate statements,
labels from generate statements are used in composition of instance names.

For example, for the following VHDL generate statement:

i1_loop: for i in 1 to 10 generate
inst_lut:LUT2 generic map (INIT => "00")

XST generates the following instance names for LUT2:

i1_loop[1].inst_lut
i1_loop[2].inst_lut
i1_loop[9].inst_lut
...
i1_loop[10].inst_lut

2. Name register instances, including state bits, for the output signal.

3. Name clock buffer instances _clockbuffertype (such as _BUFGP or _IBUFG) after
the output signal.

4. Maintain instantiation instance names of black boxes.

5. Maintain instantiation instance names of library primitives.

6. Name input and output buffers using the form _IBUF or _OBUF after the pad name.

7. Name Output instance names of IBUFs using the form instance_name_IBUF.

8. Name input instance names to OBUFs using the form instance_name_OBUF.

XST Name Generation Contr ol
The following constraints control how names are written.

• Hierarchy Separator (-hierarchy_separator)

• Bus Delimiter (-bus_delimiter)

• Case (-case)

• Duplication Suffix (-duplication_suffix)

Define in ISE Design Suite in:

• Synthesis Properties, OR

• The command line

For more information, see:

XST Design Constraints

Frontmatter
552 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=552

Chapter 20

XST Command Line Mode
This chapter discusses XST Command Line Mode, and includes:

• About XST Command Line Mode
• Launching XST in Command Line Mode Using the XST Shell
• Launching XST in Command Line Mode Using a Script File
• Running XST in Script Mode (VHDL)
• Running XST in Script Mode (Verilog)
• Running XST in Script Mode (Mixed Language)
• Setting Up an XST Script Using the Run Command
• Setting Up an XST Script Using the Set Command
• Setting Up an XST Script Using the Elaborate Command
• Synthesizing VHDL Designs Using Command Line Mode
• Synthesizing Verilog Designs Using Command Line Mode
• Synthesizing Mixed Designs Using Command Line Mode

About XST Command Line Mode
This section discusses About XST Command Line Mode, and includes:
• Running XST in Command Line Mode
• XST File Types in Command Line Mode
• Temporary Files in Command Line Mode
• Names With Spaces in Command Line Mode

Running XST in Command Line Mode
To run XST in command line mode:
• On a workstation, run xst
• On a PC, run xst.exe

XST File Types in Command Line Mode
XST generates the following files types in command line mode:
• Design output file, NGC (.ngc)

This file is generated in the current output directory (see the -ofn option).
• Register Transfer Level (RTL) netlist for RTL and Technology Viewers (.ngr)
• Synthesis log file (.srp)
• Temporary files

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 553

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=553

Chapter 20: XST Command Line Mode

Temporar y Files in Command Line Mode
Temporary files are generated in the XST temp directory in command line mode. By
default, the XST temp directory is:
• Workstations

/tmp

• Windows
The directory specified by either the TEMP or TMP environment variable

Use set -tmpdir <directory> to change the XST temp directory.

VHDL or Verilog compilation files are generated in the temp directory. The default temp
directory is the xst subdirectory of the current directory.

Tip Xilinx® recommends that you clean the XST temp directory regularly. The temp
directory contains the files resulting from the compilation of all VHDL and Verilog files
during all XST sessions. Eventually, the number of files stored in the temp directory may
severely impact CPU performance. XST does not automatically clean the temp directory.

Names With Spaces in Command Line Mode
XST supports file and directory names with spaces in command line mode.

Enclose file or directory names containing spaces in double quotes:

"C:\my project"

Enclose multiple directories in braces:

-vlgincdir {"C:\my project" C:\temp}

Launc hing XST in Command Line Mode Using the XST Shell
Type xst to enter directly into an XST shell. Enter your commands and execute them.
To run synthesis, specify a complete command with all required options. XST does not
accept a mode where you can first enter set option_1, then set option_2, and then enter
run.

Since all options are set at the same time, Xilinx® recommends that you use a script file.

Launc hing XST in Command Line Mode Using a Script File
Store your commands in a separate script file and run them all at once. To execute your
script file, run the following workstation or PC command:

xst -ifn in_file_name -ofn out_file_name -intstyle {silent|ise|xflow}

The -ofn option is not mandatory. If you omit it, XST automatically generates a log file
with the file extension .srp, and all messages display on the screen. Use the following to
limit the number of messages printed to the screen:
• The -intstyle silent option
• The XIL_XST_HIDEMESSAGES environment variable
• The message filter feature in ISE® Design Suite

For more information, see:

Reducing the Size of the XST Log File

For example, assume that the following text is contained in a file foo.scr :

Frontmatter
554 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=554

Chapter 20: XST Command Line Mode

run -ifn tt1.prj -top tt1 -ifmt MIXED -opt_mode SPEED -opt_level 1 -ofn tt1.ngc -p
<parttype>

This script file can be executed under XST using the following command:

xst -ifn foo.scr

You can also generate a log file with the following command:

xst -ifn foo.scr -ofn foo.log

A script file can be run either using xst -ifn script name, or executed under the XST
prompt, by using the script script_name command.

script foo.scr

If you make a mistake in an XST command option, or its value, XST issues an error
message and stops execution. For example, if in the previous script example VHDL is
incorrectly spelled (“VHDLL”), XST gives the following error message:

--> ERROR:Xst:1361 - Syntax error in command run for option
"-ifmt" : parameter "VHDLL" is not allowed.

If you created your project using ISE Design Suite, and have run XST at least once from
ISE Design Suite, you can switch to XST command line mode and use the script and
project files that were created by ISE Design Suite.

To run XST from the command line, run the following command from project directory:

xst -ifn <top_level_block>.xst -ofn <top_level_block>.syr

Setting Up an XST Script Using the Run Command
This section discusses Setting Up an XST Script Using the Run Command, and includes:
• About the Run Command
• Writing a Script File
• XST Specific Non-Timing Related Options
• Online Help
• Supported Families
• Commands for a Specific Device
• Run Command Options and Values (Virtex-5 Devices)

About the Run Command
The run command:
• Is the main synthesis command.
• Allows you to run synthesis in its entirety, beginning with the parsing of the

Hardware Description Language (HDL) files, and ending with the generation
of the final netlist.

• Can be used only once per script file.
• Begins with a keyword run, which is followed by a set of options and its values:

run option_1 value option_2 value ...

Note Xilinx does not support or recommend the use of multiple run commands in a
single script.

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 555

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=555

Chapter 20: XST Command Line Mode

Writing a Script File
Observe the following rules when writing a script file:
• Place each option-value pair on a separate line.
• Use the pound (#) character to comment out options, or place additional comments

in the script file.

run
option_1 value
option_2 value
option_3 value

• The first line contains only the run command without any options.
• There are no blank lines in the middle of the command.
• Each option name begins with dash. For example: -ifn, -ifmt, -ofn.
• Each option has one value. There are no options without a value.
• The value for a given option can be one of the following:

– Predefined by XST (for instance, yes or no)
– Any string (for instance, a file name or a name of the top level entity). Options

such as -vlgincdir accept several directories as values. Separate the directories
by spaces, and enclose them in braces ({}):

-vlgincdir {c:\vlg1 c:\vlg2}

For more information, see Names With Spaces in Command Line Mode.
– An integer

XST Specific Non-Timing Related Options
The following topics summarize XST specific non-timing related options, including
run command options and their values:
• XST Specific Non-Timing Options
• XST Specific Non-Timing Options: XST Command Line Only

Online Help
XST provides online Help from the command line. The following information is
available by typing help at the command line. The XST help function provides a list of
supported families, available commands, options and their values for each supported
device family.
To see a detailed explanation of an XST command, use the following syntax.

help -arch family_name -command command_name

where:
• family_name is a list of supported Xilinx® families in the current version of XST
• command_name is one of the following XST commands:

– run
– set
– elaborate
– time

Frontmatter
556 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=556

Chapter 20: XST Command Line Mode

Suppor ted Families
To see a list of supported families, type help at the command line prompt with no
argument. XST issues the following message.

--> help
ERROR:Xst:1356 - Help : Missing "-arch <family>".
Please specify what family you want to target
available families:

acr2
aspartan3
aspartan3a
aspartan3adsp
aspartan3e
avirtex4
fpgacore
qrvirtex4
qvirtex4
spartan3
spartan3a
spartan3adsp
spartan3e
virtex4
virtex5
xa9500xl
xbr
xc9500
xc9500xl
xpla3

Commands for a Specific Device
To see a list of commands for a specific device, type the following at the command
line prompt with no argument.

help -arch family_name

For example:

help -arch virtex

Run Command Options and Values (Vir tex-5 Devices)
Use the following command to see a list of options and values for the run command for
Virtex®-5 devices.

--> help -arch virtex5 -command run

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 557

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=557

Chapter 20: XST Command Line Mode

This command gives the following output:

-mult_style : Multiplier Style
block / lut / auto / pipe_lut

-bufg : Maximum Global Buffers
*

-bufgce : BUFGCEExtraction
YES / NO

-decoder_extract : Decoder Extraction
YES / NO

....

-ifn : *
-ifmt : Mixed / VHDL / Verilog
-ofn : *
-ofmt : NGC / NCD
-p : *
-ent : *
-top : *
-opt_mode : AREA / SPEED
-opt_level : 1 / 2
-keep_hierarchy : YES / NO
-vlgincdir : *
-verilog2001 : YES / NO
-vlgcase : Full / Parallel / Full-Parallel
....

Setting Up an XST Script Using the Set Command
XST recognizes the set command.

For more information, see:

XST Design Constraints

Set Command Options
Option Description Values
-tmpdir Location of all temporary files

generated by XST during a session
Any valid path to a directory

-xsthdpdir Work Directory — location of all
files resulting from VHDL or Verilog
compilation

Any valid path to a directory

-xsthdpini HDL Library Mapping File (.INI File) file_name

Setting Up an XST Script Using the Elaborate Command
Use the elaborate command to:

• Pre-compile VHDL and Verilog files in a specific library, or
• Verify Verilog files without synthesizing the design

Since compilation is included in the run, the elaborate command is optional.

For more information, see:

XST Design Constraints

Frontmatter
558 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=558

Chapter 20: XST Command Line Mode

Elaborate Command Options
Option Description Values
-ifn Project File file_name

-ifmt Format vhdl, verilog, mixed

-lso Library Search Order file_name.lso

-work_lib Work Library for Compilation — library
where the top level block was compiled

name, work

-verilog2001 Verilog-2001 yes, no

-vlgpath Verilog Search Paths Any valid path to directories separated by spaces, and
enclosed in double quotes ("...")

-vlgincdir Verilog Include Directories Any valid path to directories separated by spaces, and
enclosed in braces ({...})

Running XST in Script Mode (VHDL)
To run XST in script mode in VHDL:

1. Open a new file named stopwatch.xst in the current directory.

2. Put the previously executed XST shell command into this file and save it.

run -ifn watchvhd.prj -ifmt mixed -top stopwatch -ofn watchvhd.ngc
-ofmt NGC -p xc5vfx30t-2-ff324 -opt_mode Speed -opt_level 1

3. From the tcsh or other shell, enter the following command to begin synthesis:

xst -ifn stopwatch.xst

Files Created During Run (VHDL)
During this run, XST creates the following files.

• watchvhd.ngc

An NGC file ready for the implementation tools

• xst.srp

The XST log file

Saving XST Messages in a Diff erent Log File (VHDL)
To save XST messages in a different log file, run the following command:

xst -ifn stopwatch.xst -ofn <filename>.log

Following is an example using watchvhd.log :

xst -ifn stopwatch.xst -ofn watchvhd.log

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 559

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=559

Chapter 20: XST Command Line Mode

For this example, stopwatch.xst appears as follows:

run
-ifn watchvhd.prj
-ifmt mixed
-top stopwatch
-ofn watchvhd.ngc
-ofmt NGC
-p xc5vfx30t-2-ff324
-opt_mode Speed
-opt_level 1

Improving Readability (VHDL)
Observe the following rules to improve the readability of the stopwatch.xst file,
especially if you use many options to run synthesis:

• Each option with its value is on a separate line.

• The first line contains only the run command without any options.

• There are no blank lines in the middle of the command.

• Each line except the first begins with a dash.

Leading Spaces (VHDL)
An error occurs if a leading space is entered in the value field.

ISE® Design Suite automatically strips leading spaces from a process value. Accordingly,
the .xst file written by ISE Design Suite is not affected by leading spaces.

If you hand-edit the .xst file and run XST from the command line, manually delete
any leading spaces.

Frontmatter
560 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=560

Chapter 20: XST Command Line Mode

Running XST in Script Mode (Verilog)
This section discusses Running XST in Script Mode (Verilog), and includes:
• How to Run XST in Script Mode (Verilog)
• Files Created During Run (Verilog)
• Saving XST Messages in a Different Log File (Verilog)
• Improving Readability (Verilog)

How to Run XST in Script Mode (Verilog)
To run XST in script mode:
1. Open a new file called design.xst in the current directory. Put the previously

executed XST shell command into this file and save it.

run

-ifn watchver.prj

-ifmt mixed

-ofn watchver.ngc

-ofmt NGC

-p xc5vfx30t-2-ff324

-opt_mode Speed

-opt_level 1

2. From the tcsh or other shell, enter the following command to begin synthesis.

xst -ifn design.xst

For the previous command example, the design.xst file should look like the following:

run
-ifn watchver.prj
-ifmt mixed
-top stopwatch
-ofn watchver.ngc
-ofmt NGC
-p xc5vfx30t-2-ff324
-opt_mode Speed
-opt_level 1

Files Created During Run (Verilog)
During this run, XST creates the following files.
• watchvhd.ngc

An NGC file ready for the implementation tools
• design.srp

The XST script log file

Saving XST Messages in a Diff erent Log File (Verilog)
To save XST messages in a different log file (for example, watchver.log) , run:

xst -ifn design.xst -ofn watchver.log

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 561

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=561

Chapter 20: XST Command Line Mode

Improving Readability (Verilog)
To improve the readability of the design.xst file, especially if you use many options
to run synthesis, place each option with its value on a separate line. Observe the
following rules:

• The first line contains only the run command without any options.

• There are no blank lines in the middle of the command.

• Each line (except the first one) begins with a dash (-).

Frontmatter
562 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=562

Chapter 20: XST Command Line Mode

Running XST in Script Mode (Mixed Langua ge)
This section discusses Running XST in Script Mode (Mixed Language), and includes:
• How to Run XST in Script Mode (Mixed Language)
• Files Created During Run
• Saving XST Messages in a Different Log File (Mixed Language)
• Improving Readability (Mixed Language)

How to Run XST in Script Mode (Mixed Langua ge)
To run XST in script mode:
1. Open a new file called stopwatch.xst in the current directory. Put the previously

executed XST shell command into this file and save it.

run

-ifn watchver.prj

-ifmt mixed

-top stopwatch

-ofn watchver.ngc

-ofmt NGC

-ofn watchver.ngc

-ofmt NGC

-p xc5vfx30t-2-ff324

-opt_mode Speed

-opt_level 1

2. From the tcsh or other shell, enter the following command to begin synthesis.

xst -ifn stopwatch.xst

For the previous command example, the stopwatch.xst file should look like:

run
-ifn watchver.prj
-ifmt mixed
-ofn watchver.ngc
-ofmt NGC
-p xc5vfx30t-2-ff324
-opt_mode Speed
-opt_level 1

Files Created During Run (Mixed Langua ge)
During this run, XST creates the following files:
• watchver.ngc

An NGC file ready for the implementation tools
• xst.srp

The XST script log file

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 563

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=563

Chapter 20: XST Command Line Mode

Saving XST Messages in a Diff erent Log File (Mixed Langua ge)
To save XST messages to a different log file (for example, watchver.log) run:

xst -ifn stopwatch.xst -ofn <filename>.log

Following is an example using watchver.log :

xst -ifn stopwatch.xst -ofn watchver.log

Improving Readability (Mixed Langua ge)
To improve the readability of the stopwatch.xst file, especially if you use many
options to run synthesis, place each option with its value on a separate line. Observe
the following rules:

• The first line contains only the run command without any options.

• There are no blank lines in the middle of the command.

• Each line (except the first one) begins with a dash.

Synthesizing VHDL Designs Using Command Line Mode
This section discusses Synthesizing VHDL Designs Using Command Line Mode, and
includes:

• VHDL Design Files and Entities

• Example Using Command Line Mode

• Synthesizing the Design

• Library Names

• XST File Order Warning

The following coding example shows how to synthesize a hierarchical VHDL design for
a Virtex® device using command line mode.

VHDL Design Files and Entities
The example uses a VHDL design called watchvhd . The files for watchvhd are
located in the ISEexamples\watchvhd directory of the ISE® Design Suite installation
directory.

This design contains seven entities:

• stopwatch

• statmach

• tenths (a CORE Generator™ software core)

• decode

• smallcntr

• cnt60

• hex2led

Frontmatter
564 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=564

Chapter 20: XST Command Line Mode

Example Using Command Line Mode
Following is an example of how to synthesize a VHDL design using command line mode.

1. Create a new directory named vhdl_m .

2. Copy the following files from the ISEexamples\watchvhd directory of the ISE
Design Suite installation directory to the newly created vhdl_m directory.

• stopwatch.vhd

• statmach.vhd

• decode.vhd

• cnt60.vhd

• smallcntr.vhd

• tenths.vhd

• hex2led.vhd

3. To synthesize the design, which is now represented by seven VHDL files, create
a project.

Synthesizing the Design
XST supports mixed VHDL and Verilog projects. Xilinx® recommends that you use the
new project format, whether or not it is a real mixed language project. This example uses
the new project format. To create a project file containing only VHDL files, place a list of
VHDL files preceded by keyword VHDL in a separate file. The order of the files is not
important. XST can recognize the hierarchy, and compile VHDL files in the correct order.

For the example, perform the following steps:

1. Open a new file called watchvhd.prj

2. Enter the names of the VHDL files in any order into this file and save the file:

vhdl work statmach.vhd
vhdl work decode.vhd
vhdl work stopwatch.vhd
vhdl work cnt60.vhd
vhdl work smallcntr.vhd
vhdl work tenths.vhd
vhdl work hex2led.vhd

3. To synthesize the design, execute the following command from the XST shell or
the script file:

run -ifn watchvhd.prj -ifmt mixed -top stopwatch -ofn
watchvhd.ngc -ofmt NGC -p xc5vfx30t-2-ff324 -opt_mode Speed
-opt_level 1

You must specify a top-level design block with the -top command line option.

To synthesize just hex2led and check its performance independently of the other blocks,
you can specify the top-level entity to synthesize on the command line, using the -top
option.

run -ifn watchvhd.prj -ifmt mixed -ofn watchvhd.ngc -ofmt NGC -p
xc5vfx30t-2-ff324 -opt_mode Speed -opt_level 1 -top hex2led

For more information, see:

XST Specific Non-Timing Options

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 565

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=565

Chapter 20: XST Command Line Mode

Librar y Names
During VHDL compilation, XST uses the librarywork as the default. If some VHDL files
are to be compiled to different libraries, add the library name before the file name. For
example, to compile hexl2led into the librarymy_lib, write the project file as follows:

vhdl work statmach.vhd vhdl work decode.vhd vhdl work
stopwatch.vhd vhdl work cnt60.vhd vhdl work smallcntr.vhd vhdl
work tenths.vhd vhdl my_lib hex2led.vhd

XST File Order Warning
If XST does not recognize the file order, it issues the following warning:

WARNING:XST:3204. The sort of the vhdl files failed, they will
be compiled in the order of the project file.

In this case, you must:
• Put all VHDL files in the correct order.
• Add the -hdl_compilation_order option with value user to the XST run command:

run -ifn watchvhd.prj -ifmt mixed -top stopwatch -ofn
watchvhd.ngc -ofmt NGC -p xc5vfx30t-2-ff324 -opt_mode Speed
-opt_level 1 -top hex2led -hdl_compilation_order user

Synthesizing Verilog Designs Using Command Line Mode
This section discusses Synthesizing Verilog Designs Using Command Line Mode, and
includes:
• Verilog Design Files and Modules
• Example Using Command Line Mode
• Synthesizing the Design
• Synthesizing HEX2LED

The following coding example shows the synthesis of a hierarchical Verilog design for a
Virtex® device using command line mode.

Verilog Design Files and Modules
The example uses a Verilog design called watchver. These files are found in the following
directory of the ISE® Design Suite installation directory:

ISEexamples\watchver

The files are:

• stopwatch.v

• statmach.v

• decode.v

• cnt60.v

• smallcntr.v

• tenths.v

• hex2led.v

Frontmatter
566 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=566

Chapter 20: XST Command Line Mode

This design contains seven modules:
• stopwatch
• statmach
• tenths (a CORE Generator™ software core)
• decode
• cnt60
• smallcntr
• hex2led

Example Using Command Line Mode
1. Create a new directory named vlg_m .
2. Copy the watchver design files from the ISEexamples\watchver directory of

the ISE Design Suite installation directory to the newly created vlg_m directory.

Specify the top-level design block with the -top command line option.

Synthesizing the Design
To synthesize the design, which is now represented by seven Verilog files, create a
project. XST now supports mixed VHDL and Verilog projects. Therefore, Xilinx®
recommends that you use the new project format whether it is a real mixed language
project or not. In this example, we use the new project format. To create a project file
containing only Verilog files, place a list of Verilog files preceded by the keyword verilog
in a separate file. The order of the files is not important. XST can recognize the hierarchy
and compile Verilog files in the correct order.
1. Open a new file, called watchver.v .
2. Enter the names of the Verilog files into this file in any order and save it:

verilog work decode.v
verilog work statmach.v
verilog work stopwatch.v
verilog work cnt60.v
verilog work smallcntr.v
verilog work hex2led.v

3. To synthesize the design, execute the following command from the XST shell or a
script file:
run -ifn watchver.v -ifmt mixed -top stopwatch -ofn
watchver.ngc -ofmt NGC -p xc5vfx30t-2-ff324 -opt_mode Speed
-opt_level 1

Synthesizing HEX2LED
To synthesize just HEX2LED and check its performance independently of the other
blocks, specify the top-level module to synthesize in the command line, using the -top
option.

run -ifn watchver.v -ifmt Verilog -ofn watchver.ngc -ofmt NGC -p
xc5vfx30t-2-ff324 -opt_mode Speed -opt_level 1 -top HEX2LED

For more information, see:

XST Specific Non-Timing Options

Frontmatter
UG627 (v 14.5) March 20, 2013 www.xilinx.com 567

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=567

Chapter 20: XST Command Line Mode

Synthesizing Mixed Designs Using Command Line Mode
This section discusses Synthesizing Mixed Designs Using Command Line Mode, and
includes:

• Example Using Command Line Mode

• Synthesizing the Design

• File Order

This example shows the synthesis of a hierarchical mixed VHDL and Verilog design for
a Virtex® device using command line mode.

Example Using Command Line Mode
1. Create a new directory named vhdl_verilog .

2. Copy the following files from the ISEexamples\watchvhd directory of the ISE®
Design Suite installation directory to the newly-created vhdl_verilog directory.

• stopwatch.vhd

• statmach.vhd

• decode.vhd

• cnt60.vhd

• smallcntr.vhd

• tenths.vhd

3. Copy the hex2led.v file from the ISEexamples\watchver directory of the ISE
Design Suite installation directory to the newly created vhdl_verilog directory.

[

Synthesizing the Design
The design is now represented by six VHDL files and one Verilog file. To synthesize
the design, create a project. To create a project file, place a list of VHDL files preceded
by keyword vhdl, and a list of Verilog files preceded by keyword verilog in a
separate file.

File Order
The order of the files is not important. XST recognizes the hierarchy and compiles
Hardware Description Language (HDL) files in the correct order.

Frontmatter
568 www.xilinx.com UG627 (v 14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug627&Title=XST%20User%20Guide%20for%20Virtex-4,%20Virtex-5,%20Spartan-3,%20and%20Newer%20CPLD%20Devices&releaseVersion=14.5&docPage=568

	XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
	Table of Contents
	Ch. 1: About This Guide
	Guide Overview
	Supported Devices

	Ch. 2: Introduction to Xilinx Synthesis Technology (XST)
	About XST
	Setting XST Options

	Ch. 3: XST HDL Coding Techniques
	Signed and Unsigned Support in XST
	Registers HDL Coding Techniques
	About Registers
	Registers Log File
	Registers Related Constraints
	Registers Coding Examples

	Latches HDL Coding Techniques
	About Latches
	Latches Log File
	Latches Related Constraints
	Latches Coding Examples

	Tristates HDL Coding Techniques
	About Tristates
	Tristates Log File
	Tristates Related Constraints
	Tristates Coding Examples

	Counters HDL Coding Techniques
	About Counters
	Counters Log File
	Counters Related Constraints
	Counters Coding Examples

	Accumulators HDL Coding Techniques
	About Accumulators
	Accumulators in Virtex-4 Devices and Virtex-5 Devices
	About Accumulators in Virtex-4 Devices and Virtex-5 Devices
	Macro Implementation on DSP48 Resources
	Maximum Macro Configuration
	Reporting of Inferred Accumulators

	Accumulators Log File
	Accumulators Related Constraints
	Accumulators Coding Examples

	Shift Registers HDL Coding Techniques
	About Shift Registers
	Shift Register Definition
	Static Shift Register Components
	Additional Functionality
	Describing Shift Registers
	Implementing Shift Registers

	Shift Registers Log File
	Shift Registers Related Constraints
	Shift Registers Coding Examples

	Dynamic Shift Registers HDL Coding Techniques
	About Dynamic Shift Registers
	Dynamic Shift Registers Log File
	Dynamic Shift Registers Related Constraints
	Dynamic Shift Registers Coding Examples

	Multiplexers HDL Coding Techniques
	About Multiplexers
	Multiplexers Description Styles
	Verilog Case Statements
	Verilog Case Statement Resources
	Case Implementation Style Parameter
	Multiplexers Case Statements

	Multiplexers Log File
	Multiplexers Related Constraints
	Multiplexers Coding Examples

	Decoders HDL Coding Techniques
	About Decoders
	Decoders Log File
	Decoders Related Constraints
	Decoders Coding Examples

	Priority Encoders HDL Coding Techniques
	About Priority Encoders
	Priority Encoders Log File
	Priority Encoders Related Constraints
	Priority Encoders Coding Examples

	Logical Shifters HDL Coding Techniques
	About Logical Shifters
	Logical Shifters Log File
	Logical Shifters Related Constraints
	Logical Shifters Coding Examples

	Arithmetic Operators HDL Coding Techniques
	About Arithmetic Operators
	Supported Arithmetic Operators
	Signed and Unsigned Operators
	Resource Sharing

	Arithmetic Operators Log File
	Arithmetic Operators Related Constraints
	Arithmetic Operators Coding Examples

	Adders, Subtractors, and Adders/Subtractors HDL Coding Technique
	About Adders, Subtractors, and Adders/Subtractors
	Supported Device Families
	XST DSP48 Block Support
	Macro Implementation on DSP48 Blocks
	Automatic DSP48 Resource Control
	Maximum Macro Configuration

	Adders, Subtractors, and Adders/Subtractors Log File
	Adders, Subtractors, and Adders/Subtractors Related Constraints
	Adders, Subtractors, and Adders/Subtractors Coding Examples

	Comparators HDL Coding Techniques
	About Comparators
	Comparators Log File
	Comparators Related Constraints
	Comparators Coding Examples

	Multipliers HDL Coding Techniques
	About Multipliers
	Implementing a Multiplier
	Registered Multipliers
	Multiplication with Constant

	Multipliers (Virtex-4, Virtex-5, and Spartan-3A DSP Devices)
	Implementing Multipliers on DSP48 Resources
	Multiple DSP48 Resources
	Macro Implementation on DSP48 Blocks
	Recognizing the Multiplier Style Constraint
	Maximum Macro Configuration

	Multipliers Log File
	Multipliers Related Constraints
	Multipliers Coding Examples

	Sequential Complex Multipliers HDL Coding Techniques
	About Sequential Complex Multipliers
	Sequential Complex Multipliers Log File
	Sequential Complex Multipliers Related Constraints
	Sequential Complex Multipliers Coding Examples

	Pipelined Multipliers HDL Coding Techniques
	About Pipelined Multipliers
	Inferring Pipelined Multipliers
	Maximizing Performance
	Implementing Unused Stages
	XST Limitations

	Pipelined Multipliers Log File
	Pipelined Multipliers Related Constraints
	Pipelined Multipliers Coding Examples

	Multiply Adder/Subtractors HDL Coding Techniques
	About Multiply Adder/Subtractors
	Multiply Adder/Subtractors in Virtex-4 Devices and Virtex-5 Devi
	XST Registered Macro Support
	XST DSP48 Block Support
	Macro Implementation on DSP48 Blocks
	Maximum Macro Configuration

	Multiply Adder/Subtractors Log File
	Multiply Adder/Subtractors Related Constraints
	Multiply Adder/Subtractors Coding Examples

	Multiply Accumulate HDL Coding Techniques
	About Multiply Accumulate
	Multiply Accumulate in Virtex-4 Devices and Virtex-5 Devices
	XST Registered Macro Support
	XST DSP48 Block Support
	Macro Implementation on DSP48 Blocks
	Maximum Macro Configuration

	Multiply Accumulate Log File
	Multiply Accumulate Related Constraints
	Multiply Accumulate Coding Examples

	Dividers HDL Coding Techniques
	About Dividers
	Dividers Log File
	Dividers Related Constraints
	Dividers Coding Examples

	Resource Sharing HDL Coding Techniques
	About Resource Sharing
	Resource Sharing Log File
	Resource Sharing Related Constraints
	Resource Sharing Coding Examples

	RAMs and ROMs HDL Coding Techniques
	About RAMs and ROMs
	Automatic RAM Recognition
	RAMs and ROMs with Negative Addresses
	Types of Inferred RAM
	Block and Distributed RAM
	Unsupported Block RAM Features
	Speed-Oriented Implementation
	Additional XST Capabilities
	Automatic BRAM Resource Control
	Small RAMs and ROMs
	Available BRAM Resources

	RAMs and ROMs Log File
	RAMs and ROMs Related Constraints
	RAMs and ROMs Coding Examples
	About RAMs and ROMs Coding Examples

	Initializing RAM Coding Examples
	Initializing RAM From an External File Coding Examples

	ROMs Using Block RAM Resources HDL Coding Techniques
	About ROMs Using Block RAM Resources
	ROMs Using Block RAM Resources Log File
	ROMs Using Block RAM Resources Related Constraints
	ROMs Using Block RAM Resources Coding Examples

	Pipelined Distributed RAM HDL Coding Techniques
	About Pipelined Distributed RAM
	Pipelined Distributed RAM Log File
	Pipelined Distributed RAM Related Constraints
	Pipelined Distributed RAM Coding Examples

	FSM HDL Coding Techniques
	About FSM Components
	Describing an FSM Component
	Describing FSM Components with Process and Always
	State Registers
	Next State Equations
	Unreachable States
	Outputs and Inputs

	State Encoding Techniques
	Auto State Encoding
	One-Hot State Encoding
	Gray State Encoding
	Compact State Encoding
	Johnson State Encoding
	Sequential State Encoding
	Speed1 State Encoding
	User State Encoding

	RAM-Based FSM Synthesis
	Safe FSM Implementation
	FSM Log File
	FSM Related Constraints
	FSM Coding Examples

	Black Boxes HDL Coding Techniques
	About Black Boxes
	Black Box Log File
	Black Box Related Constraints
	Black Box Coding Examples

	Ch. 4: XST FPGA Optimization
	FPGA Synthesis and Optimization
	FPGA Specific Synthesis Options
	Macro Generation
	Arithmetic Functions in Macro Generation
	Loadable Functions in Macro Generation
	Multiplexers in Macro Generation
	Priority Encoders in Macro Generation
	Decoders in Macro Generation
	RAMs in Macro Generation
	Primitives Used by XST
	Controlling Implementation of Inferred RAM

	ROMs in Macro Generation
	Inferring ROM When Assigned Contexts are Constants
	Inferring ROM from an Array
	Types of ROM Available During Inference and Generation
	Type of Synchronous ROM Inferred by XST
	Applying RAM Style

	DSP48 Block Resources
	Macro Implementation on DSP48 Blocks
	Disabling Automatic DSP Resource Management
	Maximum Macro Configuration
	Asynchronous Set/Reset Signals
	Interconnected Macros

	Mapping Logic Onto Block RAM
	Flip-Flop Retiming
	About Flip-Flop Retiming
	Global Optimization
	Flip-Flop Retiming Messages
	Limitations of Flip-Flop Retiming
	Controlling Flip-Flop Retiming

	Partitions
	Speed Optimization Under Area Constraint
	FPGA Device Optimization Report Section
	About FPGA Device Optimization Report Section
	Cell Usage Report
	BELS Cell Usage
	Flip-Flops and Latches Cell Usage
	RAMS Cell Usage
	SHIFTERS Cell Usage
	Tristates Cell Usage
	Clock Buffers Cell Usage
	IO Buffers Cell Usage
	LOGICAL Cell Usage
	OTHER Cell Usage
	Cell Usage Report Example

	Timing Report
	About Timing Report
	Timing Report Timing Summary Section
	Timing Report Timing Detail Section
	Timing Report Paths and Ports

	Implementation Constraints
	FPGA Device Primitive Support
	About FPGA Device Primitive Support
	Generating Primitives Through Attributes
	Primitives and Black Boxes
	VHDL and Verilog Device Primitives Libraries
	Device Libraries
	Primitive Instantiation Guidelines

	Reporting of Instantiated Device Primitives
	Primitives Related Constraints
	Primitives Coding Examples
	Using the UniMacro Library
	About Using the UniMacro Library
	UniMacro Library Device Support
	Using the UniMacro Library in VHDL
	Using the UniMacro Library in Verilog

	Cores Processing
	Specifying INIT and RLOC
	Passing an INIT Value Via the LUT_MAP Constraint Coding Examples
	Specifying INIT Value for a Flip-Flop Coding Examples
	Specifying INIT and RLOC Values for a Flip-Flop Coding Examples

	Using PCI Flow With XST
	Rules for Using PCI Flow With XST
	Preventing Logic and Flip-Flop Replication
	Disabling Read Cores

	Ch. 5: XST CPLD Optimization
	CPLD Synthesis Options
	CPLD Synthesis Supported Devices
	Setting CPLD Synthesis Options

	Implementation Details for Macro Generation
	CPLD Synthesis Log File Analysis
	CPLD Synthesis Constraints
	Improving Results in CPLD Synthesis
	Obtaining Better Frequency
	Fitting a Large Design
	Select an Area Optimization for XST
	Use the WYSIWYG Command Line Option

	Ch. 6: XST Design Constraints
	About XST Design Constraints
	Mechanisms for Specifying Constraints
	Global and Local Constraint Settings
	Rules for Applying Constraints
	Setting Global Constraints and Options
	Setting Synthesis Options
	Setting HDL Options
	How to Set HDL Options
	Setting HDL Options for FPGA Devices
	Setting HDL Options for CPLD Devices

	Setting Xilinx Specific Options
	How to Set Xilinx Specific Options
	Setting Xilinx Specific Options for FPGA Devices
	Setting Xilinx Specific Options for CPLD Devices

	Setting Other XST Command Line Options
	Setting Options in ISE Design Suite
	Tips for Setting Options
	Options Precedence
	Illegal or Unrecognized Options

	Custom Compile File List

	VHDL Attribute Syntax
	Accepted Object Types
	General Rules

	Verilog-2001 Attributes
	Verilog-2001 Attributes Syntax
	Verilog-2001 Limitations
	Verilog-2001 Meta Comments

	XST Constraint File (XCF)
	Specifying Constraints in the XCF
	XCF Syntax and Utilization
	About XCF Syntax and Utilization
	Syntax
	Syntax Examples and Settings
	XST Synthesis Constraints

	Native and Non-Native UCF Constraints Syntax
	Native UCF Constraints
	Non-Native UCF Constraints

	XCF Syntax Limitations

	Constraints Priority
	XST Specific Non-Timing Options
	XST Command Line Only Options
	XST Specific Non-Timing Options Supported Only in the Command Li
	Invoking XST Timing Options
	XST Timing Constraints Supported Only in Process > Process Prope
	XST Timing Constraints Supported Only in the XCF

	Ch. 7: XST General Constraints
	Add I/O Buffers (-iobuf)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	BoxType (BOX_TYPE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Bus Delimiter (-bus_delimiter)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Case (-case)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Case Implementation Style (-vlgcase)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Duplication Suffix (-duplication_suffix)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line Example One
	XST Command Line Example Two
	ISE® Design Suite

	Full Case (FULL_CASE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Generate RTL Schematic (-rtlview)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Generics (-generics)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	HDL Library Mapping File (-xsthdpini)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Hierarchy Separator (-hierarchy_separator)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	I/O Standard (IOSTANDARD)
	Keep (KEEP)
	Keep Hierarchy (KEEP_HIERARCHY)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Library Search Order (-lso)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	LOC
	Netlist Hierarchy (-netlist_hierarchy)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Optimization Effort (OPT_LEVEL)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Optimization Goal (OPT_MODE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Parallel Case (PARALLEL_CASE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	RLOC (RLOC)
	Architecture Support
	Syntax Examples and Settings
	Verilog
	XCF

	Save (S)
	Synthesis Constraint File (-uc)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Translate Off (TRANSLATE_OFF) and Translate On (TRANSLATE_ON)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Ignore Synthesis Constraints File (–iuc)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE Design Suite

	Verilog 2001 (-verilog2001)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Verilog Include Directories (-vlgincdir)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Verilog Macros (-define)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE Design Suite

	Work Directory (-xsthdpdir)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples and Settings

	Ch. 8: XST HDL Constraints
	Automatic FSM Extraction (FSM_EXTRACT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Enumerated Encoding (ENUM_ENCODING)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	FSM Encoding Algorithm (FSM_ENCODING)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Mux Extraction (MUX_EXTRACT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Resource Sharing (RESOURCE_SHARING)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Safe Implementation (SAFE_IMPLEMENTATION)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Signal Encoding (SIGNAL_ENCODING)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Safe Recovery State (SAFE_RECOVERY_STATE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Ch. 9: XST FPGA Constraints (Non-Timing)
	Asynchronous to Synchronous (ASYNC_TO_SYNC)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Automatic BRAM Packing (AUTO_BRAM_PACKING)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Buffer Type (BUFFER_TYPE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Convert Tristates to Logic (TRISTATE2LOGIC)
	Limitations to Convert Tristates to Logic
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Cores Search Directories (-sd)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Decoder Extraction (DECODER_EXTRACT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	VHDL
	Verilog
	XCF Syntax Example One
	XCF Syntax Example Two
	XST Command Line
	ISE® Design Suite

	DSP Utilization Ratio (DSP_UTILIZATION_RATIO)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Extract BUFGCE (BUFGCE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	FSM Style (FSM_STYLE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Logical Shifter Extraction (SHIFT_EXTRACT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	LUT Combining (LC)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Map Entity on a Single LUT (LUT_MAP)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Map Logic on BRAM (BRAM_MAP)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Max Fanout (MAX_FANOUT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Move First Stage (MOVE_FIRST_STAGE)
	During Register Balancing
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Move Last Stage (MOVE_LAST_STAGE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Multiplier Style (MULT_STYLE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Mux Style (MUX_STYLE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Number of Global Clock Buffers (-bufg)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Number of Regional Clock Buffers (-bufr)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Pack I/O Registers Into IOBs (IOB)
	Power Reduction (POWER)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Priority Encoder Extraction (PRIORITY_EXTRACT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	RAM Extraction (RAM_EXTRACT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	RAM Style (RAM_STYLE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Read Cores (READ_CORES)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Reduce Control Sets (REDUCE_CONTROL_SETS)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Register Balancing (REGISTER_BALANCING)
	Forward Register Balancing
	Backward Register Balancing
	Additional Constraints That Impact Register Balancing
	Applied to the Input Flip-Flop Signal
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Register Duplication (REGISTER_DUPLICATION)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	ROM Extraction (ROM_EXTRACT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	ROM Style (ROM_STYLE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Shift Register Extraction (SHREG_EXTRACT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Slice (LUT-FF Pairs) Utilization Ratio (SLICE_UTILIZATION_RATIO)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Slice (LUT-FF Pairs) Utilization Ratio Delta (SLICE_UTILIZATION_
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Slice Packing (-slice_packing)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Use Low Skew Lines (USELOWSKEWLINES)
	Use Carry Chain (USE_CARRY_CHAIN)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Use Clock Enable (USE_CLOCK_ENABLE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	USE_DSP48 (Use DSP48)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Use Synchronous Set (USE_SYNC_SET)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Use Synchronous Reset (USE_SYNC_RESET)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	XOR Collapsing (XOR_COLLAPSE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Ch. 10: XST CPLD Constraints (Non-Timing)
	Clock Enable (-pld_ce)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	ISE® Design Suite

	Data Gate (DATA_GATE)
	Macro Preserve (-pld_mp)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax and Settings Examples
	XST Command Line
	ISE® Design Suite

	No Reduce (NOREDUCE)
	WYSIWYG (-wysiwyg)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	XOR Preserve (-pld_xp)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	Ch. 11: XST Timing Constraints
	Applying Timing Constraints
	About Applying Timing Constraints
	Applying Timing Constraints Using Global Optimization Goal
	Applying Timing Constraints Using the UCF
	Writing Constraints to the NGC File
	Additional Options Affecting Timing Constraint Processing

	XCF Timing Constraint Support
	Hierarchy Separator
	Supported Timing Constraints
	Unsupported Timing Constraints

	Clock Signal (CLOCK_SIGNAL)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	Cross Clock Analysis (-cross_clock_analysis)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite

	From-To (FROM-TO)
	Global Optimization Goal (-glob_opt)
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE® Design Suite
	Global Optimization Goal Domain Definitions

	Offset (OFFSET)
	Syntax

	Period (PERIOD)
	Syntax

	Timing Name (TNM)
	Syntax

	Timing Name on a Net (TNM_NET)
	Syntax

	Timegroup (TIMEGRP)
	Timing Ignore (TIG)
	Syntax

	Write Timing Constraints (-write_timing_constraints)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax
	Syntax Examples and Settings
	XST Command Line
	ISE Design Suite

	Ch. 12: XST Implementation Constraints
	Implementation Constraints Syntax Examples
	XCF Syntax Examples
	VHDL Syntax Examples
	Verilog Syntax Examples

	No Reduce (NOREDUCE)
	Power Mode (PWR_MODE)
	Architecture Support
	Syntax Examples and Settings

	RLOC (RLOC)

	Ch. 13: XST Supported Third Party Constraints
	XST Equivalents to Third Party Constraints
	Third Party Constraints Syntax Examples

	Ch. 14: XST VHDL Language Support
	VHDL Logic Descriptions
	VHDL IEEE Support
	Supported VHDL IEEE Standards
	VHDL IEEE Conflicts
	Non-LRM Compliant Constructs in VHDL

	VHDL File Type Support
	VHDL Debugging Using Write Operation
	Rules for Debugging
	Using the Endfile Function

	VHDL Data Types
	Accepted VHDL Data Types
	VHDL Enumerated Types
	VHDL User-Defined Enumerated Types
	VHDL Bit Vector Types
	VHDL Integer Types
	VHDL Predefined Types
	VHDL STD_LOGIC_1164 IEEE Types

	VHDL Overloaded Data Types
	VHDL Overloaded Enumerated Types
	VHDL Overloaded Bit Vector Types
	VHDL Overloaded Integer Types
	VHDL Overloaded STD_LOGIC_1164 IEEE Types
	VHDL Overloaded STD_LOGIC_ARITH IEEE Types

	VHDL Multi-Dimensional Array Types

	VHDL Record Types
	VHDL Initial Values
	Initializing Registers
	VHDL Local Reset/Global Reset
	Default Initial Values on Memory Elements in VHDL

	VHDL Objects
	Signals in VHDL
	Variables in VHDL
	Constants in VHDL

	VHDL Operators
	VHDL Entity and Architecture Descriptions
	VHDL Circuit Descriptions
	VHDL Entity Declarations
	VHDL Architecture Declarations
	VHDL Component Instantiation
	VHDL Recursive Component Instantiation
	VHDL Component Configuration
	VHDL Generic Parameter Declarations
	VHDL Generic and Attribute Conflicts

	VHDL Combinatorial Circuits
	VHDL Concurrent Signal Assignments
	VHDL Generate Statements
	VHDL Combinatorial Processes
	VHDL If...Else Statements
	VHDL Case Statements
	VHDL For...Loop Statements

	VHDL Sequential Circuits
	VHDL Sequential Process With a Sensitivity List
	VHDL Sequential Process Without a Sensitivity List
	Register and Counter Descriptions VHDL Coding Examples
	VHDL Multiple Wait Statements Descriptions

	VHDL Functions and Procedures
	VHDL Assert Statements
	VHDL Models Defined Using Packages
	About VHDL Models Defined Using Packages
	Using Standard Packages to Define VHDL Models
	VHDL Models Defined Using IEEE Packages
	Using Synopsys Packages to Define VHDL Models

	VHDL Constructs Supported in XST
	VHDL Design Entities and Configurations
	VHDL Entity Headers
	VHDL Packages
	VHDL Physical Types
	VHDL Modes
	VHDL Declarations
	VHDL Objects
	VHDL Specifications

	VHDL Expressions
	VHDL Operators
	VHDL Operands

	VHDL Statements
	VHDL Wait Statements
	VHDL Loop Statements
	VHDL Concurrent Statements

	VHDL Reserved Words

	Ch. 15: XST Verilog Language Support
	About XST Verilog Language Support
	Behavioral Verilog
	Variable Part Selects
	Structural Verilog Features
	About Structural Verilog Features
	Instantiating Pre-Defined Primitives

	Verilog Parameters
	Verilog Parameter and Attribute Conflicts
	Resolving Verilog Parameter and Attribute Conflicts
	Verilog Parameter and Attribute Conflicts Precedence

	Verilog Limitations in XST
	Verilog Case Sensitivity
	XST Support for Verilog Case Sensitivity
	Verilog Restrictions Within XST

	Verilog Blocking and Nonblocking Assignments
	Verilog Integer Handling
	Unsized Integers in Verilog Case Item Expressions
	Unsized Integers in Verilog Concatenations

	Verilog Attributes and Meta Comments
	Verilog-2001 Attributes
	Verilog Meta Comments
	Supported Constraints
	Syntax

	Verilog Constructs Supported in XST
	Verilog Constants Supported in XST
	Verilog Data Types Supported in XST
	Verilog Continuous Assignments Supported in XST
	Verilog Procedural Assignments Supported in XST
	Verilog Design Hierarchies Supported in XST
	Verilog Compiler Directives Support in XST

	Verilog System Tasks and Functions Supported in XST
	Supported System Tasks and Functions
	Unsupported System Tasks
	Signed and Unsigned System Tasks
	Readmemb and Readmemh System Tasks
	Other System Tasks
	Verilog Display Syntax Example

	Verilog Primitives
	Supported Primitives
	Unsupported Primitives
	Syntax

	Verilog Reserved Keywords
	Verilog-2001 Support in XST

	Ch. 16: XST Behavioral Verilog Language Support
	Behavioral Verilog Variable Declarations
	Behavioral Verilog Initial Values
	Behavioral Verilog Local Reset
	Behavioral Verilog Arrays
	Behavioral Verilog Multi-Dimensional Arrays
	Behavioral Verilog Data Types
	Bit Data Type Values
	Supported Verilog Data Types
	Nets and Registers

	Behavioral Verilog Legal Statements
	Behavioral Verilog Expressions
	Operators Supported in Behavioral Verilog
	Expressions Supported in Behavioral Verilog
	Results of Evaluating Expressions in Behavioral Verilog

	Behavioral Verilog Blocks
	Behavioral Verilog Modules
	Behavioral Verilog Module Declarations
	Behavioral Verilog Continuous Assignments
	Behavioral Verilog Procedural Assignments
	About Behavioral Verilog Procedural Assignments
	Behavioral Verilog Combinatorial Always Blocks
	Behavioral Verilog If... Else Statement
	Behavioral Verilog Case Statements
	Behavioral Verilog For and Repeat Loops
	For Statement
	Repeat Statement
	Disable Statements

	Behavioral Verilog While Loops
	Behavioral Verilog Sequential Always Blocks
	Behavioral Verilog Assign and Deassign Statements
	Behavioral Verilog Assign and Deassign Statements General Templa
	Behavioral Verilog Assign/Deassign Statement
	Behavioral Verilog Assign/Deassign Statement Performed in Same A
	Cannot Assign Bit/Part Select of Signal Through Assign/Deassign

	Behavioral Verilog Assignment Extension Past 32 Bits
	Behavioral Verilog Tasks and Functions
	Behavioral Verilog Recursive Tasks and Functions
	Behavioral Verilog Constant Functions
	Behavioral Verilog Blocking Versus Non-Blocking Procedural Assig

	Behavioral Verilog Constants
	Behavioral Verilog Macros
	Behavioral Verilog Include Files
	Identifying the Directory
	Include File Conflicts

	Behavioral Verilog Comments
	Behavioral Verilog Generate Statements
	Generate For Statements
	Generate If... else Statements
	Generate Case Statements

	Ch. 17: XST Mixed Language Support
	About XST Mixed Language Support
	Mixed Language Project Files
	VHDL and Verilog Boundary Rules in Mixed Language Projects
	Instantiating a Verilog Module in a VHDL Design
	Instantiating a VHDL Design Unit in a Verilog Design
	How to Instantiate a VHDL Entity
	Binding
	Limitations

	Port Mapping in Mixed Language Projects
	VHDL in Verilog Port Mapping
	Verilog in VHDL Port Mapping
	VHDL in Mixed Language Port Mapping
	Verilog in Mixed Language Port Mapping

	Generics Support in Mixed Language Projects
	LSO Files in Mixed Language Projects
	Specifying the LSO File in ISE Design Suite
	Specifying the LSO File in the Command Line
	LSO Rules
	Library Search Order (LSO) Empty
	DEFAULT_SEARCH_ORDER Keyword Only
	DEFAULT_SEARCH_ORDER Keyword and List of Libraries
	List of Libraries Only
	DEFAULT_SEARCH_ORDER Keyword and Non-Existent Library Name

	Ch. 18: XST Log File
	XST FPGA Log File Contents
	Copyright Statement
	Table of Contents
	Synthesis Options Summary
	HDL Compilation
	Design Hierarchy Analyzer
	HDL Analysis
	HDL Synthesis Report
	Advanced HDL Synthesis Report
	Low Level Synthesis
	Partition Report
	Final Report

	Reducing the Size of the XST Log File
	Use Message Filtering
	Use Quiet Mode
	Use Silent Mode
	Hide Specific Messages
	XIL_XST_HIDEMESSAGES Environment Variable Values
	Messages Hidden When Value is Set to hdl_level and hdl_and_low_l
	Messages Hidden When Value is Set to low_level or hdl_and_low_le

	Macros in XST Log Files
	XST Log File Examples

	Ch. 19: XST Naming Conventions
	XST Net Naming Conventions
	XST Instance Naming Conventions
	XST Name Generation Control

	Ch. 20: XST Command Line Mode
	About XST Command Line Mode
	Running XST in Command Line Mode
	XST File Types in Command Line Mode
	Temporary Files in Command Line Mode
	Names With Spaces in Command Line Mode

	Launching XST in Command Line Mode Using the XST Shell
	Launching XST in Command Line Mode Using a Script File
	Setting Up an XST Script Using the Run Command
	About the Run Command
	Writing a Script File
	XST Specific Non-Timing Related Options
	Online Help
	Supported Families
	Commands for a Specific Device
	Run Command Options and Values (Virtex-5 Devices)

	Setting Up an XST Script Using the Set Command
	Set Command Options

	Setting Up an XST Script Using the Elaborate Command
	Elaborate Command Options

	Running XST in Script Mode (VHDL)
	Files Created During Run (VHDL)
	Saving XST Messages in a Different Log File (VHDL)
	Improving Readability (VHDL)
	Leading Spaces (VHDL)

	Running XST in Script Mode (Verilog)
	How to Run XST in Script Mode (Verilog)
	Files Created During Run (Verilog)
	Saving XST Messages in a Different Log File (Verilog)
	Improving Readability (Verilog)

	Running XST in Script Mode (Mixed Language)
	How to Run XST in Script Mode (Mixed Language)
	Files Created During Run (Mixed Language)
	Saving XST Messages in a Different Log File (Mixed Language)
	Improving Readability (Mixed Language)

	Synthesizing VHDL Designs Using Command Line Mode
	VHDL Design Files and Entities
	Example Using Command Line Mode
	Synthesizing the Design
	Library Names
	XST File Order Warning

	Synthesizing Verilog Designs Using Command Line Mode
	Verilog Design Files and Modules
	Example Using Command Line Mode
	Synthesizing the Design
	Synthesizing HEX2LED

	Synthesizing Mixed Designs Using Command Line Mode
	Example Using Command Line Mode
	Synthesizing the Design
	File Order

