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Random variables

Definition (Random Variable)

Let (Ω,K,P) be a probability space. A mapping X : Ω→ R is called a random variable
if

{ω ∈ Ω | X (ω) ≤ a} ∈ K,∀a ∈ R.

Definition (CDF)

The cumulative distribution function (cdf) of the random variable X is the mapping
FX : R→ [0, 1], defined by

FX (x) = P(X ≤ x).

Definition (Identically distributed random vars)

We say that two random variables X and Y are identically distributed if FX = FY .
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Properties of the cdf
The cdf FX (x) has the following properties:

i) Fx is a non-decreasing function;

ii) limx→−∞ FX (x) = 0, limx→∞ FX (x) = 1;

iii) FX (x) is a right-continuous function;

iv) P(a < X ≤ b) = FX (b)− FX (a).

Discrete random variables:

- The range is finite or countable;

- The discrete random vars are represented by an ordered series:

X :

(
x1 x2 ... xn ...
p1 p2 ... pn ...

)
,

where x1 < x2 < ... and pi = P(X = xi ). Note that
∑

i pi = 1.

Continuous random variables. In this case, there exists a probability density function
(pdf) ρX : R→ R+ such that

FX (x) =

∫ x

−∞
ρX (t)dt.

Note that
∫∞
−∞ ρX (t)dt = 1.
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Examples of random variables
1) The binomial random variable. Let p ∈ (0, 1) and n ∈ N∗. We say that X follows

the binomial distribution with parameters n and p, X ∼ Binom(n, p) if X has the
ordered series

X :

(
0 1 ... n
p0 p1 ... pn

)
,

where q = 1− p and

pk := P(X = k) =

(
n

k

)
pkqn−k = Pn,k .

2) The Poisson random variable. Let λ > 0. We say that a random variable follows
the Poisson distribution with parameter λ, X ∼ Poisson(λ), if X has the ordered
series:

X :

(
k
pk

)
k∈N

,

if

pk := P(X = k) =
λk

k!
e−λ.

Exercise. Determine the connection between the two distributions above, by
computing

lim
n→∞,np=λ

Pn,k .
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Examples of random variables

3) The geometric random variable. We say that X follows the geometric distribution
with parameter p ∈ (0, 1), X ∼ Geom(p), if X has the ordered series

X :

(
k
pk

)
k∈N

,

with pk := P(X = k) = pqk ,k ∈ N (q = 1− p).

4) The Uniform (cont) distribution. Let a, b ∈ R such that a < b. We say that the
random variable X has the uniform distribution on [a, b], X ∼ Uniform(a, b), if X
has the pdf

ρX (x) =

{
0, x /∈ [a, b]
1

b−a
, x ∈ [a, b].

5) The normal distribution. Let µ ∈ R and σ > 0. We say that X follows the normal
distribution with parameters µ and σ, X ∼ N(µ, σ) if its pdf is given by

ρX (x) =
1

σ
√

2π
e
− (x−µ)2

2σ2 , x ∈ R.
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Examples of random variables/Random vectors
6) The exponential random variable. Let λ > 0. We say that X follows the

Exponential distribution with parameter λ, X ∼ Exp(λ) if its pdf is given by

ρX (x) =

{
0, x < 0
λe−λx , x ≥ 0.

Random vectors. Let (Ω,K,P) be a probability space and X1, ...,Xn be random
variables over this space. The random vector X = (X1, ...,Xn) takes values of the form
x = (x1, ..., xn) ∈ Rn, xi ∈ Range(Xi ) and has the cdf FX : Rn → R, given by:

FX(x) := FX(x1, ..., xn) = P(X1 ≤ x1, ...,Xn ≤ xn).

Two-dimensional discrete random vectors. Let Z = (X ,Y ) be a discrete
two-dimensional (bivariate) random vector. Then the function f : R2 → [0, 1] defined by

f (x , y) = fX ,Y (x , y) = P(X = x ,Y = y)

is called the joint probability mass function (joint pmf). In this context
fX (x) = P(X = x) is called the marginal pmf of X and is given by:

fX (x) =
∑
y

f (x , y) and fY (y) =
∑
x

f (x , y).
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Discrete random vectors

Example. Let Z = (X ,Y ) be the discrete random pdf with the joint pmf given by:

f (0, 0) =
1

12
, f (1, 0) =

5

12
, f (0, 1) = f (1, 1) =

1

4
and f (x , y) = 0 otherwise.

Consider also the discrete random vector W = (U,V ) with the joint pmf g(x , y),

g(0, 0) = g(0, 1) =
1

6
, g(1, 0) = g(1, 1) =

1

3
and g(x , y) = 0 otherwise.

i) Compute the marginal pmfs for X ,Y , and U,V .

ii) Compare fX (x) to fU(x) and fY (y) to fV (y).

iii) Based on the calculations above answer the question: ”If the marginal pmfs are
known can the joint pmf be obtained?”
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Continuous random vectors

Definition (Joint pdf)

A function ρ : R2 → R is called a joint probability density function (joint pdf) of the
continuous two-dimensional (bivariate) random vector Z = (X ,Y ) if for any D ⊆ R2, we
have

P((X ,Y ) ∈ D) =

∫ ∫
D

ρ(x , y)dxdy .

We also use the notation ρX ,Y (x , y) or ρZ (x , y) depending on the context.

The marginal pdfs are defined by:

ρX (x) =

∫ ∞
−∞

ρ(x , y)dy , ρY (y) =

∫ ∞
−∞

ρ(x , y)dx .

Remark. Any function f : R2 → R satisfying

ρ(x , y) ≥ 0, ∀(x , y) ∈ R2 and

∫ ∞
−∞

∫ ∞
−∞

ρ(x , y)dxdy = 1

is the joint pdf of some continuous bivariate random vector Z = (X ,Y ).
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Continuous random vectors
The joint cdf of the bivariate random vector Z = (X ,Y ) is given by

F (x , y) = FZ (x , y) := FX ,Y (x , y) = P(X ≤ x ,Y ≤ y).

For a continuous bivariate random vector, we have

F (x , y) =

∫ x

−∞

∫ y

−∞
ρ(u, v)dvdu.

The above identity can be used to determine the joint pdf. More precisely,

ρ(x , y) =
∂2F

∂x∂y
(x , y)

at continuity points of f (x , y).
Example. A pair of random variables (X ,Y ) has the joint pdf

ρ(x , y) =
α

π2(1 + x2)(1 + y 2)
,∀(x , y) ∈ R2.

a) Determine α and the joint cdf F (x , y).

b) Find P((X ,Y ) ∈ [0, 1]× [0, 1].
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Conditional pmfs and pdfs

Definition (Conditional pmf)

Let Z = (X ,Y ) be a discrete bivariate vector with joint pmf f (x , y) := P(X = x ,Y = y)
and marginal pmfs fX (x) and fY (y). For any x such that fX (x) > 0, the conditional
pmf of Y given that X = x is the function of y , f (y |x), defined by

f (y |x) = P(Y = y |X = x) =
f (x , y)

fX (x)
.

In a similar way, one defines f (x |y), i.e., the conditional pmf of X given Y = y .

Definition (Conditional pdf)

Let Z = (X ,Y ) be a continuous bivariate vector with joint pdf ρ(x , y) and marginal
pdfs ρX (x) and ρY (y). For any x such that ρX (x) > 0, the conditional pmf of Y given
that X = x is the function of y , ρ(y |x), defined by

ρ(y |x) =
ρ(x , y)

ρX (x)
.

In a similar way, one defines ρ(x |y), i.e., the conditional pdf of X given Y = y .
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Independent random variables

Definition (Independent random variables)

Let Z = (X ,Y ) be a bivariate random vector with joint pdf or pmf ρ(x , y) and the
marginal pdfs ρX (x) and ρY (y). We say that X and Y are independent if

ρ(x , y) = ρX (x)ρY (y), ∀x , y .

Example. Consider the random variables X ,Y with joint pmf, f (x , y) given by

f (10, 1) = f (20, 1) = f (20, 2) =
1

10

f (10, 2) = f (10, 3) =
1

5
, f (20, 3) =

3

10
and f (x , y) = 0, otherwise.

Determine whether the random variables X and Y are independent.

Theorem (Checking independence)

Let X , Y be two random variables with joint pdf or pmf ρ(x , y). Then X and Y are
independent if and only if there exist functions g(x) and h(y) such that

ρ(x , y) = g(x)h(y), ∀(x , y).
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Example. Consider the random variables X ,Y with joint pmf, f (x , y) given by

f (10, 1) = f (20, 1) = f (20, 2) =
1

10

f (10, 2) = f (10, 3) =
1

5
, f (20, 3) =

3

10
and f (x , y) = 0, otherwise.

Determine whether the random variables X and Y are independent.

Theorem (Checking independence)

Let X , Y be two random variables with joint pdf or pmf ρ(x , y). Then X and Y are
independent if and only if there exist functions g(x) and h(y) such that

ρ(x , y) = g(x)h(y), ∀(x , y).
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Functions of random variables. Examples.
Example (Discrete Random Variable). Let X be the discrete random variable given by
the ordered series:

X :

(
−2 −1 1 2
1
4

1
3

1
6

1
4

)
Compute the ordered series for the following random variables:

a) U = X 3,

b) V = X 2.

Example (Continuous Random Variable). Let X be a continuous random variable
uniformly distributed on [−1, 1]. Let a > 0, b ∈ R. Compute the cdf FY (x) and the pdf
ρY (x).

Exercise. Let X ∼ Binom(n, p), where n ∈ N∗ and p ∈ (0, 1). Find the pmf of the
random variable Y = n − X .

Functions of two random variables. Let X and Y be two random variables such that
the values of the random vector (X ,Y ) are in the domain D ⊆ R2 and let f : D → R.
The cdf of Z = f (X ,Y ) is given by FZ (z) = P(f (X ,Y ) ≤ z). If X ,Y are continuous
random variables, then

FZ (z) =

∫ ∫
Dz

ρX ,Y (x , y)dxdy where Dz = {(x , y) ∈ R2 : f (x , y) ≤ z}.
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Expectation (Mean) of a random variable

Definition (Expectation of a random variable)

i) (Discrete case.) Let X be a discrete random variable given by the ordered series:

X :

(
xk
pk

)
. Then, the expectation (mean) of the random variable X , E [X ], is

defined to be
E [X ] =

∑
k

xkpk , provided it exists.

ii) (Continuous case.) Let X be a continuous random variable with pdf ρX (x). Then
the expectation (mean) of the random variable X is defined to be

E [X ] =

∫ ∞
−∞

xρX (x)dx , provided it exists.

Definition (Moments of a random variable)

Let X be a random variable, a ∈ R a fixed number and k ∈ N∗. Then E [(X − a)k ] is
called the k-th order moment of X about a provided it exists. If a = 0, then E [X k ] is
called the k-th order moment and if a := E [X ], it is called the k-th order central
moment of X .
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Expectation and variance
Exercise. Compute the expectation E [X ] if

a) X ∼ Binom(n, p),

b) X ∼ N(µ, σ).

Theorem (Properties of the expectation)

Let X ,Y be random variables with expectations E [X ] and E [Y ] respectively. Let
a, b ∈ R. Then the following properties hold:

i) E [aX + b] = aE [X ] + b.

ii) E [X + Y ] = E [X ] + E [Y ].

iii) If X and Y are independent random variables then E [XY ] = E [X ]E [Y ].

Definition (Variance and Standard Deviation)

Let X be a random variable with µ := E [X ] <∞. Then the variance or dispersion of X
is denoted by VAR[X ] and it is defined by

VAR[X ] = E [(x − µ)2].

The number σ := σX =
√

VAR[X ] is called the standard deviation of X .
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Variance. Moment generating function

Theorem
Let X be a random variable with expectation E [X ] and variance VAR[X ]. The following
properties hold:

i) (Computing the variance) VAR[X ] = E [X 2]− (E [X ])2.

ii) (Variance of an affine transformation) Let a, b ∈ R fixed constants. Then
VAR[aX + b] = a2VAR[X ].

iii) (The variance of a sum of independent random variables) Let X1, ...,Xn be
independent random variables. Then,

VAR

[
n∑

i=1

Xi

]
=

n∑
i=1

VAR[Xi ].

Definition (Moment generating functions)

Let X be a random variable. The moment generating function (mgf) of X , denoted by
MX (t) is

MX (t) = E
[
etX

]
,

provided that the expectation exists for some t in a neighborhood of 0.
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Moment generating functions. Covariance, correlation

Theorem (Generating moments)

If the random variable X has the mgf MX (t), then

E [X n] = M
(n)
X (0).

Definition (Covariance, Correlation coefficient)

Let X and Y be two random variables with means µX = X = E [X ] and
µY = Y = E [Y ]. Then, the covariance of the random variables X and Y is given by:

COV(X ,Y ) = E [(X − µX )(Y − µY )].

The correlation coefficient r(X ,Y ) of the two random variables X ,Y is given by

r(X ,Y ) =
COV(X ,Y )

σXσY
.
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Covariance and correlation

Theorem
Let X and Y be two random variables with means µX = E [X ] and µY = E [Y ]. Then
the following properties hold:

i) COV(X ,Y ) = E [XY ]− E [X ]E [Y ].

ii) If X ,Y are independent random variables, then COV(X ,Y ) = 0.

iii) σ2
X := VAR(X ) = COV(X ,X ).

iv) If X and Y are independent, then r(X ,Y ) = 0.

v) −1 ≤ r(X ,Y ) ≤ 1.

vi) If r(X ,Y ) = ±1, then X − µX and Y − µY are linearly dependent.
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