Numerical Methods

Prof. Bogdan Gavrea

ETTI 2017-2018
Random Variables

Random variables

Definition (Random Variable)

Let (Ω, \mathcal{K}, P) be a probability space. A mapping $X: \Omega \rightarrow \mathbb{R}$ is called a random variable if

$$
\{\omega \in \Omega \mid X(\omega) \leq a\} \in \mathcal{K}, \forall a \in \mathbb{R}
$$

Random variables

Definition (Random Variable)

Let (Ω, \mathcal{K}, P) be a probability space. A mapping $X: \Omega \rightarrow \mathbb{R}$ is called a random variable if

$$
\{\omega \in \Omega \mid X(\omega) \leq a\} \in \mathcal{K}, \forall a \in \mathbb{R}
$$

Definition (CDF)

The cumulative distribution function (cdf) of the random variable X is the mapping $F_{X}: \mathbb{R} \rightarrow[0,1]$, defined by

$$
F_{X}(x)=P(X \leq x)
$$

Random variables

Definition (Random Variable)

Let (Ω, \mathcal{K}, P) be a probability space. A mapping $X: \Omega \rightarrow \mathbb{R}$ is called a random variable if

$$
\{\omega \in \Omega \mid X(\omega) \leq a\} \in \mathcal{K}, \forall a \in \mathbb{R}
$$

Definition (CDF)

The cumulative distribution function (cdf) of the random variable X is the mapping $F_{X}: \mathbb{R} \rightarrow[0,1]$, defined by

$$
F_{X}(x)=P(X \leq x)
$$

Definition (Identically distributed random vars)
We say that two random variables X and Y are identically distributed if $F_{X}=F_{Y}$.

Properties of the cdf

The cdf $F_{X}(x)$ has the following properties:
i) F_{x} is a non-decreasing function;
ii) $\lim _{x \rightarrow-\infty} F_{X}(x)=0, \lim _{x \rightarrow \infty} F_{X}(x)=1$;
iii) $F_{X}(x)$ is a right-continuous function;
iv) $P(a<X \leq b)=F_{X}(b)-F_{X}(a)$.

Properties of the cdf

The cdf $F_{X}(x)$ has the following properties:
i) F_{x} is a non-decreasing function;
ii) $\lim _{x \rightarrow-\infty} F_{X}(x)=0, \lim _{x \rightarrow \infty} F_{X}(x)=1$;
iii) $F_{X}(x)$ is a right-continuous function;
iv) $P(a<X \leq b)=F_{X}(b)-F_{X}(a)$.

Discrete random variables:

- The range is finite or countable;
- The discrete random vars are represented by an ordered series:

$$
X:\left(\begin{array}{lllll}
x_{1} & x_{2} & \ldots & x_{n} & \ldots \\
p_{1} & p_{2} & \ldots & p_{n} & \ldots
\end{array}\right)
$$

where $x_{1}<x_{2}<\ldots$ and $p_{i}=P\left(X=x_{i}\right)$. Note that $\sum_{i} p_{i}=1$.

Properties of the cdf

The cdf $F_{X}(x)$ has the following properties:
i) F_{x} is a non-decreasing function;
ii) $\lim _{x \rightarrow-\infty} F_{X}(x)=0, \lim _{x \rightarrow \infty} F_{X}(x)=1$;
iii) $F_{X}(x)$ is a right-continuous function;
iv) $P(a<X \leq b)=F_{X}(b)-F_{X}(a)$.

Discrete random variables:

- The range is finite or countable;
- The discrete random vars are represented by an ordered series:

$$
X:\left(\begin{array}{lllll}
x_{1} & x_{2} & \ldots & x_{n} & \ldots \\
p_{1} & p_{2} & \ldots & p_{n} & \ldots
\end{array}\right)
$$

where $x_{1}<x_{2}<\ldots$ and $p_{i}=P\left(X=x_{i}\right)$. Note that $\sum_{i} p_{i}=1$.
Continuous random variables. In this case, there exists a probability density function (pdf) $\rho_{X}: \mathbb{R} \rightarrow \mathbb{R}_{+}$such that

$$
F_{X}(x)=\int_{-\infty}^{x} \rho_{X}(t) d t
$$

Properties of the cdf

The cdf $F_{X}(x)$ has the following properties:
i) F_{x} is a non-decreasing function;
ii) $\lim _{x \rightarrow-\infty} F_{X}(x)=0, \lim _{x \rightarrow \infty} F_{X}(x)=1$;
iii) $F_{X}(x)$ is a right-continuous function;
iv) $P(a<X \leq b)=F_{X}(b)-F_{X}(a)$.

Discrete random variables:

- The range is finite or countable;
- The discrete random vars are represented by an ordered series:

$$
X:\left(\begin{array}{lllll}
x_{1} & x_{2} & \ldots & x_{n} & \ldots \\
p_{1} & p_{2} & \ldots & p_{n} & \ldots
\end{array}\right)
$$

where $x_{1}<x_{2}<\ldots$ and $p_{i}=P\left(X=x_{i}\right)$. Note that $\sum_{i} p_{i}=1$.
Continuous random variables. In this case, there exists a probability density function (pdf) $\rho_{X}: \mathbb{R} \rightarrow \mathbb{R}_{+}$such that

$$
F_{X}(x)=\int_{-\infty}^{x} \rho_{X}(t) d t
$$

Note that $\int_{-\infty}^{\infty} \rho_{X}(t) d t=1$.

Examples of random variables

1) The binomial random variable. Let $p \in(0,1)$ and $n \in \mathbb{N}^{*}$. We say that X follows the binomial distribution with parameters n and $p, X \sim \operatorname{Binom}(n, p)$ if X has the ordered series

$$
X:\left(\begin{array}{cccc}
0 & 1 & \ldots & n \\
p_{0} & p_{1} & \ldots & p_{n}
\end{array}\right)
$$

where $q=1-p$ and

$$
p_{k}:=P(X=k)=\binom{n}{k} p^{k} q^{n-k}=P_{n, k} .
$$

Examples of random variables

1) The binomial random variable. Let $p \in(0,1)$ and $n \in \mathbb{N}^{*}$. We say that X follows the binomial distribution with parameters n and $p, X \sim \operatorname{Binom}(n, p)$ if X has the ordered series

$$
X:\left(\begin{array}{cccc}
0 & 1 & \ldots & n \\
p_{0} & p_{1} & \ldots & p_{n}
\end{array}\right)
$$

where $q=1-p$ and

$$
p_{k}:=P(X=k)=\binom{n}{k} p^{k} q^{n-k}=P_{n, k} .
$$

2) The Poisson random variable. Let $\lambda>0$. We say that a random variable follows the Poisson distribution with parameter $\lambda, X \sim \operatorname{Poisson}(\lambda)$, if X has the ordered series:

$$
X:\binom{k}{p_{k}}_{k \in \mathbb{N}}
$$

if

$$
p_{k}:=P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} .
$$

Examples of random variables

1) The binomial random variable. Let $p \in(0,1)$ and $n \in \mathbb{N}^{*}$. We say that X follows the binomial distribution with parameters n and $p, X \sim \operatorname{Binom}(n, p)$ if X has the ordered series

$$
X:\left(\begin{array}{cccc}
0 & 1 & \ldots & n \\
p_{0} & p_{1} & \ldots & p_{n}
\end{array}\right)
$$

where $q=1-p$ and

$$
p_{k}:=P(X=k)=\binom{n}{k} p^{k} q^{n-k}=P_{n, k} .
$$

2) The Poisson random variable. Let $\lambda>0$. We say that a random variable follows the Poisson distribution with parameter $\lambda, X \sim \operatorname{Poisson}(\lambda)$, if X has the ordered series:

$$
X:\binom{k}{p_{k}}_{k \in \mathbb{N}}
$$

if

$$
p_{k}:=P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} .
$$

Exercise. Determine the connection between the two distributions above, by computing

$$
\lim _{n \rightarrow \infty, n p=\lambda} P_{n, k} .
$$

Examples of random variables

3) The geometric random variable. We say that X follows the geometric distribution with parameter $p \in(0,1), X \sim \operatorname{Geom}(p)$, if X has the ordered series

$$
X:\binom{k}{p_{k}}_{k \in \mathbb{N}}
$$

with $p_{k}:=P(X=k)=p q^{k}, k \in \mathbb{N}(q=1-p)$.

Examples of random variables

3) The geometric random variable. We say that X follows the geometric distribution with parameter $p \in(0,1), X \sim \operatorname{Geom}(p)$, if X has the ordered series

$$
X:\binom{k}{p_{k}}_{k \in \mathbb{N}}
$$

with $p_{k}:=P(X=k)=p q^{k}, k \in \mathbb{N}(q=1-p)$.
4) The Uniform (cont) distribution. Let $a, b \in \mathbb{R}$ such that $a<b$. We say that the random variable X has the uniform distribution on $[a, b], X \sim \operatorname{Uniform}(a, b)$, if X has the pdf

$$
\rho_{X}(x)= \begin{cases}0, & x \notin[a, b] \\ \frac{1}{b-a}, & x \in[a, b]\end{cases}
$$

Examples of random variables

3) The geometric random variable. We say that X follows the geometric distribution with parameter $p \in(0,1), X \sim \operatorname{Geom}(p)$, if X has the ordered series

$$
X:\binom{k}{p_{k}}_{k \in \mathbb{N}}
$$

with $p_{k}:=P(X=k)=p q^{k}, k \in \mathbb{N}(q=1-p)$.
4) The Uniform (cont) distribution. Let $a, b \in \mathbb{R}$ such that $a<b$. We say that the random variable X has the uniform distribution on $[a, b], X \sim \operatorname{Uniform}(a, b)$, if X has the pdf

$$
\rho_{X}(x)= \begin{cases}0, & x \notin[a, b] \\ \frac{1}{b-a}, & x \in[a, b]\end{cases}
$$

5) The normal distribution. Let $\mu \in \mathbb{R}$ and $\sigma>0$. We say that X follows the normal distribution with parameters μ and $\sigma, X \sim N(\mu, \sigma)$ if its pdf is given by

$$
\rho_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, x \in \mathbb{R}
$$

Examples of random variables/Random vectors

6) The exponential random variable. Let $\lambda>0$. We say that X follows the Exponential distribution with parameter $\lambda, X \sim \operatorname{Exp}(\lambda)$ if its pdf is given by

$$
\rho_{X}(x)= \begin{cases}0, & x<0 \\ \lambda e^{-\lambda x}, & x \geq 0\end{cases}
$$

Random vectors. Let (Ω, \mathcal{K}, P) be a probability space and X_{1}, \ldots, X_{n} be random variables over this space. The random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ takes values of the form $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, x_{i} \in \operatorname{Range}\left(X_{i}\right)$ and has the $\mathbf{c d f} F_{\mathbf{X}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, given by:

$$
F_{\mathbf{X}}(\mathbf{x}):=F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)
$$

Examples of random variables/Random vectors

6) The exponential random variable. Let $\lambda>0$. We say that X follows the Exponential distribution with parameter $\lambda, X \sim \operatorname{Exp}(\lambda)$ if its pdf is given by

$$
\rho_{X}(x)= \begin{cases}0, & x<0 \\ \lambda e^{-\lambda x}, & x \geq 0\end{cases}
$$

Random vectors. Let (Ω, \mathcal{K}, P) be a probability space and X_{1}, \ldots, X_{n} be random variables over this space. The random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ takes values of the form $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, x_{i} \in \operatorname{Range}\left(X_{i}\right)$ and has the $\mathbf{c d f} F_{\mathbf{X}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, given by:

$$
F_{\mathbf{X}}(\mathbf{x}):=F_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)
$$

Two-dimensional discrete random vectors. Let $\mathbf{Z}=(X, Y)$ be a discrete two-dimensional (bivariate) random vector. Then the function $f: \mathbb{R}^{2} \rightarrow[0,1]$ defined by

$$
f(x, y)=f_{X, Y}(x, y)=P(X=x, Y=y)
$$

is called the joint probability mass function (joint pmf). In this context $f_{X}(x)=P(X=x)$ is called the marginal pmf of X and is given by:

$$
f_{X}(x)=\sum_{y} f(x, y) \text { and } f_{Y}(y)=\sum_{x} f(x, y)
$$

Discrete random vectors

Example. Let $\mathbf{Z}=(X, Y)$ be the discrete random pdf with the joint pmf given by:

$$
f(0,0)=\frac{1}{12}, f(1,0)=\frac{5}{12}, f(0,1)=f(1,1)=\frac{1}{4} \text { and } f(x, y)=0 \text { otherwise. }
$$

Consider also the discrete random vector $\mathbf{W}=(U, V)$ with the joint pmf $g(x, y)$,

$$
g(0,0)=g(0,1)=\frac{1}{6}, g(1,0)=g(1,1)=\frac{1}{3} \text { and } g(x, y)=0 \text { otherwise. }
$$

i) Compute the marginal pmfs for X, Y, and U, V.
ii) Compare $f_{X}(x)$ to $f_{U}(x)$ and $f_{Y}(y)$ to $f_{V}(y)$.
iii) Based on the calculations above answer the question: "If the marginal pmfs are known can the joint pmf be obtained?"

Continuous random vectors

Definition (Joint pdf)

A function $\rho: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is called a joint probability density function (joint pdf) of the continuous two-dimensional (bivariate) random vector $\mathbf{Z}=(X, Y)$ if for any $D \subseteq \mathbb{R}^{2}$, we have

$$
P((X, Y) \in D)=\iint_{D} \rho(x, y) d x d y
$$

We also use the notation $\rho_{X, Y}(x, y)$ or $\rho_{Z}(x, y)$ depending on the context.

Continuous random vectors

Definition (Joint pdf)

A function $\rho: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is called a joint probability density function (joint pdf) of the continuous two-dimensional (bivariate) random vector $\mathbf{Z}=(X, Y)$ if for any $D \subseteq \mathbb{R}^{2}$, we have

$$
P((X, Y) \in D)=\iint_{D} \rho(x, y) d x d y
$$

We also use the notation $\rho_{X, Y}(x, y)$ or $\rho_{Z}(x, y)$ depending on the context.
The marginal pdfs are defined by:

$$
\rho_{X}(x)=\int_{-\infty}^{\infty} \rho(x, y) d y, \rho_{Y}(y)=\int_{-\infty}^{\infty} \rho(x, y) d x .
$$

Continuous random vectors

Definition (Joint pdf)

A function $\rho: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is called a joint probability density function (joint pdf) of the continuous two-dimensional (bivariate) random vector $\mathbf{Z}=(X, Y)$ if for any $D \subseteq \mathbb{R}^{2}$, we have

$$
P((X, Y) \in D)=\iint_{D} \rho(x, y) d x d y .
$$

We also use the notation $\rho_{X, Y}(x, y)$ or $\rho_{Z}(x, y)$ depending on the context.
The marginal pdfs are defined by:

$$
\rho_{X}(x)=\int_{-\infty}^{\infty} \rho(x, y) d y, \quad \rho_{Y}(y)=\int_{-\infty}^{\infty} \rho(x, y) d x
$$

Remark. Any function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying

$$
\rho(x, y) \geq 0, \forall(x, y) \in \mathbb{R}^{2} \text { and } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho(x, y) d x d y=1
$$

is the joint pdf of some continuous bivariate random vector $\mathbf{Z}=(X, Y)$.

Continuous random vectors

The joint cdf of the bivariate random vector $\mathbf{Z}=(X, Y)$ is given by

$$
F(x, y)=F_{Z}(x, y):=F_{X, Y}(x, y)=P(X \leq x, Y \leq y) .
$$

Continuous random vectors

The joint cdf of the bivariate random vector $\mathbf{Z}=(X, Y)$ is given by

$$
F(x, y)=F_{Z}(x, y):=F_{X, Y}(x, y)=P(X \leq x, Y \leq y)
$$

For a continuous bivariate random vector, we have

$$
F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} \rho(u, v) d v d u .
$$

Continuous random vectors

The joint cdf of the bivariate random vector $\mathbf{Z}=(X, Y)$ is given by

$$
F(x, y)=F_{Z}(x, y):=F_{X, Y}(x, y)=P(X \leq x, Y \leq y)
$$

For a continuous bivariate random vector, we have

$$
F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} \rho(u, v) d v d u
$$

The above identity can be used to determine the joint pdf. More precisely,

$$
\rho(x, y)=\frac{\partial^{2} F}{\partial x \partial y}(x, y)
$$

at continuity points of $f(x, y)$.

Continuous random vectors

The joint cdf of the bivariate random vector $\mathbf{Z}=(X, Y)$ is given by

$$
F(x, y)=F_{Z}(x, y):=F_{X, Y}(x, y)=P(X \leq x, Y \leq y)
$$

For a continuous bivariate random vector, we have

$$
F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} \rho(u, v) d v d u .
$$

The above identity can be used to determine the joint pdf. More precisely,

$$
\rho(x, y)=\frac{\partial^{2} F}{\partial x \partial y}(x, y)
$$

at continuity points of $f(x, y)$.
Example. A pair of random variables (X, Y) has the joint pdf

$$
\rho(x, y)=\frac{\alpha}{\pi^{2}\left(1+x^{2}\right)\left(1+y^{2}\right)}, \forall(x, y) \in \mathbb{R}^{2} .
$$

a) Determine α and the joint $\mathbf{c d f} F(x, y)$.
b) Find $P((X, Y) \in[0,1] \times[0,1]$.

Conditional pmfs and pdfs

Definition (Conditional pmf)

Let $\mathbf{Z}=(X, Y)$ be a discrete bivariate vector with joint pmf $f(x, y):=P(X=x, Y=y)$ and marginal pmfs $f_{X}(x)$ and $f_{Y}(y)$. For any x such that $f_{X}(x)>0$, the conditional pmf of Y given that $X=x$ is the function of $y, f(y \mid x)$, defined by

$$
f(y \mid x)=P(Y=y \mid X=x)=\frac{f(x, y)}{f_{x}(x)} .
$$

In a similar way, one defines $f(x \mid y)$, i.e., the conditional pmf of X given $Y=y$.

Conditional pmfs and pdfs

Definition (Conditional pmf)

Let $\mathbf{Z}=(X, Y)$ be a discrete bivariate vector with joint pmf $f(x, y):=P(X=x, Y=y)$ and marginal pmfs $f_{X}(x)$ and $f_{Y}(y)$. For any x such that $f_{X}(x)>0$, the conditional pmf of Y given that $X=x$ is the function of $y, f(y \mid x)$, defined by

$$
f(y \mid x)=P(Y=y \mid X=x)=\frac{f(x, y)}{f_{X}(x)}
$$

In a similar way, one defines $f(x \mid y)$, i.e., the conditional pmf of X given $Y=y$.

Definition (Conditional pdf)

Let $\mathbf{Z}=(X, Y)$ be a continuous bivariate vector with joint pdf $\rho(x, y)$ and marginal pdfs $\rho_{X}(x)$ and $\rho_{Y}(y)$. For any x such that $\rho_{X}(x)>0$, the conditional pmf of Y given that $X=x$ is the function of $y, \rho(y \mid x)$, defined by

$$
\rho(y \mid x)=\frac{\rho(x, y)}{\rho_{X}(x)}
$$

In a similar way, one defines $\rho(x \mid y)$, i.e., the conditional pdf of X given $Y=y$.

Independent random variables

Definition (Independent random variables)

Let $\mathbf{Z}=(X, Y)$ be a bivariate random vector with joint pdf or pmf $\rho(x, y)$ and the marginal pdfs $\rho_{X}(x)$ and $\rho_{Y}(y)$. We say that X and Y are independent if

$$
\rho(x, y)=\rho_{X}(x) \rho_{Y}(y), \forall x, y
$$

Independent random variables

Definition (Independent random variables)

Let $\mathbf{Z}=(X, Y)$ be a bivariate random vector with joint pdf or pmf $\rho(x, y)$ and the marginal pdfs $\rho_{X}(x)$ and $\rho_{Y}(y)$. We say that X and Y are independent if

$$
\rho(x, y)=\rho_{X}(x) \rho_{Y}(y), \forall x, y
$$

Example. Consider the random variables X, Y with joint pmf, $f(x, y)$ given by

$$
\begin{array}{r}
f(10,1)=f(20,1)=f(20,2)=\frac{1}{10} \\
f(10,2)=f(10,3)=\frac{1}{5}, f(20,3)=\frac{3}{10} \text { and } f(x, y)=0, \text { otherwise. }
\end{array}
$$

Determine whether the random variables X and Y are independent.

Independent random variables

Definition (Independent random variables)

Let $\mathbf{Z}=(X, Y)$ be a bivariate random vector with joint pdf or pmf $\rho(x, y)$ and the marginal pdfs $\rho_{X}(x)$ and $\rho_{Y}(y)$. We say that X and Y are independent if

$$
\rho(x, y)=\rho_{X}(x) \rho_{Y}(y), \forall x, y
$$

Example. Consider the random variables X, Y with joint pmf, $f(x, y)$ given by

$$
\begin{array}{r}
f(10,1)=f(20,1)=f(20,2)=\frac{1}{10} \\
f(10,2)=f(10,3)=\frac{1}{5}, f(20,3)=\frac{3}{10} \text { and } f(x, y)=0, \text { otherwise. }
\end{array}
$$

Determine whether the random variables X and Y are independent.

Theorem (Checking independence)

Let X, Y be two random variables with joint pdf or pmf $\rho_{(}(x, y)$. Then X and Y are independent if and only if there exist functions $g(x)$ and $h(y)$ such that

$$
\rho(x, y)=g(x) h(y), \forall(x, y)
$$

Functions of random variables. Examples.

Example (Discrete Random Variable). Let X be the discrete random variable given by the ordered series:

$$
X:\left(\begin{array}{cccc}
-2 & -1 & 1 & 2 \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{6} & \frac{1}{4}
\end{array}\right)
$$

Compute the ordered series for the following random variables:
a) $U=X^{3}$,
b) $\quad V=X^{2}$.

Functions of random variables. Examples.

Example (Discrete Random Variable). Let X be the discrete random variable given by the ordered series:

$$
X:\left(\begin{array}{cccc}
-2 & -1 & 1 & 2 \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{6} & \frac{1}{4}
\end{array}\right)
$$

Compute the ordered series for the following random variables:
a) $U=X^{3}$,
b) $\quad V=X^{2}$.

Example (Continuous Random Variable). Let X be a continuous random variable uniformly distributed on $[-1,1]$. Let $a>0, b \in \mathbb{R}$. Compute the $\mathbf{c d f} F_{Y}(x)$ and the pdf $\rho_{Y}(x)$.

Functions of random variables. Examples.

Example (Discrete Random Variable). Let X be the discrete random variable given by the ordered series:

$$
x:\left(\begin{array}{cccc}
-2 & -1 & 1 & 2 \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{6} & \frac{1}{4}
\end{array}\right)
$$

Compute the ordered series for the following random variables:
a) $U=X^{3}$,
b) $V=X^{2}$.

Example (Continuous Random Variable). Let X be a continuous random variable uniformly distributed on $[-1,1]$. Let $a>0, b \in \mathbb{R}$. Compute the $\boldsymbol{c d f} F_{Y}(x)$ and the pdf $\rho_{\gamma}(x)$.
Exercise. Let $X \sim \operatorname{Binom}(n, p)$, where $n \in \mathbb{N}^{*}$ and $p \in(0,1)$. Find the pmf of the random variable $Y=n-X$.

Functions of random variables. Examples.

Example (Discrete Random Variable). Let X be the discrete random variable given by the ordered series:

$$
X:\left(\begin{array}{cccc}
-2 & -1 & 1 & 2 \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{6} & \frac{1}{4}
\end{array}\right)
$$

Compute the ordered series for the following random variables:
a) $U=X^{3}$,
b) $\quad V=X^{2}$.

Example (Continuous Random Variable). Let X be a continuous random variable uniformly distributed on $[-1,1]$. Let $a>0, b \in \mathbb{R}$. Compute the cdf $F_{Y}(x)$ and the pdf $\rho_{Y}(x)$.
Exercise. Let $X \sim \operatorname{Binom}(n, p)$, where $n \in \mathbb{N}^{*}$ and $p \in(0,1)$. Find the pmf of the random variable $Y=n-X$.
Functions of two random variables. Let X and Y be two random variables such that the values of the random vector (X, Y) are in the domain $D \subseteq \mathbb{R}^{2}$ and let $f: D \rightarrow \mathbb{R}$. The cdf of $Z=f(X, Y)$ is given by $F_{Z}(z)=P(f(X, Y) \leq z)$.

Functions of random variables. Examples.

Example (Discrete Random Variable). Let X be the discrete random variable given by the ordered series:

$$
X:\left(\begin{array}{cccc}
-2 & -1 & 1 & 2 \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{6} & \frac{1}{4}
\end{array}\right)
$$

Compute the ordered series for the following random variables:
a) $U=X^{3}$,
b) $V=X^{2}$.

Example (Continuous Random Variable). Let X be a continuous random variable uniformly distributed on $[-1,1]$. Let $a>0, b \in \mathbb{R}$. Compute the $\mathbf{c d f} F_{Y}(x)$ and the pdf $\rho_{Y}(x)$.
Exercise. Let $X \sim \operatorname{Binom}(n, p)$, where $n \in \mathbb{N}^{*}$ and $p \in(0,1)$. Find the pmf of the random variable $Y=n-X$.
Functions of two random variables. Let X and Y be two random variables such that the values of the random vector (X, Y) are in the domain $D \subseteq \mathbb{R}^{2}$ and let $f: D \rightarrow \mathbb{R}$. The cdf of $Z=f(X, Y)$ is given by $F_{Z}(z)=P(f(X, Y) \leq z)$. If X, Y are continuous random variables, then

$$
F_{Z}(z)=\iint_{D_{z}} \rho_{X, Y}(x, y) d x d y \text { where } D_{z}=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y) \leq z\right\}
$$

Expectation (Mean) of a random variable

Definition (Expectation of a random variable)

i) (Discrete case.) Let X be a discrete random variable given by the ordered series: $X:\binom{x_{k}}{p_{k}}$. Then, the expectation (mean) of the random variable $X, E[X]$, is defined to be

$$
E[X]=\sum_{k} x_{k} p_{k}, \text { provided it exists. }
$$

Expectation (Mean) of a random variable

Definition (Expectation of a random variable)

i) (Discrete case.) Let X be a discrete random variable given by the ordered series: $X:\binom{x_{k}}{p_{k}}$. Then, the expectation (mean) of the random variable $X, E[X]$, is defined to be

$$
E[X]=\sum_{k} x_{k} p_{k}, \text { provided it exists. }
$$

ii) (Continuous case.) Let X be a continuous random variable with pdf $\rho_{X}(x)$. Then the expectation (mean) of the random variable X is defined to be

$$
E[X]=\int_{-\infty}^{\infty} x \rho_{x}(x) d x, \text { provided it exists. }
$$

Expectation (Mean) of a random variable

Definition (Expectation of a random variable)

i) (Discrete case.) Let X be a discrete random variable given by the ordered series: $X:\binom{x_{k}}{p_{k}}$. Then, the expectation (mean) of the random variable $X, E[X]$, is defined to be

$$
E[X]=\sum_{k} x_{k} p_{k}, \text { provided it exists. }
$$

ii) (Continuous case.) Let X be a continuous random variable with pdf $\rho_{X}(x)$. Then the expectation (mean) of the random variable X is defined to be

$$
E[X]=\int_{-\infty}^{\infty} x \rho_{x}(x) d x, \text { provided it exists. }
$$

Definition (Moments of a random variable)

Let X be a random variable, $a \in \mathbb{R}$ a fixed number and $k \in \mathbb{N}^{*}$. Then $E\left[(X-a)^{k}\right]$ is called the k-th order moment of X about a provided it exists. If $a=0$, then $E\left[X^{k}\right]$ is called the k-th order moment and if $a:=E[X]$, it is called the k-th order central moment of X.

Expectation and variance

Exercise. Compute the expectation $E[X]$ if
a) $X \sim \operatorname{Binom}(n, p)$,
b) $X \sim N(\mu, \sigma)$.

Expectation and variance

Exercise. Compute the expectation $E[X]$ if
a) $X \sim \operatorname{Binom}(n, p)$,
b) $X \sim N(\mu, \sigma)$.

Theorem (Properties of the expectation)

Let X, Y be random variables with expectations $E[X]$ and $E[Y]$ respectively. Let $a, b \in \mathbb{R}$. Then the following properties hold:
i) $E[a X+b]=a E[X]+b$.
ii) $E[X+Y]=E[X]+E[Y]$.
iii) If X and Y are independent random variables then $E[X Y]=E[X] E[Y]$.

Expectation and variance

Exercise. Compute the expectation $E[X]$ if
a) $X \sim \operatorname{Binom}(n, p)$,
b) $X \sim N(\mu, \sigma)$.

Theorem (Properties of the expectation)

Let X, Y be random variables with expectations $E[X]$ and $E[Y]$ respectively. Let $a, b \in \mathbb{R}$. Then the following properties hold:
i) $E[a X+b]=a E[X]+b$.
ii) $E[X+Y]=E[X]+E[Y]$.
iii) If X and Y are independent random variables then $E[X Y]=E[X] E[Y]$.

Definition (Variance and Standard Deviation)

Let X be a random variable with $\mu:=E[X]<\infty$. Then the variance or dispersion of X is denoted by $\operatorname{VAR}[X]$ and it is defined by

$$
\operatorname{VAR}[X]=E\left[(x-\mu)^{2}\right]
$$

The number $\sigma:=\sigma_{X}=\sqrt{\operatorname{VAR}[X]}$ is called the standard deviation of X.

Variance. Moment generating function

Theorem

Let X be a random variable with expectation $E[X]$ and variance $\operatorname{VAR}[X]$. The following properties hold:
i) (Computing the variance) $\operatorname{VAR}[X]=E\left[X^{2}\right]-(E[X])^{2}$.
ii) (Variance of an affine transformation) Let $a, b \in \mathbb{R}$ fixed constants. Then $\operatorname{VAR}[a X+b]=a^{2} \operatorname{VAR}[X]$.
iii) (The variance of a sum of independent random variables) Let X_{1}, \ldots, X_{n} be independent random variables. Then,

$$
\operatorname{VAR}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{VAR}\left[X_{i}\right]
$$

Variance. Moment generating function

Theorem

Let X be a random variable with expectation $E[X]$ and variance $\operatorname{VAR}[X]$. The following properties hold:
i) (Computing the variance) $\operatorname{VAR}[X]=E\left[X^{2}\right]-(E[X])^{2}$.
ii) (Variance of an affine transformation) Let $a, b \in \mathbb{R}$ fixed constants. Then $\operatorname{VAR}[a X+b]=a^{2} \operatorname{VAR}[X]$.
iii) (The variance of a sum of independent random variables) Let X_{1}, \ldots, X_{n} be independent random variables. Then,

$$
\operatorname{VAR}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{VAR}\left[X_{i}\right]
$$

Definition (Moment generating functions)

Let X be a random variable. The moment generating function (mgf) of X, denoted by $M_{X}(t)$ is

$$
M_{X}(t)=E\left[e^{t} X\right]
$$

provided that the expectation exists for some t in a neighborhood of 0 .

Moment generating functions. Covariance, correlation

Theorem (Generating moments)

If the random variable X has the $\mathbf{m g f} M_{X}(t)$, then

$$
E\left[X^{n}\right]=M_{X}^{(n)}(0) .
$$

Definition (Covariance, Correlation coefficient)

Let X and Y be two random variables with means $\mu_{X}=\bar{X}=E[X]$ and $\mu_{Y}=\bar{Y}=E[Y]$. Then, the covariance of the random variables X and Y is given by:

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

Moment generating functions. Covariance, correlation

Theorem (Generating moments)

If the random variable X has the $\mathbf{m g f} M_{X}(t)$, then

$$
E\left[X^{n}\right]=M_{X}^{(n)}(0) .
$$

Definition (Covariance, Correlation coefficient)

Let X and Y be two random variables with means $\mu_{X}=\bar{X}=E[X]$ and $\mu_{Y}=\bar{Y}=E[Y]$. Then, the covariance of the random variables X and Y is given by:

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

The correlation coefficient $r(X, Y)$ of the two random variables X, Y is given by

$$
r(X, Y)=\frac{\operatorname{COV}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Covariance and correlation

Theorem

Let X and Y be two random variables with means $\mu_{X}=E[X]$ and $\mu_{Y}=E[Y]$. Then the following properties hold:
i) $\operatorname{COV}(X, Y)=E[X Y]-E[X] E[Y]$.
ii) If X, Y are independent random variables, then $\operatorname{COV}(X, Y)=0$.
iii) $\sigma_{X}^{2}:=\operatorname{VAR}(X)=\operatorname{COV}(X, X)$.
iv) If X and Y are independent, then $r(X, Y)=0$.
v) $-1 \leq r(X, Y) \leq 1$.
vi) If $r(X, Y)= \pm 1$, then $X-\mu_{X}$ and $Y-\mu_{Y}$ are linearly dependent.

