Numerical Methods

Prof. Bogdan Gavrea

ETTI 2017-2018

Random Variables

Random variables

Definition (Random Variable)

Let (Ω, \mathcal{K}, P) be a probability space. A mapping $X : \Omega \to \mathbb{R}$ is called a **random variable** if

 $\{\omega \in \Omega \mid X(\omega) \leq a\} \in \mathcal{K}, \forall a \in \mathbb{R}.$

イロト イヨト イヨト イヨ

Random variables

Definition (Random Variable)

Let (Ω, \mathcal{K}, P) be a probability space. A mapping $X : \Omega \to \mathbb{R}$ is called a **random variable** if

$$\{\omega \in \Omega \mid X(\omega) \leq a\} \in \mathcal{K}, \forall a \in \mathbb{R}.$$

Definition (CDF)

The cumulative **distribution function (cdf)** of the random variable X is the mapping $F_X : \mathbb{R} \to [0, 1]$, defined by

 $F_X(x) = P(X \leq x).$

・ロト ・回ト ・ヨト ・ヨト

Random variables

Definition (Random Variable)

Let (Ω, \mathcal{K}, P) be a probability space. A mapping $X : \Omega \to \mathbb{R}$ is called a **random variable** if

$$\{\omega \in \Omega \mid X(\omega) \leq a\} \in \mathcal{K}, \forall a \in \mathbb{R}.$$

Definition (CDF)

The cumulative **distribution function (cdf)** of the random variable X is the mapping $F_X : \mathbb{R} \to [0, 1]$, defined by

$$F_X(x) = P(X \leq x).$$

Definition (Identically distributed random vars)

We say that two random variables X and Y are identically distributed if $F_X = F_Y$.

・ロト ・回ト ・ヨト ・ヨト

The **cdf** $F_X(x)$ has the following properties:

i) F_x is a non-decreasing function;

ii)
$$\lim_{x\to-\infty} F_X(x) = 0$$
, $\lim_{x\to\infty} F_X(x) = 1$;

- iii) $F_X(x)$ is a right-continuous function;
- iv) $P(a < X \le b) = F_X(b) F_X(a)$.

The **cdf** $F_X(x)$ has the following properties:

i) F_x is a non-decreasing function;

ii)
$$\lim_{x\to-\infty} F_X(x) = 0$$
, $\lim_{x\to\infty} F_X(x) = 1$;

iii) $F_X(x)$ is a right-continuous function;

iv)
$$P(a < X \leq b) = F_X(b) - F_X(a)$$
.

Discrete random variables:

- The range is finite or countable;
- The discrete random vars are represented by an ordered series:

$$X: \left(\begin{array}{cccc} x_1 & x_2 & \dots & x_n & \dots \\ p_1 & p_2 & \dots & p_n & \dots \end{array}\right),$$

where $x_1 < x_2 < \dots$ and $p_i = P(X = x_i)$. Note that $\sum_i p_i = 1$.

The **cdf** $F_X(x)$ has the following properties:

i) F_x is a non-decreasing function;

ii)
$$\lim_{x\to-\infty} F_X(x) = 0$$
, $\lim_{x\to\infty} F_X(x) = 1$;

iii) $F_X(x)$ is a right-continuous function;

iv)
$$P(a < X \le b) = F_X(b) - F_X(a)$$
.

Discrete random variables:

- The range is finite or countable;
- The discrete random vars are represented by an ordered series:

$$X: \left(\begin{array}{cccc} x_1 & x_2 & \dots & x_n & \dots \\ p_1 & p_2 & \dots & p_n & \dots \end{array}\right),$$

where $x_1 < x_2 < ...$ and $p_i = P(X = x_i)$. Note that $\sum_i p_i = 1$.

Continuous random variables. In this case, there exists a probability density function (pdf) $\rho_X : \mathbb{R} \to \mathbb{R}_+$ such that

$$F_X(x) = \int_{-\infty}^x \rho_X(t) dt.$$

The **cdf** $F_X(x)$ has the following properties:

i) F_x is a non-decreasing function;

ii)
$$\lim_{x\to-\infty} F_X(x) = 0$$
, $\lim_{x\to\infty} F_X(x) = 1$;

iii) $F_X(x)$ is a right-continuous function;

iv)
$$P(a < X \leq b) = F_X(b) - F_X(a)$$
.

Discrete random variables:

- The range is finite or countable;
- The discrete random vars are represented by an ordered series:

$$X: \left(\begin{array}{cccc} x_1 & x_2 & \dots & x_n & \dots \\ p_1 & p_2 & \dots & p_n & \dots \end{array}\right),$$

where $x_1 < x_2 < ...$ and $p_i = P(X = x_i)$. Note that $\sum_i p_i = 1$.

Continuous random variables. In this case, there exists a probability density function (pdf) $\rho_X : \mathbb{R} \to \mathbb{R}_+$ such that

$$F_X(x) = \int_{-\infty}^x \rho_X(t) dt.$$

Note that $\int_{-\infty}^{\infty} \rho_X(t) dt = 1$.

1) The binomial random variable. Let $p \in (0, 1)$ and $n \in \mathbb{N}^*$. We say that X follows the binomial distribution with parameters n and p, $X \sim Binom(n, p)$ if X has the ordered series

$$X:\left(\begin{array}{ccc} 0 & 1 & \dots & n \\ p_0 & p_1 & \dots & p_n \end{array}\right),$$

where q = 1 - p and

$$p_k := P(X = k) = \binom{n}{k} p^k q^{n-k} = P_{n,k}.$$

・ロト ・回ト ・ヨト ・ヨト

1) The binomial random variable. Let $p \in (0, 1)$ and $n \in \mathbb{N}^*$. We say that X follows the binomial distribution with parameters n and p, $X \sim Binom(n, p)$ if X has the ordered series

$$X:\left(\begin{array}{ccc} 0 & 1 & \dots & n \\ p_0 & p_1 & \dots & p_n \end{array}\right)$$

where q = 1 - p and

$$p_k := P(X = k) = \binom{n}{k} p^k q^{n-k} = P_{n,k}.$$

 The Poisson random variable. Let λ > 0. We say that a random variable follows the Poisson distribution with parameter λ, X ~ Poisson(λ), if X has the ordered series:

$$X:\left(egin{array}{c}k\\p_k\end{array}
ight)_{k\in\mathbb{N}},$$

if

$$p_k := P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}.$$

1) The binomial random variable. Let $p \in (0, 1)$ and $n \in \mathbb{N}^*$. We say that X follows the binomial distribution with parameters n and p, $X \sim Binom(n, p)$ if X has the ordered series

$$X:\left(\begin{array}{ccc} 0 & 1 & \dots & n \\ p_0 & p_1 & \dots & p_n \end{array}\right)$$

where q = 1 - p and

$$p_k := P(X = k) = \binom{n}{k} p^k q^{n-k} = P_{n,k}.$$

 The Poisson random variable. Let λ > 0. We say that a random variable follows the Poisson distribution with parameter λ, X ~ Poisson(λ), if X has the ordered series:

$$X:\left(egin{array}{c}k\\p_k\end{array}
ight)_{k\in\mathbb{N}},$$

if

$$p_k := P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}.$$

Exercise. Determine the connection between the two distributions above, by computing

$$\lim_{n\to\infty,np=\lambda}P_{n,k}$$

Prof. Bogdan Gavrea (ETTI 2017-2018)

3) The geometric random variable. We say that X follows the geometric distribution with parameter $p \in (0, 1)$, $X \sim Geom(p)$, if X has the ordered series

$$X: \left(\begin{array}{c}k\\p_k\end{array}\right)_{k\in\mathbb{N}}$$

with $p_k := P(X = k) = pq^k$, $k \in \mathbb{N}$ (q = 1 - p).

 The geometric random variable. We say that X follows the geometric distribution with parameter p ∈ (0,1), X ~ Geom(p), if X has the ordered series

$$X: \left(egin{array}{c}k\\p_k\end{array}
ight)_{k\in\mathbb{N}},$$

with $p_k := P(X = k) = pq^k$, $k \in \mathbb{N}$ (q = 1 - p).

4) The Uniform (cont) distribution. Let a, b ∈ R such that a < b. We say that the random variable X has the uniform distribution on [a, b], X ~ Uniform(a, b), if X has the pdf</p>

$$ho_X(x) = \left\{egin{array}{cc} 0, & x \notin [a,b] \ rac{1}{b-a}, & x \in [a,b]. \end{array}
ight.$$

 The geometric random variable. We say that X follows the geometric distribution with parameter p ∈ (0,1), X ~ Geom(p), if X has the ordered series

$$X: \left(egin{array}{c}k\\p_k\end{array}
ight)_{k\in\mathbb{N}},$$

with $p_k := P(X = k) = pq^k$, $k \in \mathbb{N}$ (q = 1 - p).

4) The Uniform (cont) distribution. Let a, b ∈ R such that a < b. We say that the random variable X has the uniform distribution on [a, b], X ~ Uniform(a, b), if X has the pdf</p>

$$\rho_X(x) = \begin{cases}
0, & x \notin [a, b] \\
rac{1}{b-a}, & x \in [a, b].
\end{cases}$$

5) The normal distribution. Let $\mu \in \mathbb{R}$ and $\sigma > 0$. We say that X follows the normal distribution with parameters μ and σ , $X \sim N(\mu, \sigma)$ if its **pdf** is given by

$$\rho_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}.$$

Examples of random variables/Random vectors

6) The exponential random variable. Let λ > 0. We say that X follows the Exponential distribution with parameter λ, X ~ Exp(λ) if its pdf is given by

$$\rho_X(x) = \begin{cases}
0, & x < 0 \\
\lambda e^{-\lambda x}, & x \ge 0.
\end{cases}$$

Random vectors. Let (Ω, \mathcal{K}, P) be a probability space and $X_1, ..., X_n$ be random variables over this space. The random vector $\mathbf{X} = (X_1, ..., X_n)$ takes values of the form $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n$, $x_i \in Range(X_i)$ and has the **cdf** $F_{\mathbf{X}} : \mathbb{R}^n \to \mathbb{R}$, given by:

$$F_{\mathbf{X}}(\mathbf{x}) := F_{\mathbf{X}}(x_1, ..., x_n) = P(X_1 \le x_1, ..., X_n \le x_n).$$

Examples of random variables/Random vectors

6) The exponential random variable. Let λ > 0. We say that X follows the Exponential distribution with parameter λ, X ~ Exp(λ) if its pdf is given by

$$\rho_X(x) = \begin{cases}
0, & x < 0 \\
\lambda e^{-\lambda x}, & x \ge 0.
\end{cases}$$

Random vectors. Let (Ω, \mathcal{K}, P) be a probability space and $X_1, ..., X_n$ be random variables over this space. The random vector $\mathbf{X} = (X_1, ..., X_n)$ takes values of the form $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n$, $x_i \in Range(X_i)$ and has the **cdf** $F_{\mathbf{X}} : \mathbb{R}^n \to \mathbb{R}$, given by:

$$F_{\mathbf{X}}(\mathbf{x}) := F_{\mathbf{X}}(x_1, ..., x_n) = P(X_1 \le x_1, ..., X_n \le x_n).$$

Two-dimensional discrete random vectors. Let Z = (X, Y) be a discrete two-dimensional (bivariate) random vector. Then the function $f : \mathbb{R}^2 \to [0, 1]$ defined by

$$f(x,y) = f_{X,Y}(x,y) = P(X = x, Y = y)$$

is called the **joint probability mass function** (joint **pmf**). In this context $f_X(x) = P(X = x)$ is called the **marginal pmf** of X and is given by:

$$f_X(x) = \sum_{y} f(x, y) \text{ and } f_Y(y) = \sum_{x} f(x, y).$$

・ロン ・四 と ・ ヨ と ・ ヨ と

Discrete random vectors

Example. Let $\mathbf{Z} = (X, Y)$ be the discrete random pdf with the joint **pmf** given by:

$$f(0,0) = \frac{1}{12}, f(1,0) = \frac{5}{12}, f(0,1) = f(1,1) = \frac{1}{4}$$
 and $f(x,y) = 0$ otherwise.

Consider also the discrete random vector $\mathbf{W} = (U, V)$ with the joint **pmf** g(x, y),

$$g(0,0)=g(0,1)=rac{1}{6},\;g(1,0)=g(1,1)=rac{1}{3} ext{ and }g(x,y)=0 ext{ otherwise.}$$

- i) Compute the marginal **pmfs** for X, Y, and U, V.
- ii) Compare $f_X(x)$ to $f_U(x)$ and $f_Y(y)$ to $f_V(y)$.
- iii) Based on the calculations above answer the question: "If the marginal pmfs are known can the joint pmf be obtained?"

Definition (Joint pdf)

A function $\rho : \mathbb{R}^2 \to \mathbb{R}$ is called a **joint probability density function** (joint **pdf**) of the *continuous* two-dimensional (bivariate) random vector $\mathbf{Z} = (X, Y)$ if for any $D \subseteq \mathbb{R}^2$, we have

$$P((X, Y) \in D) = \int \int_D \rho(x, y) dx dy.$$

We also use the notation $\rho_{X,Y}(x,y)$ or $\rho_Z(x,y)$ depending on the context.

Definition (Joint pdf)

A function $\rho : \mathbb{R}^2 \to \mathbb{R}$ is called a **joint probability density function** (joint **pdf**) of the *continuous* two-dimensional (bivariate) random vector $\mathbf{Z} = (X, Y)$ if for any $D \subseteq \mathbb{R}^2$, we have

$$P((X, Y) \in D) = \int \int_D \rho(x, y) dx dy.$$

We also use the notation $\rho_{X,Y}(x,y)$ or $\rho_Z(x,y)$ depending on the context.

The marginal **pdf**s are defined by:

$$\rho_X(x) = \int_{-\infty}^{\infty} \rho(x, y) dy, \quad \rho_Y(y) = \int_{-\infty}^{\infty} \rho(x, y) dx.$$

イロト 不得下 イヨト イヨト

Definition (Joint pdf)

A function $\rho : \mathbb{R}^2 \to \mathbb{R}$ is called a **joint probability density function** (joint **pdf**) of the *continuous* two-dimensional (bivariate) random vector $\mathbf{Z} = (X, Y)$ if for any $D \subseteq \mathbb{R}^2$, we have

$$P((X, Y) \in D) = \int \int_D \rho(x, y) dx dy.$$

We also use the notation $\rho_{X,Y}(x,y)$ or $\rho_Z(x,y)$ depending on the context.

The marginal **pdf**s are defined by:

$$\rho_X(x) = \int_{-\infty}^{\infty} \rho(x, y) dy, \ \ \rho_Y(y) = \int_{-\infty}^{\infty} \rho(x, y) dx.$$

Remark. Any function $f : \mathbb{R}^2 \to \mathbb{R}$ satisfying

$$ho(x,y) \geq 0, orall (x,y) \in \mathbb{R}^2 ext{ and } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}
ho(x,y) dx dy = 1$$

is the joint **pdf** of some continuous bivariate random vector $\mathbf{Z} = (X, Y)$.

イロト 不得下 イヨト イヨト

The joint **cdf** of the bivariate random vector $\mathbf{Z} = (X, Y)$ is given by

$$F(x,y)=F_Z(x,y):=F_{X,Y}(x,y)=P(X\leq x,Y\leq y).$$

・ロト ・回ト ・ヨト ・

The joint **cdf** of the bivariate random vector $\mathbf{Z} = (X, Y)$ is given by

$$F(x,y)=F_Z(x,y):=F_{X,Y}(x,y)=P(X\leq x,Y\leq y).$$

For a continuous bivariate random vector, we have

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} \rho(u,v) dv du.$$

・ロト ・回ト ・ヨト ・

The joint **cdf** of the bivariate random vector $\mathbf{Z} = (X, Y)$ is given by

$$F(x,y)=F_Z(x,y):=F_{X,Y}(x,y)=P(X\leq x,Y\leq y).$$

For a continuous bivariate random vector, we have

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} \rho(u,v) dv du.$$

The above identity can be used to determine the joint **pdf**. More precisely,

$$\rho(x,y) = \frac{\partial^2 F}{\partial x \partial y}(x,y)$$

at continuity points of f(x, y).

• • • • • • • • • • • •

The joint **cdf** of the bivariate random vector $\mathbf{Z} = (X, Y)$ is given by

$$F(x,y)=F_Z(x,y):=F_{X,Y}(x,y)=P(X\leq x,Y\leq y).$$

For a continuous bivariate random vector, we have

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} \rho(u,v) dv du.$$

The above identity can be used to determine the joint pdf. More precisely,

$$\rho(x,y) = \frac{\partial^2 F}{\partial x \partial y}(x,y)$$

at continuity points of f(x, y).

Example. A pair of random variables (X, Y) has the joint pdf

$$\rho(x,y) = \frac{\alpha}{\pi^2(1+x^2)(1+y^2)}, \forall (x,y) \in \mathbb{R}^2.$$

a) Determine α and the joint **cdf** F(x, y).

b) Find $P((X, Y) \in [0, 1] \times [0, 1].$

イロト 不得下 イヨト イヨト

Conditional pmfs and pdfs

Definition (Conditional pmf)

Let Z = (X, Y) be a discrete bivariate vector with **joint pmf** f(x, y) := P(X = x, Y = y)and **marginal pmfs** $f_X(x)$ and $f_Y(y)$. For any x such that $f_X(x) > 0$, the **conditional pmf** of Y given that X = x is the function of y, f(y|x), defined by

$$f(y|x) = P(Y = y|X = x) = \frac{f(x, y)}{f_X(x)}.$$

In a similar way, one defines f(x|y), i.e., the **conditional pmf** of X given Y = y.

Conditional pmfs and pdfs

Definition (Conditional pmf)

Let Z = (X, Y) be a discrete bivariate vector with joint pmf f(x, y) := P(X = x, Y = y)and marginal pmfs $f_X(x)$ and $f_Y(y)$. For any x such that $f_X(x) > 0$, the conditional pmf of Y given that X = x is the function of y, f(y|x), defined by

$$f(y|x) = P(Y = y|X = x) = \frac{f(x, y)}{f_X(x)}.$$

In a similar way, one defines f(x|y), i.e., the **conditional pmf** of X given Y = y.

Definition (Conditional pdf)

Let Z = (X, Y) be a continuous bivariate vector with **joint pdf** $\rho(x, y)$ and **marginal pdfs** $\rho_X(x)$ and $\rho_Y(y)$. For any x such that $\rho_X(x) > 0$, the **conditional pmf** of Y given that X = x is the function of y, $\rho(y|x)$, defined by

$$\rho(y|x) = \frac{\rho(x,y)}{\rho_X(x)}.$$

In a similar way, one defines $\rho(x|y)$, i.e., the **conditional pdf** of X given Y = y.

Independent random variables

Definition (Independent random variables)

Let $\mathbf{Z} = (X, Y)$ be a bivariate random vector with joint **pdf** or **pmf** $\rho(x, y)$ and the marginal **pdfs** $\rho_X(x)$ and $\rho_Y(y)$. We say that X and Y are **independent** if

 $\rho(x,y) = \rho_X(x)\rho_Y(y), \ \forall x,y.$

Independent random variables

Definition (Independent random variables)

Let $\mathbf{Z} = (X, Y)$ be a bivariate random vector with joint **pdf** or **pmf** $\rho(x, y)$ and the marginal **pdfs** $\rho_X(x)$ and $\rho_Y(y)$. We say that X and Y are **independent** if

$$\rho(x,y) = \rho_X(x)\rho_Y(y), \ \forall x,y.$$

Example. Consider the random variables X, Y with joint **pmf**, f(x, y) given by

$$f(10,1) = f(20,1) = f(20,2) = \frac{1}{10}$$

$$f(10,2) = f(10,3) = \frac{1}{5}, f(20,3) = \frac{3}{10} \text{ and } f(x,y) = 0, \text{ otherwise.}$$

Determine whether the random variables X and Y are independent.

イロト 不得下 イヨト イヨト

Independent random variables

Definition (Independent random variables)

Let $\mathbf{Z} = (X, Y)$ be a bivariate random vector with joint **pdf** or **pmf** $\rho(x, y)$ and the marginal **pdfs** $\rho_X(x)$ and $\rho_Y(y)$. We say that X and Y are **independent** if

$$\rho(x,y) = \rho_X(x)\rho_Y(y), \ \forall x,y.$$

Example. Consider the random variables X, Y with joint **pmf**, f(x, y) given by

$$f(10,1) = f(20,1) = f(20,2) = \frac{1}{10}$$

$$f(10,2) = f(10,3) = \frac{1}{5}, f(20,3) = \frac{3}{10} \text{ and } f(x,y) = 0, \text{ otherwise.}$$

Determine whether the random variables X and Y are independent.

Theorem (Checking independence)

Let X, Y be two random variables with joint pdf or pmf $\rho_{(x, y)}$. Then X and Y are independent if and only if there exist functions g(x) and h(y) such that

$$\rho(x,y) = g(x)h(y), \ \forall (x,y).$$

Example (Discrete Random Variable). Let X be the discrete random variable given by the ordered series:

$$X:\left(\begin{array}{cccc} -2 & -1 & 1 & 2\\ \frac{1}{4} & \frac{1}{3} & \frac{1}{6} & \frac{1}{4} \end{array}\right)$$

Compute the ordered series for the following random variables:

a)
$$U = X^3$$

b) $V = X^2$.

イロト 不得下 イヨト イヨト

Example (Discrete Random Variable). Let X be the discrete random variable given by the ordered series:

$$X:\left(\begin{array}{cccc} -2 & -1 & 1 & 2\\ \frac{1}{4} & \frac{1}{3} & \frac{1}{6} & \frac{1}{4} \end{array}\right)$$

Compute the ordered series for the following random variables:

a)
$$U = X^3$$
,

b)
$$V = X^2$$
.

Example (Continuous Random Variable). Let X be a continuous random variable uniformly distributed on [-1, 1]. Let a > 0, $b \in \mathbb{R}$. Compute the **cdf** $F_Y(x)$ and the **pdf** $\rho_Y(x)$.

Example (Discrete Random Variable). Let X be the discrete random variable given by the ordered series:

$$X:\left(\begin{array}{cccc} -2 & -1 & 1 & 2 \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{6} & \frac{1}{4} \end{array}\right)$$

Compute the ordered series for the following random variables:

a)
$$U = X^3$$
,

b)
$$V = X^2$$
.

Example (Continuous Random Variable). Let X be a continuous random variable uniformly distributed on [-1,1]. Let a > 0, $b \in \mathbb{R}$. Compute the **cdf** $F_Y(x)$ and the **pdf** $\rho_Y(x)$.

Exercise. Let $X \sim Binom(n, p)$, where $n \in \mathbb{N}^*$ and $p \in (0, 1)$. Find the **pmf** of the random variable Y = n - X.

Example (Discrete Random Variable). Let X be the discrete random variable given by the ordered series:

$$X:\left(\begin{array}{cccc} -2 & -1 & 1 & 2\\ \frac{1}{4} & \frac{1}{3} & \frac{1}{6} & \frac{1}{4} \end{array}\right)$$

Compute the ordered series for the following random variables:

a)
$$U = X^3$$
,

b)
$$V = X^2$$
.

Example (Continuous Random Variable). Let X be a continuous random variable uniformly distributed on [-1,1]. Let a > 0, $b \in \mathbb{R}$. Compute the **cdf** $F_Y(x)$ and the **pdf** $\rho_Y(x)$.

Exercise. Let $X \sim Binom(n, p)$, where $n \in \mathbb{N}^*$ and $p \in (0, 1)$. Find the **pmf** of the random variable Y = n - X.

Functions of two random variables. Let X and Y be two random variables such that the values of the random vector (X, Y) are in the domain $D \subseteq \mathbb{R}^2$ and let $f : D \to \mathbb{R}$. The **cdf** of Z = f(X, Y) is given by $F_Z(z) = P(f(X, Y) \leq z)$.

(日) (周) (日) (日) (日)

Example (Discrete Random Variable). Let X be the discrete random variable given by the ordered series:

$$X:\left(\begin{array}{cccc} -2 & -1 & 1 & 2\\ \frac{1}{4} & \frac{1}{3} & \frac{1}{6} & \frac{1}{4} \end{array}\right)$$

Compute the ordered series for the following random variables:

a)
$$U = X^3$$

b)
$$V = X^2$$
.

Example (Continuous Random Variable). Let X be a continuous random variable uniformly distributed on [-1,1]. Let a > 0, $b \in \mathbb{R}$. Compute the **cdf** $F_Y(x)$ and the **pdf** $\rho_Y(x)$.

Exercise. Let $X \sim Binom(n, p)$, where $n \in \mathbb{N}^*$ and $p \in (0, 1)$. Find the **pmf** of the random variable Y = n - X.

Functions of two random variables. Let X and Y be two random variables such that the values of the random vector (X, Y) are in the domain $D \subseteq \mathbb{R}^2$ and let $f : D \to \mathbb{R}$. The **cdf** of Z = f(X, Y) is given by $F_Z(z) = P(f(X, Y) \leq z)$. If X, Y are continuous random variables, then

$$F_Z(z) = \int \int_{D_z} \rho_{X,Y}(x,y) dx dy \text{ where } D_z = \{(x,y) \in \mathbb{R}^2 : f(x,y) \leq z\}.$$

(日) (周) (日) (日) (日)

Expectation (Mean) of a random variable

Definition (Expectation of a random variable)

i) (Discrete case.) Let X be a discrete random variable given by the ordered series: $X : \begin{pmatrix} x_k \\ p_k \end{pmatrix}$. Then, the expectation (mean) of the random variable X, E[X], is defined to be

$$E[X] = \sum_{k} x_k p_k$$
, provided it exists.

<ロト </p>

Expectation (Mean) of a random variable

Definition (Expectation of a random variable)

i) (Discrete case.) Let X be a discrete random variable given by the ordered series: $X : \begin{pmatrix} x_k \\ p_k \end{pmatrix}$. Then, the expectation (mean) of the random variable X, E[X], is defined to be

$$E[X] = \sum_{k} x_k p_k$$
, provided it exists.

ii) (Continuous case.) Let X be a continuous random variable with pdf $\rho_X(x)$. Then the expectation (mean) of the random variable X is defined to be

$$E[X] = \int_{-\infty}^{\infty} x \rho_X(x) dx$$
, provided it exists.

Expectation (Mean) of a random variable

Definition (Expectation of a random variable)

i) (Discrete case.) Let X be a discrete random variable given by the ordered series: $X : \begin{pmatrix} x_k \\ p_k \end{pmatrix}$. Then, the expectation (mean) of the random variable X, E[X], is defined to be

$$E[X] = \sum_{k} x_k p_k$$
, provided it exists.

ii) (Continuous case.) Let X be a continuous random variable with pdf $\rho_X(x)$. Then the expectation (mean) of the random variable X is defined to be

$$E[X] = \int_{-\infty}^{\infty} x \rho_X(x) dx$$
, provided it exists.

Definition (Moments of a random variable)

Let X be a random variable, $a \in \mathbb{R}$ a fixed number and $k \in \mathbb{N}^*$. Then $E[(X - a)^k]$ is called the k-th order moment of X about a provided it exists. If a = 0, then $E[X^k]$ is called the k-th order moment and if a := E[X], it is called the k-th order central moment of X.

Expectation and variance

Exercise. Compute the expectation E[X] if

- a) $X \sim Binom(n, p)$,
- b) $X \sim N(\mu, \sigma)$.

・ロト ・回ト ・ヨト ・ヨト

Expectation and variance

Exercise. Compute the expectation E[X] if

- a) $X \sim Binom(n, p)$,
- b) $X \sim N(\mu, \sigma)$.

Theorem (Properties of the expectation)

Let X, Y be random variables with expectations E[X] and E[Y] respectively. Let $a, b \in \mathbb{R}$. Then the following properties hold:

- i) E[aX + b] = aE[X] + b.
- ii) E[X + Y] = E[X] + E[Y].
- iii) If X and Y are independent random variables then E[XY] = E[X]E[Y].

Expectation and variance

Exercise. Compute the expectation E[X] if

- a) $X \sim Binom(n, p)$,
- b) $X \sim N(\mu, \sigma)$.

Theorem (Properties of the expectation)

Let X, Y be random variables with expectations E[X] and E[Y] respectively. Let a, $b \in \mathbb{R}$. Then the following properties hold:

i)
$$E[aX + b] = aE[X] + b$$
.

ii)
$$E[X + Y] = E[X] + E[Y].$$

iii) If X and Y are independent random variables then E[XY] = E[X]E[Y].

Definition (Variance and Standard Deviation)

Let X be a random variable with $\mu := E[X] < \infty$. Then the variance or dispersion of X is denoted by VAR[X] and it is defined by

$$VAR[X] = E[(x - \mu)^2].$$

The number $\sigma := \sigma_X = \sqrt{VAR[X]}$ is called the **standard deviation** of X.

Variance. Moment generating function

Theorem

Let X be a random variable with expectation E[X] and variance VAR[X]. The following properties hold:

- i) (Computing the variance) $VAR[X] = E[X^2] (E[X])^2$.
- ii) (Variance of an affine transformation) Let $a, b \in \mathbb{R}$ fixed constants. Then $VAR[aX + b] = a^2 VAR[X]$.
- iii) (The variance of a sum of independent random variables) Let $X_1, ..., X_n$ be independent random variables. Then,

$$VAR\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} VAR[X_i].$$

(日) (同) (日) (日)

Variance. Moment generating function

Theorem

Let X be a random variable with expectation E[X] and variance VAR[X]. The following properties hold:

- i) (Computing the variance) $VAR[X] = E[X^2] (E[X])^2$.
- ii) (Variance of an affine transformation) Let $a, b \in \mathbb{R}$ fixed constants. Then $VAR[aX + b] = a^2 VAR[X]$.
- iii) (The variance of a sum of independent random variables) Let $X_1, ..., X_n$ be independent random variables. Then,

$$VAR\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} VAR[X_i].$$

Definition (Moment generating functions)

Let X be a random variable. The moment generating function (mgf) of X, denoted by $M_X(t)$ is

$$M_X(t)=E\left[e^tX\right],$$

provided that the expectation exists for some t in a neighborhood of 0.

Moment generating functions. Covariance, correlation

Theorem (Generating moments)

If the random variable X has the mgf $M_X(t)$, then

$$E[X^n] = M_X^{(n)}(0).$$

Definition (Covariance, Correlation coefficient)

Let X and Y be two random variables with means $\mu_X = \overline{X} = E[X]$ and $\mu_Y = \overline{Y} = E[Y]$. Then, the covariance of the random variables X and Y is given by:

$$COV(X, Y) = E[(X - \mu_X)(Y - \mu_Y)].$$

イロト 不得下 イヨト イヨト

Moment generating functions. Covariance, correlation

Theorem (Generating moments)

If the random variable X has the mgf $M_X(t)$, then

$$E[X^n] = M_X^{(n)}(0).$$

Definition (Covariance, Correlation coefficient)

Let X and Y be two random variables with means $\mu_X = \overline{X} = E[X]$ and $\mu_Y = \overline{Y} = E[Y]$. Then, the covariance of the random variables X and Y is given by:

$$COV(X, Y) = E[(X - \mu_X)(Y - \mu_Y)].$$

The correlation coefficient r(X, Y) of the two random variables X, Y is given by

$$r(X,Y)=\frac{\mathrm{COV}(X,Y)}{\sigma_X\sigma_Y}.$$

Covariance and correlation

Theorem

Let X and Y be two random variables with means $\mu_X = E[X]$ and $\mu_Y = E[Y]$. Then the following properties hold:

- i) COV(X, Y) = E[XY] E[X]E[Y].
- ii) If X, Y are independent random variables, then COV(X, Y) = 0.
- iii) $\sigma_X^2 := VAR(X) = COV(X, X).$
- iv) If X and Y are independent, then r(X, Y) = 0.
- v) $-1 \le r(X, Y) \le 1$.
- vi) If $r(X, Y) = \pm 1$, then $X \mu_X$ and $Y \mu_Y$ are linearly dependent.

< ロ > < 同 > < 三 > < 三