Numerical Methods

Prof. Bogdan Gavrea

IETTI 2017

Lecture 1

Syllabus

- Transforms
- Z-transform: discrete signals.
- The Discrete Fourier Transform (DFT): discrete signals.
- The Laplace Transform: continuous signals.
- The Fourier Transform: continuous signals.
- Probability theory
- Basic probability.
- Conditional probability.
- Random variables. Random vectors. Functions of random vectors.
- Numerical characteristics of random variables: mean(expectation), variance, covariance, correlation coefficient.
- Basic statistics.

Some preliminary definitions

- Discrete signal. A function $x: \mathbb{Z} \rightarrow \mathbb{C}$ is called a discrete signal. The set of all discrete signals is denoted by S.

Some preliminary definitions

- Discrete signal. A function $x: \mathbb{Z} \rightarrow \mathbb{C}$ is called a discrete signal. The set of all discrete signals is denoted by S.
- Support of a signal. The set

$$
\operatorname{supp}(x)=\{n \in \mathbb{Z} \mid x(n) \neq 0\}
$$

is called the support of signal x.

Some preliminary definitions

- Discrete signal. A function $x: \mathbb{Z} \rightarrow \mathbb{C}$ is called a discrete signal. The set of all discrete signals is denoted by S.
- Support of a signal. The set

$$
\operatorname{supp}(x)=\{n \in \mathbb{Z} \mid x(n) \neq 0\}
$$

is called the support of signal x.

- Signals with their support part of \mathbb{N} are denoted by S_{+}. More precisely,

$$
S_{+}=\{x \in S \mid x(n)=0, \forall n<0\} .
$$

- The convolution product of two signals x and y is denoted by $x * y$ and it is defined by

$$
(x * y)(n)=\sum_{k=-\infty}^{\infty} x(k) y(n-k)
$$

Some preliminary definitions

- Discrete signal. A function $x: \mathbb{Z} \rightarrow \mathbb{C}$ is called a discrete signal. The set of all discrete signals is denoted by S.
- Support of a signal. The set

$$
\operatorname{supp}(x)=\{n \in \mathbb{Z} \mid x(n) \neq 0\}
$$

is called the support of signal x.

- Signals with their support part of \mathbb{N} are denoted by S_{+}. More precisely,

$$
S_{+}=\{x \in S \mid x(n)=0, \forall n<0\} .
$$

- The convolution product of two signals x and y is denoted by $x * y$ and it is defined by

$$
(x * y)(n)=\sum_{k=-\infty}^{\infty} x(k) y(n-k)
$$

Remark. If $x, y \in S_{+}$, then $(x * y)(n)=\sum_{k=0}^{n} x(k) y(n-k)$

Some preliminary definitions

- Discrete signal. A function $x: \mathbb{Z} \rightarrow \mathbb{C}$ is called a discrete signal. The set of all discrete signals is denoted by S.
- Support of a signal. The set

$$
\operatorname{supp}(x)=\{n \in \mathbb{Z} \mid x(n) \neq 0\}
$$

is called the support of signal x.

- Signals with their support part of \mathbb{N} are denoted by S_{+}. More precisely,

$$
S_{+}=\{x \in S \mid x(n)=0, \forall n<0\} .
$$

- The convolution product of two signals x and y is denoted by $x * y$ and it is defined by

$$
(x * y)(n)=\sum_{k=-\infty}^{\infty} x(k) y(n-k)
$$

Remark. If $x, y \in S_{+}$, then $(x * y)(n)=\sum_{k=0}^{n} x(k) y(n-k)$

- I_{1} and I_{2} signals:

$$
I_{1}=\left\{x \in S\left|\sum_{n=-\infty}^{\infty}\right| x(n) \mid<\infty\right\}, I_{2}=\left\{\left.x \in S\left|\sum_{n=-\infty}^{\infty}\right| x(n)\right|^{2}<\infty\right\}
$$

The Z-transform

- The unit impulse signal concentrated at k is the signal defined by

$$
\delta_{k}(n)= \begin{cases}0, & n \neq k, \\ 1, & n=k\end{cases}
$$

- The unit step signal is the signal defined by

$$
\sigma(n)= \begin{cases}0, & n<0 \\ 1, & n \geq 0\end{cases}
$$

The Z-transform

- The unit impulse signal concentrated at k is the signal defined by

$$
\delta_{k}(n)= \begin{cases}0, & n \neq k, \\ 1, & n=k\end{cases}
$$

- The unit step signal is the signal defined by

$$
\sigma(n)= \begin{cases}0, & n<0 \\ 1, & n \geq 0\end{cases}
$$

Definition

Let $x \in S_{+}$. The Z-transform of x is given by

$$
Z\{x(n)\}(z):=X(z)=\sum_{n=0}^{\infty} \frac{x(n)}{z^{n}},
$$

wherever the series is convergent.

The Z-transform

Definition

Let $x \in S_{+}$. The Z-transform of x is given by

$$
Z\{x(n)\}(z):=X(z)=\sum_{n=0}^{\infty} \frac{x(n)}{z^{n}},
$$

wherever the series is convergent.
Examples. Compute the following transforms
i) $Z\left\{\delta_{k}(n)\right\}(z)$;

The Z-transform

Definition

Let $x \in S_{+}$. The Z-transform of x is given by

$$
Z\{x(n)\}(z):=X(z)=\sum_{n=0}^{\infty} \frac{x(n)}{z^{n}},
$$

wherever the series is convergent.
Examples. Compute the following transforms
i) $Z\left\{\delta_{k}(n)\right\}(z)$;
ii) $Z\{\sigma(n)\}(z)$;

The Z-transform

Definition

Let $x \in S_{+}$. The Z-transform of x is given by

$$
Z\{x(n)\}(z):=X(z)=\sum_{n=0}^{\infty} \frac{x(n)}{z^{n}},
$$

wherever the series is convergent.
Examples. Compute the following transforms
i) $Z\left\{\delta_{k}(n)\right\}(z)$;
ii) $Z\{\sigma(n)\}(z)$;
iii) $Z\{\cos (\omega n)\}(z)$;

The Z-transform

Definition

Let $x \in S_{+}$. The Z-transform of x is given by

$$
Z\{x(n)\}(z):=X(z)=\sum_{n=0}^{\infty} \frac{x(n)}{z^{n}},
$$

wherever the series is convergent.
Examples. Compute the following transforms
i) $Z\left\{\delta_{k}(n)\right\}(z)$;
ii) $Z\{\sigma(n)\}(z)$;
iii) $Z\{\cos (\omega n)\}(z)$;
iii) $Z\{\cos (\omega n)\}(z)(H W)$;

The properties of the Z-transform

The following properties hold:

1) The Z-transform is a linear and injective (one-to-one) mapping.

The properties of the Z-transform

The following properties hold:

1) The Z-transform is a linear and injective (one-to-one) mapping.
2) The initial value theorem: if $x \in S_{+}$, then $x(0)=\lim _{z \rightarrow \infty} X(z)$.

The properties of the Z-transform

The following properties hold:

1) The Z-transform is a linear and injective (one-to-one) mapping.
2) The initial value theorem: if $x \in S_{+}$, then $x(0)=\lim _{z \rightarrow \infty} X(z)$.
3) The final value theorem: if $x \in S_{+}$and $L=\lim _{n \rightarrow \infty} x(n)$ exists, then

$$
\lim _{z \rightarrow 1} \frac{z-1}{z} X(z)=L
$$

The properties of the Z-transform

The following properties hold:

1) The Z-transform is a linear and injective (one-to-one) mapping.
2) The initial value theorem: if $x \in S_{+}$, then $x(0)=\lim _{z \rightarrow \infty} X(z)$.
3) The final value theorem: if $x \in S_{+}$and $L=\lim _{n \rightarrow \infty} x(n)$ exists, then

$$
\lim _{z \rightarrow 1} \frac{z-1}{z} X(z)=L .
$$

4) The Z-transform of a convolution. If $x, y \in S_{+}$, then

$$
Z\{(x * y)(n)\}(z)=X(z) Y(z)
$$

The properties of the Z-transform

The following properties hold:

1) The Z-transform is a linear and injective (one-to-one) mapping.
2) The initial value theorem: if $x \in S_{+}$, then $x(0)=\lim _{z \rightarrow \infty} X(z)$.
3) The final value theorem: if $x \in S_{+}$and $L=\lim _{n \rightarrow \infty} x(n)$ exists, then

$$
\lim _{z \rightarrow 1} \frac{z-1}{z} X(z)=L .
$$

4) The Z-transform of a convolution. If $x, y \in S_{+}$, then

$$
Z\{(x * y)(n)\}(z)=X(z) Y(z) .
$$

5) Let $x, y \in S_{+}$such that $y(n)=\sum_{k=0}^{n} x(k)$. Then

$$
Y(z)=\frac{z}{z-1} X(z) .
$$

The properties of the Z-transform

The following properties hold:

1) The Z-transform is a linear and injective (one-to-one) mapping.
2) The initial value theorem: if $x \in S_{+}$, then $x(0)=\lim _{z \rightarrow \infty} X(z)$.
3) The final value theorem: if $x \in S_{+}$and $L=\lim _{n \rightarrow \infty} x(n)$ exists, then

$$
\lim _{z \rightarrow 1} \frac{z-1}{z} X(z)=L
$$

4) The Z-transform of a convolution. If $x, y \in S_{+}$, then

$$
Z\{(x * y)(n)\}(z)=X(z) Y(z) .
$$

5) Let $x, y \in S_{+}$such that $y(n)=\sum_{k=0}^{n} x(k)$. Then

$$
Y(z)=\frac{z}{z-1} X(z) .
$$

6) (Scaling) Let $x \in S_{+}$and $a \in C^{*}$. Then,

$$
Z\left\{a^{n} x(n)\right\}(z)=X\left(\frac{z}{a}\right)
$$

