Numerical Methods

Prof. Bogdan Gavrea

ETTI 2017

Lecture 3

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let I denote one of the intervals $(0,\infty)$ or $[0,\infty)$.

Definition

A function $f: I \to \mathbb{C}$ is called a function (continuous signal) of exponential order if there exist M > 0, a > 0 and $\alpha \in \mathbb{R}$ such that for all t > a,

 $|f(t)| \leq Me^{\alpha t}.$

イロン イヨン イヨン イヨン

Let I denote one of the intervals $(0,\infty)$ or $[0,\infty)$.

Definition

A function $f: I \to \mathbb{C}$ is called a function (continuous signal) of exponential order if there exist M > 0, a > 0 and $\alpha \in \mathbb{R}$ such that for all t > a,

 $|f(t)| \leq Me^{\alpha t}.$

Examples.

a) Any polynomial function si a function of exponential order.

Let I denote one of the intervals $(0,\infty)$ or $[0,\infty)$.

Definition

A function $f: I \to \mathbb{C}$ is called a function (continuous signal) of exponential order if there exist M > 0, a > 0 and $\alpha \in \mathbb{R}$ such that for all t > a,

 $|f(t)| \leq Me^{\alpha t}.$

Examples.

- a) Any polynomial function si a function of exponential order.
- b) Any bounded function is a function of exponential order.

・ロト ・個ト ・ヨト ・ヨト

Let I denote one of the intervals $(0,\infty)$ or $[0,\infty)$.

Definition

A function $f: I \to \mathbb{C}$ is called a function (continuous signal) of exponential order if there exist M > 0, a > 0 and $\alpha \in \mathbb{R}$ such that for all t > a,

 $|f(t)| \leq Me^{\alpha t}.$

Examples.

- a) Any polynomial function si a function of exponential order.
- b) Any bounded function is a function of exponential order.
- c) Let $f: I \to \mathbb{C}$. If there exists $\alpha \in \mathbb{R}$ such that

$$\lim_{t\to\infty}\frac{|f(t)|}{e^{\alpha t}} \text{ is finite,}$$

then f is a function of exponential order.

イロト 不得 トイヨト イヨト

Let I denote one of the intervals $(0,\infty)$ or $[0,\infty)$.

Definition

A function $f: I \to \mathbb{C}$ is called a function (continuous signal) of exponential order if there exist M > 0, a > 0 and $\alpha \in \mathbb{R}$ such that for all t > a,

 $|f(t)| \leq Me^{\alpha t}.$

Examples.

- a) Any polynomial function si a function of exponential order.
- b) Any bounded function is a function of exponential order.
- c) Let $f: I \to \mathbb{C}$. If there exists $\alpha \in \mathbb{R}$ such that

$$\lim_{t\to\infty}\frac{|f(t)|}{e^{\alpha t}}$$
 is finite,

then f is a function of exponential order.

d) The function $f(t) = e^{t^2}$ is NOT a function of exponential order.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Laplace transform

Definition (The Laplace transform)

The **Laplace transform** of *f* is the function $F : D \to \mathbb{C}$ defined by

$$F(s) = \int_0^\infty e^{-st} f(t) dt, \ s \in D,$$

where $D \subseteq \mathbb{C}$ is the set for which the integral above is convergent.

Notation. $F(s) := \mathcal{L}{f}(s) := \mathcal{L}{f(t)}(s)$.

イロン イヨン イヨン イヨン

The Laplace transform

Definition (The Laplace transform)

The Laplace transform of f is the function $F : D \to \mathbb{C}$ defined by

$$F(s) = \int_0^\infty e^{-st} f(t) dt, \ s \in D,$$

where $D \subseteq \mathbb{C}$ is the set for which the integral above is convergent.

Notation. $F(s) := \mathcal{L}{f}(s) := \mathcal{L}{f(t)}(s)$.

Theorem (Existence of the Laplace transform)

Let f be a piecewise continuous function of exponential order such that

 $|f(t)| \leq Me^{\alpha t}, \forall t > a,$

where $\alpha \in \mathbb{R}$ and a > 0. The Laplace transform exists for all $s \in \mathbb{C}$ such that $Re(s) > \alpha$.

The Laplace transform

Definition (The Laplace transform)

The Laplace transform of f is the function $F : D \to \mathbb{C}$ defined by

$$F(s) = \int_0^\infty e^{-st} f(t) dt, \ s \in D,$$

where $D \subseteq \mathbb{C}$ is the set for which the integral above is convergent.

Notation. $F(s) := \mathcal{L}{f}(s) := \mathcal{L}{f(t)}(s)$.

Theorem (Existence of the Laplace transform)

Let f be a piecewise continuous function of exponential order such that

 $|f(t)| \leq M e^{\alpha t}, \forall t > a,$

where $\alpha \in \mathbb{R}$ and a > 0. The Laplace transform exists for all $s \in \mathbb{C}$ such that $Re(s) > \alpha$.

Exercise. Compute the Laplace transform of $\sigma(t)$, i.e., $\mathcal{L}{\sigma(t)}(s)$.

・ロン ・四 と ・ ヨ と ・ ヨ と

a) The Laplace transform is a linear transform.

- a) The Laplace transform is a linear transform.
- b) $\mathcal{L}{\sigma(t-a)f(t-a)}(s) = e^{-as}\mathcal{L}{f(t)}(s).$

- a) The Laplace transform is a linear transform.
- b) $\mathcal{L}{\sigma(t-a)f(t-a)}(s) = e^{-as}\mathcal{L}{f(t)}(s).$
- c) If f and f' are continuous functions of exponential order, then

$$\mathcal{L}{f'}(s) = s\mathcal{L}{f}(s) - f(0_+).$$

- a) The Laplace transform is a linear transform.
- b) $\mathcal{L}{\sigma(t-a)f(t-a)}(s) = e^{-as}\mathcal{L}{f(t)}(s).$
- c) If f and f' are continuous functions of exponential order, then

$$\mathcal{L}{f'}(s) = s\mathcal{L}{f}(s) - f(0_+).$$

d) If $f, f', ..., f^{(k)}$ are continuous functions of exponential order, then

$$\mathcal{L}{f^{(k)}}(s) = s^{k}\mathcal{L}{f}(s) - s^{k-1}f(0_{+}) - s^{k-2}f'(0_{+}) - \dots - f^{(k-1)}(0_{+}).$$

イロト 不得 とうき とうとう

- a) The Laplace transform is a linear transform.
- b) $\mathcal{L}{\sigma(t-a)f(t-a)}(s) = e^{-as}\mathcal{L}{f(t)}(s).$
- c) If f and f' are continuous functions of exponential order, then

$$\mathcal{L}\lbrace f'\rbrace(s)=s\mathcal{L}\lbrace f\rbrace(s)-f(0_+).$$

d) If $f, f', ..., f^{(k)}$ are continuous functions of exponential order, then

$$\mathcal{L}{f^{(k)}}(s) = s^{k}\mathcal{L}{f}(s) - s^{k-1}f(0_{+}) - s^{k-2}f'(0_{+}) - \dots - f^{(k-1)}(0_{+}).$$

e) The derivatives of the Laplace transform

$$(\mathcal{L}{f}(s))^{(k)} = \mathcal{L}{(-t)^k f(t)}(s).$$

- a) The Laplace transform is a linear transform.
- b) $\mathcal{L}{\sigma(t-a)f(t-a)}(s) = e^{-as}\mathcal{L}{f(t)}(s).$
- c) If f and f' are continuous functions of exponential order, then

$$\mathcal{L}{f'}(s) = s\mathcal{L}{f}(s) - f(0_+).$$

d) If $f, f', ..., f^{(k)}$ are continuous functions of exponential order, then

$$\mathcal{L}{f^{(k)}}(s) = s^{k}\mathcal{L}{f}(s) - s^{k-1}f(0_{+}) - s^{k-2}f'(0_{+}) - \dots - f^{(k-1)}(0_{+}).$$

e) The derivatives of the Laplace transform

$$(\mathcal{L}{f}(s))^{(k)} = \mathcal{L}{(-t)^k f(t)}(s).$$

f) The Laplace transform of the integral:

$$\mathcal{L}\left\{\int_0^t f(u)du\right\}(s) = \frac{1}{s}\mathcal{L}\{f\}(s).$$

g) If f(t) and $g(t) = \frac{f(t)}{t}$ are piecewise continuous functions of exponential order, then

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\}(s)=\int_{s}^{\infty}F(u)du.$$

g) If f(t) and $g(t) = \frac{f(t)}{t}$ are piecewise continuous functions of exponential order, then

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\}(s)=\int_{s}^{\infty}F(u)du.$$

h) If f(t) is a piecewise continuous function of exponential order and if f(t) is periodic of period T, then

$$\mathcal{L}{f(t)}(s) = \frac{1}{1-e^{-sT}}\int_0^T e^{-st}f(t)dt.$$

・ロト ・四ト ・ヨト ・ヨト

g) If f(t) and $g(t) = \frac{f(t)}{t}$ are piecewise continuous functions of exponential order, then

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\}(s)=\int_{s}^{\infty}F(u)du.$$

h) If f(t) is a piecewise continuous function of exponential order and if f(t) is periodic of period T, then

$$\mathcal{L}{f(t)}(s) = \frac{1}{1-e^{-sT}}\int_0^T e^{-st}f(t)dt.$$

Definition

The convolution product of two functions f and g is denoted by f * g and defined by

$$(f*g)(t)=\int_0^t f(\tau)g(t-\tau)d\tau.$$

g) If f(t) and $g(t) = \frac{f(t)}{t}$ are piecewise continuous functions of exponential order, then

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\}(s)=\int_{s}^{\infty}F(u)du.$$

h) If f(t) is a piecewise continuous function of exponential order and if f(t) is periodic of period T, then

$$\mathcal{L}{f(t)}(s) = \frac{1}{1-e^{-sT}}\int_0^T e^{-st}f(t)dt.$$

Definition

The convolution product of two functions f and g is denoted by f * g and defined by

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau.$$

Theorem (The Laplace transform of the convolution product)

$$\mathcal{L}{f*g}(s) = F(s)G(s).$$

Prof. Bogdan Gavrea (ETTI 2017)