
Partial Run-Time Reconfiguration Using JRTR

Scott McMillan and Steven A. Guccione

Xilinx Inc.
2100 Logic Drive

San Jose, California 95124
fScott.McMillan, Steven.Guccione g@xilinx.com

Abstract. Much has been written about the design and performance advantages
of partial Run-Time Reconfiguration (RTR) over the last decade. While the re-
sults have been promising, commercial support for partial RTR has lagged. Un-
til the introduction of the Xilinx Virtex(tm) family of devices, no mainstream,
commercial FPGA has provided support for this capability. In this paper we de-
scribeJRTR, a software package which provides direct support for partial run-
time reconfiguration. Using a cache-based model, this implementation provides
fast, simple support for partial run-time reconfiguration. While the current imple-
mentation is on the Xilinx Virtex family of devices using theJBitstool suite, this
approach may be applied to any SRAM-based FPGA that provides basic support
for RTR.

1 Introduction

Perhaps the greatest advantage to using SRAM based FPGAs is the ability to modify the
configured circuit at any time. In the majority of cases, however, this capability is used
exclusively in the design phase of a project. Once a design is tested and verified, it is
seldom if ever changed. Over the last decade, researchers have explored using this abil-
ity to modify SRAM-based FPGAs to reduce circuit complexity, increase performance
and simplify system design [1],[2],[3],[4]. In spite of these demonstrated advantages,
these techniques have not found widespread acceptance. Much of the reason for this can
be attributed to lack of both hardware and software support for partial reconfiguration.

With the introduction of the Xilinx Virtex family of devices [5] , hardware support
for partial run-time reconfiguration is available for the first time in a large, mainstream
commercial device. In addition, the XilinxJBits tool suite [6] provides the software
support necessary to make use of all of the features of the Virtex architecture. While
run-time reconfiguration has always been supported inJBits, simple and direct support
for partial run-time reconfiguration has not. This paper describesJRTR, a model and
software implementation that addresses this deficiency.

2 Run-Time Reconfiguration Hardware and Software

While all SRAM-based FPGA devices are capable of having their circuit configuration
modified at any time, software tools, and even the information necessary to perform run-
time reconfiguration has been largely unavailable commercially. This situation changed

with the introduction of the Xilinx XC6200 family of devices [7]. This device family
featured an open architecture, with all circuit configuration data exposed to the users.
Unfortunately, with the exception of some small research tools such asJERC6K[8],
RAGE[3] andConfDiff [9], no commercially available software for the XC6200 device
supported this run-time reconfiguration feature.

At Xilinx, the JERC6Kwork was transferred to the older and somewhat more lim-
ited XC4000family and renamed theXilinx Bitstream Interfaceor XBI [6]. This soft-
ware was later renamedJBits and supported direct construction and modification of
circuits. Unfortunately, theXC4000family of devices only supports bulk configuration
and contains no support for partial reconfiguration. Any changes to the device circuit
configuration resulted in a halting of the device and a relatively slow reloading of the
entire configuration bitstream. This was unacceptable for most applications.

More recently, theJBits software has been ported to the XilinxVirtex family of
devices. As with theXC4000family version, circuit configurations could be built and
modified off-line, but reconfiguring the entire device resulted in the same sort of inter-
ruption as in the 4K version.

The recent addition of theJRTRsoftware to the Virtex version of theJBitstool suite
has resulted in direct support for partial reconfiguration. This support makes use of com-
bined hardware and software techniques to permit arbitrarily small changes to be made
directly to Virtex device circuit configuration data quickly and without interruption of
operation.

C
L

B
 M

aj
or

 F
ra

m
e

4
(4

8
M

in
or

 F
ra

m
es

)

Middle

C
L

B
 M

aj
or

 F
ra

m
e

2
(4

8
M

in
or

 F
ra

m
es

)

C
L

B
 M

aj
or

 F
ra

m
e

1
(4

8
M

in
or

 F
ra

m
es

)

C
L

B
 M

aj
or

 F
ra

m
e

3
(4

8
M

in
or

 F
ra

m
es

)

Even Major Frames Odd Major Frames

C
L

B
 M

aj
or

 F
ra

m
e

N
(4

8
M

in
or

 F
ra

m
es

)

C
L

B
 M

aj
or

 F
ra

m
e

N
-1

(4
8

M
in

or
 F

ra
m

es
)

N = Number of CLB columns in device (e.g.for XCV800, N=84).

0 N/2N/2-1 N/2+1N/2-2 N-1

CLB Column Numbering with respect to JBits.

Fig. 1. The Virtex device configuration data organization.

3 Partial Reconfiguration in Virtex Device

As with most other FPGAs, the Virtex device can be viewed as a two-dimensional
tiled array ofConfigurable Logic Blocksor CLBs. Associated with each CLB tile is
some amount of logic and routing. In older device families such as the XC4000, the
entire device would be configured using a single block of configuration data commonly
referred to as abitstream. This bitstream contained all of the data necessary to program
the device into the desired configuration. If any piece of the configuration was to be
changed, the entire configuration would have to be re-loaded.

While these earlier Xilinx device architectures were programmed using static data,
the Virtex device configuration bitstream takes a packet-based approach. Here, the con-
figuration bitstream consists of a sequence of command / data pairs of varying lengths
that are used to read and write internal registers and configuration and state data. These
commands operate on individualframesor column slices of the configuration mem-
ory. These frames are the smallest addressable units in the Virtex device configuration
bitstream and may be accessed independently.

Figure 1 shows the Virtex device configuration data addressing scheme which uses
major and minor frames. The major frame address refers to an entire CLB column
containing a group of 48 minor frames. A minor frame refers to the individual columns
of data used to program the device and represents the smallest grain of reconfigurability.
To modify data within a CLB, affected data must be masked into frame(s) and re-loaded
into the device. Reconfiguring an entire CLB requires this operation to be done on 48
contiguous minor frames within the device.

Configuration
Bitstream

CLB (Original)CLB (Cache)
Configuration

Bitstream

JBits

Bitstream
Read/Writes

Application
User Java

XHWIF

FPGA
Board

Readback
Commands

Bitstreams

Bitstreams
Partial/Full Command

Bitstream
Parser/Generator

Readback Command

Readback Data and Command

Fig. 2. An overview of the JRTR system.

4 The JRTR Interface

The JBits configuration bitstream Application Programming Interface (API) provides
a set of Java classes to access and manipulate Virtex device configuration data. Cur-
rently, this data is manipulated in some piece of host memory, and later downloaded
to hardware. Not coincidentally, this approach is nearly identical to the bulk download
of the older XC4000 device family. This is because the currentJBits for Virtex device
software was essentially ported from the earlier XC4000 device version.

In order to better take advantage of the hardware support for partial run-time recon-
figuration in Virtex device, theJBitsAPI has been extended with theJRTRAPI. This
interface provides a caching model where changes to configuration data are tracked and
only the necessary data is written to or read back from the device.

Figure 2 shows the high level block diagram for theJRTRcode. The existingJBits
interface is still used to read and write bitstream files to and from disk and other external
devices. But theJRTR Bitstream Parser / Generatoris used to analyze the bitstream
configuration data and to maintain both the data image and the access information.

The JRTRAPI is described in more detail in Table 1. The model for this code
resembles a writeback cache in a traditional microprocessor system. Changes to the
configuration bitstream are tracked each time theget() function call is used. This
list of modified frames is eventually used to produce a set of packets to perform the
necessary partial reconfiguration.

Table 1.The JRTR Application Program Interface.

Function Description

parse() Parses write and readback bitstream packet commands and overlays them
onto the CLB and Block RAM (BRAM) configuration memories.

get() Generates full or partial CLB and BRAM configuration packet streams.

clearPartial() Clears the partial reconfiguration flag and forces a full reconfiguration only
on the next get().

clearFull() Clears the partial and full configuration flags and puts the object into an
initial state.

writeClbCache() Forces a write of the cache to the original CLB configuration.

getClbCache() Returns a pointer to the CLB configuration stream. This will be used to
synch up with the JBits object after parsing.

Figure 3 gives a typical code example of howJRTRis used. The currentJBits inter-
face is used to load in the configuration bitstream data from a file and then the data is
parsed into aJRTRobject with theparse() function call. The initial synchronization
of JBits CLB configuration memory with theJRTRcache is somewhat more subtle,
however. These two objects must reference the same memory location in order for the
modifications made to the CLB configuration withJBits to be marked in theJRTR
cache.

/* Parse <inputfile> bitstream */
JBits jBits = new JBits(deviceType);
jBits.read(inputfile);

JRTR jrtr = new JRTR(deviceType);
jrtr.parse(jBits.getAllPackets());

/* Sync JBits and parser cache */
jBits.setClbConfig(jrtr.getClbCache().get());

/* Download the full bitstream to device */
board.setConfiguration(jrtr.get());

/* Modify the CLB Cache with JBits. */
jBits.set(....)

.

.

.
jBits.set(....)

/* Download partial configuration data to device */
board.setConfiguration(jrtr.get());

Fig. 3. JRTRcode to perform partial reconfiguration.

Once the configuration data is downloaded to the hardware, any number ofJBits
set() calls, including those in cores or other classes and subroutines, can be made.
Once the new configuration is set to the desired state, theJRTRget() call is used to
produce the minimum number of packets necessary to perform the partial reconfigura-
tion of the device. These packets can then be directly downloaded to the hardware.

Currently the API provides fairly simple, but complete, control of the configuration
caching. The user can produce partial configurations at any time, and load them into
hardware. While this level of control is desirable in most applications, this API also
provides the tools necessary to experiment with other more transparent models of partial
run-time reconfiguration.

Figure 4, shows a representation of a typicalJRTRcache after some configuration
data has been modified. In this case, data in five different frames has been modified.
When the partial reconfiguration packets are produced byJRTR, they will actually con-
tain only four distinct packets. The two frames near the center of the device are con-
tiguous in the Virtex device address space and will be grouped into a single packet,
minimizing the reconfiguration overhead.

Table 1 describes each of the function calls in theJRTRAPI. While most of the
API provides calls for housekeeping functions, theparse() andget() functions
provide most of the needed functionality. Theparse() function loads in a bitstream
containing either full or partial configuration data and uses this to modify theJRTR
internal cache. Theget() function call returns the partial packets generated byJRTR

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

Modifications made to cache (difference from original).

Frame that needs reconfiguring.

Continguous frames reconfigured together.

Middle

CLB’s

Fig. 4. Partially reconfigured SRAM cells and their associated frames.

to provide the Virtex device bitstream packets necessary to partially reconfigure the
device. Note that eachget() function also clears all of the “written” markers in the
cache. Only subsequent modifications to the device configuration will be tracked and
returned by futureget() calls. Explicit calls do exist, however, that will set or reset
the cache, for applications that may require this level of control.

5 Partial Readback

As with configuration, theJBitsAPI currently assumes a bulk model for readback. All
configuration bits are read back in a single operation and accessed in the host memory.
As with the configuration model, this is primarily for historical reasons. And as with
configuration,JRTRalso provides a model for partial readback. Because of the nature of
readback, this model is somewhat different from that of configuration and is necessarily
not cache-based. Explicit requests for frame data must be made to the hardware, and the
requests are done sequentially, not as a single block of Virtex device packets.

The partial readback example below shows how theJRTR Bitstream Parser / Gener-
ator object can be used in conjunction with theJRTR Readback Commandsto perform
partial readback. As in the case of partial reconfiguration, the CLB cache state is main-
tained and kept in synchronization with the configured hardware.

Unlike reconfiguration, the readback process is somewhat iterative. A readback re-
quest packet is written to the hardware, then the data is read back. For multiple partial
readbacks, this process of write / read must be repeated. While there is some overhead

/* Readback CLB columns 4 thru 10. */
byte readbackCommand[] =

ReadbackCommand.getCols(DEVICETYPE, 4, 10);

/* Get the readback data length */
int readbackSize = ReadbackCommand.getReadLength();

/* Send readback command to hardware */
board.setConfiguration(readbackCommand);

/* Read back the data */
byte readbackBytes[] =

board.getConfiguration(DEVICENUMBER, readbackSize*4);

/* Load the readback data */
jrtr.parse(readbackCommand, readbackBytes);

/* Synchronize the JBits and readback data */
jBits.setClbConfig(jrtr.getClbCache().get());

Fig. 5. A partial readback example.

associated with this process, it has still been demonstrated to provide speedups over the
bulk readback approach.

Figure 5 gives an example of some partial readback code. Note that frame columns
are explicitly requested. While hardcoded values are used in the example for clarity,
these constants could also have been taken fromJBits resource constants, requesting,
for instance, the frame containing the first bit of the F LUT in Slice 0.

Again, the nature of readback is somewhat different and is typically used to read
back flip flop state information, or occasionally embedded RAM. This means that for
a flip flop, which is found in a single frame of the 48 per CLB, the savings in data
read back from the hardware is a factor of 48. While the amount of data is reduced by
more than an order of magnitude, actual wall clock performance will depend on the
speed of the interface and various software overheads. Networked debug applications,
for instance, have demonstrated as much as a factor of three increase in performance
usingJRTR. Clearly this effect is more pronounced for slower data links, where the
amount of data transferred is the major component of overall system performance.

6 Implementation Issues

The implementation of frame addressing in Virtex device is somewhat unusual. Frame
address zero is at the center of the device, with addresses growing from the center out-
ward, alternating right, left. This results in an interleaving of the data in the configura-
tion bitstream. If, for instance, two physically contiguous CLBs are read as a block, the
data will actually be returned interleaved with the associated frames from the other half
of the device. Figure 6 illustrates this graphically. In order to read the “even” frames in

a single operation, an equal number of “odd” frames are also returned. This hardware
feature of the Virtex device architecture makes grouping of contiguous frames difficult,
and typically results in a factor of two penalty for blocks of data written to or read back
from the device.

CLB’s

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��

Middle

Undesired frames (required to do with one read)

Desired Frames

Fig. 6. Frame addressing in Virtex Device.

In addition to the odd / even addressing scheme, some other modifications to the
Virtex device support for run time reconfiguration would be welcome. First, placing
dynamic components such as flip flop outputs and embedded RAM in a distinct, con-
tiguous address space would be useful. Since these are the only parts of the configura-
tion bitstream capable of changing in normal operation, grouping these would simplify
and enhance the performance of debug applications such asBoardScope. In addition,
applications which only modify state, and not routing, would benefit.

State initialization is yet another issue. Being able to specify state of a flip flop when
performing run time reconfiguration is crucial. Depending on a reset line of some sort
is impractical in most cases. Lastly, design for partial reconfiguration at the silicon level
presents some new challenges. Currently the sequence in which frames are reconfigured
can result in intermediate states which are illegal or produce illegal results. Atomic
operation of changes for any reconfigurable resource should be supported. In general,
this means that all configurable MUXes and other such resources should reside in a
single frame.

7 Conclusions

JRTRprovides a simple and effective model and implementation to support partial run-
time reconfiguration. Using a cache-based approach, partial run-time reconfiguration
and readback has been implemented for the Xilinx Virtex family of devices and inte-
grated into theJBits tool suite. It is hoped thatJRTRwill provide a platform not just
for run-time reconfiguration application development, but for research and development
into new software tools and techniques for using these capabilities.

Much work also remains on the hardware side. While the Xilinx Virtex device ar-
chitecture provides adequate support forRTR, several other features are desirable. The
ability to guarantee safe transitions when reconfiguring is crucial and simpler address-
ing which better reflects the actual device architecture would benefit software. In addi-
tion, the ability to set device state via reconfiguration is very desirable. That said, we
also believe that the frame-based approach in the Virtex device provides a good bal-
ance of hardware and software support for run-time reconfiguration. Providing smaller
grained addressing, perhaps at the CLB or programmable interconnect point level is
likely to be overkill and may increase neither the performance nor the functionality.

References

1. Patrick Lysaght and John Dunlop. Dynamic reconfiguration of FPGAs. In Will Moore and
Wayne Luk, editors,More FPGAs, pages 82–94. Abingdon EE&CS Books, Abingdon, Eng-
land, 1993.

2. Herman Schmit. Incremental reconfiguration for pipelined applications. In Kenneth L. Pocek
and Jeffrey Arnold, editors,IEEE Symposium on FPGAs for Custom Computing Machines,
pages 47–55, Los Alamitos, CA, April 1997. IEEE Computer Society Press.

3. Jim Burns, Adam Donlin, Jonathan Hogg, Satnam Singh, and Mark de Wit. A dynamic re-
configuration run-time system. In Kenneth L. Pocek and Jeffrey Arnold, editors,IEEE Sym-
posium on FPGAs for Custom Computing Machines, pages 66–75, Los Alamitos, CA, April
1997. IEEE Computer Society Press.

4. Steven A. Guccione and Delon Levi. Design advantages of run-time reconfiguration. In John
Schewel, editor,Reconfigurable Technology: FPGAs for Computing and Applications, Proc.
SPIE 3844, pages 87–92, Bellingham, WA, September 1999. SPIE – The International Society
for Optical Engineering.

5. Steve Kelem. Virtex configuration architecture advanced users’ guide. Xilinx Application
Note XAPP151, version 1.1, Xilinx, Inc., July 1999.

6. Steven A. Guccione and Delon Levi. XBI: A java-based interface to FPGA hardware. In John
Schewel, editor,Configurable Computing: Technology and Applications, Proc. SPIE 3526,
pages 97–102, Bellingham, WA, November 1998. SPIE – The International Society for Opti-
cal Engineering.

7. Xilinx, Inc. XC6200 Development System Datasheet, 1997.
8. Eric Lechner and Steven A. Guccione. The Java environment for reconfigurable computing. In

Wayne Luk and Peter Y. K. Cheung, editors,Proceedings of the 7th International Workshop on
Field-Programmable Logic and Applications, FPL 1997. Lecture Notes in Computer Science
1304, pages 284–293. Springer-Verlag, Berlin, September 1997.

9. Wayne Luk, Nabeel Shirazi, and Peter Y. K. Cheung. Compilation tools for run-time recon-
figurable designs. In Kenneth L. Pocek and Jeffrey Arnold, editors,IEEE Symposium on
FPGAs for Custom Computing Machines, pages 56–65, Los Alamitos, CA, April 1997. IEEE
Computer Society Press.

