

FACULTY OF COMPUTER SCIENCE AND AUTOMATION

Eng. Camelia Lemnaru (Vidrighin Bratu)

PhD THESIS

STRATEGIES FOR DEALING WITH REAL WORLD

CLASSIFICATION PROBLEMS

Scientific Advisor:

Prof.Dr.Eng.Sergiu NEDEVSCHI

Committee:

PRESIDENT: Prof.dr.ing. Liviu Miclea – Dean, Faculty of Computer Science and Automation,

 Technical University of Cluj-Napoca;

MEMBERS: Prof.dr.ing. Sergiu Nedevschi – Supervisor, Technical University of Cluj-Napoca;

Prof.dr.ing. Mircea Petrescu – Reviewer, University “Politechnica” of Bucharest;

Prof.dr.ing. Vladimir Cretu – Reviewer, University “Politechnica” of Timisoara;

 Prof.dr.ing. Rodica Potolea – Reviewer, Technical University of Cluj-Napoca.

The beginning of knowledge is the discovery of

something we do not understand.

 Frank Herbert

~ To my family ~

ii

ACKNOWLEDGEMENTS

I would like to express my gratitude towards my scientific advisor, Prof. dr. eng.

Sergiu Nedevschi, for all the guidance and constructive observations he has given me

throughout my PhD research period.

Also, this thesis would probably not have been completed without the constant

involvement and invaluable support provided by Prof. dr. eng. Rodica Potolea, to whom I

will be forever grateful. Thank you for everything you have taught me during this period.

I would also like to thank all the undergraduate and master students who have

contributed to my research, for their devotion and constant involvement.

Last, but not least, I dedicate this thesis to my family, for their constant

encouragement and for being who they are.

Table of Contents

iii

Table of Contents

Index of Figures ... 1

Index of Tables .. 2

List of Abbreviations ... 3

Abstract .. 4

1.1 Motivation ... 5

1.2 Thesis Overview .. 7

2 Data mining: Concepts and Definitions ... 10

2.1 Data Mining as Process ... 11

2.2 Knowledge Extraction Tasks .. 12

2.3 Classification Methods .. 13

2.4 Model Evaluation .. 14

2.4.1 Evaluation Tactics .. 15

2.4.2 Metrics ... 15

3 Handling Incomplete Data ... 18

3.1 Problem Statement .. 18

3.2 Methods for Dealing with Missing Data ... 19

3.2.1 Filter-based MDTs ... 19

3.2.2 Imputation-based MDTs .. 20

3.2.3 Embedded MDTs ... 21

3.3 A New Method for Data Imputation ... 22

3.3.1 Method Description ... 22

3.3.2 Experimental Evaluation .. 23

3.4 Conclusions on Data Imputation ... 24

4 Feature Selection .. 27

4.1 Problem Statement .. 27

4.2 Feature Selection Techniques.. 28

4.2.1 Search Strategies .. 29

4.2.2 Evaluation Measures .. 29

4.2.3 Filter Methods .. 31

4.2.4 Wrapper Methods... 32

4.3 Combining Generation Strategies ... 33

4.4 Experimental Evaluation ... 34

4.4.1 Evaluating the Wrapper Methodology ... 34

4.4.2 Evaluating the Combination Strategy .. 37

4.5 Conclusions on Feature Selection ... 39

Table of Contents

iv

5 Joining Pre-processing Steps: A Methodology .. 41

5.1 A Joint Feature Selection – Data Imputation Methodology 41

5.1.1 FSAfterI ... 41

5.1.2 FSBeforeI ... 42

5.2 Experimental Evaluation ... 42

5.3 Conclusions ... 44

6 Classification in Practice I: Imbalanced Error Costs and Expensive Tests 48

6.1 Problem Statement .. 48

6.2 State of the Art in Cost-Sensitive Learning .. 49

6.2.1 Reducing Misclassification Costs .. 49

6.2.2 Reducing Test Costs .. 50

6.2.3 Reducing the Overall Cost ... 51

6.3 ProICET: Enhancements on a Cost-sensitive Classifier ... 51

6.3.1 ICET: Inexpensive Classification with Expensive Tests 51

6.3.2 Enhancements on ICET ... 53

6.3.3 Experimental Evaluation .. 54

6.3.4 Case Study: ProICET on a Prostate Cancer Problem .. 60

6.4 Conclusions on Cost-Sensitive Classification ... 61

7 Classification in Practice II: Imbalanced Class Distribution ... 64

7.1 Problem Statement .. 64

7.1.1 Imbalance-Related Factors ... 64

7.1.2 Estimating Performance ... 65

7.1.3 The Effect of the Class Imbalance on the Performance of Classifiers 66

7.2 State of the Art in Imbalanced Classification.. 73

7.2.1 Sampling Methods ... 73

7.2.2 Algorithm-based Methods ... 74

7.2.3 Hybrid Methods ... 74

7.3 ECSB: Evolutionary Cost-Sensitive Balancing .. 75

7.3.1 Method Description ... 75

7.3.2 Experimental Evaluation .. 78

7.4 Conclusions on Imbalanced Classification ... 82

8 Case Studies ... 85

8.1 Meta-learning: Automated Classifier Selection .. 85

8.1.1 Baseline Performance Assessment .. 85

8.1.2 A Framework for Automated Classifier Selection... 86

8.2 Enhancements by Data Partitioning .. 90

8.2.1 The Arbiter-Combiner ... 90

Table of Contents

v

8.2.2 A Hierarchical Model for Offline Signature Recognition 91

8.2.3 A Hybrid Approach for Network Intrusion Detection 92

8.3 Speedup and Scalability through Parallel/Distributed Strategies 96

8.3.1 dECSB – Distributed Evolutionary Cost-sensitive Balancing 96

8.3.2 A Parallel Decision Tree .. 100

8.3.3 A Lightweight Parallel Genetic Algorithms Framework 100

8.4 Domain-specific Data Mining Process Instantiations ... 100

8.4.1 User Type Identification: Static and Dynamic User Profile in Adaptive E-

learning Systems .. 100

8.4.2 Handwriting Recognition: Historical Documents Transcription using

Hierarchical Classification and Dictionary Matching .. 102

8.4.3 Social Mining: Distributed Community Detection in Social Networks Using

Genetic Algorithms .. 104

8.4.4 Opinion Mining: Semi supervised opinion mining with lexical knowledge ... 104

8.4.5 Spam Detection: A Filter ... 105

8.5 Conclusions ... 105

9 Contributions and Conclusions .. 108

References .. 113

Research Grants and Publications .. 125

Research Grants ... 125

Journal Papers .. 125

Book chapters... 125

Conference Papers ... 126

Citations ... 128

Appendix A – Description of the Datasets Employed in the Experiments 130

Appendix B – Relevant Research Papers... 138

Index of Figures

1

Index of Figures

Figure 2.1 - Main steps of a data mining process... 11
Figure 3.1 - The variation of the accuracy with different incompleteness percentages for several

attributes of the Pima dataset ... 24
Figure 3.2 - The variation of the accuracy with different incompleteness percentages for the

attributes of the Cars dataset .. 25
Figure 5.1– Accuracy obtained by different FSAfterI specializations, when compared to the accuracy

on the incomplete dataset, for attributes strongly correlated with the class, Pima dataset 44
Figure 6.1 – ICET algorithm flow .. 52
Figure 6.2 – ProICET average misclassification costs for the Wisconsin dataset 57
Figure 6.3 – MetaCost and J4.8 average misclassification costs for the Wisconsin Dataset............... 57
Figure 6.4 – ProICET average misclassification costs for the Pima dataset 57
Figure 6.5 – MetaCost and J4.8 misclassification costs for the Pima Dataset 57
Figure 6.6 – Misclassification costs for the Wisconsin dataset .. 58
Figure 6.7 – Misclassification costs for the Pima dataset .. 58
Figure 6.8 – Total costs obtained by the classifiers on different benchmark medical problems 59
Figure 7.1 - Size very small, IR<9, C small .. 67
Figure 7.2 - Size very small, IR<9, C medium .. 67
Figure 7.3 - Size very small, IR<9, C large .. 67
Figure 7.4 - Size very small, IR>=9, C medium ... 67
Figure 7.5 - Size small, C large .. 68
Figure 7.6 - Size med., C large ... 68
Figure 7.7 - Size large, C v. large ... 68
Figure 7.8 - IR small imbalance, IAR small ... 70
Figure 7.9 - IR large, IAR small ... 70
Figure 7.10 - IR large, IAR medium ... 70
Figure 7.11 - IR large, IAR large.. 70
Figure 7.12 - Performance degradation for C4.5 on mushrooms dataset, under the balanced accuracy

(BAcc) and the geometric mean (GM) .. 70
Figure 7.13 - The effect of varying IR and IAR on the performance of different classifiers................. 72
Figure 7.14 – General ECSB flow .. 76
Figure 7.15 – Individual representation ... 78
Figure 7.16 – F-measure, Balanced accuracy, TPrate and Precision obtained by the various methods

on the large IR, small IAR data... 80
Figure 8.1 – Conceptual framework model .. 87
Figure 8.2 Absolute deviation means of different prediction strategies, under different metrics 89
Figure 8.3 – Deviation means of different prediction strategies, under different metrics 89
Figure 8.4 – Hierarchical prediction combination strategy ... 93
Figure 8.5 – Classification architecture ... 93
Figure 8.6 – Tuning stages for the multiple classifier system... 95
Figure 8.7 – Conceptual architecture of the Evolutionary Engine ... 98
Figure 8.8 – Computation-driven approach ... 98
Figure 8.9 – Data-driven approach .. 98
Figure 8.10 – Architectural context .. 99
Figure 8.11 – User type identification component.. 101
Figure 8.12 – System conceptual architecture .. 103

Index of Tables

2

Index of Tables

Table 2.1: The main categories of classification methods .. 14
Table 2.2: The confusion matrix returned by a classifier.. 16
Table 4.1 – Results obtained by wrapper combinations using the initially best classifier 35
Table 4.2 – Best wrapper combinations .. 36
Table 4.3 – Results obtained by the _/JNP/JNP wrapper.. 37
Table 4.4 – Number of attributes selected .. 37
Table 4.5 – First and second best accuracies obtained after feature selection 38
Table 4.6 – J4.8 accuracies on attribute subsets resulted from wrapper subset selection

with various search strategies ... 38
Table 4.7 – Size of attribute subsets resulted from wrapper subset selection

with various search strategies ... 39
Table 5.1 – The average accuracy (and standard deviation) obtained by J4.8 on different versions of

the training set and different incompleteness levels (5-30%), for attribute STDepression, Cleveland

dataset (specialization iIBk_fCfsSubsetEval_cJ48) .. 46
Table 5.2 – The average accuracy (and standard deviation) obtained by J4.8 on different versions of

the training set and different incompleteness levels (5-30%), for attribute Thal, Cleveland dataset

(specialization iIBk_fCfsSubsetEval_cJ48) .. 47
Table 6.1 – Genetic component settings ... 55
Table 6.2 – Total costs and accuracy rates of the various algorithms on the Prostate Cancer dataset

(TC – value of Test Costs; CM – Cost Matrix) ... 61
Table 7.1 – Dataset grouping on size, IR, C ... 66
Table 7.2 – TPrates obtained by classifiers on the different categories of problems 67
Table 7.3 - Dataset grouping on IR, IAR .. 69
Table 7.4 - TPrates on IR and IAR grouping .. 69
Table 7.5 – Specific genetic mechanisms employed .. 79
Table 7.6 – Classifier parameters considered ... 79
Table 7.7 – Average GM (with standard deviations) obtained by the various methods 81
Table 7.8 – Average AUC (with standard deviations) obtained by the various methods 81
Table 7.9 – Recall, precision and f-measure obtained by ECSB, compared to the

SVM ensemble method ... 82
Table 8.1 - KDD+4 Training Dataset.. 94
Table 8.2 - KDD+4 Testing Dataset ... 94
Table 8.3 – The best learning distributions for each module .. 95
Table 8.4 - TP and FN values obtained by the different voting strategies .. 96
Table 8.5 - Recognition rates/classes .. 96

List of Abbreviations

3

List of Abbreviations

AB = AdaBoost.M1 ensemble classifier

Acc = accuracy, performance metric

AUC = Area Under the ROC Curve, performance metric

BAcc = balanced accuracy, performance metric

C = complexity of a classification model

C4.5 = C4.5 decision tree learner

CFS = Correlation-based Feature Selection`

CS = Cost-Sensitive strategy

ECSB = Evolutionary Cost-Sensitive Balancing

EM = Expectation Maximization

EUS = Evolutionary Under-Sampling

FM = F-measure

GM = geometric mean, performance metric

IAR = Instances per Attribute Ratio

IBk = k instance-based (k-nearest neighbor) classifier, WEKA implementation

ICET = Inexpensive Classification with Expensive Tests

IR = Imbalance Ratio

J4.8 = WEKA implementation of the C4.5 decision tree classifier

kNN = k-nearest neighbor classifier

MC = Metacost cost-sensitive classifier

MLP = Multilayer Perceptron classifier

NB = Naïve Bayes classifier

ProICET = enhanced version of the ICET method

ROC = Receiver-Operating Characteristic

SVM = Support Vector Machines classifier

SVMEns = SVM Ensemble

TNrate = True Negative rate

TPrate = True Positive rate

UCI = University California Irvine

WEKA = Waikato Environment for Knowledge Analysis

Abstract

4

Abstract

A series of challenges have recently emerged in the data mining field, triggered by the

rapid shift in status from academic to applied science and the resulting needs of real-life

applications. The current thesis is concerned with classification tasks and related issues which

may appear in real-world scenarios, such as: incomplete records and irrelevant and/or

redundant pieces of information, imbalanced class distribution and imbalanced error costs.

Also, there is no universally best classifier which performs better than all the others on every

possible problem, given any evaluation metric. Moreover, no general rules which indicate the

appropriate metric to select in a certain context exist. Translating the data characteristics and

problem goals into appropriate performance metrics, selecting the most appropriate classifier

with the best parameter settings are therefore essential points in achieving a successful data

mining process. Moreover, application domains may impose specific constraints on the data

mining process, such as having an interpretable classification model, or a reasonable training

time, or the capacity to perform classification on a large number of classes, each having a

limited amount of training instances.

The current thesis ascertains the problem statement and provides an analysis of

existing approaches for the major theoretical problems tackled – and, in some cases, also

systematic empirical studies. Also, it proposes a series of novel methods for improving the

behavior of traditional classifiers in such imperfect scenarios. In the data pre-processing step,

the current thesis introduces an original global imputation method, based on non-missing data

and a novel joint pre-processing methodology, which proposes an information exchange

between data imputation and feature selection. Also, an original subset combination method

for improving the stability of feature selection across different problems and providing an

assessment of the baseline performance of feature selection in a new problem is presented.

For the actual processing step, an original meta-classification strategy has been

proposed – Evolutionary Cost-Sensitive Balancing. The method performs a genetic search in

order to simultaneously tune the base classifier’s parameters and identify the most

appropriate cost matrix, which is then employed by a cost-sensitive meta-learner, in

conjunction with the base classifier. An advantage of the method, besides its generality, is the

fact that the cost matrix is determined indirectly. Also, this thesis proposes a series of

significant enhancements to an existing cost-sensitive classifier: the employment of a single

population technique and elitism, with rank-based fitness assignment for parent selection, and

increasing search variability via appropriate recombination operators.

An original meta-learning framework for automated classifier selection is presented in

the case studies section, together with a method for baseline performance assessment. Also in

the case studies chapter, a series of additional constraints imposed by specific domains are

analyzed, and original solutions are provided, in which the general flow of the data mining

process may be altered to accommodate for the specific domain needs, without restricting the

solutions to the specific domains they have been initially designed for.

Keywords: data mining, classification, incomplete data, imputation, attribute/feature

selection, joint pre-processing methodology, imbalanced class distribution, cost-sensitive

learning, evaluation metrics, automated classifier selection, classification case studies.

Chapter 1 – Introduction

5

1 Introduction

1.1 Motivation

A series of challenges have recently emerged in the data mining field, triggered by the

rapid shift in status from academic to applied science and the resulting needs of real-life

applications. The current thesis is concerned with classification tasks. Therefore, the general

context is that of labeling (a potentially large volume of) data which may contain incomplete

records and irrelevant and/or redundant pieces of information. Interesting cases tend to occur

less frequently; therefore they possess poorer representation in the available data. However,

the correct identification of such cases is often of utmost importance. In the following, the

motivation behind the main objectives of the thesis is presented.

A first issue tackled is that of incomplete data, i.e. the existence of unknown values in

the available data. While a common occurrence in real-world problems, it represents a

challenge for classification, since most algorithms have not been originally designed to deal

with missing data, and most of them employ simple and rather inefficient adaptations do deal

with this issue. Several more evolved missing data techniques (MDTs) are available in

literature, either as pre-processing methods – filter or imputation-based – or as embedded

approaches. Filter methods attempt to eliminate missing records/attributes such that

subsequent analyses are performed on complete data. Imputation methods try to reach the

same goal, but by searching for a replacement value for each missing one. Embedded

approaches designate mechanisms for dealing with missing data specific to a certain learning

algorithm, such as the strategies employed by some decision trees. The problem with pre-

processing MDTs is that the majority have been developed to alleviate the effect of

incomplete data on subsequent statistical analyses, and not on improving a classification task

– for which different assumptions may be necessary. Also, filters tend to introduce bias in the

learning process and reduce the volume of available data, while existing imputation methods

either require strong assumptions which don’t generally hold in real situations (e.g. multiple

imputation), or employ knowledge about the data distribution (e.g. expectation

maximization), which is not always accessible. Computational complexity may also represent

an issue for some imputation techniques. Embedded methods are restricted to the particular

learner (or category of learners). Thus, an imputation method which is focused on improving

subsequent classification performance and does not require strong assumptions is of interest.

Also, though imputation methods make assumptions related to the existence of correlations

between the attributes, they do not perform an explicit analysis of the strength of the

correlations, and the class attribute is generally discarded. Selecting – for each attribute to be

imputed – a subset of strongly predictive attributes (in which the class may be included)

could produce a better imputation quality with respect to the subsequent classification step.

Another important aspect related to the preparation of the available data for the actual

classification step is associated with dimensionality reduction. Such an operation may

produce several benefits in the overall economy of the data mining process, such as:

performance improvement, by alleviating the curse of dimensionality and improving the

model generalization capabilities, speed-up by reducing the computational effort, improved

model interpretability by reducing its complexity, cost reduction by avoiding “expensive”

features. The feature selection problem has been studied both intensively and extensively in

the literature, with available solutions being split into: filter, wrapper and embedded

approaches. For the purpose of performance improvement, wrappers generally provide the

most appropriate strategy. However, the best wrapper instantiation depends on the problem

particularities and the specific learner used for classification. One particular wrapper method

may produce significant improvements in one given problem for a specific algorithm, while

fail to improve the classification performance of the same algorithm on a different problem

Chapter 1 – Introduction

6

(or a different optimization objective), or the same problem and a different learning

algorithm. Also, it is not clear how wrapper feature selection affects the initial choice of the

learning algorithm, and which strategy would be appropriate if the ranking of classifiers is

affected: prefer a stable, yet not the best performance over a better, less stable one?

In many real-world applications, instances belonging to different classes may be non-

uniformly distributed in the available data, meaning that one class may contain fewer

instances in comparison with the others. However, the correct identification of

underrepresented classes is generally of increased importance, which results in different

errors possessing different degrees of gravity. Thus, between the different classes involved in

the recognition process, imbalance may occur at two levels: one at data level, which results in

an imbalanced class distribution problem, and one at the level of the impact produced by

different errors, which results in imbalanced error costs problem. Each of the two resulting

issues is addressed in this thesis.

There are few systematic studies in literature which analyze how an imbalanced class

distribution affects learning algorithms, using a variety of learning strategies, problems and

under several evaluation metrics. Techniques which attempt to address class imbalance are

available in the literature, either as sampling methods, algorithm-based methods (including

modifications to existing algorithms or newly proposed methods, built to deal with the

imbalance intrinsically) and hybrid methods (which include strategies which mix data- with

algorithm-oriented techniques, or apply meta-approaches, such as cost-sensitive learning).

While each category provides prominent representative methods, the following drawbacks

appear: to maximize their effect, sampling methods need to be matched to the specific

learning method employed; several sampling methods require the analyst to set the amount of

re-sampling needed – which requires both experience and intuition or a considerable amount

of time; the application of algorithm-based methods is restricted to the specific categories of

classifiers they have been designed for; cost-sensitive hybrid strategies require the analyst to

set the cost-matrix, a difficult task – similar to setting the amount of re-sampling – but which

could result, in some areas, into serious social dilemmas, such as putting a price tag on

human life. Therefore, a general method aimed at alleviating the effect of the class imbalance

problem and is applicable to any existing classification method without requiring extensive

familiarity with the mechanisms involved or detailed domain knowledge, is of interest.

While the imbalanced class distribution problem is theoretically independent of the

application domain, imbalanced error costs appear in areas in which the impact produced by

different errors varies according to the error particularity. A straightforward example is the

medical diagnosis problem, in which failing to identify a positive diagnosis is almost

unacceptable, whereas a certain level of false positive predictions is considered manageable.

In such domains, the effort of acquiring data values has to be considered also: medical tests

are usually costly (economically) and may produce patient discomfort; in addition, collecting

test data is time consuming. Each of these aspects has an implication on whether it is

practical to perform a certain test or not. Cost-sensitive learning addresses these

particularities, using two important types of costs to model the above-mentioned

asymmetries: misclassification and test costs. Most cost-sensitive algorithms existing in

literature focus on a single type of cost: either misclassification or test costs. Significantly

less work has been invested towards developing a technique which considers both, the most

prominent such method being the ICET algorithm. While the strategy proposed by ICET is

promising, the initial work on ICET lacked a comprehensive study of the misclassification

cost component. Also, an attempt to improve the algorithm behavior via a more appropriate

selection of the genetic strategies employed might be of interest.

Although the central objective of any classification algorithm is the minimization/

maximization of some objective function on a data sample, different classification algorithms

Chapter 1 – Introduction

7

employ different theories to accomplish this goal. The main consequence of this fact is

formulated by the no-free lunch theorem, which essentially states that there is no universally

best classification method. This triggers the need to select the appropriate learning scheme for

a given problem. In addition, the classification algorithms and/or their resulting models

posses several particularities, which can be evaluated when determining their suitability for a

specific context: robustness to noise, scalability, speed (prediction speed mostly, but – in

certain scenarios – training speed also), model interpretability, robustness to

irrelevant/redundant features, robustness to numeric features, etc. Such aspects have been

considered throughout the thesis, according to specific problem particularities and goals.

The initial assessment of the appropriate learning scheme for the analyzed data

represents a complex and time-consuming task even for an experienced data analyst.

Consequently, several systems which employ meta-learning strategies in the attempt to

provide a certain degree of automation to the classifier selection problem have been proposed

in literature. They utilize various dataset meta-features and specific prediction strategies in

the attempt to indicate the most appropriate learning scheme for a new problem. Besides their

individual drawbacks (too few meta-features, speed, necessity for user involvement), a

common disadvantage of such systems is that employ the accuracy alone as the classification

performance metric, which has proven to be insufficient in domains which present class- or

error-imbalance issues. Therefore, a scalable framework which brings together efficiently the

tools necessary to analyze new problems and make predictions related to the learning

algorithms’ performance, while keeping the analyst’s involvement at a minimum, is of

interest.

 In addition to the principal motivation presented above, the current thesis tackles

specific application-related constraints which may be imposed on the general data mining

process, such as generating an interpretable classification model, using a reasonable training

time, or the capacity to perform classification on a large number of classes, each having a

limited amount of training instances. Also, specific data mining process instantiations in the

following domains have been explored: written signature recognition, handwritten documents

transcription, network intrusion detection, community detection, opinion mining and spam

filtering.

The thesis acknowledges the existence of several other issues involved in a

classification data mining process, such as those related to: data visualization techniques,

noise reduction, feature construction or aggregation, knowledge presentation strategies.

However, it does not address those issues specifically.

1.2 Thesis Overview

Chapter 2 presents a general view on data mining as a field and the data mining

process, outlining the steps involved in the process (section 2.1), the main types of data

mining tasks (section 2.2), an overview of the main types of classification algorithms

available in literature (section 2.3) and classifier evaluation strategies and measures (section

2.4).

Chapter 3 addresses the missing data problem, starting with the problem statement

(section 3.1) and providing a structured analysis of existing missing data techniques (section

3.2). Section 3.3 proposes an original global imputation method based on non-missing

attribute values. The method employs a different neural network classifier ensemble model to

impute values for each incomplete attribute in turn. It makes use of the existing correlations

between the attributes – including the class attribute, to learn a different imputation model for

each class. The main assumption needed for the method to produce good results is the

existence of a complete data kernel. The evaluation of the method using an univariate MCAR

incompleteness mechanism is presented in section 3.3.2.

Chapter 1 – Introduction

8

The first two sections of Chapter 4 (4.1 and 4.2) present an overview on the feature

selection problem and the main strategies for performing feature selection in practice. Section

4.3 proposes a combination of different subset selection strategies, via individual feature

voting. The purpose is to remove the bias introduced by different search methods in selecting

a specific feature subset, thus improving the stability of the method across several problems.

A systematic analysis on different wrapper combinations and an empirical validation of the

proposed combination method are presented in section 4.3.

In Chapter 5, a methodology for joining two previously independent pre-processing

steps is presented and its effect on the classification step is evaluated (section 5.2). The

method proposes the information exchange between the data imputation and feature selection

step – most specifically to employ only a subset of attributes with high prediction power for

an attribute to build the imputation model for that attribute. Also, the imputation of strongly

predictive attributes with the class is important, since weakly predictive attributes tend to be

eliminated via feature selection.

Chapter 6 addresses the concept of cost in classification problems. Section 6.2

provides a systematic review of the main techniques for cost-sensitive learning – both

methods which tackle test costs and those which focus on misclassification costs, with ICET

being one of the most prominent approaches which considers both types of cost. Section 6.3

proposes a series of enhancements on the genetic component of the algorithm, meant to

increase the search variability while always propagating the best solutions in the next

generation unchanged – thus avoiding getting trapped at local optima and the loss of good

candidates. Section 6.3.3 provides a comprehensive analysis on the performance of the

enhanced ProICET method, with a comparative evaluation of the misclassification cost

component and total cost on benchmark medical datasets, and a study on the effect of

stratification as a strategy for tackling error cost asymmetries. Section 6.3.4 presents a case

study for the application of ProICET to a real prostate cancer medical problem, which comes

as a result of the involvement in the CEEX research grant no. 18/2005 – IntelPRO.

Chapter 7 tackles the class imbalance problem – starting with a systematic analysis of

the effect of class imbalance on the performance of several types of classification methods,

on a large sample of benchmark datasets, and under various performance metrics (section

7.1.3). An original dataset meta-feature is proposed – the Instances per Attributes Ratio,

which aggregates size and complexity information and can be used in conjunction with the

Imbalance Ratio to provide a general indication on the expected performance of classifiers in

a new imbalanced problem. Section 7.2 supplies a thorough analysis of the main approaches

for dealing with class imbalance from literature. Section 7.3 presents an original meta-

approach for improving the behavior of base classifiers in imbalanced scenarios. The method

employs a genetic search to find appropriate parameter settings and a cost matrix which are

then applied to the base classifier in conjunction with a cost-sensitive learning strategy.

Extensive comparative evaluations have been performed on the newly proposed method,

described in section 7.3.2.

Chapter 8 presents a number of case studies, which adapt the general data mining

process flow to specific requirements of several application domains, and provides a series of

solutions with a higher level of generality, such that they are not restricted to the exact

problem constraints they are designed for. All solutions investigate several data mining

process steps, and some apply methods from previous chapters. Section 8.1 tackles the

problem of automated classifier selection, with an original proposal for an automated

framework to perform this task (section 8.1.2). Section 8.2 presents three original methods

which employ data partitioning to evolve multiple sub-models and combine their predictions

to achieve increased classification performance and/or scalability: an arbiter-combiner

technique (section 8.2.1) and two hierarchical models, one based on clustering and

Chapter 1 – Introduction

9

classification sub-models, applied in the context of offline signature recognition (section

8.2.2); a second, which consists of a multiple classifier which combines the predictions of

binary classifiers, and employs an additional classifier for handling difficult to classify

instances (section 8.2.3). Section 8.3 addresses problems related to speed-up and scalability,

and proposes two original systems: a parallel version of the SPRINT decision tree classifier

(section 8.3.2) and a lightweight parallel genetic algorithms framework, which utilizes the

General-Purpose Computation on Graphics Hardware paradigm (section 8.3.3). Also, a

distributed version for the original method proposed in Chapter 7 is presented (section 8.3.1).

Section 8.4 explores several specific data mining applications: user type identification in

adaptive e-learning systems (section 8.4.1), handwritten document transcription of historical

documents (section 8.4.2), community structure detection in social mining (section 8.4.3), a

semi-supervised opinion mining technique (section 8.4.4) and spam prediction in spam

filtering (section 8.4.5). The user-type identification model presented in section 8.4.1 has

been applied within PNII research grant no. 12080/2008 – SEArCH.

The concluding remarks, with discussions on the original elements of the thesis are

presented in Chapter 9. A list of research grants, important publications and citations is

available after the references section.

Chapter 2 – Data mining: Concepts and Definitions

10

2 Data mining: Concepts and Definitions

The search for patterns in data is a human endeavor that is as old as it is ubiquitous,

and has witnessed a dramatic transformation in strategy throughout the years. Whether we

refer to hunters seeking to understand the animals’ migration patterns, or farmers attempting

to model harvest evolution, or turn to more current concerns, like sales trend analysis,

assisted medical diagnosis, or building models of the surrounding world from scientific data,

we reach the same conclusion: hidden within raw data we could find important new pieces of

information and knowledge.

Traditional approaches for deriving knowledge from data rely strongly on manual

analysis and interpretation. For any domain – scientific, marketing, finance, health, business,

etc. – the success of a traditional analysis depends on the capabilities of one/more specialists

to read into the data: scientists go through remote images of planets and asteroids to mark

interest objects, such as impact craters; bank analysts go through credit applications to

determine which are prone to end in defaults. Such an approach is slow, expensive and with

limited results, relying strongly on experience, state of mind and specialist know-how.

Moreover, the volume of generated data is increasing dramatically, which makes

traditional approaches impractical in most domains. Within the large volumes of data lay

hidden strategic pieces of information for fields such as science, health or business. Besides

the possibility to collect and store large volumes of data, the information era has also

provided us with an increased computational power. The natural attitude is to employ this

power to automate the process of discovering interesting models and patterns in the raw data.

Thus, the purpose of the knowledge discovery methods is to provide solutions to one of the

problems triggered by the information era: “data overload” [Fay96].

A formal definition of data mining (DM), also known – historically – as data fishing,

data dredging (1960-), knowledge discovery in databases (1990-), or – depending on the

domain, as business intelligence, information discovery, information harvesting or data

pattern processing – is [Fay96]:

Definition: Knowledge Discovery in Databases (KDD) is the non-trivial process of

identifying valid, novel, potentially useful, and ultimately understandable patterns in

data.

 By data the definition refers to a set of facts (e.g. records in a database), whereas

pattern represents an expression which describes a subset of the data, i.e. any structured

representation or higher level description of a subset of the data. The term process designates

a complex activity, comprised of several steps, while non-trivial implies that some search or

inference is necessary, the straightforward derivation of the patterns is not possible. The

resulting models or patterns should be valid on new data, with a certain level of confidence.

Also, we wish that the patterns be novel – at least for the system and, ideally, for the analyst –

and potentially useful, i.e. bring some kind of benefit to the analyst or the task. Ultimately,

they need to be interpretable, even if this requires some kind of result transformation.

 An important concept is that of interestingness, which normally quantifies the added

value of a pattern, combining validity, novelty, utility and simplicity. This can be expressed

either explicitly, or implicitly, through the ranking performed by the DM system on the

returned patterns. A short note should be made on the fact that, even if initially DM

represented a component in the KDD process, responsible with finding the patterns in data,

currently the two terms are used interchangeably, both being employed to refer to the overall

discovery process, which is comprised of several steps, as presented in the next section.

Chapter 2 – Data mining: Concepts and Definitions

11

2.1 Data Mining as Process

A reduced/idealist view of the DM process presents it as the development of computer

programs which automatically examine raw data, in the search for models and regularities. In

reality, performing data mining implies undergoing an entire process, and requires techniques

from a series of domains, such as: statistics, machine learning, artificial intelligence,

visualization. Essentially, the DM process is iterative and semi-automated, and may require

human intervention in several key points.

Figure 2.1 presents a generic model for the DM process, with the main logical steps

involved. The colored-background boxes represent steps for which original contributions will

be presented throughout this dissertation.

Data filtering is responsible with the selection of relevant data for the intended

analysis, according to the problem formulation. Data cleaning is responsible for handling

missing values, smoothing noisy data, identifying or removing outliers, and resolving

inconsistencies, such as to compensate for the learning algorithms’ inability to deal with such

data irregularities. Data transformation activities include aggregation, normalization and

solving syntactic incompatibilities, such as unit conversions or data format synchronization

(according to the requirements of the algorithms used in the processing steps). Data

projection translates the input space into an alternative space, (generally) of lower

dimensionality. The benefits of such an activity include processing speed-up, increased

performance and/or reduced complexity for the resulting models.

During the processing steps, learning models/patterns are inferred, by applying the

appropriate learning scheme on the pre-processed data. The processing activities are included

in an iterative process, during which the most appropriate algorithm and associated parameter

values are established (model generation and tuning). The correct choice of the learning

algorithm, given the established goals and data characteristics, is essential. There are

situations in which it is required to adapt existing algorithms, or to develop new methods in

order to satisfy all requirements. Subsequently, the output model is built using the results

from the model tuning loop, and its expected performance is assessed.

Figure 2.1 - Main steps of a data mining process

Chapter 2 – Data mining: Concepts and Definitions

12

Knowledge presentation employs visualization methods to display the extracted

knowledge in an intuitive, accessible and easy to understand manner. Decisions on how to

proceed with future iterations are made based on the conclusions reached at this point.

DM process modeling represents an active challenge, through their diversity and

uniqueness within a certain application. All process models contain activities which can be

conceptually grouped, into the three types: pre-processing, processing and post-processing.

Several standard process models exist in literature, the most important being: William’s

model, Reinartz’ model, CRISP-DM, I-MIN or Redpath’s model [Bha08]. Each model

specifies the same process steps and data flow; they differ in the control flow. Essentially,

they all try to achieve maximum possible automation.

2.2 Knowledge Extraction Tasks

The purpose of a data mining system is defined through the desired employment

mode. According to [Fay96], two main categories of goals can be distinguished: verification

and discovery. With verification, the system is limited to validating user hypotheses (which

can be accomplished through OLAP techniques as well), but for discovery the system infers

new patterns autonomously – this is actually pure DM. Description and prediction are the

main types of discovery tasks.

Description tasks generate models and present them to the user in an easy-to-

understand form. Summarization and visualization, clustering, link analysis and outlier

analysis represent descriptive tasks. Prediction tasks generate models for predicting future

behavior of certain entities. Classification, regression and time series prediction are the main

tasks falling in this category.

A dataset is a finite set T of elements, named instances, or examples:

T = { xi | i=1 to m } (2.1)

An instance xi is a tuple of the form (x
(1)

, ..., x
(n)

, y)i, where x
(1)

, ..., x
(n)

 represent values

for the predictive attributes (features), while y is the value of the target attribute, the class:

xi = (x
(1)

, ..., x
(n)

, y)i (2.2)

A predictive attribute Xi represents a recorded data characteristic, a feature, and the

class Y is the target concept. The process of building the learning model is called training and

is generally performed on a portion of the dataset, called the training set. In order to assess

the expected value of the model its performance is measured on a test set, as we will see in

section 2.3. For certain tasks, such as clustering, or outlier detection, the value of the target

attribute may be unknown. This type of learning is referred to as unsupervised learning, as

opposed to supervised learning, in which the class is used during model generation (e.g.

classification). There exists also a special category of methods which perform semi-

supervised learning, i.e. use for training a small amount of labeled data in conjunction with a

large amount of unlabeled data. From a statistical perspective, Xi and Y are random variables;

from the representation perspective, they can be either numeric, nominal or binary, or more

complex data types, such as hierarchical, time series, etc. The range of Y calls for another

distinction: if Y is continuous, then we are faced with a regression problem. On the other

hand, if Y is discrete, we have a classification problem. A special case is binary

classification, in which Y takes one of two values. The current thesis is concerned with

classification tasks alone. We denote the cardinality of |Y| with c, and the possible values of

Y with y
k
. Therefore, Y = {y

1
, …, y

c
}.

Summarization and visualization

This task performs initial data analysis. Descriptive statistics (mean, standard

deviation, etc.) and data distribution visualization (through box plots, histograms, or 2D

scatter plot) are the main alternatives for performing it.

Chapter 2 – Data mining: Concepts and Definitions

13

Clustering

Clustering is involved with grouping the data into several clusters, by considering the

similarity between individuals. The similarity computation is applied to the predictive

attributes X1, …Xn alone; the class attribute is unknown. The aim is to generate groups of

individuals with a high degree of intra-cluster similarity and a low degree of inter-cluster

similarity. Special attention should be allocated to the similarity metrics – they should be in

accordance with the feature’s nature and significance.

Link analysis

This task focuses on identifying relationships between data values. Two of the most

common approaches are sequence and association mining. An association presents elements

which co-occur in an event. It has the form LHS=>RHS, where LHS is a conjunction of terms

from the set {X1, ..., Xn} and RHS contains another term from the set. Sequences are

associations in time.

Outlier detection

Techniques for outlier detection generally build a model for identifying those

instances in the dataset which deviate from normality. It is an unsupervised learning task, for

which the training data is sampled from the “normal” instances.

Classification

Classification problems try to determine the characteristics which correctly identify

the class to which each instance belongs to. Thus, the scope is to learn a model from the

training set which describes the class Y, i.e. predict y from the values of (a subset of) (x
(1)

, ...,

x
(n)

). The resulting model can be employed either for descriptive, or predictive tasks.

Classification is similar to clustering, the main difference being that, in classification, the

class to which each instance in the dataset belongs to is known a priori.

The most intense research efforts in DM and connected fields (machine learning,

statistics) have focused on finding efficient classification algorithms, such that at the present

there is a large collection of state-of-the-art methods available in the literature. This thesis

focuses on DM classification tasks.

Regression

Regression is similar to classification, the difference being that the resulting model is

able to predict numeric values – i.e. the class is numeric. There exist classifiers which can be

used for regression as well (artificial neural networks, some decision trees).

Time series prediction

This task involves the prediction of future values from a series of time-varying

predictors. Thus, (x
(1)

, ..., x
(n)

) represent values recorded (at certain time intervals t1 to tn) of

the same measure, and y represents the predicted value for tn+1 . Like regression, time series

prediction employs past values for prediction. The models must consider different properties

of the time periods, especially seasonality and holidays, and must also establish how much of

the past recordings is relevant.

2.3 Classification Methods

A wide variety of classification methods have become available during the last three

decades. Among them, the most utilized general-purpose methods can be grouped into

several categories (Table 2-1). Classification algorithms employ different theories for

generating the model. The distinction between them is performed at the following levels:

model representation and assessment strategies, form of the separation frontier, or model

search techniques.

Chapter 2 – Data mining: Concepts and Definitions

14

Table 2.1: The main categories of classification methods

Group of methods ,

with representatives

Model

representation

Model

evaluation
Model search

Separation

frontier

Inductive methods:
- decision trees: C4.5,

CART,

Decision tree

(interpretable)

Probabilistic

methods, penalty

on complexity

Greedy Box –like

Coverage methods:
- decision rules: OneR,

PART, RIPPER

Decision rules:

ranked disjunction

of conjunctive rules

(interpretable)

Classification error Greedy Similar to that of

decision trees

Bayesian methods:
- Bayes Net

Probabilistic,

graphical

(interpretable)

Likelihood, or

posterior

probability

EM N/A

Linear methods
1
:

- logistic regression,

Fisher’s Linear

Discriminant, Support

Vector Machines

Separation

hyperplane

(non-interpretable)

Likelihood, error,

geometric margin

SMO, metoda

punctului interior

Linear

Non-linear methods:
- artificial neural networks

Network of

interconnected

neurons, links with

weights

(non-interpretable)

Mean squared

error, cross entropy

Gradient descent,

conjugate gradient,

Newton’s method,

simm. annealing,

EM, evolutionary,

etc

Non-linear –

depends on the

activation

function

employed

Lazy methods:
- k-Nearest Neighbor

Implicit (in data); no

explicit model

(non-interpretatable)

Classification error External, non-

specific to

algorithm

Non-linear,

irregular

Meta-techniques:
- ensemble: bagging,

boosting, wagging;

stacking; multiple models

techniques

Group of models,

one for each base

classifier

(non-interpretatable)

Specific to the base

classifiers

Specific to the base

classifiers, boosting

Specific to the

base classifiers

The main consequence of this fact is formulated by the no-free lunch theorem, which

essentially states that there is no universally best classification method, which can achieve

superior performance to all the others on any problem. Table 2.1 summarizes the specific

choices made by different types of classification algorithms.

In addition, the classification algorithms and/or their resulting models possess several

particularities, which can be evaluated when determining their suitability for a specific

context: robustness to noise, scalability, speed (prediction speed mostly, but – in certain

scenarios – training speed also), model interpretability, robustness to irrelevant/redundant

features, robustness to numeric features, etc. These meta-characteristics are important for

making the decision on which classifiers to consider initially for a certain application domain,

given the specific constraints.

2.4 Model Evaluation

Many learning algorithms have become available to the community during the last

few decades. However, according to the no-free lunch theorem, there is no “winner” method,

which achieves superior performance to all the other methods, on all problems. Thus emerges

the need for systematic procedures and measures which quantify performance and allows the

comparison of the algorithms between each-other in different settings.

1
Linear methods can be converted into non-linear, operating in a different input space, by using the kernel trick

Chapter 2 – Data mining: Concepts and Definitions

15

2.4.1 Evaluation Tactics

The main difficulty in predicting the expected classifier performance on a new

problem is the limited amount of data available and the fact that the sample may not be

representative enough. Therefore, performing a single train-test split on the data, generating

the model on the training set and evaluating its performance on the test split is, in most

situations, insufficient, since it may provide a significantly biased estimation. Several

different learner evaluation strategies are available in literature. All involve averaging the

performance over several train-test iterations. The main idea in predicting the expected

performance of a model is to do this on a new sample of instances, which was not “seen” by

the learner during training. This is because estimations performed on the training set provide

over-optimistic values.

The de facto standard in classifier evaluation is k-fold stratified cross-validation, in

which the available data is divided into k folds of approximately the same size, each having

the same distribution of instances as the original data. A number of k train-test trials are

performed. In each trial, k-1 folds are kept for training and one for testing, each time using a

different fold for testing. The community is still debating on which value for k is the most

appropriate, considering the time – accuracy of the estimation trade-off. The most frequent

value is 10, but values of 2 and 5 are also very common. A single k-fold cross-validation

might not provide a sufficiently reliable performance estimate, because of the effect of the

random variation in choosing the folds. Therefore, it is common practice to repeat the

process, usually 10 times. Thus, obtaining a good estimate of the performance of a classifier

is a computation- and time-intensive task.

Leave-one-out cross-validation, or m-fold cross-validation, involves m trials; in each

trial, the classifier is trained on m-1 instances and tested on the remaining one. The main

advantages of this approach are the large volume of data that can be employed for training

and the fact that, since the procedure is deterministic, there is no need to repeat it several

times. Unfortunately, the computational cost of executing it even once is high, since the

learning-evaluation process has to be repeated m times. For large datasets this procedure is

therefore unfeasible. Another drawback is the impossibility to ensure stratification. However,

for small datasets, this method may provide a serious alternative to k-fold stratified cross-

validation.

Bootstrap evaluation is based on the sampling with replacement statistical procedure.

It applies the sampling strategy to the available data to generate the training set. Because

some instances will be repeated in the resulting set, there will be a set of instances from the

original data that do not appear in the training set. These will be employed for testing. It is

known that the bootstrap estimate is a pessimistic one [Wit05]. Therefore, the output estimate

is a linear combination of the bootstrap error and the error on the training set. The procedure

is repeated several times, using different replacement samples, and the results are averaged.

2.4.2 Metrics

Almost all performance metrics are represented in terms of the elements of the

confusion matrix generated by the model on a test sample. Table 2.2 presents the structure of

a confusion matrix for a two-class problem, with classes positive and negative. A column

represents an actual class, while a row represents the predicted class. The total number of

instances in the test set is represented on the top of the table (P=total number of positive

instances, and N=total number of negative instances), while the number of instances

predicted to belong to each class are represented to the left of the table (p= total number of

instances classified as positive; n=total number of instances classified as negative). TP (true

positives) is the number of correctly classified positive examples.

Chapter 2 – Data mining: Concepts and Definitions

16

Table 2.2: The confusion matrix returned by a classifier

Total no. of instances

P N

Actual class

positive negative

p Predicted
class

positive TP FP

n negative FN TN

In a similar manner, FN (false negatives) is the number of positive examples

classified as negative, TN (true negatives) – the number of correctly classified negative

examples and, finally, FP (false positives) – the negative examples for which the positive

class was predicted.

The true positive rate (TPrate): TPrate = TP/(TP+FN) represents the rate of recognition

of the positive class. It is also known as sensitivity (in ROC curves) and recall (in information

retrieval). The corresponding measurement for the negative class is the true negative rate

(TNrate), also called specificity, and is computed as the number of negative examples correctly

identified, out of all negative samples: TNrate=TN/(TN+FP). In many applications, it is

important to assess also how many examples which are identified as belonging to a given

class actually belong to that class. This is done by the positive and negative predicted values.

The positive predicted value (PPV), named also precision in information retrieval, is given by

the number of actual examples identified as positive, out of all classified as positives:

PPV=TP/(TP+FP), while the negative predictive value (NPV) represents the number of

negatives correctly identified out of all examples classified as negative, NPV=TN/(TN+FP).

The TPrate, TNrate, PPV and NPV indicate some true occurrences, which need to be

maximized; sometimes their complements are more interesting. Their definitions may be

found in [Wei03]. All these parameters provide a more exact view on the performance of a

classification method. However, it is difficult to focus on all at the same time. Therefore, we

should identify a connection between the problem objective and a subset of these eight

measurements, and focus on those alone, or provide a composite metric which serves the

given objective the best.

The most widely employed such metric in the early (theoretical) stage of data mining

research was the accuracy (Acc) of the classifier, or its complement – the error rate (Err).

Acc is defined as the ratio between the total number of correctly classified instances and the

total number of instances, Acc = (TP+TN)/(TP+TN+FP+FN), while Err is the ratio between

incorrect classified instances and all of the instances, Err = (FP+FN)/(TP+TN+FP+FN) = 1-

Acc. They are usually expressed as percentages. The disadvantage of using these metrics is

that they do not offer a realistic estimation when the distribution of instances is imbalanced.

For example, for a problem in which 99% of the instances are negative and 1% positive, a

model which always estimates the negative class achieves 99% accuracy, while failing to

identify any positive instance. Such imbalanced distributions are common in real world

scenarios, as we will see in Chapter 7 of this thesis.

Another such composite metric can be derived from the analysis of ROC curves

[Faw06], which are graphs representing the TPrate as a function of FPrate (or, equivalently,

they represent sensitivity as a function of 1-specificity). A model built by a classifier

generates a single point in this representation. A good model should be situated in the upper-

left region of the chart. Point (0,0) represent a model which identifies all instances as being

negatives, (1,1) one which identifies all as positives, while a random classifier lays on the

y=x curve. The ideal model generates the point (0,1), meaning that FPrate=0, (no negative

instance identified as positive), and TPrate =1 (all positives are identified). While this is the

ideal case, very seldom a classifier can reach this performance. The ROC curve for a

Chapter 2 – Data mining: Concepts and Definitions

17

classifier is built by generating several models (i.e. points in the ROC space). This can be

done by repeatedly modifying the decision threshold of the classifier. ROC curves allow for

the comparison of several classifiers. However, by simply analyzing the ROC curve, one can

only get an approximate comparison. A more exact measure is provided by the area under

the curve (AUC). It is a scalar measure which should be maximized. However, in many

situations we cannot identify a single dominating curve, but intervals in which different

curves dominate all the others. This means that the curve yielding maximal AUC might not

be the most appropriate under all circumstances. For instance, a curve with smaller AUC

dominates the curve with highest overall AUC on a narrow interval, i.e. is more appropriate

for that set of requirements. In such complex cases, for the same problem, based on the

specific problem requirements and objectives, different classifiers might be preferable for

each set of constraints, as suggested by the convex hull methodology [Pro97]. This requires a

more sophisticated approach, which is not so easy to follow.

A good option for when both recall and precision are important is the F-value

[Guo04], which is the harmonic mean between precision and recall; a generalization of the

metric – the Fi-value – can be tuned to put more emphasis on either the recall or precision:

Fi-value = (1+i
2
)  precision  recall/(i

2recall+precision) (2.3)

When we need to accentuate recall more, i should be greater than 1. For a specific problem,

the goal is to identify the appropriate i such that the proper amount of penalization for the

false negatives is provided [Est01].

In certain situations, besides the TPrate, keeping a high TNrate may be important. For

such situations, equidistant metrics, such as the geometric mean: GM = raterate TNTP 

[Bar03], or the balanced accuracy: BAcc = (TPrate+TNrate)/2 [Bro10] are appropriate

performance assessment metrics.

The choice of the performance metric should be influenced strongly by the specifics

of the problem at hand. Any performance metric may be perfectly appropriate in a given

scenario, yet fail to provide a real estimation on the expected performance in a different

problem setting. For example, in medical diagnosis, it is essential to maximize the TPrate,

even if this means that a certain number of FPs are introduced. On the other hand, in

contextual advertising, precision is of utmost importance, since it is more important that the

ads predicted as being relevant are actually relevant, than to identify as many relevant ads as

possible. Therefore, selecting the appropriate performance metric, which is in accordance

with the specific problem goals, is essential in reducing the risks of a failed data mining

process.

Chapter 3 – Handling Incomplete Data

18

3 Handling Incomplete Data

Incomplete data has proved to be the rule rather than an exception in real-world data

mining problems. At the same time, it represents a challenge for achieving a successful data

mining process, since statistical and machine learning methods have not been designed to

deal with incomplete data, and most of them employ simple and inefficient approaches:

consider all missing values as a special value, replace all missing values with NULL, remove

all instances/attributes having missing values. A limited number of learning algorithms, such

as the C4.5 decision tree learner, apply slightly more evolved methods. Adequate handling of

missing data in the pre-processing phase, for improving the quality of raw data and thus

reducing the risk of a failed DM process, is therefore essential.

3.1 Problem Statement

An incomplete instance is characterized by unknown values for at least one of the

predictor attributes Xp:

(xj)inc=(x
(1)
, …, x

(p-1)
, ?, x

(p+1)
, …, x

(n)
, y)j,

where ”?” denotes an unknown value for attribute Xp. Of course, an instance may have

several unknown values.

 In selecting the appropriate approach for handling incompleteness, knowledge about

the mechanisms which generated the incomplete data, as well as about incompleteness

models – if avaliable – may provide valuable support. In [Rub87b], the incompleteness

mechanism is modeled probabilistically, by defining (for the training set T) the

incompleteness matrix M:

mij =






recordedisxif

absentisxif

ij

ij

,0

,1
 (3.1)

The form of the matrix M characterizes the incompleteness model. The three most

encountered patterns are:

 univariate non-response – in which a single attribute Xi is incomplete

 monotone – in which if
)(i

jx is missing (i.e. ijx = 1), then
)1(i

jx , ...,
)(n

jx are also

missing; otherwise said, the 1s in the matrix form a stair-like pattern

 general (arbitrary) – the matrix M has no special form

The incompleteness mechanism, i.e. the law generating the missing values is crucial,

since, by knowing it, missing values could be estimated more efficiently. It is characterized

by the conditional distribution of M, given T – f(M | T, ) – where  represents unknown

parameters. If we consider T = Tobs + Tinc, i.e. decompose the training set into a complete

component and an incomplete component, we distinguish the following mechanisms

[Rub87b]:

 MCAR („Missing Completely At Random”): the incompleteness probability density

function does not depend on the data in any way:

 f(M | T, ) = f(M | ),  T, 

 MAR („Missing At Random”): the incompleteness probability density function may

depend on the recorded data, but not on the incomplete data:

 f(M | T, ) = f(M |Tobs ,),  Tinc, 

 NMAR („Not Missing At Random”): the missing probability depends on the missing

value:

 f(M | T, ) = f(M |Tobs , Tinc , ),  

Chapter 3 – Handling Incomplete Data

19

To make the differences between the missingness mechanisms more clear, suppose

that, in the available data for a medical diagnosis problem, each record contains the patient id,

age, sex and the value of a medical test. Some values for the medical test are missing. If the

fact that the test result is missing doesn’t depend on the recorded or missing data (i.e. the test

is expensive, so it is performed only on a subset of patients, randomly chosen), then the data

are MCAR. If, on the other hand, the test is mainly performed on elder females, then the data

are MAR (the fact that the test result is missing depends on the observed variables age and

sex). If the missing data comes as a result of the fact that the device used to perform the test

is not able to record values above some threshold, then the data are NMAR. This formalism is

particularly important for statistical inference [Rub87b]. MCAR ang MAR provide ignorable

incompleteness: since the missingness is not related to the missing values, it can be ignored.

NMAR data is informatively missing, which means not only that the incompleteness

mechanism is non-random and cannot be predicted from the other variables in the dataset, but

also that it cannot be ignored. In practice, it is generally very difficult to determine the

incomleteness mechanism. Data can generally provide evidence against MCAR. However, it

cannot, in general, distinguish between MAR and NMAR, without making distributional

assumptions.

For classification problems, a very important distinction should be made for the

incompleteness mechanisms – whether they are:

 Informative: the fact that the value is missing provides information about the target

attribute

 Non-informative: missing value distribution is uniform for all target attribute values

This distinction is important since informative incompleteness should be treated as a

distinct value, because it provides additional information about the target attribute. For non-

informative incompleteness, imputation methods are appropriate. Also, most embedded

mechanisms for handling incompleteness are appropriate only for non-informative

incompleteness [Sch04]. The two incompleteness mechanisms typologies –

MAR/MCAR/NMAR and informative/non-informative – overlap somehow, even if the

former targets estimation methods for statistical density/models (where the existence of a

target concept) is not mandatory. However, we can state that: MCAR are always non-

informative; MAR can be both informative and non-informative, depending on the dataset it

applies to – whether it contains the target attribute or not; for NMAR, a value is (potentially)

informative if the true value is statistically dependent on the target attribute, and non-

informative otherwise.

3.2 Methods for Dealing with Missing Data

Missing data techniques (MDTs) are available either as pre-processing methods or as

embedded approaches – several learning methods possess specific strategies for handling

incompleteness. Pre-processing methods build a complete dataset and are preferred since the

resulting data can be subsequently analyzed using any of the traditional learning methods.

The main strategies which apply here are filtering and imputation. It is worth mentioning that

not all MDTs are equally appropriate for estimation or prediction tasks [Sar98].

3.2.1 Filter-based MDTs

Traditionally, filtering methods simply remove the incomplete data parts: list-wise

deletion (or complete-case analysis) deletes all incomplete instances; it is therefore

appropriate only when there are few incomplete instances, whose influence on the rest of the

population is minimal; pair-wise deletion (or available-case analysis) applies a more

efficient approach for rare information – whether a particular case is missing or not depends

on the particular goal of the analysis. These methods have been the most common approaches

Chapter 3 – Handling Incomplete Data

20

for handling missing data for several years, despite their evident drawbacks: they generally

induce bias in the subsequent analysis (if the data is not MCAR, which is seldom the case),

and they do not maximize the use of available data [All09].

More evolved methods which employ filtering as part of their strategy include: the

multiple models and the sub-model derivation methods [Sch04]. The multiple models

approach splits the available data into complete sub-sets and generates learning models on

each sub-set. The main disadvantage of this method is represented by the combinatorial

explosion of sub-sets for spaces with many attributes and different incompleteness

mechanisms. Also, some sub-sets may be too small for inferring acceptable models.

Prediction combination and the existence of several appropriate models for certain cases also

represent challenges for this approach. Sub-model derivation is similar with the multiple

models approach, but avoids the combinatorial models explosion; the condition is the

possibility to derive a sub-model for any attribute sub-set from the model on the complete

attribute space. This way, the complete model is built only once, and whenever we have to

make a prediciton for an incomplete instance, we derive the appropriate sub-model from the

complete one. For building the complete model, the strategy can be extended such as to allow

the adjustment of the complete model whenever a sub-model changes.

3.2.2 Imputation-based MDTs

The main assumption employed by imputation-based methods is related to the

existence of correlations between the incomplete variables and the other variables in the

dataset. For each missing item, a replacement value is derived from the available data, such

as to produce a complete dataset. There exist several different strategies for devising

imputation-based MDTs. Imputations may be deterministic (i.e. by repeating the process you

always get the same replacement value) or stochastic (i.e. randomly drawn from some

distribution). Depending on the type of information used to derive replacement values,

imputation methods are either based on the missing attribute or based on non-missing

attributes; depending on the amount of data used, MDTs may be global or local. The most

appropriate classification of imputation-based methods is the one proposed in [Mag04] –

which we further employ to present imputation-based MDTs.

Global imputation based on missing attribute

This category of methods assigns values to an incomplete attribute by analyzing the

existing values for that attribute. The most common approaches are mean, median, or mode

imputation. Their major drawback is the fact that they bias standard deviation estimations,

even for MCAR data. The non-deterministic mean imputation method, which introduces a

random disturbance to the mean, achieves better performance from a statistical point of view,

but is still not satisfactory for learning tasks.

A variation of this method is to assign all possible values to the missing data item.

This produces an inconsistent dataset, but the biggest problem with the approach is its

computational complexity and the fact that it systematically introduces information to the

data.

Global imputation based on non-missing attribute

The main assumption employed by global imputation based on non-missing attribute

methods is the existence of correlations between missing and non-missing variables. They

employ these correlations to predict missing values. Imputation by regression is one such

method, which treats missing attributes as the target attribute, in turn, and performs

regression to impute missing values. In [Mag04], it is noted that this strategy possesses two

main problems: (1) the selection of the appropriate type of regression model is crucial (e.g. if

linear regression is performed but the data doesn’t fit a linear model, erroneous values are

Chapter 3 – Handling Incomplete Data

21

imputed) and (2) only one value is imputed for each missing data and this fails to represent

correctly the uncertainty associated with missing values.

Multiple imputation, or MI, [Rub87] comes as a solution to the second issue stated

above. It consists of 3 steps: imputation – create m complete datasets, through single

imputation; analysis of each of the m datasets; combination, by integrating the results of the

m analyses into the final result. Even if MI appears to be the most appropriate method for

general-purpose handling of incomplete data in multivariate analysis, in practice, the

requirements which have to be met in order to achieve MI’s desirable properties, are

normally violated: the data is not generally MAR, and producing random imputations that

yield unbiased parameter estimates is not a trivial task.

Local imputation

A large number of local imputation methods are grouped under the name of hot-deck

imputation. It is a generic procedure, which doesn’t have a strong theoretical formulation, but

has been implemented in practice in several different versions [Grz02, Bat03, Ged03]. For

each value to impute, it:

1. finds similar records with the current record

2. use a certain strategy to derive the replacement value from the corresponding

values of the neighboring records

 The assumption al hot-deck procedures are based on, that instances can be grouped in

classes, with small variation within each class, is generally verified in DM tasks [Mag04].

Exceptions may appear for attributes which don’t exhibit any (or a very low) correlation with

the other attributes in the dataset.

Imputation via parameter estimation

Imputation values may be deduced also by first estimating the parameters of the

multivariate probability density function and then using the resulting data model to impute

the missing portion of the data. Expectation Maximization (EM) is such an approach, which

uses maximum likelihood to estimate the parameters of a probabilistic model which best

explain the data. For incomplete data, missing values represent hidden variables. It is an

iterative method, which performs two operations in each iteration: (1) the E step – compute

the expectation of the likelihood, using the distribution of the hidden variables, which can be

derived from the current parameter estimations; (2) the M step – maximize similarity relative

to the parameters. The main drawbacks of the approach are related to the computational

complexity and the fact that in real DM problems it is generally difficult to guess the

probability density function in advance.

3.2.3 Embedded MDTs

Several decision tree classification methods possess non-trivial methods for handling

incomplete data. In C4.5 [Qui93], for example, in the training phase, the gain ratio of each

attribute is adjusted by a factor which depends on the number of complete records (in that

attribute) in the training set. Every incomplete record is distributed among all partitions, with

a probability which depends on the size of the partition (fractional cases). In the prediction

phase, when a test on an unknown attribute has to be performed, the instance is again

propagated on all available paths, on each branch having a weight that corresponds to the

relative frequency of a value assigned to that branch.

The CART (Classification and Regression Trees) method [Bre84] applies the so-

called Surrogate Variable Splitting (SVS) strategy. The method employs “surrogate

splitters”, i.e. predictor variables which yield similar splitting results with the primary splitter,

to replace the primary splitter in nodes when there are missing values. This strategy can only

be used in the prediction phase. The RPART (Recursive Partitioning and Regression Trees)

Chapter 3 – Handling Incomplete Data

22

method [The97] contains an extension of the basic method, which can handle missing data

during training as well.

3.3 A New Method for Data Imputation

 Considering the superior performance achieved by ensembles of artificial neural

networks on various problems [Ona07], a new imputation method, which applies the

predictive capabilities of an ensemble of artificial neural networks to impute missing values,

has been proposed. This section presents the technique, together with the empirical

evaluations performed to validate the idea. The proposed method employs global imputation

based on non-missing attributes. The strongest assumptions made by the method are related

to the existence of correlations between the incomplete and the complete attributes (including

the class). The particular technique employed for learning the model used to impute each

incomplete attribute reduces the risk of choosing an inappropriate model. Also, even if there

is a single imputation performed for each missing value, the replacement value is determined

by an ensemble of predictors, using a voting strategy. Even if this doesn’t improve the

representation of the uncertainty associated with missing values, it reduces the risk of

imputing wrong values.

3.3.1 Method Description

Before describing the actual technique, we should make a note on the fact that the

purpose of the method is to improve the classification performance, i.e. the prediction

capabilities of the model built on incomplete data. The technique implies training an artificial

neural network ensemble model for each attribute, using the complete data sub-sets for the

particular attribute, considered as target. For each predictor attribute Xj, j = 1 to n, from the

available training data T two sub-sets are extracted:

 a complete data kernel – CTj – which is employed to build the attribute I

imputation model

 the Xj–incomplete subset – ITj – which contains all instances with the value of

attribute Xj missing.

For univariate incompleteness, for each attribute Xj and instance xiT, xiCTj if
)(j

ix is

known, and xi ITj otherwise (
)(j

ix = „?”). The artificial neural network ensemble is trained on

CTj, considering Xj as target attribute, and the resulting model is employed to impute the

values of Xj in ITj, obtaining ITj’. The resulting training set possesses a higher quality and

thus improves the quality of the resulting prediction model.

Procedure NNE_Impute (T,Xj)

(1) Create Tc = T

(2) for each instance Tc
(3) if =”?” then

(4) ITj= ITj { }

(5) else

(6) CTj=CTj { }

(7) end if

(8) end for

(9) Model Mj= NNE_Train(CTj, Xj)

(10) for each instance xiITj
(11) Ik = Select corresponding instance from Tc

(12) Set Ik=Mj(Ik)

(13) end for

(14) return Tc

ix
)(j

ix
)(j

ix

)(j

ix

Chapter 3 – Handling Incomplete Data

23

The code snippet on the previous page presents imputation method for the univariate

case – in which T = ITj CTj and ITj CTj = ∅. For more complex incompleteness

mechanisms, the difference is in the strategy for extracting the complete data subset.

3.3.2 Experimental Evaluation

The purpose is to show that, by using the imputation method, higher prediction

performance is obtained than by using the incomplete dataset. The quality of the imputed

values results indirectly, from the superior classification performance. We have performed

several evaluations, considering univariate incompleteness with varying levels and measuring

the classification accuracy of the J4.8 decision tree classifier – which possesses also

embedded mechanisms for handling incomplete data. The incompleteness mechanism is

MCAR.

 For each attribute in turn, we have compared the performance of the models trained

on:

 The complete dataset: ITj = ∅, T = CTj

 The p% incomplete dataset: p% values for attribute Xj are artificially removed, using

an MCAR strategy, with p varied between 5 and 30, using an increment of 5

 The p% imputed dataset: the same p% values for attribute Xj from before are imputed

using our imputation method

The evaluations have been performed on two complete UCI datasets (Pima Indian

Diabethes and Cars), using 10 different trials of 10-fold cross validation loops (100 runs in

total). We have studied the impact of the imputed values on the performance of the prediction

models. The relation set as goal between the three measures is:

Accuracy(complete train set) >

 Accuracy(imputed train set) >

 Accuracy (incomplete train set)

The diagrams (a) – (d) from figure 3.1 present the results obtained for two strongly,

one moderately and one weakly correlated attribute with the class, for the Pima dataset. The

results indicate that, for strongly correlated attributes with the class, the expected relationship

between the accuracies on the different versions of the training set is correct. A moderately

correlated attribute (attribute 8 – age) exhibits a relation close to the expected one, and the

rest of the attributes achieve the highest classification accuracy when using missing or

imputed values (which is a deviation from the expected behavior). Moreover, the curve

representing the class accuracy when using missing values in the training phase should

decrease as the percentage of the incompleteness increases. Again, only some attributes

exhibit this behavior. If we further analyze the ranking of the attributes (using the gain ratio

as ranking metric), we come across the following order: 2, 6, 8, 1, 5, 7, 4, 3. The complete

attribute list for the Pima dataset can be found in table A.6.5 of Appendix A. For this dataset,

which does not represent the problem well enough (since the accuracy is around 84%), only

imputation on the attributes which are highly correlated with the class guarantee performance

improvement.

A second batch of tests was conducted on the Cars dataset, which consists of nominal

attributes, and yields a high accuracy on the complete training set (~96%). For this dataset

(figure 3.2, diagrams (a) – (f)), almost all the attributes exhibit the normal relation between

the three curves. Also, we can observe how the class accuracy decreases as the number of

missing attribute values increases, which is the expected behavior. The attribute ranking for

the Cars dataset is: 6, 4, 1, 2, 5, 3.



Chapter 3 – Handling Incomplete Data

24

(a) Attribute 2 – strongly correlated

(b) Attribute 6 – strongly correlated

(c) Attribute 8 – moderately correlated

(d) Attribute 3 – weakly correlated

Figure 3.1 - The variation of the accuracy with different incompleteness percentages for several attributes of

the Pima dataset

Therefore, when the dataset represents well the search space, our method boosts the

accuracy of learners (the accuracy when using the predicted values for the attributes is higher

than the one achieved with incomplete data). Although the method has been evaluated for

handling one missing attribute at a time, it can be applied to multivariate incompleteness,

provided that a complete subset of instances can be extracted from the available training data.

Then, imputation can be performed incrementally, first on instances having one missing

attribute value, then two, and so on.

3.4 Conclusions on Data Imputation

The successful application of learning methods to real-world problems is frequently

conditioned by aspects involving the quality of the available data, such as noise or

incompleteness. MDTs are available either as pre-processing methods – filters and imputation

methods – or as embedded approaches. Their success in a certain scenario depends on both

the match between the assumptions made by the MDT technique and the incompleteness

mechanism (which is data dependent) and on the subsequent processing applied to the data

(for pre-processing methods). Moreover, filters tend to introduce bias in the learning process

and reduce the volume of available data, while existing imputation methods may require

strong assumptions which don’t generally hold in real situations, or employ knowledge about

the data distribution, which is not always accessible. Computational complexity may also

represent an issue for some imputation techniques.

Having the high accuracy obtained by the ensemble of neural networks as motivation,

a new global imputation method based on non-missing attributes has been proposed,

implemented and evaluated on benchmark data, using univariate MCAR as incompleteness

mechanism.

Chapter 3 – Handling Incomplete Data

25

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.2 - The variation of the accuracy with different incompleteness percentages for the attributes of the

Cars dataset

The results have shown that the method can improve the classification performance

by imputing missing values, but not for all attributes in a dataset. Thus, for a dataset with a

high level of accuracy (e.g. Cars, ~96% accuracy on complete set) improvements have been

observed for almost all the attributes. But for the Pima dataset, on which classifiers achieve a

lower accuracy (~84%), improvements have been observed only for the attributes strongly

correlated with the class. The method can be extended to accommodate more complex

incompleteness patterns – by performing incremental imputations – initially identify

complete data kernels, and perform imputation incrementally, one attribute at a time.

The experiments have shown a strong connection between the correlation of a certain

attribute with the class and the performance of our imputation method for that attribute.

Therefore, considering feature selection information in the imputation step may boost the

success of the imputation. Current research efforts focus on evaluating the method on other

incompleteness mechanisms and patterns.

The original data imputation method proposed in this chapter is the result of research

supported by PNII grant no.12080/2008: SEArCH – Adaptive E-Learning Systems using

Chapter 3 – Handling Incomplete Data

26

Concept Maps. The results have been acknowledged by the scientific community through

publication of 1 research paper, presented at an international conference:

1. Vidrighin Bratu, C., Muresan, T. and Potolea, R., “Improving Classification

Performance on Real Data through Imputation”, Proceedings of the IEEE

International Conference on Automation, Quality and Testing, Robotics, 22-25 May,

Cluj-Napoca, Romania, Vol. 3, pp. 464-469, ISBN: 978-1-4244-2576-1, 2008

Chapter 4 – Feature Selection

27

4 Feature Selection

Dimensionality reduction through the selection of a relevant attribute (feature) subset

may produce multiple benefits to the actual data mining step, such as: performance

improvement, by alleviating the curse of dimensionality and improving generalization

capabilities, speed-up by reducing the computational effort, improving model interpretability

and reducing costs by avoiding “expensive” features. These goals are not fully compatible

with each other. Thus, there exist several feature selection problems, according to the specific

goals. In [Nil07], feature selection problems are classified into two main categories: finding

the optimal predictive features (for building efficient prediction models) and finding all the

relevant features for the class attribute.

From a purely theoretical perspective, the selection of a particular attribute subset is

not of interest, since the Bayes optimal prediction rule is monotonic, hence adding more

features cannot decrease accuracy [Koh97]. In practice, however, this is actually the goal of

feature selection: selecting the best possible attribute subset, given the data and learning

algorithm characteristics (such as biases, heuristics). Even if there exist certain connections

between the attributes in the subset returned by some techniques and the theoretically-

relevant attributes, they cannot be generalized to form a practical methodology, applicable to

any learning algorithm and dataset. This is because the information needed to compute the

degree of relevance of an attribute (i.e. the true distribution) is not generally available in

practical settings.

4.1 Problem Statement

The concept of relevance is central to the theoretical formulation of feature selection.

There are several definitions of relevance available in literature. In [Gen89], a feature is

defined as relevant if its values vary systematically with the class attribute values. In

[Koh97], this is formalized as:

Definition 1: Xj is relevant iff

 x and y for which p(Xj = x)>0, s.t. p(Y = y | Xj = x) ≠ p(Y = y),

meaning that an attribute is relevant if the class attribute is conditionally dependent on it.

Another possible definition of relevance is that by removing attribute Xj from the

feature set F the conditional class probability changes [Koh97]:

Definition 2: Xi is relevant iff

  x, y and f for which p(Xj = x, Fj= f)>0, s.t. p(Y = y | Xj = x, Fj= f) ≠ p(Y = y | Fj = f)

where Fj = {X1, ... Xj-1, Xj+1,, ... Xn} denotes the set of all attributes except Xj and f represents a

value assignment to Fj.

However, these definitions may yield unexpected results. Take the Boolean xor problem, for

example, with Y = X1X2. Both X1 and X2 are indispensable for a correct prediction of Y.

However, by the first definition, both X1 and X2 are irrelevant, since p(Y=y | X1 = x) = p(Y=y)

= 0.5, i.e. for any value X1 there are two different values for y. The same is true for X2. Also,

if we add feature X3 =X2, then by the second definition, both X2 and X3 are considered

irrelevant, since neither adds information to F3 and F2, respectively.

To address such issues, in [Koh97] two degrees of relevance are introduced: strong

relevance and weak relevance, by quantifying the effect of removing the attribute on the

performance of the Bayes optimal classifier. Thus, an attribute is strongly relevant if it is

Chapter 4 – Feature Selection

28

indispensable, i.e. its removal results in performance loss of the optimal Bayes classifier. The

actual definition is equivalent to the second definition of relevance presented before.

The definition for weak relevance is the following:

Definition 3: An attribute Xj is weakly relevant iff it is not strongly relevant and  a

subset of features Fj
’
of Fj for which  x, y and f

’
 with p(Xj = x, Fj

’
 = f

‘
)>0, s.t.

p(Y = y | Xj = x, Fj
’
 = f

‘
) ≠ p(Y = y | Fj

’
 = f

‘
)

A feature is relevant if it is either strongly or weakly relevant, and irrelevant

otherwise. For the xor problem, X1 is strongly relevant, and X2 and X3 are weakly relevant.

The above definitions of relevance do not imply attribute usefulness for a specific

learner. Therefore, we define feature selection in the following manner:

Definition 4: Feature selection represents the extraction of the optimal attribute

subset,

Fopt = {Xk1, ..., Xkn}, where {k1, ..., kn} {1,...,n}

The definition of optimality is specific to the feature selection technique (on the

subset evaluation measure), and it depends on the learning algorithm characteristics (such as

biases, heuristics) and on the end goal of the classification.

4.2 Feature Selection Techniques

There exist two possible strategies to follow for feature selection: search for the best

subset of predictive features (for building efficient prediction models), or find all the relevant

features for the class attribute. The latter is achieved by performing a ranking of the attributes

according to their individual predictive power, estimated via different tactics: (i) compute the

performance of a classifier built with each single variable, (ii) compute statistic measures,

such as a correlation coefficient or the margin and (iii) employ information theory measures,

such as the mutual information [Guy03]. However, this approach fails to identify redundant

features, which have been shown to harm the classification process of the naïve Bayes

classifier [Lan94a]. Therefore, most feature selection techniques focus on searching for the

best subset of predictive features. They differ in two important aspects: the search strategy

employed and the attribute subset evaluation method.

There exist several comprehensive studies on feature selection algorithms in

literature. Dash [Das97] classifies feature selection algorithms using two criteria: the

generation procedure and the evaluation function. Three generation procedures – heuristic,

complete and random – and five evaluation measures – distance, information, dependency,

consistency and classifier error rate – are identified. This results in fifteen possible

combinations; the representative algorithms in each class are reviewed. Empirical evaluations

are performed on three artificial datasets, to study the capacity of each algorithm to select the

relevant features. Another comprehensive survey is presented in [Mol02]. The classification

of feature selection algorithms presented there is similar to that in [Das97]. The difference is

that the generation procedure is further divided into search organization and generation of

successors, resulting in a 3-dimension characterization of the feature selection methods.

Other valuable studies can be found in [Guy03, Nil07].

Feature selection algorithms are traditionally divided in machine learning literature

into: filter methods (or filters), wrapper methods (or wrappers), and embedded methods (i.e.

methods embedded within the learning process of certain classifiers).

Chapter 4 – Feature Selection

29

4.2.1 Search Strategies

For the feature selection problem, the order of the search space is O(2
|F|

). Therefore,

performing an exhaustive search is unfeasible except for domains with a small number of

features. Complete search strategies perform a complete search for the optimal subset,

according to the evaluation function used. Their complexity is smaller than O(2
|F|

), because

not all subsets are evaluated. The optimality of the solution is guaranteed. Representatives of

this category are: branch and bound with backtracking or breadth-first search.

A more efficient trade-off between solution quality and search complexity is provided

by heuristic search procedures. With a few exceptions, all search strategies falling in this

category follow a simple process: in each iteration, the remaining features to be

selected/rejected are considered for selection/rejection. The order of the search space for

these procedures is generally quadratic in the number of features – O(|F|
2
). Therefore, such

methods are very fast, and although they do not guarantee optimality, the quality of the

solution is usually good. Representative of this category are: greedy hill climbing, which

considers local modifications to the feature subset (forward selection, backward elimination

or stepwise bi-directional search), best-first search, which also makes local changes but

allows backtracking along the search path and genetic algorithms, which consider global

changes. Given enough time, best-first search will perform a complete search. Greedy hill-

climbing suffers from the horizon effect, i.e. it can get caught at local optima. Given enough

search variability, population size and number of iterations, genetic algorithms usually

converge to the optimal solution.

A less investigated strategy is random search, which limits the number of evaluated

subsets by setting a maximum number of iterations possible. The optimality of the solution

depends on the resources available and adequate values for certain parameters.

Representative for this category is the Las Vegas search algorithm. Also, a certain degree of

randomness can be found in genetic algorithms and simulated annealing; greedy hill climbing

can be injected with randomness by starting from an initial random subset.

4.2.2 Evaluation Measures

Whether or not a certain sub-set is optimal depends on the evaluation criterion

employed. The relevance of a feature is relative to the evaluation measure.

Since, most often, the end goal of feature selection is to obtain an efficient

classification model in the processing phase, setting the target of feature selection to

minimize the (Bayesian) probability of error might be appropriate. The probability of error is

defined as [Dev82]:

Pe =   dxxpxyP k

k
)()]|(max1[(4.1)

where p(x) =  

c

k

kk yPyxp
1

)()|(is the unconditional probability distribution of the

instances, and P(y
k
 | x) is the posterior probability of y

k
 being the class of x.

The goodness of a feature subset F’ is therefore: J = 1 – Pe. P(y
k
 | x) are usually unknown, and

have to be modeled, either explicitly (via parametric or non-parametric methods), or

implicitly, by building a classification model which learns the decision boundaries between

the classes on a sample dataset. For a feature subset F’, an estimate


eP of the error is

computed, by counting the errors produced by the classifier built on a subset of the available

data, using only the features in F’, on a holdout test set taken also from the available data.

The feature subset which minimizes the error is returned. This forms the basis of the wrapper

methodology. The estimation of


eP may require more sophisticated procedures than simple

Chapter 4 – Feature Selection

30

holdout validation set: k-fold cross-validation or repeated bootstrapping may yield more

accurate values.

Distance (or discrimination, separability) measures favor features which induce a

larger distance between instances belonging to different classes. The Euclidean distance is

one of the metrics used to compute the distance. The best feature subset is that which

maximizes the inter-class distance [Mol02]:

),()()(
11

lkc

kl

lkc

k
yyDyPyPJ  

 (4.2)

where y
k
 and y

l
 represent the k

th
 and l

th
 class labels, respectively, and

   


k lN

k

N

kk klkk

lk

lk xxd
NN

yyD
1 12 211),(),(),(

1
),(

 (4.3)

represents the interclass distance between the k
th

 and l
th

 class labels, Nk and Nl are the number

of instances belonging to classes Nk and Nl, respectively, and x(k,k1) is the instance k1 of class

y
k
. Such measures do not necessitate the modeling of the probability density function. As a

result, their relation to the probability of error can be loose [Mol02].

 Divergence measures are similar to distance measures, but they compute a

probabilistic distance between the class-conditional probability densities:

 dxyxpyxpfJ lk)]|(),|([(4.4)

Classical choices for f include: the Kullback-Liebler divergence or the Kolmogorov distance.

Such measures provide an upper bound to Pe.

 Statistical dependence quantify how strongly two features are associated with one

another, i.e. by knowing the value of either one, the other can be predicted. The most

employed such measure is the correlation coefficient:

Correlation(Xi, Xj) =
XjX

XjjXi

i

i
XXE



)])([(
 (4.5)

where  represents the expected values and  standard deviations. The correlation can be

estimated from a data sample, i.e. the training set:

)()(

)()(

)1(

)()()()(

1

)()(

ji

ji

xx

jj

k

m

k

ii

k

xx ssm

xxxx
r





 

 (4.6)

where x
(i)

and x
(j)

 represent the value sets of attributes Xi and Xj, respectively,
)(ix and

)(jx

represent the sample means and)(ix
s and)(jx

s represent the sample standard deviations.

This measure may be used in several ways: rank features according to their individual

correlation with the class – those exhibiting a large correlation are better; a second possibility

is investigated in [Hal00], where the heuristic “merit” of a subset of features is proposed,

according to which subsets whose features exhibit higher individual correlation with the class

and lower inter-correlation receive higher scores:

ff

cf

F

rkkk

rk
M

)1(
'



 (4.7)

where k = |F’|, r represents the sample correlation coefficient, c represents the class and f

represents a predictive feature; cfr is the mean feature-class correlation, 'Ff  and ffr is the

mean feature-feature inter-correlation.

Chapter 4 – Feature Selection

31

 Similar to the statistical dependence measures, there are several measures from

information theory, based on Shannon’s entropy, which can help determine how much

information on the class Y has been gained by knowing the values of Xi. The most employed

is the information gain, which can be used without knowledge of the probability densities,

such as in decision tree induction.

 Consistency measures are characteristically different than all the other evaluation

measures. They rely heavily on the training data. Also, the methods that employ them apply

the Min-Features bias, i.e. favor consistent hypotheses definable over as few features as

possible. An inconsistency in F’ appears when two instances belonging to different classes

are indistinguishable by their values of the features in F’ alone. The inconsistency count of an

instance xi with respect to feature subset F’ is:

ICF’(xi) = F’(xi) –)('max ik
k

xF (4.8)

where F’(xi) is the number of instances in training set T equal to x
i
 using only attributes in F’,

and)(' ik xF is the number of instances in T of class y
k

equal to x
i
 using only the features in

F’. The inconsistency rate of a subset of features F’ in the training set T is expressed as the

average of the inconsistency scores of T’s instances with respect to F’. This is a monotonic

measure, which has to be minimized.

4.2.3 Filter Methods

Filters perform feature selection independently of any particular classifier, being

motivated by the properties of the data distribution itself. There are several robust algorithms

in literature which employ a filter strategy. Among the most cited are: RELIEF [Kir92], LVF

[Liu96], FOCUS [Alm97], Correlation-based filter – CFS [Hal00], or statistical methods

based on hypothesis tests.

RELIEF [Kir92] is based on the idea employed by nearest neighbor learners: for each

instance in a randomly chosen sample, it computes its nearest hit (closest instance from the

same class) and miss (closest instance from a different class), and uses a weight update

mechanism on the features. After all the training instances in the sample have been analyzed,

the features are ranked according to their weights. The limitations of this method come from

the fact that insufficient instances may fool it, and there is no general methodology for

choosing the sample size.

LVF (Las Vegas Filter) [Liu96] uses a probabilistically-guided random search to

explore the attribute subspace, and a consistency evaluation measure, different from the one

employed by FOCUS. The method is efficient, and has the advantage of being able to find

good subsets even for datasets with noise. Moreover, a good approximation of the final

solution is available during the execution of the algorithm. One drawback is the fact that it

may take longer to find the solution than algorithms using heuristic generation procedures,

since it does not take advantage of prior knowledge.

FOCUS [Alm97] is one of the earliest multivariate filters. It is devised for binary

class problems, and employs the min-features bias, meaning that it tries to find a minimal

consistent feature set (a set which is able to separate the classes on the training data). Its

drawbacks include the inability to handle noisy data and its predisposition towards over-

fitting. Also, since it performs an exhaustive search, it is only tractable for small sets.

CFS (Correlation-based Feature Selection) [Hal00] is a filter method which selects

those attributes which exhibit a strong correlation with the target attribute, and a weak

correlation between each-other. For each candidate subset, a ratio of the group attribute-class

correlation against attribute-attribute correlation is computed, as in equation (4.7). The subset

which maximizes the ratio is the reduced attribute set.

PCA (Principal Components Analysis) is a filter method widely employed for feature

selection and extraction in image processing applications [Ned09] (numeric attributes). It

Chapter 4 – Feature Selection

32

performs an orthogonal transformation on the input space, to produce a lower dimensional

space in which the main variations are maintained. There are several different versions to

perform PCA – a review on several approaches is available in [Ned10].

4.2.4 Wrapper Methods

Since filters fail to capture the biases inherent in learning algorithms, for the purpose

of boosting the classification performance, filter methods may not achieve significant

improvements. Instead, wrapper methods should be considered. Experimental results which

validate this assumption can be found in [Lan94a, Koh95]. Wrappers [Joh94, Koh95], as

opposed to filter methods, search for the optimal subset by using an empirical risk estimate

for a particular classifier (they perform empirical risk minimization). Thus, they are adjusted

to the specific relations between the classification algorithm and the available training data.

One drawback is that they tend to be rather slow.

In general wrapper methodology consists of three main steps:

 a generation procedure

 an evaluation procedure

 a validation procedure

Thus, a wrapper is a 3-tuple of the form <generation, evaluation, validation>. The

feature selection process selects the minimal subset of features, considering the prediction

performance as evaluation function: minimize the estimated error, or equivalently, maximize

the expected accuracy. Each selected feature is considered to be (strongly) relevant, and

rejected features are either irrelevant or redundant (with no further refinement). The

differences in the application of the wrapper methodology are due to the methods used for

generation, the classifier used for evaluation and the strategy for estimating the off-sample

accuracy.

The generation procedure is a search procedure that selects a subset of features (Fi)

from the original feature set (F), Fi  F, as presented in section 4.2.1. The evaluation

procedure measures the quality of a subset obtained from a given generation procedure. As

the selected feature subset depends on the evaluation function, the process of selecting the

appropriate evaluation function is dependent on the particular initial dataset. In the case of

wrappers the evaluation is performed by measuring the performance of a certain classifier on

the projection of the initial dataset on the selected attributes (i.e. estimate the probability of

error, as presented in section 4.2.2). The validation procedure tests the validity of selected

subset through comparisons obtained from other feature selection and generation procedure

pairs. The objective of the validation procedure is to identify the best performance that could

be obtained in the first two steps of the method for a given dataset, i.e. to identify the

selection method which is most suitable for the given dataset and classification method. As a

consequence, the minimal feature subset is selected. All features from the subset are

considered relevant to the target concept. Moreover, the classification method performs the

best, so it is to be considered for further classifications.

The initial work on wrappers has been carried out by John, Kohavi and Pfleger

[Joh94], which conducted a series of experiments to study the effect of feature selection on

the generalization performance of ID3 and C4.5, using several artificial and natural domain

datasets. The results indicated that, with one exception, feature selection did not change the

generalization performance of the two algorithms significantly. Genetic search strategies

were employed in [Che96] within a wrapper framework for decision tree learners (SET-Gen),

in an attempt to improve both the accuracy and simplicity of the resulting models. The fitness

function proposed by the authors was a linear combination of the accuracy, the size of the

resulting trees (normalized by the training set size) and the number of features.

Chapter 4 – Feature Selection

33

OBLIVION has been proposed in [Lan94b], to alleviate the effect of irrelevant

features on the kNN classifier. The algorithm uses backward elimination as generation

procedure and an oblivious decision tree as classifier [Koh95]. A context sensitive wrapper

for instance based learners is proposed in [Dom97], which selects a (potentially) different

subset of features for each instance in the training set. Backward elimination is employed as

search strategy and cross-validation to estimate the accuracy. The method is especially useful

in domains where the features present local relevance.

Improvements on the naïve Bayes classifier via the employment of wrapper-based

feature selection are reported in [Paz95, Koh97].

RFE (Recursive Feature Elimination) [Guy02] is a combination of a wrapper and a

feature ranking scheme. In each iteration, an SVM is trained on the current subset of features;

then, a ranking of the features is computed from their weights in the model – i.e. the

orientation of the hyperplane. The least important feature is removed and the process

continues with the next iteration. The stopping criterion is typically a risk estimate (i.e.

wrapper based), but the method can be used also to generate a ranking of the features.

The most important criticism brought to the wrapper approach is concerned with its

computational cost, since each feature subset has to be evaluated by training and evaluating a

classifier, possibly several times (if cross-validation, or repeated bootstrapping are used). To

address this issue, efficient search strategies have been proposed in [Moo94] – race search

and schemata search – and [Koh95] – compound search space operators. In addition, greedy

search strategies have a reduced time complexity and seem to be robust against overfitting

[Guy03].

4.3 Combining Generation Strategies

A first motivation for tackling a combination approach for the generation strategies

can be found in the no-free lunch theorem. It is known that, due to the selective superiority of

classifiers, there is no universally best method, i.e. one which yields superior performance to

all other methods, on any problem. Intuitively, this issue should affect the generation

strategies used in feature selection as well. As will be shown in section 4.3.2, there is no

superior wrapper combination, although there are certain combinations which constantly

yield good performance improvement. Different search strategies in the generation step may

yield significantly different results.

A second motivation for such an approach is the fact that combination methods via

ensemble learning or the Dempster-Shafer Theory of Evidence have been shown to improve

the stability of individual classifiers across a wide range of problems [Mol07, Mur10]. Such

approaches reduce the variance associated to single learners, and by combining different

methods the resulting bias is expected to be lower than the average bias of the individual

methods.

Also, wrappers are known to be significantly slower than filters, since they require

training and evaluating a classifier for each attribute subset generated during the search

process. Thus, using faster search strategies without affecting the quality of the solution is

important.

As a result, this section proposes an original wrapper-based attribute selection

method, which combines the selections of several generation procedures, via voting. The

expected effect is an increased stability over several problems, while keeping a high

reduction rate in the number of attributes.

The procedure is presented at the beginning of the next page. T is the available

training set, Sp is the set of available generation procedures and sEval is the subset evaluation

method, i.e. the strategy employed and the classifier used by the wrapper.

Chapter 4 – Feature Selection

34

COMBINE GENERATION STRATEGIES

Given: Set of search strategies

 sEval – subset evaluation method

 T – training set

Do:

1. Generate individual feature subsets corresponding to each

search method, using sEval and T:

, where

- local score of attribute Xj in set

2. Compute, for each attribute, a global score:

3. Select the final attribute subset:

where is the selection threshold for attribute Xj

 is the feature subset generated by search strategy Spk individual, in which each feature

possesses a corresponding selection score. One approach to generate such a feature subset is

to run the wrapper in a cross-validation loop and assign to each feature a score equal to the

number of folds in which it was selected. Using the local selection scores, we compute a

global weighted score for each feature, and apply a selection strategy to obtain the final

feature subset. Currently, an above average uniform selection strategy has been applied, but

the method can be extended to accommodate other voting strategies.

4.4 Experimental Evaluation

4.4.1 Evaluating the Wrapper Methodology

 A series of evaluations on the wrapper methodology have been conducted in order to

study its capacity to improve the learning performance of classifiers. Accuracy has been

employed as a measure of the classification performance. The possibility of combining

different classifiers for the steps of feature selection and learning has been analyzed. It is

known that the Bayesian classifier is able to deal with irrelevant features, but not with the

redundant ones. On the contrary, decision trees exhibit good behavior in the presence of

redundant features, but usually fail when dealing with irrelevant features. Evaluations have

been performed to study the behavior of their combinations.

A second problem addressed by the evaluations is related to the use of pruning when

wrapping feature selection around decision trees. The problem was originally formulated in

[Koh95], where it was indicated that pruning should be avoided in this case.

Another issue analyzed in the current evaluations is related to the flow of the mining

process. In [Mol07], it is argued that, due to the selective superiority of classifiers, the

baseline accuracy of a dataset should be assessed before starting to mine a new real problem.

A certain classifier is then considered appropriate for that problem only if it achieves a higher

accuracy than the baseline accuracy. The question here is: does the feature selection step

affect the initial selection of the learning scheme? Does the “most appropriate” algorithm for

the given problem change after feature selection, or does it remain the same as in the initial

choice?

},...,,{ 21 pSpSpSpSp 

},...,{ 1 p

CVCVCV FFF  },1|),{(njcvXF k

jj

k

CV 

k

jcv
k

CVF

k

j

p

k

kj cvs 



1



}|{ jjj sXF 

j

k

CVF

Chapter 4 – Feature Selection

35

In the attempt to provide answers to these questions, a series of comparative

evaluations on several instantiations of the wrapper methodology have been performed.

Fourteen UCI datasets were employed, described in table A.4.1 of Appendix A. In selecting

the datasets, the criteria stated in [Koh95] were used: dataset size, reasonable encoding,

comprehensibility, non-triviality and age. The evaluation scenarios have been set up using the

WEKA framework [Wit05]. Following a series of preliminary evaluations on several search

strategies, greedy stepwise backward search and best first search have been selected as

generation procedures. Three different learning schemes, representing three prominent

classes of algorithms: decision trees (C4.5 – revision 8 – J4.8, as implemented by WEKA);

Naïve Bayes and ensemble methods (AdaBoost.M1, with Decision Stump as a base learner)

were employed for the evaluation and validation procedures. For J4.8, experiments were

performed both with and without pruning.

In presenting the results, the following abbreviations have been employed:

 for the generation procedure:

o BFS: best first search

o GBW: greedy stepwise backward search

 for the evaluation function and the validation procedure:

o JP: J4.8 with pruning

o JNP: J4.8 without pruning

o NB: Naïve Bayes

o AB: AdaBoost.M1

A “_” is used to signal a “don’t care” situation (e.g. all combinations yield the same

results).

Table 4.1 presents the results obtained by wrappers using the classifier which initially

yielded the highest accuracy for the evaluation and validation procedures. In all but two cases

we find that the accuracy increases after performing feature selection using the wrapper

approach on the initially best classifier.

Table 4.1 – Results obtained by wrapper combinations using the initially best classifier

Dataset A1 M1 A2 M2 RI (%)

Australian 86.26 JP 87.43 GBW/JP/JP 1.36

 Breast-cancer 75.03 JP 75.67 _/JP/JP 0.85

 Bupa 63.1 NB 65.17 BFS/NB/NB 3.28

 Cleve_detrano 83.73 NB 85.74 BFS/NB/NB 2.40

 Crx 84.93 JP 86.68 GBW/JNP/JNP 2.06

 German 75.16 NB 75.72 BFS/NB/NB 0.75

 Heart 83.13 NB 85.48 BFS/NB/NB 2.83

 Cleveland 56.54 NB 60.71 GBW/NB/NB 7.38

 Monk3 98.91 JP 98.92 _/J_/J_ 0.01

 PimaDiabethes 75.75 NB 77.58 BFS/NB/NB 2.42

 Thyroid 99.45 AB 99.28 BFS/J_/J_ -0.17

 Tic-tac-toe 83.43 JP 83.47 BFS/J_/JNP 0.05

 Vote 96.22 JP 96.73 GBW/JP/JP 0.53

 Wisconsin 96.24 NB 96.07 BFS/NB/NB -0.18

A1 = Initial best accuracy; M1 = Initial best classifier; A2 = Accuracy for the wrapper

method which uses the initial best classifier for both evaluation and validation; M2 =

Wrapper method which uses the initial best classifier for both evaluation and validation;

RI = Relative Improvement (%) = (A2-A1)/A1

Chapter 4 – Feature Selection

36

On the Thyroid dataset no improvement is found. This behavior is explained by the

very high initial accuracy. Due to that value, improvements are difficult to obtain. Thus, there

is no reason for performing feature selection. The other exception is the Wisconsin dataset,

for which NB attains the highest initial accuracy. Even if no improvement can be found when

using this classifier, other combinations used for the wrapper lead to an accuracy increase on

this dataset as well (see table 4.2).

Table 4.2 presents the results obtained by the best <generation, evaluation,

validation> combinations. In most of the cases, the BFS/NB/NB combination achieves the

highest accuracy, while combinations using JP or JNP come in second. There are three

exceptions to this rule:

 the Breast-cancer dataset: the only dataset on which combinations employing AB

obtain the highest accuracy

 the Cleveland dataset: here, GBW obtains the best accuracy. Also, the Cleveland

dataset is the only one in which GBW selected fewer attributes than BFS.

 the Wisconsin dataset: as shown earlier, for this set a mix of classifiers in the

evaluation/validation steps achieves the highest accuracy.

Table 4.3 presents the results obtained by the _/JNP/JNP wrapper. The great

advantage of this wrapper is that it is extremely stable. It constantly boosts the accuracy, even

though it does not obtain the best improvement all the time. The _/J_/J_ wrappers obtain the

best accuracies on 4 datasets (out of 14), while in 1 case the best accuracy is obtained with a

wrapper using J4.8 as evaluation function. Moreover, on 8 datasets, a wrapper based on J4.8

obtains the second best performance, while on 2 other datasets, it is considered as evaluation

function, or validation function respectively. The best relative accuracy improvement of this

wrapper is of 11% (on Heart dataset, for both search procedures), while the average

improvements are 2.29% for BFS and 3.0% for GBW. Thus, instead of using J4.8 with

pruning as the learning scheme, it is preferable to perform an initial feature selection using

J4.8 without pruning, and then apply, in the learning step, again J4.8 without pruning.

Table 4.2 – Best wrapper combinations

Dataset A1 M1 A2 M2 RI (%)

 Australian 77.35 NB 87.58 BFS/NB/NB 13.23
 Breast-cancer 72.38 AB 76.1 GBW/AB/AB 5.14
 Bupa 63.1 NB 65.17 BFS/NB/NB 3.28
 Cleve_detrano 83.73 NB 85.74 BFS/NB/NB 2.40
 Crx 77.86 NB 87.51 BFS/NB/NB 12.39
 German 75.16 NB 75.72 BFS/NB/NB 0.75
 Heart 83.13 NB 85.48 BFS/NB/NB 2.83
 Cleveland 56.54 NB 60.71 GBW/NB/NB 7.38
 Monk3 98.91 JP 98.92 _/J_/J_ 0.01
 PimaDiabethes 75.75 NB 77.58 BFS/NB/NB 2.42
 Thyroid 99.3 JP 99.28 N/A -0.02
 Tic-tac-toe 83.43 JP 83.47 BFS/J_/JNP 0.05
 Vote 96.22 JP 96.73 GBW/JP/JP 0.53
 Wisconsin 96.24 NB 96.48 BFS/JP/NB 0.25

A1 = Initial accuracy for the classifier used in the best wrapper; M1 = Classifier of the

best wrapper; A2 = Accuracy for best wrapper; M2 = Best wrapper; RI = Relative

Improvement

Chapter 4 – Feature Selection

37

Table 4.3 – Results obtained by the _/JNP/JNP wrapper

Dataset Initial BFS GBW Dataset Initial BFS GBW

Australian 86.2 86.26 86.03 Cleveland 53.46 53.32 59.55

Breast-cancer 73.68 75.03 75.19 Monk3 98.91 98.92 98.92

Bupa 59.13 64.80 64.80 PimaDiabethes 73.82 73.35 74.00

Cleve_detrano 76.63 82.08 80.33 Thyroid 99.3 97.73 97.78

Crx 84.93 86.14 86.68 Tic-tac-toe 83.43 83.47 83.47

German 71.72 73.11 72.26 Vote 96.22 96.64 96.66

Heart 76.16 84.85 84.85 Wisconsin 94.41 94.99 95.23

Table 4.4 shows how the number of attributes is significantly reduced through feature

selection (54.65% and 52.33% on average, for the best wrapper, and respectively second best

wrapper). This limits the search space and speeds up the training process. Generally, BFS

selects fewer attributes than GBW, and the resulting datasets prove to be more efficient. The

exception is the Cleveland dataset, for which GBW selects fewer attributes than BFS. In this

case also the performance is better. The general conclusion is that fewer attributes lead to a

better performance (both increased accuracy and reduced training time).

Table 4.5 shows the first and second best accuracies obtained after feature selection. It

can be observed that the second best improvement is significant as well, which indicates that

feature selection should be used in any data mining process, regardless of how good the

available learning algorithm is.

4.4.2 Evaluating the Combination Strategy

 A series of evaluations on 10 UCI benchmark datasets have been performed, to

analyze the effects produced by the proposed combination method on the classification

performance of J4.8. Four different search strategies have been considered: best-first search

(bfs), bi-directional best-first search (bfs_bid), forward and backward greedy stepwise search

(gsf and gsb, respectively). J4.8 has been employed for the wrapper evaluation function. 10-

fold cross-validation has been used for both performance evaluation and in the execution of

the combination method.

The accuracy values obtained by the various methods are presented in table 4.6, while

the number of attributes selected by each method is displayed in table 4.7. As the results

indicate, an individual method can achieve the best accuracy on a dataset and the worst on a

different dataset, whereas the combination method always yields superior performance to the

worst individual method.

Table 4.4 – Number of attributes selected

Dataset N1 N2 N3 Dataset N1 N2 N3

Australian 14 8 8 Cleveland 13 5 5

Breast-cancer 9 2 4 Monk3 7 3 3

Bupa 5 2 2 PimaDiabethes 8 5 5

Cleve_detrano 14 6 6 Thyroid 20 5 7

Crx 15 6 6 Tic-tac-toe 9 7 7

German 20 9 9 Vote 16 7 7

Heart 13 8 8 Wisconsin 9 5 5

N1 = Number of initial attributes in the dataset (without the class attribute); N2 =

Number of attributes selected by the best wrapper method; N3 = Number of attributes

selected by the wrapper which uses the best classifier (the classifier which achieved the

best accuracy on the original dataset)

Chapter 4 – Feature Selection

38

Table 4.5 – First and second best accuracies obtained after feature selection

Dataset A1 A2 A3 RI2 (%)

 Australian 86.26 87.58 87.43 1.36

 Breast-cancer 75.03 76.10 75.67 0.85

 Bupa 63.1 65.17 64.8 2.69

 Cleve_detrano 83.73 85.74 84.88 1.37

 Crx 84.93 87.51 86.68 2.06

 German 75.16 75.72 75.56 0.53

 Heart 83.13 85.48 85.33 2.65

 Cleveland 56.54 60.71 60.49 6.99

 Monk3 98.91 98.92 98.92 0.01

 PimaDiabethes 75.75 77.58 77.06 1.73

 Thyroid 99.45 99.28 99.27 -0.18

 Tic-tac-toe 83.43 83.47 83.47 0.05

 Vote 96.22 96.73 96.71 0.51

 Wisconsin 96.24 96.48 96.32 0.08

A1 = initial accuracy for the best classifier; A2 = Accuracy for the best wrapper method;

A3 = Accuracy for the second best wrapper method; RI2 = Relative improvement for the

second best wrapper method

 Also, its performance is similar to the average of the individual methods, and in

several cases it achieves the best, or close to the best performance (6 out of 10 datasets). The

Wilcoxon statistical signed ranked test has indicated that there is no significant statistical

difference between the individual methods and the combination method (at p=0.05). Also,

except for the GSF-based wrapper, there is a statistical difference between the performance of

the individual methods and the initial performance, and also between the combination method

and the initial performance. The stability of the selection is therefore achieved, thus reducing

the risk of selecting an inappropriate method in a new problem.

The reduction in the number of attributes produced by the combination method is also

significant – similar to the average reduction achieved by the individual generation strategies.

The relative reduction to the initial attribute set is of ~62%.

Therefore, the combination method provides a correct assessment of the expected

performance improvement via feature selection, by establishing a baseline performance level

for the analyzed dataset and classification method.

Table 4.6 – J4.8 accuracies on attribute subsets resulted from wrapper subset selection

with various search strategies

Dataset Initial BFS BFS_bi GSB GSF Average
Combination

method

Breast-cancer 73.68 75.67 75.67 75.67 75.60 75.65 75.67

Cleve-detrano 76.63 79.84 78.86 78.64 77.28 78.66 82.88

Crx 84.93 85.87 85.36 86.32 85.49 85.76 86.25

German 71.72 73.82 74.12 73.85 74.86 74.16 73.88

Heart 76.16 83.19 82.00 80.19 83.19 82.14 83.19

Hepatitis 78.05 83.59 83.45 82.28 83.59 83.23 83.18

Labor 78.38 80.17 80.17 79.90 81.63 80.47 81.63

Lymphography 76.46 82.90 82.90 82.20 81.23 82.31 82.90

Pima diabethes 73.82 74.26 74.26 75.73 74.26 74.63 74.26

Tic-tac-toe 83.43 82.96 81.44 69.94 81.44 78.95 75.08

Chapter 4 – Feature Selection

39

Table 4.7 – Size of attribute subsets resulted from wrapper subset selection

with various search strategies

Dataset
Initial

Attrib.
bfs

Attrib.
bfs_bid

Attrib.
gsb

Attrib.
gsf

Attrib.
Average

Attrib.
Combination

Attrib.

Breast-cancer 9 4 4 4 3 4 4

Cleve-detrano 13 7 5 5 5 6 5

Crx 15 5 6 6 4 5 8

German 20 10 7 10 8 9 9

Heart 13 4 5 7 4 5 4

Hepatitis 19 3 4 10 3 5 7

Labor 17 6 6 7 4 6 4

Lymphography 18 6 6 8 4 6 6

Pima diabethes 8 3 3 3 3 3 3

Tic-tac-toe 9 7 6 6 1 5 3

4.5 Conclusions on Feature Selection

Among the many possible advantages of feature selection, perhaps the most important

is improving the classification performance. All feature selection methods can be modeled as

a combination of three steps: generation, evaluation and validation. The different alternatives

available for achieving each step provide for a very wide spectrum of feature selection

methods. However, just like in the case of learning algorithms, there is no universally best

feature selection method. For the purpose of performance improvement, wrappers provide the

most appropriate strategy. An original contribution presented in this dissertation is the

systematic analysis and the identification of the most promising combinations of search

methods for generation, and classifiers for evaluation and validation, such that the

performance (i.e. the accuracy) increase is guaranteed.

As the experimental results prove, wrappers can always improve the performance of

classifiers. In most cases, the classifier which initially achieved the highest accuracy

maintains its high performance after feature selection (first or second best performance). This

means that once a dataset has been initially assessed and a certain learning scheme has been

selected as being appropriate, that scheme will maintain its performance throughout the

mining process. Also, for all the datasets considered, the second best performance after

feature selection still yields significant improvements over the initial classifier, which proves

the necessity for such a step.

Although there is no absolute best method, BFS/B/B achieves the highest accuracy in

most of the cases. The wrapper _/JNP/JNP achieves the most significant improvements

relative to the initial accuracy (up to 11%). The number of attributes is considerably reduced

(over 50%), which results in faster training, yet another advantage of attribute selection.

In the attempt to reduce the bias introduced by the search methods used in the

generation procedure and improve the stability of feature selection, without increasing its

complexity, an original combination method has been proposed, which selects the most

appropriate attributes by applying a global selection strategy on the attribute subsets selected

individually by the search methods. Greedy methods have been considered for combination,

since they provide good quality solutions relatively fast. The evaluations performed on the

newly proposed method have confirmed that the method achieves better stability than

individual feature selection performed via different search methods, while keeping the high

reduction level. The method can be employed for initial problem assessment, to establish a

baseline performance for feature selection.

Chapter 4 – Feature Selection

40

The original combination method and the analysis presented in this chapter have been

acknowledged by the research community through the publication of 2 research papers in the

proceedings of renowned international conferences:
1. Vidrighin, B.C., Muresan, T., Potolea, R.,“Improving Classification Accuracy through

Feature Selection”, Proceedings of the 4
th
 IEEE International Conference on Intelligent

Computer Communication and Processing, pp. 25-32, 2008

2. Vidrighin, B.C., Potolea, R., “Towards a Combined Approach to Feature Selection”,

Proceedings of the 3
rd

 International Conference on Software and Data Technologies, pp.

134-139, 2008

Chapter 5 – Joinining Pre-processing Steps: A Methodology

41

5 Joining Pre-processing Steps: A Methodology

Even if significant efforts have been conducted to develop methods which handle

incomplete data or perform feature selection, with notable achievements in both fields

independently, to our knowledge there hasn’t been any attempt to address the two issues in a

combined manner. This is what is proposed in this chapter – a joint feature selection – data

imputation pre-processing methodology.

5.1 A Joint Feature Selection – Data Imputation Methodology

The novelty of our methodology consists in the enhancement of the data imputation

step with information provided by the attribute selection step. It considers the pre-processing

activity as a homogeneous task, joining the two formerly independent steps:

 attribute selection

 data imputation

More specifically, the methodology explicitly performs attribute selection for the data

imputation phase, i.e. only the values of the attributes which are relevant for the attribute

being imputed are employed when determining the replacement value. The methodology

imposes neither the technique for attribute selection, nor the data imputation technique.

However, an imputation technique based on supervised learning methods should be

employed, in order to make use of the selected attributes.

There are two variants of the methodology. One performs data imputation first and

then attribute subset selection, and the second which uses the reverse order for the two.

Subsequently, we employ the following abbreviations:

 F – the original attribute set in the training set

 CT – subset of complete training instances

 ITj – subset of training instances with value for Xj missing

 AOSj – the predictive attribute subset for Xj

 COS – the predictive attribute subset for the class Y

5.1.1 FSAfterI

In the FSAfterI version of the methodology, each attribute Xj except the class is

considered. If there are any instances in the training set with unknown values for the current

attribute, the methodology considers the attribute for imputation. CT represents a subset of

complete instances. For each attribute Xj in turn, a subset containing the incomplete instances

with respect to the attribute is extracted. The complete subset, CT, is used to build the

imputation model for the incomplete part, as described further: the feature subset predictive

for attribute Xj, AOSj, is extracted from the complete training subset. Then, a model is built for

attribute Xj using the complete instances subset and the features in AOSj. Using this model,

the replacement values for the incomplete instances are computed and imputed in the initial

training set. Thus, the training set becomes complete in Xj. After all the attributes have been

considered, all instances in the training set are complete. At this point, feature selection is

applied on the training set to determine the class-predictive feature subset, COS. The

projection of the training set on COS is the result of the procedure.

Performing data imputation first may induce a bias in the attribute selection step for

determining the class-optimal attribute subset. Thus, an irrelevant attribute could be selected

in COS due to its imputed values.

Chapter 5 – Joinining Pre-processing Steps: A Methodology

42

FSAfterI

CT = extract_complete(T)

T’ = T

For each attribute Xj

 AOSj = fSelect(F – {Xj} {Y}, CT, Xj)

 T’ = Impute(prAOSjT’, Xj)

COS = fSelect(F,T’,Y)

Tresult = prCOST’

5.1.2 FSBeforeI

The second version of the proposed methodology, FSBeforeI, considers the two

phases in reverse order. It does not include any bias in the class-optimal attribute selection

phase, since the operation is performed before the imputation phase. For determining AOSj

the original feature set F and the class Y are employed. Thus we ensure that all the relevant

attributes for Xj are employed to build the imputation model. For performing feature

selection, in both the generation of COS and AOSj, k-fold cross-validation is employed, and

the attributes which are “better” on the average are selected. The tactic for quantifying

“better” on the average depends on the feature selection method employed: ranking methods

yield average merit/rank measures, while other methods may indicate a percentage

corresponding to the number of folds in which the attribute has been selected. Based on this

information, the predictive subset can be deduced.

FSBeforeI

CT = extract_complete(T)

COS = fSelect(F,CT,Y)

T’ = T

For each attribute Xj in COS

 AOSj = fSelect(F – {Xj} {Y}, CT, Xj)

 T’ = Impute(prAOSjT’, Xj)

Tresult = prCOST’

5.2 Experimental Evaluation

We have performed several evaluations with different implementations of the

combined methodology, implemented within the WEKA framework. Initial experiments have

been conducted on 14 benchmark datasets, obtained from the UCI repository. The current

evaluations have been conducted on the following complete UCI datasets: Bupa Liver

Disorders, Cleveland Heart Disease, and Pima Indian Diabetes (described in Appendix A,

table A.5.1).

The following specializations of the methodology have been considered:

 For attribute selection (f):

o ReliefF [Kon94]

o CFS – Correlation-based Feature Selection [Hal00]

o Wrapper

 For data imputation (i):

o kNN – k Nearest Neighbor (denoted also as IBk)





Chapter 5 – Joinining Pre-processing Steps: A Methodology

43

 For evaluating the performance (c): the average classification accuracy computed

using 10 trials of a stratified 10-fold cross validation for:

o J4.8

o Naïve Bayes (NB)

The search method (generation procedure) employed in the attribute selection is best-

first search. The predictive attribute subset is obtained via 10-fold cross validation. For

imputation with kNN, k has been set to 5. We have employed the following evaluation

strategy:

 Incompleteness has been simulated, at different levels, using the strategy described in

section 3.3.2.

 In each trial of a stratified 10-fold cross-validation, for each attribute Ai in the trial

training set (except the class) vary the percentage of incompleteness. Then apply the

pre-processing methodology, in its current specialization, to obtain the preprocessed

trial training set. Finally, build a model from the modified training set, using a

classification algorithm, and estimate its accuracy using the trial testing set.

 In addition, for each attribute Ai, the average classification accuracy has been

estimated for different versions of the training set: complete, incomplete, imputed and

pre-processed through feature selection.

The evaluations attempt to validate empirically the following statements: the

combination is more efficient than the individual steps it combines, and the specializations of

the combination are stable across the attributes of a dataset – the same specialization is

identified as being the best for all the significant attributes. By significant attribute we mean

the attributes which are constantly selected by different feature selection techniques. These

are the attributes that will influence the most the quality of the learned model.

The diagrams (a) – (d) from figure 5.1 present the results obtained by the FSAfterI

specialization of the methodology on the significant attributes of the Pima dataset, as

computed in Chapter 3: attribute 2 – Glucose test and attribute 6 – Body-Mass Index. Each

curve in the diagrams represents the accuracy obtained by the given specialization of the

methodology. The performance of the classifiers on the complete and p% incomplete datasets

have also been recorded. For both attributes considered, the most stable improvements are

obtained by specializations for NB (~1% absolute improvement). For attribute Body-Mass

Index, the Wrapper specialization yields good results for J4.8 as well (up to 4%).

For the significant attributes of the Bupa dataset, considerable improvements have

been obtained by specializations for J4.8 (1-2% absolute improvement achieved by the CFS

specializations, 1-3% by the wrapper up to 1% by the ReliefF based specializations).

However, NB seems to be more efficient on the incomplete dataset, and the pre-processing

methodology cannot, generally, boost J4.8’s accuracy over NB’s level (with the exception of

the wrapper based specialization). Therefore, specializations for NB should be considered

here as well.

For the Cleveland dataset, the most significant improvements are obtained by

specializations for J4.8 (3-4% achieved by the CFS based specialization). However, the

ReliefF specializations for NB yields the highest accuracy levels: ~58% for both attributes

analyzed, as opposed to ~56% - the accuracy obtained by NB on the incomplete versions of

the dataset, and ~56-56.5% - the accuracy obtained by the best specialization for J4.8 (using

CFS). The results presented so far have indicated that we can perform the selection of the

learning algorithm prior to performing pre-processing with the proposed methodology.

Chapter 5 – Joinining Pre-processing Steps: A Methodology

44

(a)

(b)

(c)

(d)

Figure 5.1– Accuracy obtained by different FSAfterI specializations, when compared to the accuracy on the

incomplete dataset, for attributes strongly correlated with the class, Pima dataset

In the following, we present a comparative analysis for the classification performance

on different versions of the training set, obtained through several pre-processing strategies:

imputation, attribute selection and the combined methodology (both FSAfterI and FSBeforeI).

Also, the classification performance on the complete and p% incomplete datasets is reported.

Tables 5.1-5.2 present the accuracy levels obtained for two significant attributes of the

Cleveland dataset. The specialization considered for the combined methodology employs

CFS for attribute selection. In both cases, the two versions of the combined methodology

yield better classification accuracies than the incomplete dataset (up to 5% absolute increase).

A clear improvement can be observed over the imputation step also (up to 5% absolute

increase, the rows in dark grey shading in the tables). The performance of feature selection

approaches is similar to that of our proposed methodology on this dataset.

5.3 Conclusions

There exist a series of pre-processing tasks and associated techniques which focus on

preparing the raw data for the mining step. However, each technique focuses on a single

aspect of the data, and there is no information exchange between independent pre-processing

steps. This chapter presents a new approach for pre-processing, which joins two formerly

independent pre-processing steps: data imputation and feature selection. The methodology

explicitly performs attribute selection for the data imputation phase.

Two formal versions of the proposed methodology have been introduced: FSAfterI

and FSBeforeI. The two differ in the order of the two phases of the methodology: the first

performs data imputation first and then selects the class-optimal feature subset, while the

second considers the reverse order. FSBeforeI should be preferred, since it doesn’t introduce

any imputation bias in the feature selection phase.

Chapter 5 – Joinining Pre-processing Steps: A Methodology

45

Several particularizations of the methodology have been implemented, using two

different filter attribute selection techniques and a wrapper, two classification methods and an

imputation method. The resulting particularizations have been evaluated comparatively on

benchmark data, using the accuracy of the same classification algorithms on the incomplete

versions of the datasets as reference performance. The results have shown that the joint pre-

processing methodology generally improves the performance of the classification algorithm,

when using the preprocessed training set, as compared to the performance it obtains on the

incomplete training set. Although there is no single definite winner combination for all

datasets, a best combination can be usually identified for a particular dataset. Moreover,

specializations using CFS for attribute selection and NB for the final classification have

always yielded higher accuracy levels when compared to the accuracy on the incomplete

data. Also, the combination proves to be superior to the data imputation and attribute

selection tasks performed individually, which recommends it as a robust approach for

performing data pre-processing.

The results have indicated that, in most cases, the improvement over the imputation

task is significant (an absolute increase in accuracy of up to 5%). As for the comparison with

the individual attribute selection task, in most situations the performance of the combined

methodology is superior to that of the attribute selection step (absolute improvement of up to

1%). In the exception cases, feature selection yields the highest performance of all the other

approaches.

The original data pre-processing methodology proposed in this chapter is the result of

research supported by PNII grant no.12080/2008: SEArCH – Adaptive E-Learning Systems

using Concept Maps. The proposed method has been accepted by the research community

through the publication of two research papers in the proceedings of renowned international

conferences:
1. Vidrighin, B.C., Potolea, R., “Unified Strategy for Feature Selection and Data

Imputation”, Proceedings of the 11
th
 International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing, Timisoara, 26-29 sept. 2009, pp. 413 –

419

2. Vidrighin, B.C., Potolea, R.,“Towards a Unified Strategy for the Preprocessing Step

in Data Mining”, Proceedings of the 11
th
 International Conference on Enterprise

Information Systems, pp. 230-235, 2009

46

Table 5.1 – The average accuracy (and standard deviation) obtained by J4.8 on different versions of the training set and different incompleteness levels (5-30%),

for attribute STDepression, Cleveland dataset (specialization iIBk_fCfsSubsetEval_cJ48)

ATTRIBUTE

STDepression
5% 10% 15% 20% 25% 30%

 Acc. Stdd. Acc. Stdd. Acc. Stdd. Acc. Stdd. Acc. Stdd. Acc. Stdd.

COMP (Complete) 52.38 (2.6)

INC(Missing) 53.41 2.64 52.31 2.65 52.83 3.06 52.66 2.64 52.83 2.64 52.79 2.64

IMP (Imputation) 52.86 2.12 53.17 2.17 53.62 2.68 54.07 2.59 53.07 2.4 53.55 2.64

FS(Feature Selection) 57.03 1.95 57.66 1.85 57.07 1.83 57.14 1.83 57.55 1.83 57.83 1.83

FSAfterI 57.07 1.11 57.31 1.37 56.97 1.55 56.45 1.17 56.79 2.77 57.17 1.97

FSBeforeI 57.1 1.01 57.17 1.1 57.34 1.72 56.31 1.76 57.9 2.67 58 2.04

COMPL-IMP -0.48 - -0.79 - -1.24 - -1.69 - -0.69 - -1.17 -

IMP-INC -0.55 - 0.86 - 0.79 - 1.41 - 0.24 - 0.76 -

FSAfterI –INC 3.66 - 5 - 4.14 - 3.79 - 3.97 - 4.38 -

FSAfterI –IMP 4.21 - 4.14 - 3.34 - 2.38 - 3.72 - 3.62 -

FSAfterI –FS 0.03 - -0.34 - -0.1 - -0.69 - -0.76 - -0.66 -

FSAfterI –COMP 4.69 - 4.93 - 4.59 - 4.07 - 4.41 - 4.79 -

FSBeforeI –INC 3.69 - 4.86 - 4.52 - 3.66 - 5.07 - 5.21 -

FSBeforeI –IMP 4.24 - 4 - 3.72 - 2.24 - 4.83 - 4.45 -

FSBeforeI –FS 0.07 - -0.48 - 0.28 - -0.83 - 0.34 - 0.17 -

FSBeforeI –COMP 4.72 - 4.79 - 4.97 - 3.93 - 5.52 - 5.62 -

47

Table 5.2 – The average accuracy (and standard deviation) obtained by J4.8 on different versions of the training set and different incompleteness levels (5-30%),

for attribute Thal, Cleveland dataset (specialization iIBk_fCfsSubsetEval_cJ48)

ATTRIBUTE
Thal

5% 10% 15% 20% 25% 30%

 Acc. Stdd. Acc. Stdd. Acc. Stdd. Acc. Stdd. Acc. Stdd. Acc. Stdd.

COMP (Complete) 52.38 (2.6)

INC(Missing) 52.79 2.43 53.28 1.97 53.41 2.77 54.03 2.7 53.66 2.94 53.97 2.58

IMP (Imputation) 52.66 1.62 51.93 1.74 53.21 2.46 52.76 2.95 53.14 2.53 53.48 3.2

FS(Feature Selection) 56.79 1.48 56.55 1.88 55.76 1.9 56.21 1.87 56.45 2.81 56.55 2.84

FSAfterI 57.69 1.05 56.72 2.24 56.66 1.26 57 1.4 57.31 1.77 56.38 1.48

FSBeforeI 57.76 1.34 56.83 2.08 56.41 1.76 57.07 1.7 57.1 1.68 56.38 2.25

COMPL-IMP -0.28 - 0.45 - -0.83 - -0.38 - -0.76 - -1.1 -

IMP-INC -0.14 - -1.34 - -0.21 - -1.28 - -0.52 - -0.48 -

FSAfterI –INC 4.9 - 3.45 - 3.24 - 2.97 - 3.66 - 2.41 -

FSAfterI –IMP 5.03 - 4.79 - 3.45 - 4.24 - 4.17 - 2.9 -

FSAfterI –FS 0.9 - 0.17 - 0.9 - 0.79 - 0.86 - -0.17 -

FSAfterI –COMP 5.31 - 4.34 - 4.28 - 4.62 - 4.93 - 4 -

FSBeforeI –INC 4.97 - 3.55 - 3 - 3.03 - 3.45 - 2.41 -

FSBeforeI –IMP 5.1 - 4.9 - 3.21 - 4.31 - 3.97 - 2.9 -

FSBeforeI –FS 0.97 - 0.28 - 0.66 - 0.86 - 0.66 - -0.17 -

FSBeforeI-COMP 5.38 - 4.45 - 4.03 - 4.69 - 4.72 - 4 -

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

48

6 Classification in Practice I: Imbalanced Error Costs and Expensive

Tests

6.1 Problem Statement

 The traditional approach to classification considers the error reduction strategy, i.e.

the cost function uniformly quantifies the difference between the actual and the predicted

class values, regardless of the class. Therefore, all errors are equally important. In real-world

domains, however, there are numerous scenarios in which non-equal misclassification costs

are inherent [Faw97, Pen03]. In fraud detection, for example, false negatives are clearly more

harmful than false positives. The same situation occurs in medical diagnosis, where failing to

identify a positive is almost unacceptable, whereas a certain level of false positive predictions

is manageable. In contextual advertising, on the other hand, posting an irrelevant ad for the

current context should be penalized more than failing to identify all the relevant ads. This is

because only the top two or three ads are considered at a time and therefore it is more

important that those predicted as being relevant are actually relevant, than to identify as many

relevant ads as possible.

 Moreover, there are situations in which the effort of acquiring certain data items has

to be considered. Turning again to the medical diagnosis problem, another particularity is the

fact that medical tests are usually costly (economically). Moreover, in terms of patient

comfort, they normally range from mildly uncomfortable to painful. Also, collecting test

results may be time-consuming. Arguably, time and patient comfort may not be real costs,

but they do have some implication for the decision on whether it is practical to take a certain

test or not. Performing all possible tests in advance is unfeasible and only a relevant subset

should be selected. The decision on performing or not a certain test should be based on the

relation between its cost and potential benefits. When the cost of a test exceeds the penalty

for a misclassification, further testing is no longer justified.

 These particularities are addressed by cost-sensitive learning, which is directed

towards the reduction of the total cost, instead of just minimizing the number of

misclassification errors. [Tur00] provides taxonomy of all the types of costs involved in

inductive concept learning, the most important being the misclassification costs and the test

costs. The situations which they cover are the ones detailed in the two paragraphs above:

misclassification costs attempt to capture the non-uniform gravity of errors, while test costs

quantify various aspects related to the acquisition of certain data values – monetary cost,

acquisition time, pain inflicted, a.s.o.

The misclassification costs are represented via a cost matrix M = (cij)nxn, where cij

represents the cost of misclassifying an instance of class j as being of class i. For binary

classification problems, n=2:











2221

1211

cc

cc
M (6.1)

The main diagonal elements (c11 and c22) represent the costs of correct identification and are

normally smaller than or equal to 0 (i.e. reward or no penalty); c12 is the cost of a false

positive (i.e. failing to identify a negative), while c21 captures the reverse situation. One of the

most important difficulties when dealing with different error costs is quantifying

misclassification costs. Even if it is relatively easy to determine which errors are more severe

than others (e.g. in medical diagnosis c12 > c21), it is difficult to quantify the gravity of an

error, since this may translate, indirectly, into more serious social/moral dilemmas, such a

putting a price tag on human life.

 Test costs are associated with the predictor attributes, i.e. each attribute has an

associated scalar cost value, which represents the overall cost, including monetary, time or

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

49

pain. Even if it is straightforward to quantify each of the categories involved, combining them

into a single value may be difficult. Moreover, in applications in which both types of costs be

considered, such as medical diagnosis, correct calibration of the misclassification costs to the

test costs is essential.

6.2 State of the Art in Cost-Sensitive Learning

This section reviews the main strategies for cost-sensitive learning existing in

literature. Mainly, there exist two categories of approaches: those which focus on minimizing

misclassification costs and those which focus on test costs. Significantly less effort has been

invested in combining the two strategies.

6.2.1 Reducing Misclassification Costs

Misclassification costs are considered to be the most important in cost-sensitive

learning, and, therefore, the literature contains a rich spectrum of techniques and strategies

for handling this type of costs. Roughly, the approaches can be grouped into: direct methods,

which include adaptations to existing algorithms or newly developed techniques and indirect

(meta-) methods, which refer to general approaches, applicable to any base classifier – such

as sampling, or meta-learning.

Direct methods

This category of methods attempts to introduce and utilize misclassification costs

directly into the learning algorithms. Most such approaches target modifications to the

training and/or prediction stage(s) of decision trees, so as to make them cost-sensitive. One of

the earliest such methods is I-gain [Paz94], which considers the misclassification costs at

prediction time, i.e. instead of predicting the most probable class it predicts the class having

the least expected cost. GINI Altered Priors [Paz94] applies Breiman’s altered prior

probabilities principle, which takes costs into consideration by weighting the prior

probabilities of each class with the relative cost of misclassifying the examples of that class.

[Paz94] incorporates this correction during training, with the GINI index attribute selection

scheme, but the strategy can be employed with any entropy-based selection scheme. [Tin98,

Tin02] proposes a strategy of incorporating misclassification costs via weights, similar to

stratification [Mar03]. In this approach, a weight is assigned to each example, to reflect its

importance – i.e. use costs as example weights, during the tree training and pruning

processes. The Linear Machines Decision Tree (LMDT) method [Dra94] builds a multi-

variate decision tree, by training a linear machine at each internal node and having a class

label at each leaf. Misclassification costs are considered during the training of the linear

machines – in the weight learning and feature elimination processes.

Several strategies have been proposed for modifying the basic Support Vector

Machines (SVMs) learning algorithm to achieve cost-sensitivity: (1) the boundary movement

method (BM-SVM) [Kar98] shifts the decision boundary of the classical SVM by changing

the threshold; (2) the biased penalties method (BP-SVM) [Bac06] introduces different penalty

factors for the SVM slack variables during training; (3) [Mas10] propose a cost-sensitive loss

function for the standard SVM algorithm and prove that the new cost-sensitive SVM achieves

cost sensitivity for both separable and non-separable training data, enforcing a larger margin

for the preferred class. Evaluations have yielded superior performance to methods (1) and (2).

Indirect methods

Perhaps one of the most straightforward indirect solutions for the problem of reducing

the total misclassification cost was a procedure called stratification [Mar03]. In this

approach, the actual classifier is not altered in any way; instead, the distribution of examples

for each class is changed. The modified training set includes proportionally more examples of

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

50

the classes having high misclassification costs and may be generated either by under-

sampling or by over-sampling. Each alternative comes at a certain price ([Dom99] contains a

detailed discussion on the subject), but the most serious limitation of the approach is that it

restricts the dimension or the form of the misclassification cost matrix – the technique is only

applicable to two-class problems or to problems where the cost is independent of the

predicted class. Costing [Zad03] is a meta-method which weighs the training instances

according to the costs. It can be achieved either by feeding the weights directly to the

classification algorithm (if possible), or by guided sub-sampling.

More complex techniques, which overcome the limitations of sampling, involve meta-

learning algorithms, which typically are applicable to a range of base classifiers. In this

category we include algorithms based on various ensemble methods, the most important

being boosting [Fre97]. It works by combining several learners through voting; the resulting

composite classifier generally has a higher predictive accuracy than any of its components.

Each distinct model is build through the same learning mechanism, by varying the

distribution of examples in the training set. After each boosting phase, the weights of the

misclassified examples are increased, while those for the correctly classified examples are

decreased. It has been mathematically proved that the error rate for the composite classifier

on the un-weighted training examples approaches zero exponentially with an increasing

number of boosting steps [Fre97, Qui96]. Also, various experimental results report that the

reduction in error is maintained for unseen examples. The base classifiers may be either weak

learners or more elaborate, cost-sensitive learners. The most prominent algorithms which

apply this strategy are AdaBoost.M1 [Fre97] and AdaCost [Fan00].

Another solution for reducing misclassification costs is MetaCost [Dom99]. The

algorithm is based on the Bayes optimal prediction principle, which minimizes the

conditional risk of predicting that an example belongs to class i, given its attributes x. The

solution requires accurate estimates for the class probabilities of the examples in the training

set. This distribution is obtained through an ensemble method, by uniform voting from

individual classifiers. Once the conditional probabilities are estimated, the algorithm re-labels

the examples in the training set, according to their optimal predictions and generates the final

classifier, using the modified training set. The main advantages of this procedure are related

to its applicability to wide range of base classifiers, the fact that it generates a single,

understandable model, and its efficiency under changing costs (the conditional probabilities

need to be computed only once, after which they can be used to generate models for various

cost matrices).

 Cost-Sensitive Classifier (CSC) [Wit05] is a meta-approach which makes error-

reduction classifiers cost-sensitive. Two alternatives may be employed to induce cost-

sensitivity: (1) reweight training instances according to the total cost assigned to each class

(similar to costing) or (2) predict the class with minimum expected misclassification cost

(rather than the most likely class) – similar to I-gain.

 Empirical Thresholding (ET) [She06] is another meta-approach which can transform

an error-reduction classifier into a cost-sensitive one, by selecting a proper threshold from

training instances according to the misclassification cost; experiments conducted by the

authors have indicated that the method has the least sensitivity on the misclassification cost

ratio.

6.2.2 Reducing Test Costs

Several approaches exist also for tackling the problem of test costs. They are direct

methods based on the decision tree paradigm, and typically involve some alteration of the

information gain function, as to make it cost-sensitive. Various cost dependent functions have

been proposed in the literature. Perhaps the best known algorithm in this category is Eg2

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

51

[Nun91] which uses the Information Cost Function (ICF) as the attribute selection criterion.

For the i
th

 attribute, ICF may be defined as follows:

w

i

I

i
C

ICF
i

)1(

12








 (6.2)

where 10  w .

This means that the attribute selection criterion is no longer based solely on the

attribute’s contribution to obtaining a pure split, but also on its cost, Ci. Also, the Information

Value Function contains parameter w, which adjusts the strength of the bias towards lower

cost attributes. Thus, when w = 0, the cost of the attribute is ignored, and selection by ICF is

equivalent to selection by the information gain function. On the other hand, when w = 1, ICF

is strongly biased by the cost component.

IDX [Nor89] is a top-down inductive decision tree learner that chooses the attribute

which maximizes the following heuristic:

i

i

C

I

 (6.3)

where ∆Ii represents the information gain of attribute i, and Ci is is its cost.

CS-ID3 [Tan89] uses a lazy evaluation strategy, constructing only part of the tree that

classifies the current case. Its attribute selection function is very similar to that of IDX, with

the difference that the information gain of an attribute carries a heavier weight:

iC

I 2)(

 (6.4)

6.2.3 Reducing the Overall Cost

Significantly less work has been done for aggregating several cost components. The

most prominent approach in the literature is Inexpensive Classification with Expensive Tests –

ICET [Tur95], which combines a greedy search heuristic (decision tree) with a genetic search

algorithm. A detailed discussion on ICET is provided in section 6.3ss.

Other, less known approaches generally consider test and misclassification costs as

the attribute selection process of decision trees, instead of using one of the classical entropy-

based principles [Paz94, Lin04]. Cost-Sensitive Naïve Bayes (CSNB) [Cha04] propose the

employment of a test strategy to determine how unknown attributes are selected in order to

minimize the sum of the misclassification and test costs.

6.3 ProICET: Enhancements on a Cost-sensitive Classifier

6.3.1 ICET: Inexpensive Classification with Expensive Tests

Classical tree induction uses hill climbing search, which, as most greedy techniques,

suffers from the horizon effect, i.e. it tends to get caught in local optima. One possible way to

avoid the pitfalls of simple greedy induction is to perform a heuristic search in the space of

possible decision trees through evolutionary mechanisms. ICET (Inexpensive Classification

with Expensive Costs) is such a hybrid algorithm. Introduced by Peter Turney, the technique

tackles the problem of cost-sensitive classification by combining a greedy search heuristic

(decision tree) with a genetic algorithm [Tur95].

The ICET algorithm has the following key features:

 It is sensitive to test costs;

 It is sensitive to misclassification costs;

 It combines a greedy search heuristic with a genetic search algorithm

These key features make ICET a very promising candidate for solving problems like

medical diagnosis and prognosis, credit risk assessment or oil-slick detection, where different

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

52

errors cost different amounts, and where making a classification is costly in that the tests that

have to be taken to determine attribute values carry a certain cost.

As described in [Tur95], the ICET algorithm can be viewed as working on two levels:

 On the bottom level, a greedy search in the space of decision trees is performed

 On the top level, the evolutionary component performs a genetic search through a

space of biases; the biases are used to control EG2’s preference for certain types

of decision trees.

The algorithm starts by the genetic component evolving a population of randomly

generated individuals (an individual corresponds to a decision tree). Each individual in the

initial population is then evaluated by measuring its fitness. Standard mutation and crossover

operators are applied to the trees population and, after a fixed number of iterations, the fittest

individual is returned. The genetic algorithm used in the original work is GENESIS [Gre86],

and the decision tree algorithm is a modified version of Quinlan’s C4.5 [Qui93] which uses

ICF (Information Cost Function) as attribute selection function, same as in EG2. An

important remark is that, unlike EG2, ICET does not minimize test costs directly. Instead, it

uses ICF for the codification of the individuals in the population. The n costs, Ci, are not true

costs, but bias parameters. They provide enough variation to prevent the decision tree learner

from getting trapped in a local optimum, by overrating/underrating the cost of certain tests

based on past trials’ performance. However, it is possible to use true costs, when generating

the initial population, which has been shown to lead to some increase in performance

[Tur95].

Each individual is represented as a bit string of n + 2 numbers, encoded in Gray. The

first n numbers represent the bias parameters (“alleged” test costs in the ICF function). The

last two stand for the algorithm’s parameters CF and w; the first controls the level of pruning

(as defined for C4.5), while w is needed by ICF.

Figure 6.1 – ICET algorithm flow2

Each trial on an individual consists in training and evaluating a decision tree on a

given dataset, using the biases in the individual to set the attribute costs, CF and w. This is

done by splitting the available dataset into two subsets: sub-training and sub-testing dataset.

2
 [Tur95]

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

53

Since the split is random, there may be that two identical individuals will yield different

outcomes (since the form of a decision tree is strongly related to the distribution in the

training set – different training sets produce different trees). The evaluation of the tree gives

the fitness function needed by the genetic algorithm to evaluate the individuals.

In ICET, the fitness function for an individual is computed as the average cost of

classification of the corresponding tree obtained by randomly dividing the training set in two

subsets, the first used for the actual tree induction and the second for error estimation). The

average cost of classification is obtained by normalizing the total costs (obtained by summing

the test and misclassification costs) to the test set size. Test costs are specified as attribute –

cost value pairs. The classification costs are defined by the cost matrix M = (Cij)nxn, where Cij

– the cost of misclassifying an instance of class i as being of class j. If the same attribute is

tested twice along the path (numeric attribute), the second time its cost is 0.

The particularity presented by ICET, of allowing the test costs (encoded inside a genetic

individual) to vary freely in the search domain and then applying the fitness evaluation to

guide the individuals towards an optimal solution, increases the variability in the heuristic

component. Moreover, w and CF – two key features in the form of the decision tree – are also

varied by the evolutionary component, providing even more possibility of variation in the

decision trees search space. Theoretically, this variability is desirable, especially for greedy

algorithms such as decision tree learners – that yield unique structures for a fixed training set.

Figure 6.1 presents a sketch of the algorithm flow. The genetic algorithm (GA) begins with a

set of randomly generated individuals, whose fitness is evaluated by first running EG2 on a

training set, using the biases generated by the GA, and then computing the average cost of the

generated tree. Then, for a specific number of iterations, it evolves new individuals and

computes their fitness. After the last iteration, the fittest individual is returned – its biases are

used to train the output classifier.

6.3.2 Enhancements on ICET

A significant problem related to the ICET algorithm is rooted in the fact that costs are

learned indirectly, through the fitness function. Rare examples are relatively more difficult to

be learned by the algorithm. This fact was also observed in [Tur95], where, when analyzing

complex cost matrices for a two-class problem, it is noted that: “it is easier to avoid false

positive diagnosis [...] than it is to avoid false negative diagnosis [...]. This is unfortunate,

since false negative diagnosis usually carry a heavier penalty, in real life”. This phenomenon

is attributed to the distribution of positive and negative examples in the training set. In this

context, our aim is to modify the fitness measure as to eliminate such undesirable

asymmetries. Last, but not least, previous ICET papers focus almost entirely on test costs and

lack a comprehensive analysis of the misclassification costs component. We attempt to fill

this gap, by providing a comparative analysis with prominent classic approaches for cost-

sensitive learning, such as AdaBoost.M1 and MetaCost.

We have considered a series of enhancements to the basic ICET algorithm as well.

For each individual, the n + 2 chromosomes are defined (n being the number of attributes in

the dataset, while the other two correspond to parameters w and CF); each chromosome is

represented as a 14 bits binary string, encoded in Gray. Gray coding avoids a situation which

appears in regular binary coding, the “Hamming Cliffs”, in which individuals with similar

phenotypes possess significantly different genotypes. The population size has been increased

to 50 individuals, since it has a significant impact on the quality of the solution [Kol06]. The

rank-based fitness assignment technique is used for parent selection, i.e. the fitness assigned

to each individual for parent selection depends only on the individual’s position in the ranked

population, and not on the absolute fitness value. This mechanism ensures uniform scaling

across the population and reduces the selective pressure, by limiting the reproduction range,

so that no individuals generate an excessive number of offspring [Bac91]. As a result,

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

54

stagnation and premature convergence are avoided. As recombination techniques, single

point random mutation with mutation rate 0.2, and multipoint crossover, with 4 randomly

select crossover points are employed, to increase search variability rather than favoring the

convergence to highly fit individuals early in the search, thus making the search more robust

[Spe91].

The algorithm is run for 1000 fitness evaluation steps or until convergence. Due to the

fact that a new generation is evolved using single population, which implements elitism

implicitly, the final result yielded by the procedure is the best individual over the entire run.

This makes the decision on when to stop the evolution less critical. More than that,

experiments show that usually the best individual does not change significantly after 800

steps: in more than 90% of the cases the algorithm converges before the 800
th

iteration, while

in the rest of the cases the variations after this point are small (less than 3.5%).

The specific choices for the parent selection and recombination methods are based on

the intention to increase the search variability by encouraging the exploration of the search

space rather than favoring early convergence to highly fit individuals. Simultaneously, the

population size and the number of cycles have been increased, and previous best solutions are

maintained in the current population, via elitism, to avoid premature convergence. Fitness

ranking provides an effective mechanism for controlling the selective pressure.

The heuristic component has been developed by altering the J4.8 decision tree

classifier to employ ICF as attribute selection function, same as in EG2.

6.3.3 Experimental Evaluation

The experiments evaluate whether the enhancements considered in the genetic

component of the ICET algorithm make it perform better in real cases than other similar

algorithms. Moreover, we intend to prove that this implementation is better than the original

version of the algorithm. In order to do so, we planned three series of tests: the first one tries

to solve a problem related to the asymmetry in tree costs for rare examples; a second set of

tests provides a more comprehensive analysis of the misclassification cost component; a third

set of tests focus on studying the behavior of the ProICET algorithm in real world problems

(medical diagnosis problems), also by comparing it with other prominent algorithms.

The datasets used in the evaluations were obtained from the UCI machine learning

data repository website (UCI). All are from the medical field and contain test cost

information (available on the website as well). Most of the datasets were also used in the

original work on ICET, and are presented in appendix A, towards the end of the present

dissertation. Other algorithms included in the evaluations are: MetaCost (MC) and EG2 – as

state of the art cost-sensitive algorithms, AdaBoost.M1 (AB) – since it is one of the most

prominent classifiers focused on error minimization, with proved performance in real-world

scenarios [Bre11], and J4.8 as baseline.

The same GA settings were used throughout the evaluations (except for the ones that

were dataset-dependent, i.e. the number of chromosomes in an individual). Therefore, for

each individual, the n + 2 chromosomes were defined (n being the number of attributes in the

dataset, while the other two correspond to parameters w and CF); each chromosome is

represented as a 14 bits binary string, encoded in Gray. The rest of the setting values are

listed in table 6.1.

Since the algorithm involves a large heuristic component, the evaluation procedure

assumes averaging the costs over 10 runs. Each run uses a pair of randomly generated

training-testing sets, in the proportion 70% - 30%; these ten training-testing sets were

employed in the evaluations of all algorithms on a particular dataset. The same proportion of

70/30 is used when separating the training set into a component used for training and one for

evaluating each individual (in the fitness function).

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

55

Table 6.1 – Genetic component settings

Setting Value
Population type Single
Initial population generation random
Population size 50
Crossover cycles 1000
Parent Selection Roulette wheel
Recombination Operators Crossover: multiple random crossover, 4 points

Mutation: single point random mutation, 0.2 rate

Fitness function Average cost

Other Fitness ranking
Elitism

Symmetry through Stratification

A significant problem related to the ICET algorithm is rooted in the fact that costs are

learned indirectly, through the fitness function. Rare examples are relatively more difficult to

be learned by the algorithm. Moreover, in [Wei03] it is shown that there exists a strong

connection between classifier performance (in terms of accuracy and AUC) and the class

distribution employed during training. In this context, the aim is to assess the impact of an

imbalanced class distribution on the misclassification cost and to modify the distribution of

negative examples in the training set as to eliminate undesirable asymmetries.

First, an evaluation is performed to check whether by providing a balanced training

set, ProICET yields better results on some test set than if it were built on an unbalanced set. If

the assumption is true, the problem could be eliminated by altering the distribution of the

training set, either by over-sampling, or by under-sampling. This hypothesis was tested by

performing an evaluation of the ProICET results on two datasets: the Wisconsin breast cancer

dataset and Pima Indian diabetes dataset.

Test costs are set to one (1.0) during individual evaluation in the training stage, in

order to avoid over-fitting or degenerate solutions. Since the misclassification costs are the

one studied by the procedure, test costs are ignored during the evaluation of the final results.

For the stratified training set, the distribution is altered using random uniform over-

sampling with replacement on the negative class. Over-sampling is preferred, despite the

increase in computation time, because no information loss occurs while the under-represented

(minority) class gains in “visibility”. Under-sampling is the practical solution for very large

databases. In this situation, over-sampling is no longer feasible, as the time required for the

learning phase on the extended training set becomes prohibitive, and, thus, under-sampling

should be selected.

The misclassification cost matrix used for this analysis has the form:













01

0
*100

p

p
C , (6.5)

where p is varied with a 0.05 increment. Small values for p mean higher costs for

misclassifying positive class instances as being negative (this is actually the cost we want to

minimize); in the same way, as p approaches 1, the cost of misclassifying negative instances

grows. Although there could be an interest in minimizing this cost also, this is not as

important as the first situation, because in most real life problems this case is not

encountered. As an example of why the second situation is not encountered in real life,

suppose the problem of diagnosing a patient of having some heart disease problem.

Obviously, it is far riskier to tell a patient having the disease that he is healthy, than the other

way around.

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

56

The results for the Wisconsin dataset are presented in figure 6.2. Generally, we

observe a decrease in misclassification costs for the stratified case throughout the parameter

space (with a few small exceptions). This reduction is visible especially in the left side, where

we notice a significant reduction in the total cost for expensive rare examples, which was the

actual goal of the procedure. Starting from the assumption that the stratification technique

may be applicable to other cost-sensitive classifiers, we have repeated the procedure on the

WEKA implementation of MetaCost, (MC) using J4.8 as base classifier. J4.8 was also

considered in the analysis, as baseline estimate. The results for this set of tests are presented

in figure 6.3. We observe that MC yields significantly higher costs, as the cost matrix drifts

from the balanced case.

Another important observation is related to the fact that the cost characteristic in the

case of J4.8 is almost horizontal for the normal case. This could give an explanation on the

general ProICET behavior, of being insensitive to the particular form of the cost matrix (with

a few exceptions for the cases with very unbalanced costs). This behavior changes in the

stratified case, where the characteristic for J4.8 presents a positive slope; this means that

while obvious improvements are achieved for the rare cases (left part of the diagram in fig.

6.3), the cases that are better represented in the original dataset have a higher cost when

stratification is applied (right part of the diagram). This observation could also be extended to

the way stratification affects ICET behavior, by making it perform a little worse when the

“common” cases have a higher misclassification cost. Once again, this is not a tragedy, since

those situations do not appear in real life.

A second batch of tests, whose purpose was to study the stratification effect on a

dataset having numeric attributes, was performed on the Pima Indian diabetes dataset. The

first one to be tested was again ProICET. The results obtained can be observed in figure 6.4.

They indicate a poorer performance for the model obtained on the stratified dataset than for

the one trained on the original distribution of instances. One reason for this could be found in

the nature of the Pima dataset; because all its attributes are numeric, the tree-based classifier

must first pre-discretize the attributes. Since stratification applies oversampling and changes

the original distribution in the dataset, it may affect the discretization process also, which will

choose other values as breakpoints than those chosen for the normal distribution. Therefore,

since both models are evaluated on a test set that preserves the original class distribution, the

one that was trained on the normal distribution yields better results.

The results yielded by the two other algorithms on the Pima dataset are similar to

those obtained for the Wisconsin dataset; they are illustrated in figure 6.5. In this situation,

stratification yields only slightly better results for the rare cases than normal training.

Moreover, a few observations have to be made. The first one is related to the fact that for

balanced costs, MC performs better in the normal case than in the stratified case. The second

one refers to the slope of J4.8’s characteristic in the stratified case, which is faster ascending

than in the Wisconsin case, while the slope for the normal case remains horizontal. An

explanation of why these two things happen could be found again in the fact that the Pima

dataset has only numeric attributes (except for the class, which is binary), while the

Wisconsin dataset has nominal attributes.

A quick note should be made on the fact that the misclassification cost yielded by J4.8 for the

Pima dataset is approximately four times higher than the one obtained on the Wisconsin

dataset. A reason for this could be found in the nature of the two datasets, since it is a known

fact that classification trees perform slightly worse when numeric attributes are involved.

The behavior of the algorithms is mostly uniform on the two datasets (with the

exception ProICET presents for the Pima dataset), in that they present an improvement in the

misclassification cost for the rare cases when stratification is applied.

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

57

Figure 6.2 – ProICET average misclassification costs

for the Wisconsin dataset

Figure 6.3 – MetaCost and J4.8 average

misclassification costs for the Wisconsin Dataset

Figure 6.4 – ProICET average misclassification costs

for the Pima dataset

Figure 6.5 – MetaCost and J4.8 misclassification costs

for the Pima Dataset

This is a very important result for two reasons: first because of the fact that, although

a simple technique, stratification improves ProICET’s performance on the cases that are

poorer represented in the initial dataset. Secondly, by being algorithm-independent, this

technique can easily improve the performance of almost any classifier (exception from this

rule are the algorithms that take into account the initial distribution in the dataset, such as

AdaBoost.M1 (AB)). Another remark is related to the unexpected results yielded by ProICET

on the Pima dataset. Due to this fact, further testing is required before making any general

formulations in this matter.

Comparing Misclassification Costs

The procedure employed when comparing misclassification costs is similar to that

described in the previous section. Again, the Wisconsin and the Pima datasets were used, and

misclassification costs were averaged on 10 randomly generated training/test sets. For all the

tests described in this section, the test costs are not considered in the evaluation, in order to

isolate the misclassification component and eliminate any bias. However, a test cost of one

(1.0) is considered during the training stage of the ProICET algorithm, in order to avoid over-

fitted or degenerate solutions.

As illustrated by figure 6.6, for the Wisconsin dataset MC yields the poorest results.

ProICET performs slightly better than J4.8, while the smallest costs are obtained for AB,

using J4.8 as base classifier. The improved performance is related to the different approaches

taken when searching for the solution. If ProICET uses heuristic search, AB implements a

procedure that is guaranteed to converge to minimum training error, while the ensemble

voting reduces the risk of over-fitting. However, the approach cannot take into account test

costs, which should make AB perform worse on problems involving both types of costs.

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

58

Figure 6.6 – Misclassification costs for the Wisconsin

dataset

Figure 6.7 – Misclassification costs for the Pima

dataset

For the Pima dataset, the misclassification costs obtained by each of the four analyzed

algorithms are illustrated in figure 6.7. Again, MC has a very poor performance for the

unbalanced cases; ProICET and J4.8 yield similar costs (with ProICET performing slightly

better); we can say that these three algorithms have almost the same behavior on the Pima

dataset as on the Wisconsin dataset. This is not the case with AB, whose costs are higher than

those obtained by ProICET or J4.8.

Total Cost Analysis on Benchmark Medical Problems

When estimating the performance in real life problems of the various algorithms

presented, we have considered four benchmark datasets from the UCI repository,

representing medical problems: Bupa liver disorders, heart disease Cleveland, Pima Indian

diabetes and Thyroid. For the first dataset, we have used the same modified set as in [Tur95].

Also, the test costs estimates are taken from the previously mentioned study. The

misclassification costs values were more difficult to estimate, due to the fact that they

measure the risks of misdiagnosis, which do not have a clear monetary equivalent. These

values are set empirically, assigning higher penalty for undiagnosed disease and keeping the

order of magnitude as to balance the two cost components (the actual values are presented in

Appendix A, tables A.6.2-A.6.5, along with the attribute test costs).

Since, as far as we know, there exists no other algorithm that would be sensitive to

both misclassification and test costs, ProICET had to be evaluated against algorithms which

either take at least one of the cost components into consideration, or yield very good error

estimates. Bearing this in mind, four algorithms were selected: EG2 as a representative of the

algorithms that consider test costs, MetaCost (MC) as a scheme that considers

misclassification costs, AdaBoost.M1 (AB) as a very successful ensemble learning method,

and J4.8 as a baseline performance measure. We expect ProICET to outperform the other four

algorithms since it induces higher variability in the trees search space, and guides that

variability into the right direction by using an intelligent evaluation function.

As anticipated, ProICET significantly outperforms all other algorithms, being the only

one built for optimizing total costs (figure 6.8). Surprisingly, our implementation performs

quite well on the heart disease dataset, where the original algorithm obtained poorer results.

This improvement is probably owed to the alterations made to the genetic algorithm, which

increase population variability and extend the heuristic search. The cost reduction is

relatively small in the Thyroid dataset, compared to the others, but is quite large for the two

cases, supporting the conclusion that ProICET is the best algorithm for problems involving

complex costs. Another remark is related to the fact that, generally, EG2 closely “follows”

ProICET’s lead, in that its costs are just a little higher than those yielded by ProICET (with

one exception for the Bupa dataset). One reason for this would be the relation between test

costs and misclassification costs; the misclassification costs were chosen such as to have the

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

59

same magnitude order with the test costs that came with the datasets and follow the idea of

expensive test costs relative to misclassification costs.

On the Bupa dataset, AB performs slightly better than ProICET, while the other

algorithms have significantly poorer performances. This could be a consequence of the

relation between test and misclassification costs; for the Bupa dataset the test cost of

misclassifying a negative case as positive is lower than any attribute test cost, and the other

misclassification cost has the cost of approximately 2 attributes (see Appendix A for details);

this particularity in the cost setting procedure makes the algorithms that are best at error

reduction perform better than the others (this is the case with AB). Still, a note should be

made on the fact that on this dataset, ProICET achieves the second best performance.

Moreover, the next tests will show that, for the other datasets, ProICET outperforms all the

considered algorithms.

On the Thyroid dataset, ProICET achieves the best cost. Still, this error reduction is

not as clear as in the other datasets. The fact that the costs are so uniform for this dataset may

be rooted in the size of the dataset – 7200 instances. Although it is a rather difficult “to learn”

dataset, because it has many attributes, of which several are numeric, the dimension of the set

seems to compensates for that complexity.

As illustrated in figure 6.8 (c), on the Cleveland dataset ProICET outperforms by far

MC, and the error reduction algorithms (AB and J4.8), while EG2 yields a very good cost

also. This is a rather surprising result, since in the initial paper ICET obtained very poor

results when tested on this dataset. The reasons could be rooted in the fact that the number of

iterations for the individual training in the genetic component was significantly smaller, and

standard values for GA parameters were used, which proved to be not so helpful; also, a

50/50 split was used for the sub-training and sub-testing sets during the training stage,

therefore drastically affecting EG2’s capacity of building successful trees.

(a)

(b)

(c)

(d)

Figure 6.8 – Total costs obtained by the classifiers on different benchmark medical problems

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

60

The results on the Pima dataset are illustrated in figure 6.8 (d). Although the cost

distribution for the Pima dataset is rather uniform, ProICET yields visibly lower costs. Again

we notice that EG2 is the second in line, while the others have higher costs.

6.3.4 Case Study: ProICET on a Prostate Cancer Problem

Medical data mining is considered to be one of the most challenging areas of

application in knowledge discovery. Main difficulties are related to the complex nature of

data (heterogeneous, hierarchical, time series), or to its quality (possibly many missing

values) and quantity. Domain knowledge or ethical and social issues are also of great

importance. But maybe the most important particularity of medical data mining problems is

the concept of cost.

When mining a medical problem, the concept of cost interferes in several key points.

First of all, a doctor must always consider the potential consequences of a misdiagnosis. In

this field, misclassification costs may not have a direct monetary quantification, but they

represent a more general measure of the impact each particular misclassification may have on

human life. These costs are non-uniform (diagnosing a sick patient as healthy carries a higher

cost than diagnosing a healthy patient as sick). Another particularity of the medical diagnosis

problem is that medical tests are usually costly. Moreover, collecting test results may be time-

consuming. Arguably, time may not be a real cost, but it does have some implication for the

decision whether it is practical to take a certain test or not. In the real case, performing all

possible tests in advance is unfeasible and only a relevant subset should be selected. The

decision on performing or not a certain test should be based on the relation between its cost

and potential benefits. When the cost of a test exceeds the penalty for a misclassification,

further testing is no longer economically justified.

Since ProICET considers both test and misclassification costs, and employs a

promising learning strategy, it has the potential for providing a successful solution in data

mining problems involving medical diagnosis. This section presents a case study of applying

the ProICET algorithm on a prostate cancer diagnosis problem. The current research has been

performed within the CEEX research grant no. 18/2005 – IntelPRO (Intelligent system for

assisting the therapeutic decision at patients with Prostate cancer)

 Prostate cancer occurs when cells of the prostate (gland in the male reproductive

system) mutate and begin to multiply out of control, spreading to other parts of the body

(bones and lymph nodes mainly). Symptoms include pain, difficulty in urinating, erectile

dysfunction, and many others. Physical examination and PSA (Prostate Specific Antigen)

blood tests are crucial for early diagnosis of the disease. Confirmation is received upon

performing a biopsy of the prostate tissue. Further investigations, such as X-rays and bone

scans, may be performed to determine the degree of spread. There are several possible

treatments for prostate cancer, such as: surgery, radiation therapy, chemotherapy, hormone

therapy, or a combination of these – depending on the extent of spread of the disease, age and

general state of health, and so on. The medical tests performed during the diagnosis of the

disease – especially the biopsy – are costly. Also, it is evident that missing to identify a

positive diagnosis is far more harmful than the reverse error.

 The main goal of applying to the prostate cancer diagnosis problem has been to

verify that it maintains its behavior in this real-world medical problem, yielding low costs

while maintaining a high precision rate. A second direction of investigation involved ranking

the predictor attributes, such as to try and match results obtained by the data mining system

with the medical staff assumptions. The dataset has been provided by the Medicine and

Pharmacy University of Cluj-Napoca. During the discussions with the medical team, a set of

major/immediate interest parameters were defined (presented in Appendix A, table A6.6).

The same evaluation procedure was employed as in the previous section (repeated percentage

split). Two different values for the test costs were used – 0 and 0.1 – and four different cost

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

61

matrices (built such as to emphasize the unbalance in different errors’ severity) – also

presented in Appendix A, table A6.6. This resulted in eight different evaluation scenarios.

The results are presented in table 6.2.

It can be observed that, when both types of costs are considered, ProICET yields the

lowest total costs, which proves once again it is the best approach for cost reduction in

medical problems. The fact that the accuracy rates (~84%) do not reach very high values

could be rooted in the characteristics of the dataset: the number of instances was reduced

during the pre-processing stage, because of the high number of missing values.

Another important result is related to the ranking of the attributes in the order of their

prediction power. Since during the training process equal test costs were assigned to each

attribute, the cost component did not influence in any way the choice of one attribute over

another (it only affects the total cost of the trees in the sense that bigger trees yield higher

total costs). By analyzing the output the following attributes resulted as possessing the

highest prediction power (the same list was obtained by the other algorithms as well):

• Prostate Volume

• Operation Technique

• Bleeding

• Gleason Score

• IIEF

• Pre-Op PSA

The fact that the prostate volume appears the first in most tests is new, and, according

to the medical team’s opinion, it is the confirmation of a fact they have been suspecting for

some time now.

6.4 Conclusions on Cost-Sensitive Classification

Several efforts have been made in the machine learning community to develop

learning schemes that are sensitive to a particular type of cost. Considerably less research has

been conducted to develop an algorithm that tackles both costs, the most significant such

method being ICET. It has been shown to yield better results when compared to algorithms

that are sensitive only to test costs. The initial work on ICET lacked a comprehensive study

on the misclassification cost component though, as well as an evaluation of ICET in real

problems.

Table 6.2 – Total costs and accuracy rates of the various algorithms on the Prostate Cancer dataset (TC –

value of Test Costs; CM – Cost Matrix)

Cost Settings

Average Accuracy Rate (%) Average Total Cost

Pro

ICET
AB EG2 J4.8 MC Pro

ICET
AB EG2 J4.8 MC

TC:0,CM:1 84.18

7
9

.1
8

8
4

.0
7

8
4

.0
7

84.18
0.28 0.284 0.269 0.269 0.293

TC:0.1,CM:1 83.77 0.414 0.734 0.430 0.430 0.448

TC:0,CM:2 83.87
83.26

0.561 0.52 0.52 0.52 0.65

TC:0.1,CM:2 84.07 0.678 0.97 0.682 0.682 0.812

TC:0,CM:3 84.28
84.38

0.146 0.166 0.142 0.142 0.145

TC:0.1,CM:3 84.07 0.252 0.616 0.305 0.305 0.310

TC:0,CM:4 84.07
83.36

0.213 0.44 0.44 0.44 0.502

TC:0.1,CM:4 83.77 0.575 0.89 0.603 0.603 0.647

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

62

There are two main particularities of ICET that make it an appropriate for solving

cost-sensitive problems:

 It considers both test costs and misclassification costs, while other cost-sensitive

algorithms considered just one of these components

 The strategy it uses, of combining evolutionary methods with classical top-down

inductive search (a greedy search), is very fresh and promising, because it introduces

an element of variability in the search space where the greedy component performs

The main contributions presented in this chapter focus on a series of improvements

that could be added to the initial algorithm, as well as filling in the gap in the algorithm

evaluation part. Consequently, a new version of the algorithm has been developed, ProICET,

which employs the basic technique proposed by ICET, while improving the strategies used in

specific parts. A series of evaluations which focused on assessing the performance of

ProICET under a series of different aspects have been performed.

The first set of tests was focused on finding the validity of a theory formulated in the

initial work on ICET, concerning the asymmetry in the misclassification costs component –

that for the “rare” cases, both ICET and the other algorithms considered yielded higher costs.

Stratification was proposed there as a theoretical solution, but no tests were performed to try

and check the hypothesis’ validity. Therefore, the current dissertation attempts to prove

empirically that the theory holds, and, moreover, that it is extendable to other schemes. The

second batch of tests was aimed at analyzing the misclassification cost component. A third

series of tests were developed to evaluate the behavior of ProICET in real medical diagnosis

problems, which contained both types of costs.

The results allow for the formulation of the following conclusions:

 ProICET outperforms its direct competition (algorithms that are also sensitive to some

kind of cost). This improvement can be seen in the evaluation of the misclassification

cost component, where ProICET performs better than the other algorithms, with one

single exception for the Wisconsin dataset, where it yields higher costs than

AdaBoost.M1. In the tests that have been performed on benchmark medical, ProICET

yields constantly better costs than algorithms that consider only test costs, or

algorithms that are aware to misclassification costs. Most importantly, when evaluated

on a real prostate cancer problem, ProICET always yielded lowest total cost of all the

algorithms considered, when both test and misclassification costs were included,

keeping a high level of accuracy.

 This particular implementation has proved to be even more successful than the

original version of the algorithm, because it yields better results on the Cleveland

heart disease dataset, where the initial implementation obtained rather modest results.

This improvement is due to the modifications made in the evolutionary component:

the introduction of elitism, increased search variability factor, and extended number

of iterations. Also, increasing the size of the training set proved to be successful.

 Stratification generally produces improvements in the misclassification cost of rare

cases, for all classifiers; an exception to this rule is observed for ProICET and J4.8 in

the case of datasets with numeric attributes – the pre-discretization process affects

stratification. A note should be made on the fact that for the stratification problem,

ProICET is almost symmetric, in that it is insensitive to the particular form of the cost

matrix. This could be a consequence of the fact that the tree learner is a modified

version of J4.8 (which displays a horizontal characteristic).

The original work presented in this chapter comes as a result of the involvement in the

CEEX research grant no. 18/2005 – IntelPRO (Intelligent system for assisting the

therapeutically decision at patients with Prostate cancer). The ProICET algorithm has been

Chapter 6 – Classification in Practice I: Imbalanced Error Costs and Expensive Tests

63

applied to a real problem related to prostate cancer diagnosis and prognosis: predicting the

value of post-operative PSA for patients who have undergone prostate surgery, from data

recorded pre- and immediately after the operation. The results confirmed yet again that the

method provides the most suitable approach in such problems, yielding lowest total costs and

high accuracy rates under different evaluation scenarios. Also, the ranking of predictive

attributes produced a new piece of information, which confirmed (previously un-validated)

medical team assumptions.

The results presented in this chapter have been disseminated and accepted by the

research community through the publication of 1 journal paper (in Health Informatics

Journal):
1. C. Vidrighin Bratu and R. Potolea, "ProICET: a cost-sensitive system for prostate

cancer data", Health Informatics Journal, Dec 2008, vol. 14: pp. 297-307, ISSN:

1741-2811 (online); 1460-4582

1 book chapter (in Advances in Greedy Algorithms):
1. C. Vidrighin Bratu and R. Potolea, "Enhancing Greedy Policy Techniques for

Complex Cost-Sensitive Problems", in Advances in Greedy Algorithms, IN-TECH,

2008, pp. 151-168, ISBN 978-953-7619-27-5 (print)

and 3 conference papers, presented in the proceedings of established international

conferences:

1. C. Vidrighin, R. Potolea, I. Giurgiu, M. Cuibus, "ProICET: Case Study on Prostate

Cancer Data", Proceedings of the 12
th
 International Symposium of Health

Information Management Research, 18-20 July 2007, Sheffield, pp. 237-244
2. R. Potolea, C. Vidrighin, C. Savin, "ProICET - A Cost-Sensitive System for the

Medical Domain", Proceedings of the 3
rd

 International Conference on Natural

Computation ICNC 2007, Haikou, August 2007, China, Volume 2, Session 3
3. C. Vidrighin Bratu, C. Savin, R. Potolea, "A Hybrid Algorithm for Medical

Diagnosis". Proceedings of the IEEE The International Conference on

Computer as a Tool, 9-12 September 2007, Warsaw, pp. 668-673

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

64

7 Classification in Practice II: Imbalanced Class Distribution

7.1 Problem Statement

One of the current important challenges in data mining research is classification under

an imbalanced data distribution. This issue appears when a classifier has to identify a rare,

but important case. Traditionally, domains in which class imbalance is prevalent include

fraud or intrusion detection, medical diagnosis, risk management, text classification and

information retrieval [Cha04]. More recent reports include unexploded ordnance detection

[Ali06], or mine detection [Wil09].

A classification problem is imbalanced if, in the available data, a certain class is

represented by a very small number of instances compared to the other classes [Jap02]. In

practice, the problem is addressed with 2-class problems; multi-class problems are translated

to binary. As the minority instances are of greater interest, they are referred to as positive

instances (positive class); the majority class is referred to as the negative class.

7.1.1 Imbalance-Related Factors

The first step in providing viable solutions for imbalanced domains is to understand

the problem: what is the real issue with the imbalance? Initially, the difficulty of dealing with

imbalance problems was thought of coming from its imbalance rate (IR), i.e. the ratio

between the number of instances in the majority (mMaj) and minority classes (mMin):

Min

Maj

m

m
IR  (7.1)

More recent studies suggest that the nature of imbalanced problems is actually

manifold. In [Wei04], two issues are considered as being crucial: (1) insufficient data to build

a model, in case the minority class has only a few examples (similar to dealing with small

samples/small datasets), (2) too many “special cases” in the minority class, so that in the class

itself, some kind of sub-clustering occurs, which might lead again to insufficient examples

for correctly identifying such a sub-cluster. These two cases translate into two types of rarity:

between-class (1) vs. within-class (2). While the between-class imbalance faces the issue of a

peculiar class distribution only, for which some intelligent sampling techniques could help

[Cha98], within class imbalance is trickier. Besides an increased complexity of the data

(which implies that the model should identify a rule for each sub-cluster), the small sample

problem could override it, which hinders the identification of each sub-cluster. The between

class imbalance is also referred to as rare class, while within-class as rare case. For the

within class imbalance, a special case is represented by the small disjuncts problem [Hol89].

It has been observed that, in most cases, imbalanced problems suffer from the small disjuncts

problem – the existence of “isolated” subsets of only a few instances in the minority class,

surrounded by instances from the other class(es), making them difficult to identify [Wei04].

Ideally, a concept is best identified when it can be defined as a purely conjunctive definition.

In real settings, for complex concepts this is not always possible. Therefore, a concept is

defined by several disjuncts, each being a conjunction expressing a sub-concept. In many

cases, some of those disjuncts have small coverage, and are therefore difficult to identify.

Small disjuncts are much more error prone [Hol89] than large disjuncts. Dataset shift [Ala08]

and class overlapping [Den10] have also been recently identified as being important factors

related to the imbalance.

An important theoretical result related to the nature of class imbalance is presented in

[Jap02], where it is concluded that the imbalance problem is a relative problem, which

depends on: (1) the imbalance ratio, i.e. the ratio of the majority to the minority instances, (2)

the complexity of the concept represented by the data, (3) the overall size of the training set

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

65

and (4) the classifier involved. The experiments there were conducted on artificially

generated data, in the attempt to simulate different imbalance ratios, complexities and dataset

sizes. The concept complexity has been approximated through the size of the decision tree

generated on the data (as).(log2 leavesno). The results have indicated that C5.0 is the most

sensitive learner to the imbalance problem, while the Multilayer Perceptron showed a less

categorical sensitivity pattern and the Support Vector Machine seemed to be insensitive to the

problem.

In [Pot11c] we have extended the analysis by performing a set of experiments on

benchmark datasets, to study the effect of the class imbalance problem on a broader spectrum

of algorithms. An initial study focused on the factors described in [Jap02] – dataset size,

imbalance ratio, complexity and learning algorithm, in an attempt to address some of the

open questions presented in the above mentioned work, related to the applicability of the

conclusions drawn on artificial data in real-world settings. The results (which are detailed in

section 7.1.3) suggest that a more meaningful analysis can be performed by considering IR

and a new meta-feature, which combines data size and complexity information. The

instances-per-attribute ratio (IAR), i.e. the ratio between the total number of instances (m)

and the number of attributes recorded per instance (n) is more significant than the separate

size and complexity measures, allowing for a faster and easier initial assessment of a

particular dataset:

n

m
IAR  (7.2)

7.1.2 Estimating Performance

Establishing how to assess performance is an essential task in imbalanced problems.

The selection of an inappropriate evaluation measure may lead to unexpected predictions,

which are not in agreement with the problem goals.

The most widely employed metric in the early (theoretical) stage of data mining

research was the accuracy (Acc) of the classifier. Even today it is widely employed when

assessing the performance of new learning schemes, being an appropriate metric even for

real-world, balanced problems. When dealing with an imbalanced problem, however, it

provides an insufficient measure of the performance [Wei04, Cha06], because the minority

class contributes very little to its value. In highly imbalanced problems, a good recognition of

the majority class will translate into a high accuracy, regardless of how well the model

identifies minority cases. Thus, for a dataset with 99% examples for one class and 1% for the

other, a model which classifies everything as belonging to the majority class will yield 99%

accuracy, while failing to identify any minority example.

 Therefore, the evaluation of imbalanced problems requires other metrics which

provide a more directed focus. Such a metric, which focuses on the recognition of the

minority class, is the TPrate (sensitivity/recall). Generally, the TNrate (specificity) is not so

important in imbalanced problems [Grz05]. On the other hand, in some situations it is

important to "improve recall without hurting precision" [Cha06]. Therefore, besides

sensitivity, precision may also have an important role when dealing with such problems.

Controlling the relative importance between precision and recall is another strategy which

could provide a correct assessment in imbalanced scenarios, by employing a precision/recall

curve, or the Fi-value – which can be tuned to put more emphasis on either the recall or

precision: i > 1 for when recall is more important. In certain situations, besides TPrate, keeping

a high TNrate may be important. For such situations, equidistant metrics, such as the

geometric mean or the balanced accuracy (defined in Chapter 2) provide appropriate

performance assessment.

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

66

Thus, according to the specifics of the problem at hand, one should carefully assess

which metrics to consider. In many information extraction applications, for example, the f-

measure is considered to offer the best trade-off between precision and recall, since it is

desired to detect as many positive items as possible, without introducing false positives. On

the other hand, in medical diagnosis, it is essential to identify all positive cases, if possible,

even at the risk of introducing false alarms (which may be eliminated through additional

medical investigations). The same occurs in fraud detection, where the cost of missing to

identify a fraud is so high that a certain level of false positives is acceptable. The opposite

situation can also appear. In credit risk assessment, for example, introducing false positives is

unacceptable. However, a mild decrease of the number of identified positive cases is usually

acceptable, since it is preferable to lose a potential client in the attempt to avoid a default.

Thus, there are situations in which maximizing the TPrate is of utmost importance, situations

in which precision must be kept at high levels, even at the cost of mildly decreasing the

TPrate, or situations in which both are equally significant.

In view of what has been presented, we argue that metric selection in imbalanced

problems is essential for both model quality assessment and guiding the learning process. The

metric should also reflect the goal of the specific classification process, not just focus on the

data imbalance. Thus, if we are additionally dealing with imbalance at the level of the error

costs, then associating a cost parameter to account for such disproportions is appropriate. If,

on the other hand, the focus is on identifying both classes correctly, then an equidistant

metric provides a fair estimation.

7.1.3 The Effect of the Class Imbalance on the Performance of Classifiers

In order to study the nature of the imbalance problem, we have considered 34 datasets

from the UCI machine learning data repository (Appendix A, table A.7.1). A number of

problems were modified to obtain binary classification problems from multi-class data.

Learning algorithms belonging to 6 different classes were considered: instance based learning

– kNN (k Nearest Neighbor), Decision Trees – C4.5, Support Vector Machines – SVM,

Artificial Neural Networks – MLP (Multilayer Perceptron), Bayesian learning – NB (Naïve

Bayes) and ensemble learning – AB (AdaBoost.M1). We have employed the implementation

in the WEKA framework for the six methods selected, and their default parameter values.

The evaluations were performed using 10-fold cross validation, and reporting the average

values obtained. The following metrics were recorded: the accuracy (Acc), TPrate, and TNrate.

Also, the geometric mean (GM), the balanced accuracy (BAcc) and the f-measure (FM) have

been computed. The minority class in all problems is the positive class. An initial analysis

was carried out on the data grouped by size, IR and complexity (C), into the categories

presented in Table 7.1. Not all combinations of the three categories can be found in the

datasets we have evaluated: for example, a very large complexity is only represented in the

large datasets category.

Table 7.2 presents a summary of the results obtained by the learning algorithms on the

different categories of problems. Shaded rows represent data categories sensitive to

imbalance, while non-shaded rows represent groups of problems on which classifiers have a

robust behavior, under TPrate. We have selected this metric to assess robustness since, as

suggested in [Jap02], performance degradation is related to a large drop in the TPrate.

Table 7.1 – Dataset grouping on size, IR, C

Dimension Category Very small Small Medium Large Very large

Size (no. of instances) <400 400-1500 2000-5000 >5000 -
Rounded IR - <9 - >=9 -
Rounded C - <=2 [3,4] [5,9] >=10

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

67

Table 7.2 – TPrates obtained by classifiers on the different categories of problems

Set

Size
IR Complexity kNN C4.5 SVM MLP NB AB

very

small

<9

Small .53 .5 .5 .61 65 .57
Medium .72 .71 .3 .61 .65 .65
Large .73 .72 .79 .76 .8 .81

>=9 Medium .52 .6 .15 .59 .83 .4
small <9 Medium .88 .89 .89 .9 .89 .83

Large .81 .77 .85 .81 .62 .67
>=9 Medium .98 .94 .98 .99 .98 .99

Large .24 .09 .47 .65 .09 .0
medium

<9 Large .74 .97 .92 .98 .69 .85
>=9 Medium .6 .91 .5 .86 .78 .89

Large .57 .88 .04 .73 .84 .82
large <9 Large 1 1 1 1 .92 .98

>=9 Very Large .06 .0 .01 .0 .39 .0

Also, for each dataset category the best performance and the worst performance have been

marked (bold-face and underline, respectively). The results agree with the conclusions

presented in [Jap02] that the value of the IR plays an important role in the performance of the

classifiers. However, an increase in the complexity does not necessarily lead to classifier

performance degradation, as the results for the [IR<9, size – very small] category indicate.

Moreover, size and complexity are related, since, the size increases, the data exhibits higher

complexity.

As it can be observed from figures 7.1 – 7.4, the behavior of classifiers on large

complexity datasets is better than on categories of problems of smaller complexity (in fig. 7.3

almost all classifiers seem to be robust to the imbalance problem). Still, for the other set size

categories (small, medium and large), a large imbalance (IR>=9) associated with increased

complexity (large, large and very large) always affects the learning process (Table 7.2).

Figure 7.1 - Size very small, IR<9, C small Figure 7.2 - Size very small, IR<9, C medium

Figure 7.3 - Size very small, IR<9, C large Figure 7.4 - Size very small, IR>=9, C medium

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

68

The results suggest that neither dataset size, nor the complexity alone represent strong

(monotonic) indicators of the IR's influence in the classification process. We consider that

poor concept identification is related to the lack of information caused by insufficient

examples to learn from. However, a relation between problem size, complexity and classifier

performance is revealed, i.e. the larger the dataset size, the higher the complexity for which

the performance degradation becomes clear. This suggested the existence of another meta-

feature which better discriminates the classifier robustness when faced with imbalanced

problems, the instance per attribute ratio (IAR).

The diagrams in figures 7.5 – 7.7 present the performance of the same classifiers,

under different metrics, on the problem categories which affect their learning capacity. The

accuracy alone is not a good measure of performance. The analysis should focus on the

following criteria: high values for TPrate, GM, BAcc and Fmeasure indicate a good

classification, while high TNrate values reveal a classification which is biased towards the

majority class. Moreover, the larger the difference between the TNrate and the TPrate, the more

biased the classification process is.

The results prove that the learning capabilities of the classifiers considered are

affected to some extent by an increased imbalance in conjunction with the other data-related

particularities. It can be observed that, like in [Jap02], MLPs are generally more robust than

C4.5 to the imbalance problem. Moreover, they are the least affected by the imbalance-

related factors, in most cases. As an exception, C4.5 performs noticeably better than MLP

(and all the others, actually) on medium sized datasets, with large IR and C (fig. 7.6). The

analysis also reveals that the NB classifiers have a good general behavior when dealing with

a very large imbalance. In some cases they even yield the best performance (figures 7.1, 7.4,

7.7 – all with IR>=9). However, they are not as robust as MLPs, since, in some cases, they

achieve a very poor performance (fig. 7.5). Although not always the best classifier, MLPs

yield at least the second best performance in all cases, which makes them the most robust out

of all the classifiers evaluated. None of the kNN and AB show remarkable results in any of

the cases studied, which makes them suitable only for baseline problem assessment.

The above observations provide an affirmative answer to one of the open questions in

[Jap02], whether the conclusions presented there can be applied to real-world domains.

However, our results also indicate that SVM are the most sensitive to imbalance. This means

that, for the particular case of SVMs, the conclusion drawn from experiments on artificial

data cannot be extended to real datasets. A justification for this could be the following: in the

case of artificial datasets, even for large IRs, the examples which represent reliable support

vectors are present in the data, due to the systematic data generation process, while in the

case of real problems, these vital learning elements might be missing. This makes SVMs the

weakest classifiers in most real-world imbalanced problems.

We have performed a second analysis for studying the effect of imbalanced problems

on the performance of the classifiers, using another dataset grouping: by IR and by the ratio

between the number of instances and the number of attributes (IAR).

Figure 7.5 - Size small, C large Figure 7.6 - Size med., C large Figure 7.7 - Size large, C v. large

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

69

Table 7.3 - Dataset grouping on IR, IAR

Parameter Category Value Range

Rounded IR

Balanced ~1

Small [2,3]

Large >=4

Rounded IAR

Small <=60

Medium (60, 100]

Large (100, 200]

Very large >200

Table 7.4 - TPrates on IR and IAR grouping

IR IAR kNN C4.5 SVM MLP NB AB
Balanced Small .68 .71 .72 .7 .58 .75

Medium .94 .95 .8 .86 .78 .85
Very large 1 1 1 1 .92 .98

Small Small .71 .69 .53 .72 .78 .65
Medium .81 .77 .82 .83 .67 .63

Large

Small .5 .55 .27 .62 .64 .4
Medium .53 .52 .72 .73 .59 .49
Large .58 .89 .19 .74 .82 .84

We consider this new meta-feature successfully combines size and complexity

information: a small IAR should yield a higher classifier sensibility to the imbalance

problem, while a very large IAR should provide more robustness to the imbalance. The

categories for this second analysis are summarized in Table 7.3. By re-grouping the

evaluations according to this new criterion, we noticed a more clear separation between the

different categories and that classifiers better learn with larger IARs. Indeed, as we can

observe from Table 7.4, the larger the IAR, the larger the IR for which the TPrate value of the

classifiers decreases. Also, for the same IR, as IAR increases, classifiers are more robust to

the imbalance. The different levels of shading used for the rows indicate the performance

level (more shading, better average performance). Again, we have marked the highest and

lowest TPrate values for each problem category (bolded and underlined, respectively).

Figures 7.8 – 7.11 present the performance of the classifiers under this second

categorization, for all metrics considered, on the relevant groups (problems which are

affected the most by the imbalance related issues). The diagrams indicate again that SVM are

unstable classifiers for imbalanced problems (strongly biased towards the majority class). Out

of all classifiers, MLP are the most robust, yielding either the best or second best

performance. The NB classifier generally achieves the best recognition of the minority class

(maximum TPrate). However, it is not the best classifier due to poor recognition of the

majority class (lowest TNrate in all cases). This makes the NB classifier the most appropriate

for imbalanced problems in which the minority class possesses a significantly larger

importance than the majority class. Similar to the previous analysis, kNN and AB have a

variable behavior, which hinders the identification of a situation in which they could

guarantee quality results. If we have found that a large IAR improves the behavior of

classifiers for the same IR, it appears that C4.5 is the most responsive to a large IAR, as it can

be observed from fig. 7.11. All the above measurements refer to pruned versions of C4.5.

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

70

Figure 7.8 - IR small imbalance, IAR small Figure 7.9 - IR large, IAR small

Figure 7.10 - IR large, IAR medium Figure 7.11 - IR large, IAR large

In [Jap02], it is argued that, for large IRs, unpruned C4.5 models are better than the

pruned versions. We have performed an evaluation to validate this statement, using the

Mushrooms benchmark problem – large size, balanced dataset – by varying the IR up to 100.

The evaluation was performed in a 10-fold cross validation loop. The results are presented in

the diagrams from fig. 7.12. We have employed the logarithmic scale for the horizontal axis

(IR), to better differentiate between the two curves at smaller IRs. By comparing the two

diagrams we notice that GM is more fitted for this situation, as it is more realistic in

estimating the performance (BAcc being overoptimistic), and it better differentiates between

the pruned/unpruned versions. This is due to the fact that a larger difference between two

variables is more visible in the product than the sum of their values.

On the same relatively large dataset (Mushrooms), a series of experiments have been

conducted to study the effect of varying IR and IAR on the performance of the different

classifiers. The IAR has been varied via two mechanisms: (1) by varying the size of the

training set (via random sampling) and keeping the number of attributes constant and (2) by

varying the number of attributes and apply obtain the maximum possible size for the given

IR, IAR and number of attributes (via random sampling).

0

0.2

0.4

0.6

0.8

1

1 10 100log (IR)

B Ac c

C 4.5 pruned, C =0.25 C 4.5 unpruned

0

0.2

0.4

0.6

0.8

1

1 10 100log (IR)

G M

C 4.5 pruned, C =0.25 C 4.5 unpruned

Figure 7.12 - Performance degradation for C4.5 on mushrooms dataset, under the balanced accuracy (BAcc)

and the geometric mean (GM)

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

71

For the second scenario, the attributes have been initially ranked using the gain ratio

as measure, and the size of the predictive attribute subsets was varied between 2 and the

number of predictive attributes in the dataset (22). The results of these evaluations are

presented in diagrams (a) – (l) from figure 7.13. The diagrams on the left present the BAcc

levels obtained by the different classifiers by varying IR and IAR by size (scenario 1), and

the right-side diagrams present the results obtained by varying IR and IAR by the number of

attributes (scenario 2).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

72

(i)

(j)

(k) (l)

Figure 7.13 - The effect of varying IR and IAR on the performance of different classifiers

As it can be observed from the diagrams, the results obtained on the same classifier in

the two scenarios are similar, with the observation that the second scenario presents ampler

variations. This is expected since removing one predictive attribute from the training set can

produce more acute changes in performance than removing a subset of instances, if the size is

reasonably large (in this situation, the smallest training set size reached was around 2200

instances). The trends of the curves obtained for the same classifier via the two scenarios are,

however, similar.

The results indicate that, generally, for the same IR, the performance improves as IAR

increases (as expected). Another observation is related to the fact that as the IR increases,

better performance is achieved at higher IAR values. The one exception is presented by AB:

the curves for different IRs do not present an increasing trend. However, as IR increases, the

instability of AB is more pronounced (the variations between different IAR values become

more ample). This inconsistent behavior was observed for AB in the earlier evaluations as

well. Also, AB seems to be affected the most by the imbalance – if, at IR = 1, its BAcc values

are around 0.98, when IR = 100, they decrease below 0.85. A somewhat unexpectedly good

behavior is observed for SVM – high BAcc values even at high IR values and stable across

different IAR levels. As before, this is the result of the existence of the appropriate support

vectors in the training data. As expected, the MLP yields good performance and increased

stability with respect to IR and IAR variations – its BAcc values never decrease below 0.96,

even at high IR and small IAR values.

To conclude, this experimental study has indicated that all methods are affected by the

imbalance. Decision trees are greatly affected when the data is imbalanced, but reducing the

level of pruning improves their performance considerably. As the IR increases, pruning

deteriorates the performance of the decision tree model. This result supports the statement in

[Wei04], that pruning might eliminate rare and important cases, thus affecting the correct

identification of the minority class. However, no pruning at all results in an increase of

complexity for the majority class as well, which might lead to over-fitting in that area. A

more sophisticated approach is therefore required for imbalanced domains, an intelligent

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

73

pruning mechanism, which adjusts the level of pruning for branches according to the number

of minority cases they contain.

As opposed to the conclusions stated in [Jap02, Vis05], we found that SVMs are

strongly affected by the imbalance problem. A justification for this difference could be found

in the data employed for evaluation: in the case of artificial data (used by in [Jap02]), even

for large IRs, the examples which represent reliable support vectors are present in the data,

due to the systematic data generation process (and, hence, the data periodicity), while in the

case of real problems (i.e. the benchmark data used in our evaluations), these vital learning

elements might be missing. Also, out of the methods we have evaluated, MLPs have proved

to be the most robust to the imbalance problem.

The reduction in performance becomes more severe as the IR increases. However, for

the same IR, larger IAR values are associated with improved classifier performance.

Therefore, techniques for increasing the value of IAR (i.e. larger dataset size and/or smaller

complexity) may lead to an improved behavior.

Therefore, developing new, general methods to improve the robustness of traditional

learning algorithms in imbalanced scenarios is necessary. In section 7.3 I will present a new

general methodology as a solution for imbalanced classification problems.

7.2 State of the Art in Imbalanced Classification

Several different strategies for improving the behavior of classifiers in imbalanced

domains have been reported in the scientific community. Broadly, the approaches for dealing

with imbalanced problems can be split into: data-centered (sampling methods), algorithm-

centered and hybrid solutions.

7.2.1 Sampling Methods

Sampling techniques focus on altering the distribution of the training data: either

randomly, or by making an informed decision on which instances to eliminate or add (by

multiplying existing examples, or artificially generating new cases). Under this category we

find random over- and under-sampling, or more elaborated approaches, such as:

a. Synthetic Minority Over-sampling Technique (SMOTE) [Cha02]: which synthetizes

new, prototype minority samples, thus pushing the separation boundary further into

the majority class; it can be combined with random under-sampling;

b. Tomek links [Tom76]: a Tomek link is formed by 2 neighboring instances xi and xj

belonging to different classes, if  xl s.t. d(xi, xl) < d(xi, xj) or d(xj, xl) < d(xi, xj).

According to the method, the two instances are either noise or borderline.

Consequently, Tomek links can be employed both for sampling (by removing the

majority class instances) and as a cleaning strategy (by removing both instances);

c. The Condensed Nearest Neighbor Rule (CNN) [Har68]: attempts to form a

consistent subset of instances by removing majority instances which are distant

from the decision border. The consistency is checked using a 1-nearest neighbor

classifier (1-NN), i.e. a subset is consistent if using 1-NN all instances are correctly

classified;

d. One-Sided Selection (OSS) [Kub97]: eliminates “unsafe” instances by applying first

Tomek links as an under-sampling method (i.e. remove borderline/noisy majority

examples), followed by the application of CNN (i.e. remove majority examples

which are distant from the decision border);

e. The Neighborhood Cleaning Rule (NCL) [Lau01]: for each instance xi find its three

nearest neighbors; if xi is misclassified by the neighbors and xi belongs to the

majority class, then xi is removed; if xi is misclassified by the neighbors and it

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

74

belongs to the minority class, then, out of the three neighbors, the ones belonging to

the majority class are removed;

f. Class Purity Maximization(CPM) [Yoo05]: employs a hierarchical clustering

technique to partition the data, until no reduction in cluster impurity can be found.

The impurity is defined as the proportion of minority instances in the cluster.

g. Under-Sampling Based on Clustering (SBC) [Yen06]: initially clusters all instances

in the dataset into k clusters. Then, it computes, for each cluster, the appropriate

sample size for the majority class instances, given the overall IR and the cluster

data. In each cluster, random under-sampling on the majority class is then applied.

h. Evolutionary Under-Sampling (EUS) [Gar09]: is an under-sampling method in

which the search for the best sample is guided through evolutionary mechanisms;

the fitness functions employed by the authors attempt to provide the optimal trade-

off between balance in the distribution of classes and performance

 Sampling methods can be employed as pre-processing techniques [Gar09]. This is

both a blessing and a curse: a blessing because the computational effort to prepare the data is

needed only once; a curse because it cannot be employed as a systematic method since there

are no guidelines on which specific method is expected to produce the best quality dataset. In

order to maximize the classification performance in the mining step, one should carefully

match the appropriate sampling technique to the learning algorithm employed at that stage.

For example, Support Vector Machines (SVM) should perform better when paired with a

sampling strategy which cleans the boundary region, such as CNN or OSS, whereas the k-

Nearest Neighbor may achieve better results with a neighborhood cleaning rule (NCL).

Also, some methods require the analyst to set the amount of re-sampling needed, and

this is not always easy to establish. It is acknowledged that the naturally occurring

distribution is not always the best for learning [Wei03]. A balanced class distribution may

yield satisfactory results, but is not always optimal either. The optimal class distribution is

highly dependent on the particularities of the data at hand. Moreover, as the dimension of the

training set decreases, more positive examples are needed to induce a good model.

7.2.2 Algorithm-based Methods

Algorithm-centered techniques, also known as internal approaches, refer to strategies

which adapt the inductive bias of classifiers, or newly proposed methods for tackling the

imbalance. For decision trees, such strategies include adjusting the decision threshold at leaf

nodes [Qui91], adapting the attribute selection criterion [Liu10], or changing the pruning

strategy [Zad01, Lem11b]. For classification rule learners, using a strength multiplier or

different algorithms for learning the rule set for the minority class is proposed in [Grz05],

while for association rule learners, multiple minimum supports are employed in rule

generation [Liu00]. In [Liu11], confidence weights are associated to attribute values (given a

class label) in a kNN approach. For SVMs, class boundary alignment is proposed in [Wu03]

and the use of separate penalty coefficients for different classes is investigated in [Lin02].

Newly proposed methods, which deal with the imbalance intrinsically, include the biased

minimax probability machine (BMPM) [Hua06], or the infinitely imbalanced logistic

regression (IILR) [Wil09].

7.2.3 Hybrid Methods

Hybrid approaches combine data- and algorithm-centered strategies. A number of

approaches in this category consist of ensembles built via boosting, which also employ

replication on minority class instances to second the weight update mechanism, in the attempt

to focus on the hard examples. Also, the base classifiers may be modified to tackle

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

75

imbalanced data. Such approaches include SMOTEBoost [Cha03], DataBoost-IM [Guo04],

and a complex SVM ensemble [Tia11].

Another hybrid strategy which may prove beneficial in imbalanced problems is the one

employed in cost-sensitive problems, to bias the learning process according to the different

costs of the errors involved [Dom99, Zho06, Sun07].

Two main directions for cost-sensitive methods employed in imbalanced classification

have been identified:

o Consider the cost matrix known [Tin02, Liu06]

o Utilize a cost matrix which compensates for the value of the IR [Mar00, Han06]

Unfortunately, the cost matrix is seldom known in real world problems, and this is one

of the open issues in cost sensitive learning – employing an appropriate cost matrix. Also,

cost-sensitive learning by IR compensation is inappropriate for the following reason:

extensive empirical evaluations performed in [Wei03] show that the best distribution for

learning is not the balanced distribution, but depends on the problem at hand.

The strategy we propose in this paper addresses the above mentioned drawbacks, by

identifying the best cost matrix for a given problem via evolutionary search strategies. The

search criterion, i.e. the fitness function of the genetic algorithm, can be specified according

to the particularities of the given problem. Selecting the appropriate fitness criterion is in

closer relation to specific domain goals, than setting the exact costs in the cost matrix.

7.3 ECSB: Evolutionary Cost-Sensitive Balancing

Imbalanced class distributions are common in real world data. Our analyses have shown

that the performance of all classifiers is affected under such conditions. Out of the existing

solutions, sampling methods can be employed as pre-processing strategies; however, some

techniques require experience for applying them properly; moreover, to maximize their

effect, they should be matched with the learning method – again – requiring experience.

Modifications to basic algorithms have also been proposed in the literature, with good

performance improvements, but each is restricted to a specific class of techniques. To address

these issues, we propose a new general methodology for classification in imbalanced

domains: Evolutionary Cost-Sensitive Balancing (ECSB). The objective of the ECSB method

is to improve the performance of a classifier in imbalanced domains. It is a meta-

methodology, which can be applied to any error-reduction classifier. Two strategies are

simultaneously followed by the method: (1) use a cost-sensitive meta-classifier to adapt to the

imbalance and (2) tune the base classifier’s parameters.

7.3.1 Method Description

The outcome of the method is a tuple <M, S> for the triple <p, i, m>, where M is a cost

matrix and S is the set of resulting parameter settings for the given problem – data (d),

selected classifier (c) and performance metric (p). M is employed in conjunction with the

cost-sensitive classifier, in order to build a more efficient classification model, focused on

better identifying the underrepresented/interest cases. The search for M and S is performed

through evolutionary mechanisms. The cost-sensitive component employs a meta-classifier to

make its base classifier cost-sensitive, taking into account the misclassification costs. The

main mechanisms for wrapping cost-sensitivity around traditional classifiers usually focus on

employing a larger penalty for the errors on classes with higher misclassification cost, or

modifying the training data such that the costly cases are proportionally better represented

than the others.

The general flow of the method is presented in Figure 7.14. The inputs are: the problem

(d), translated in terms of a set of labeled examples (i.e. the training set), the base classifier

(c) and the metric (p) to use for assessing the performance of c.

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

76

Figure 7.14 – General ECSB flow

The result of the method is a <M, S> tuple, which is used by a (meta-) cost-sensitive

classifier to build the final classification model.

The Cost-Sensitive Component

A discussion on the types of costs and related definitions has been presented in

Chapter 6. For the purpose of imbalanced classification, the focus is on misclassification

costs alone, since they can be employed to bias the learning process such as to provide a

better identification for the minority class instances. As presented previously,

misclassification costs are represented via a cost matrix M = (cij)nxn. One of the most

important difficulties when dealing with different error costs is the quantification of

misclassification costs. Even if it is relatively easy to determine which errors are more severe

than others (e.g. in medical diagnosis c12 > c21), it is difficult to quantify the gravity of an

error exactly, since this may translate, indirectly, into more serious social/moral dilemmas,

such a putting a price tag on human life.

In the ECSB approach, the cost matrix (M) for the given imbalanced problem is

determined indirectly, following a genetic search. The result of the search is influenced by

tuning the fitness function employed, which can be more easily translated, given a specific

problem, than directly setting the cost matrix. For example, it is more reasonable to state that

the objective is to maximize both TPrate and TNrate in medical diagnosis, or to maximize

precision in online advertising, than it is to set specific error costs.

The implementation of the cost-sensitive component considers three cost-sensitive

strategies:

(1) Reweight/resample training instances according to the total cost assigned to each class

(CSr) [Wit05];

(2) predict the class with minimum expected misclassification cost, instead of the most

likely class (CS) [Wit05]:

(7.3)

 (7.4)

(3) Utilize an ensemble method to re-label the training instances according to the Bayes

optimal prediction principle, which minimizes the conditional risk (MC) [Dom99].

),(minarg)(ixLxprediction
i




j

ijcxjPixL)|(),(

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

77

The Genetic Component

 We have utilized the General Genetic Algorithm Tool for implementing the genetic

component [Der02]. It provides the traditional genetic algorithms (GA) search organization,

parent selection and recombination techniques. The specificity of our implementation is the

problem representation and the fitness function(s) employed. The following sub-sections

present the GA flow and the employed GA mechanisms, and the specific problem

representation.

 Search Organization

 The search process starts with the initial population, i.e. a set of potential solutions,

generated randomly (lines 1 and 2 in the pseudocode snippet below). By repeatedly applying

recombination operators to some of the individuals in the population over a number of cycles,

an element (or group of elements) is expected to emerge as a good quality approximate

solution to the given problem (the loop between lines 3 and 9). Following a strategy similar

to steady state evolution, in each cycle a number of new offspring is generated (additional

pool). After evaluating their fitness (line 7), the fittest p_size individuals out of the old

population and the additional pool (the newly generated offspring) will constitute the new

population (line 8):

(1) population = generate_initial_population(p_size)

(2) evaluate_fitness (population)

(3) repeat

(4) parents = select(population)

(5) offspring = crossover(parents)

(6) mutate(offspring)

(7) evaluate_fitness (offspring)

(8) insert (offspring, population)

(9) until (termination_condition)

(10) return best_individual

 This strategy considers elitism implicitly. The search process stops when one of the

following occurs: the optimal fitness value is reached, the difference between the fitness

values of the best and the worst individuals in the current population is 0, or a fixed (pre-

determined) number of crossover cycles have been performed:

Representation and Fitness Function

 Each individual consists of four chromosomes (Figure 7.15): the first two representing

each a misclassification cost (elements of M), and the last two representing parameters for the

base classifier (elements of S). Although we have considered only two parameters for S –

since most base classifiers used in the experiments have only two important learning

parameters – the method can be extended to search for a larger number of parameters,

depending on the tuned classifier. The first two chromosomes in the individual represent the

meaningful coefficients of the 2x2 cost matrix. We assume the same reward (i.e. zero cost)

for the correct classification of both minority and majority classes. Each chromosome

consists of 7 genes, meaning that each cost is an integer between 0 and 127. We considered

this to be sufficient to account even for large IRs. Gray coding is employed to ensure that

similar genotypes produce close manifestations (phenotypes).

 Fitness ranking is used to avoid premature convergence to a local optimum, which

can occur if in the initial pool some individuals dominate, having a significantly better fitness

than the others. Since establishing how to assess performance is essential in imbalanced

problems and there is no universally best metric, which captures efficiently any problem’s

goals, we have implemented several different fitness functions, both balanced and (possibly)

imbalanced.

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

78

c1,2 c2,1 setting_value1 setting_value2

Figure 7.15 – Individual representation

For consistency with the literature, we sometimes employ TPrate and sometimes recall

for referring to the same measure:

1. GM (geometric mean) = raterate TNTP *

(7.5)

2. BAcc (balanced accuracy) =
2

raterate TNTP 

(7.6)

3. FM (fβ-measure) =
recallprec

recallprec




*
)1(2 (7.7)

4. LIN (linear combination between TPrate, TNrate) = α*TPrate + (1-α)*TNrate (7.8)

5. PLIN (linear combination between recall, prec.) = α*Recall + (1- α)*Prec (7.9)

7.3.2 Experimental Evaluation

 This section presents the experiments performed to validate the ECSB method and to

compare it with recent proficient strategies. The next sub-section presents the general setup: it

includes the evaluation methodology employed throughout the experiments, as well as the

mechanisms and settings employed. Three different evaluation suites are then presented, with

discussions of the results. A first set of tests evaluates comparatively the performance of

different specializations of ECSB on large IR, small IAR datasets, since previous analyses

[Lem11b] have shown that classifiers are most affected on such problems; the second

presents a comparison between ECSB and a prominent under-sampling strategy for

imbalanced data: Evolutionary Under-Sampling [Gar09]; and the third analyzes the

improvement of ECSB on the SVM classifier, in comparison with a recent SVM ensemble

method for imbalanced problems [Tia11].

Experimental Setup

 Experiments have been carried out following a 2-fold cross-validation schematic

(except for the third set of experiments). Generally, the following have been compared: (1)

the results of the classifier on the imbalanced domain with default settings (Base) with (2) the

results obtained by the same classifier following data pre-processing with SMOTE [Cha02]

and default settings (Base+SMOTE), (3) the results obtained by the classifier on the

imbalanced domain following a parameter tuning stage, performed with the genetic

component of ECSB (ECSBT) and (4) the results obtained by a classifier wrapped in our

ECSB method (ECSB).

 The specific mechanisms and setting values employed for the genetic component are

presented in Table 7.5. Several fitness functions have been considered. No tuning has been

performed on the settings of the component so far. Five classifiers have been included in the

experimental study, belonging to different categories: lazy methods (k-nearest neighbor –

kNN), Bayesian methods (Naïve Bayes – NB), decision trees (C4.5), support vector machines

(SVM) and ensemble methods (AdaBoost.M1 – AB). MLP has been excluded from these

experiments because it generally proved to be more robust than the other five methods in

imbalanced scenarios, and therefore the necessity for improvement is not as acute; moreover,

it is impractically slow in combination with the ECSB method. Table 7.6 describes the

parameters considered for each classifier (for ECSB and ECSBT).

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

79

Table 7.5 – Specific genetic mechanisms employed

Setting Value
Population type Single, similar to steady state
Initial population generation Random
Population size 20
Additional pool 10
Crossover cycles 200
Parent Selection Roulette wheel
Recombination Operators Crossover: random crossover, 4 points

Mutation: single bit uniform mutation, 0.2 rate

Fitness functions GM; BAcc; FM; LIN; PLIN

Other Fitness ranking
Elitism, implicit with use of single population

Table 7.6 – Classifier parameters considered

Classifier Parameters Type and range

kNN K – number of neighbors Integer between 1 and 10

C4.5 C – confidence ratio Real, between 0 and 0.4

M – minimum number of instances per leaf Integer, between 1 and 5

NB n.a. n.a.

AB P – weight threshold for weight pruning Integer, between 1 and 127

I – number of iterations Integer, between 1 and 30

SVM C – complexity Real, between 1 and 100
E – exponent Integer, between 1 and 11

General validation on large IR, small IAR datasets

 A first analysis has been performed on benchmark datasets having large IR and small

IAR, as considered in [Lem11b], i.e. five datasets with IR between 5 and 16 and IAR below

60 (Table A.7.2, Appendix A). This combination of imbalance-related factors has been

shown to produce a strong reduction in the performance of classifiers. Our experiments have

yielded an average TPrate value between .27 (SVM) and around .6 (NB and MLP). All three

cost-sensitive strategies were considered (MC, CS and CSr), and five different fitness

functions (GM, BAcc, FM with β=1, LIN and PLIN, the last two having α=0.7). This results

in 15 combinations for the ECSB method, compared with the results obtained by the

classifier alone (Base), the classifier with SMOTE (Base+SMOTE) and the classifier with

tuned parameter values (ECSBT).

 The results are presented in fig. 7.16. For viewing purposes, the different methods

have been numbered from 1 to 18; please refer to the legend for identification. Each bar in the

diagrams represents the overall average score (under the specific metric) obtained by all five

classifiers, using the corresponding method. For example – in diagram (c), the first bar

represents the overall average TPrate obtained by all five classifiers on all datasets, under

imbalance conditions (~2.2), while the fourth bar represents the overall average TPrate

obtained by all five classifiers on all datasets obtained by ECSB using BAcc as fitness

measure and CS as cost-sensitive strategy (~2.8).

Several remarks can be made regarding these results: (1) using balanced metrics as

fitness measures, such as GM or BAcc, produces significant improvements in the TPrate

(second and fourth groups in Figure 7.16 (c)) and good improvements in FM and BAcc

(second and fourth groups in 7.16 (a) and (b)); (2) FM is not effective as fitness measure

(third group in all diagrams); (3) the linear combination between TPrate and TNrate (α=0.7) as

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

80

fitness function does not improve TPrate significantly (fifth group in 3.c), but instead it

improves Prec (fifth group in 7.16.(d)); (4) the linear combination between recall and

precision (α =0.7) as fitness score yields the most important improvement in TPrate (last group

in 7.16.(c)), but it degrades precision (1.16.(d)) – since α=0.7, more importance is given to

improving recall than to precision; (5) for the SVM, both the TPrate and the precision are

significantly improved through the ECSB method (7.16.(c) and (d), the top portion of the

bars); (6) out of the three cost-sensitive strategies evaluated, the most successful is CS (the

first bar in each group from the second to the last), i.e. predict the class with minimum

expected misclassification cost, instead of the most likely class.

Therefore, balanced metrics (except FM) are generally appropriate as fitness measures

for ECSB in imbalanced problems; when the recall is of utmost importance (e.g. medical

diagnosis), using the linear combination between recall and precision, with a high value for α,

is appropriate; this is also suitable when both precision and recall (TPrate) are important (e.g.

credit risk assessment), but with a lower value for α. Cost-sensitive prediction is the most

appropriate strategy to employ.

(a)

(b)

(c)

(d)

1 – Base
2 – Base+SMOTE
3 – ECSBT

7 – ECSB(CS, FM)
8 – ECSB(CSr, FM)
9 – ECSB(MC, FM)

13 – ECSB(CS, LIN)
14 – ECSB(CSr, LIN)
15 – ECSB(MC, LIN)

4 – ECSB(CS, BAcc)
5 – ECSB(CSr, BAcc)
6 – ECSB(MC, BAcc)

10 – ECSB(CS, GM)
11 – ECSB(CSr, GM)
12 – ECSB(MC, GM)

16 – ECSB(CS, PLIN)
17 – ECSB(CSr, PLIN)
18 – ECSB(MC, PLIN)

Figure 7.16 – F-measure, Balanced accuracy, TPrate and Precision obtained by the various methods on the

large IR, small IAR data

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

81

Comparative Analysis with Evolutionary Under-Sampling

A second analysis was performed on a set of 28 imbalanced benchmark problems

(Table A.7.3, Appendix A) from [Gar09], in order to compare our results with the

performance of the Evolutionary Under-Sampling (EUS) strategy presented there. EUS has

been shown to produce superior results when compared to state-of-the-art under-sampling

methods, making it a good candidate for imbalanced datasets, especially with a high

imbalance ratio among the classes. In this set of experiments, we have employed CS as cost-

sensitive strategy and GM as fitness function – because it is the function employed in the

most successful EUS model. We have also considered in the comparison the classifier with

default settings (Base), the classifier with SMOTE and default settings (Base+SMOTE) and

the classifier with tuned parameter values (ECSBT).

The results of this second analysis are shown in Tables 7.7 and 7.8. It can be observed

that ECSB significantly boosts the performance of classifiers when compared to their

behavior on the original problem (except for the AUC for AdaBoost.M1 – Table 7.12); on the

average, there is ~25% relative improvement on the GM and ~5% on the AUC; the most

significant improvements have been obtained for the SVM classifier (~ 86% relative

improvement on GM and 16% on AUC). Also, it yields significant improvements over

SMOTE and ECSBT (~17% and ~14%, respectively, relative improvement on GM and ~5%

and ~2%, respectively, on AUC). Slight improvements over the best EUS method have also

been observed (i.e. the specialization of EUS which achieved the best performance in the

above cited work): up to 9% relative improvement in AUC.

Table 7.7 – Average GM (with standard deviations) obtained by the various methods

GM
Best EUS

[Gar09]
Base

Base

+SMOTE
ECSBT ECSB

mean stddev mean stddev mean stddev mean stddev mean stddev
kNN .797 .169 .731 .225 .744 .218 .762 .230 .817 .173
C4.5

.660 .317 .716 .254 .635 .307 .796 .179
NB .754 .202 .771 .164 .754 .202 .814 .129
AB .640 .314 .658 .306 .619 .323 .798 .188
SVM .431 .401 .558 .358 .750 .213 .803 .184

Table 7.8 – Average AUC (with standard deviations) obtained by the various methods

AUC
Best EUS

[Gar09]
Base

Base

+SMOTE
ECSBT ECSB

mean stddev mean stddev mean stddev mean stddev mean stddev
kNN .809 .170 .803 .144 .803 .144 .848 .140 .867 .128
C4.5 .797 .147 .797 .147 .786 .157 .830 .125
NB .873 .110 .873 .110 .874 .111 .874 .111
AB .892 .105 .892 .105 .891 .098 .878 .121
SVM .714 .175 .714 .175 .790 .143 .830 .132

Comparison with a SVM Ensemble Method

 To further validate our method, experiments on several datasets reported in [Tia11]

have been conducted, to compare the ECSB method with the complex SVM ensemble

method proposed there. Its effectiveness has been shown through comparisons with other

available solutions: sampling (under- and over-) and ensemble approaches (bagging and

boosting), under various metrics: precision, recall and f-measure. The reason for performing

such an analysis can be found in [Lem11b], where it has been discovered that the

performance of the SVM is significantly reduced in imbalanced domains.

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

82

Table 7.9 – Recall, precision and f-measure obtained by ECSB, compared to the

SVM ensemble method

ECSB

SVMEns

[Tia11]

mean
stderr
(mean)

mean
stderr

(mean)
Recall
Breast-cancer .513 .062 .509 .011
Cars 1.0 .0 .977 .005
Glass .8 .07 .65 .017
Balance-scale .92 .042 .879 .022
Average .808 .044 .753 .01
Precision
Breast-cancer .453 .033 .475 .009
Cars 1.0 .0 .124 .004
Glass .909 .045 .929 .005
Balance-scale .082 .277 .140 .015
Average 0.611 .089 .417 .008
F-measure
Breast-cancer .457 .043 .491 .006
Cars 1.0 .0 .213 .005
Glass .822 .048 .764 .008
Balance-scale .486 .027 .241 .011
Average 0.691 .03 .427 .008

Ten-fold cross-validation was employed in these experiments; for the ECSB method,

BAcc was used as fitness function and CS as cost-sensitive strategy. Due to time limitations,

the analysis has been restricted to the first four datasets employed in [Tia11] – Table A.7.4,

Appendix A.

The results are presented in Table 7.9. They indicate that the ECSB method achieves

more significant improvements than the SVM ensemble method in terms of recall, keeping

precision at approximately the same levels (in three out of the four datasets, the F-measure

has significantly higher values for ECSB than for SVMEns). On the average, the relative

improvement on recall is of ~7%, and on FM of ~60%.

7.4 Conclusions on Imbalanced Classification

 All traditional algorithms are affected to some extent by the class imbalance problem.

Also, the correct choice of the metric (or combination of metrics) to assess – and ultimately

improve, is essential for the success of a data mining effort in such areas, since most of the

time improving one metric degrades others.

A series of methods which deal with the class imbalance have been proposed in the

literature over the last years. Sampling strategies are important because they can be used as

pre-processing strategies. However, some approaches are difficult to employ by a less

experienced user – e.g. some require setting the amount of sampling. Most importantly, to

maximize their effect, they need to be matched to the specific classifier employed.

Modifications to basic algorithms have also been proposed in the literature, with good

performance improvements, but each is restricted to a specific class of techniques.

A first original contribution presented in this chapter is the systematic study which

assesses the behavior of traditional classification algorithms under imbalanced class

distributions. A large number of real-world benchmark datasets have been considered, of

different sizes, IR, IAR and complexities. Representative algorithms belonging to a wide

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

83

spectrum of techniques have been included in the study and various performance metrics

have been measured.

The results have confirmed that all methods suffer, to different extents, of

performance degradation in such scenarios, with the MLP being – in general – the most

robust, and the SVM the most prone to performance degradation. Also, the IAR, which

encapsulates size and complexity information, provides a better characterization of a dataset

than the size and complexity measures taken separately. The IAR meta-feature also

represents an original contribution. Reducing the level of pruning improves the decision

trees’ capacity to identify minority class instances.

 To overcome the above mentioned limitations, a new general hybrid strategy for

improving the performance of classifiers in imbalanced problems has been proposed. The

method, Evolutionary Cost-Sensitive Balancing (ECSB), is a meta-approach, which can be

employed with any error-reduction classifier. Two strategies are followed by the method

simultaneously: tune the base classifier’s parameters and use a cost-sensitive meta-classifier

to adapt to the imbalance. A great advantage of the method, besides its generality, is that it

needs little knowledge of the base classifier; instead, it requires specific knowledge of the

domain to select the appropriate fitness measure.

 We have performed several evaluations on benchmark data, to validate the method

and compare it with current state of the art strategies for imbalanced classification. The

results have demonstrated the following:

 the ECSB method significantly improves the performance of the base

classifiers in imbalanced conditions, achieving superior results to sampling

with SMOTE or adapting the algorithm to the imbalance via evolutionary

parameter selection;

 ECSB achieves superior results to current prominent approaches in literature:

Evolutionary Under-Sampling and a complex SVM ensemble;

 the most successful cost-sensitive strategy is predicting the class with

minimum expected misclassification cost, instead of the most likely class

(CS);

 balanced metrics are generally appropriate as fitness functions (except for the

F-measure); for extreme problems – e.g. precision is of utmost importance, or

recall is the only important measure – imbalanced metrics, such as the

parameterized linear combination of recall and precision (with the appropriate

value given to α) are more suitable.

 Our current focus is on improving the method training time, which is influenced by

the size of the data and the base classifier employed. At the moment we have experimented

with a sequential implementation, but the method presents a great parallelization potential

and we expect that the parallel version will run significantly faster. Also, in the current

implementations we have experienced with a fixed set of GA parameters, which cannot be

the best for all problems. Adding an extra layer to the genetic search component, which will

focus on finding the most suitable GA parameters for the given problem, is also a current

focus.

 The original ECSB method, the new data meta-feature (IAR) and the associated

experimental studies presented in this chapter have been disseminated through a research

paper submitted at the Data Mining and Knowledge Discovery Journal (revision requested):

1. Potolea R. and Lemnaru C., “Evolutionary Cost-Sensitive Balancing: A Generic

Method for Imbalanced Classification Problems”, submitted at Data Mining and

Knowledge Discovery, revision requested

a research paper in Lecture Notes in Business Intelligence Processing (in publication):

Chapter 7 – Classification in Practice II: Imbalanced Class Distribution

84

1. Lemnaru C. and Potolea R., “Imbalanced Classification Problems: Systematic

Study, Issues and Best Practices”, to appear in Lecture Notes in Business

Information Processing, 2012

and 2 research papers, presented at renowned international conferences:

1. Potolea, R., Lemnaru, C., “Dealing with Imbalanced Problems: Issues and Best

Practices”, Proceedings of the 12
th

 International Conference on Enterprise

Information Systems, Volume 2, AIDSS, June 8 - 12, pp. 443-446, ISBN 978-

989-8425-05-8, 2010

2. Potolea, R., Lemnaru C., "A Comprehensive Study of the Effect of Class

Imbalance on the Performance of Classifiers" Proceedings of the 13
th

International Conference on Enterprise Information Systems, vol. DISI, pp. 14-

21, 2011

Chapter 8 – Case Studies

85

8 Case Studies

This chapter presents a series of case studies, which follow the general DM process in

the attempt to tackle certain problems which arise in specific application domains, by

providing “recipes” with a certain level of generality, such that they are not restricted to the

exact problem constraints they are designed for. All solutions investigate several DM steps

and some apply methods from the previous chapters. The problems tackled are: automatic

classifier selection via meta-learning, which resulted in a framework that can be used for

classifier selection in any problem domain; data partitioning strategies, which have been

analyzed both generally and in the specific context of digital signature recognition, resulting

in a hierarchical model for offline signature recognition; speed-up through parallelization,

which resulted in a parallel implementation of a well-known decision tree classifier and a

parallel GPGPU-based lightweight genetic framework; specific real-world DM application

scenarios – community structure detection in social mining, spam prediction in spam

filtering, user type identification in adaptive e-learning systems and a semi-supervised

opinion mining technique.

8.1 Meta-learning: Automated Classifier Selection

Selecting the appropriate learning algorithm for a new problem, given its specific

particularities, is a complex task, even for the experienced data analyst, as hidden knowledge

is present in data. Such knowledge can seldom be surmised by the domain experts, and

almost never by the data analyst. Therefore, an initial assessment should be performed, in

order to identify the most promising knowledge extraction methodology for the given

problem. The process usually involves creating several models with different learning

algorithms under various settings and evaluating their performance with respect to the

requirements of the problem. The analyst can then choose the learning algorithm and the

settings which best fit the context. The time required to build a model increases with the

complexity of the model and with the size of the input data. Running and evaluating a large

number of learning algorithms is therefore unfeasible.

A suitable approach involves comparing the new problem with a set of problems for

which the learning algorithm performance is already known [Ben00, Vil04]. The analyst must

identify the problem which most resembles the analyzed data. Consequently, the same

learning algorithm and settings which obtained the best results on the former problem(s) is

expected to achieve similar performance on the new problem. To make use of this approach,

the expert should evaluate with various techniques a large amount of problems. Also, the

success of the selected learning algorithm on the new problem depends on the expert’s

strategy for selecting similar problems.

This section offers an overview on the efforts we have invested into developing a

semi-automated classifier selection framework which employs meta-learning techniques to

indicate the most appropriate prediction strategies for a new data mining problem.

8.1.1 Baseline Performance Assessment

Classification algorithms are different in their approach, and hence they achieve different

performance levels for different applications. These particularities have led to an increasing

interest towards trying to combine the predictions of several algorithms, in order to obtain a

scheme that performs well in several different areas. Ensemble methods are known to reduce

the variance of learning algorithms, while the bias remains unchanged, or increases. This

means that if the base classifier possesses a large bias on a given problem (i.e. the decision

boundary doesn’t match the form of the separation boundaries the algorithm can learn), the

ensemble will also possess a large bias, resulting in a low performance. In addition,

establishing a lower threshold to the accuracy on a certain problem is essential in classifier

Chapter 8 – Case Studies

86

selection, for establishing the baseline performance. Thus, we have developed a classifier

fusion system based on the principles of the Dempster-Shafer theory of evidence combination

[Mol10, Mur10]. The system tackles the advantages of combining different sources of

information to reduce bias and attain a high degree of stability across different problem

domains. The uncertainty evaluation provided by the Dempster-Shafer theory also contributes

to achieving this stability. Comparative evaluations have been performed on benchmark data,

using representative algorithms from various categories [Mur10]. The results have indicated

that the best Dempster Shafer combination of classifiers is always superior to the average of

individual classifiers that it combines. More than that, the combination yields better

performance than the best individual classifier on four of the eight datasets investigated. The

second best combination almost always exceeds the average of individual classifiers. Both

best and second best combinations are constantly (with a single exception) represented by 5-

classifier pair-wise combinations. A combination which repeatedly yields high performance

values is the ((NB, J4.8), (SVM, MLP), KNN) pair-wise combination. The superiority of

(DT, BN) pair is expected, since the two classifiers are biased by different types of non-

relevant features. The weakness of one learner (correlated features for NB, irrelevant for DT)

is the strength of the other one, so they compensate each other. Also, while SVM may be

seriously affected by the absence of appropriate support vectors (i.e. lack of important

instances in the training set), MLP may compensate such a deficiency through weights

adjustments in the training stage, and thus compensates the SVM weakness. The relative

performance improvement in the best case, compared to the average performance of the

individual classifiers is of up to 3.69, and 1.38 compared to the individual classifiers involved

in the combinations.

Therefore, the evaluations have confirmed the assumptions related to stability and

thus allowed the formulation of a method for establishing the baseline accuracy for any

problem domain. The choice of a specific learning scheme for a certain problem is justified

only if its performance is better than that of the system.

8.1.2 A Framework for Automated Classifier Selection

In [Cac09, Cac10, Pot11b], we have designed and evaluated an evolutional meta-

learning framework for automatic classifier selection, which ranks and suggests accurate

learning algorithms for a new problem submitted to the system (together with specific user

requirements). The highest ranked algorithm is expected to induce a model which achieves

the best performance under the given conditions. Several original design elements have been

introduced into the framework. The user involvement is limited to providing the input

problem (i.e. a dataset which the user needs to classify) and specifying the requirements (such

as the interest metric, interpretable vs. non-interpretable model, etc). The result is presented

as a list of learning algorithms, arranged in decreasing performance order. Recommending

more than a single learning algorithm is important as it allows users to decide on the specific

strategy they want to follow (from the trade-off between speed and performance, to the

availability of tools, or existing knowledge to deal with necessary techniques). The system

also minimizes the time it takes to provide the results by organizing tests in a queue. The

queue is ordered according to priority and it pushes slower tests to the end. The system’s

knowledge about the dataset space continuously improves by storing the results of all the

tests run on new datasets. As more datasets are stored in the database, new (closer) neighbors

are introduced, thus increasing the accuracy of the predicted order of tests.

The conceptual model of the framework is presented in figure 8.1. The process of

obtaining the predictions is roughly divided into selecting the similar problems and obtaining

predictions from similar problems. In order to provide accurate predictions for new datasets

the system relies on existing problems and the solutions obtained on those problems

(classifier + performance). It must have the ability to increase its knowledge by adding new

Chapter 8 – Case Studies

87

problems and the corresponding solutions. The evaluation of the performance of the

algorithms on existing problems is performed mainly in the initialization phase.

After a significant number of problems have been collected, the system is expected to

produce reliable outcomes, in the prediction phase. In this phase, a new problem is submitted

to the system, along with its requirements. The system must find similar problems in its

collection. The similarity refers to the resemblance, in terms of meta-features, between the

problem under evaluation and problems in the collection, and is evaluated by computing a

distance between the analyzed problem and the stored problems. A subset of the nearest

stored problems is selected as neighbors of the analyzed problem.

The results obtained by the learning algorithms for every neighbor problem are known

(represent background knowledge, stored in the collection, together with the datasets and

their meta-features). The performance score of each classifier is obtained by inspecting the

results obtained by that classifier from the perspective of the user requirements. The

framework then predicts the performance score for the classifier on the analyzed problem as a

combination of the performance scores obtained by that classifier on the neighboring

problems. The final list of recommended learning algorithms is ordered by their predicted

performance scores. An extension of the initialization phase runs during the system idle time,

when no predictions need to be performed. More specifically, the system extends its

knowledge by evaluating models on newly added problems and saving the results.

The meta-features employed for dataset distance computation have been grouped into

four categories: (1) general attribute-related meta-features (such as number of attributes and

their types), (2) properties of the nominal and binary attributes (such as the minimum and the

maximum number of distinct values, the mode and the standard deviation, the mean entropy),

(3) the properties of the continuous attributes (mean skewness, mean kurtosis) and (4) dataset

dimensionality (number of instances, imbalance rate).

Various performance metrics have been introduced within the framework, both

balanced and imbalanced. For allowing users from different areas of expertise to discover a

generally good classifier, an original evaluation metric has been proposed, which combines

the accuracy, the geometric mean and area under the ROC curve:

3

AUCGMAcc
gM


 (8.1)

The classifier prediction process is divided into three phases: distance computation,

neighbor selection and prediction computation (or voting). For each of these phases we have

proposed and evaluated several strategies [Pot11b]:

Figure 8.1 – Conceptual framework model

Chapter 8 – Case Studies

88

 Distance computation: Euclidean, Chebyshev, Top 3 Chebyshev, all

normalized

 Neighbor selection: Top 3, Above Middle (compute the mean of the closest

and furthest neighbors and use it as selection threshold), Above Median,

Above Mean

 Voting strategy: Democratic, Weighted

The prediction process should produce performance estimates which are as close to

the actual performance achieved by the classifier on the dataset, without surpassing it. Also,

strategies which minimize the deviation means for all metrics considered should be preferred.

Experimental evaluations

The system has been initialized with 19 benchmark datasets that range from very

small to medium sizes (up to 6000 instances). Also, the following classifiers are available:

Bayes network, Naive Bayes, decision trees, neural network, support vector machines (using

their implementations provided by WEKA). Evaluations have been performed using all the

possible combinations of the implemented strategies for distance computation, neighbor

selection and performance score prediction.

To perform a test suite, a performance metric has been selected and the following steps

have been performed:

1. select a strategy combination

a. select a dataset and use it as the analyzed dataset

i. use the remaining 18 datasets as datasets stored in the system

ii. use the selected strategy combination to predict performance

iii. compare the predicted performance with the actual performance obtained in

the initialization stage on the selected dataset

b. select next dataset

2. compute the deviation mean and the absolute deviation mean on all datasets and

classifiers for this strategy

3. select next strategy combination

The above strategy has been applied for the following metrics: accuracy, geometric

mean, generalized geometric mean, area under ROC, general purpose metric. The deviation

between the predicted and true performance has been computed as the difference between the

performance prediction and the actual performance. In case the system predicted that a

classifier achieves a higher performance than it actually obtained, this value is negative.

Figure 8.2 displays the absolute deviation means obtained by the different selection

strategies, under different performance metrics. It can be observed that the voting strategies

do not influence the final predictions very much. Weighted voting (W) obtains better results

than democratic voting (D), but in most cases the difference is so small that it does not justify

the additional resources needed to compute the weight of each neighbor. Moreover, the

distance computation and neighbor selection strategies that obtain the smallest absolute

deviations are, in order: Top 3 Chebyshev distance with Top 3 neighbor selection (C3-T3),

Chebyshev distance with Top 3 neighbor selection (C-T3) and Euclidean distance with

Above Middle neighbor selection (E-MID).

By analyzing the deviation mean results from figure 8.3, more details on the way each

strategy combination works can be inferred. Top 3 Chebyshev distance with Top 3 neighbor

selection (C3-T3) achieved negative deviation means for the accuracy and generalized

geometric mean metrics. Thus, the strategy combination is overly optimistic on these metrics.

The Chebyshev distance with Top 3 neighbor selection (C-T3) makes optimistic predictions

on the exact same metrics. This strategy combination seems to be the best choice when

Chapter 8 – Case Studies

89

predicting classifier performance evaluated with the general metric, but is not appropriate for

the other metrics in the system. The strategy combination with the best results on all metrics

is Euclidean distance with Above Middle neighbor selection and democratic voting (E-MID-

D). This combination obtains positive deviation means for most metrics, having a very small

negative deviation for the geometric mean. This is the preferred behavior for the system.

Figure 8.2 Absolute deviation means of different prediction strategies, under different metrics

Figure 8.3 – Deviation means of different prediction strategies, under different metrics

Chapter 8 – Case Studies

90

In conclusion, the strategy combination with the best results on all metrics is

Euclidean distance with Above Middle neighbor selection and Democratic Voting. It obtains

positive deviation means for most metrics, having a very small negative deviation for the

geometric mean. The tests also reveal that the voting strategies do not significantly influence

the final results.

8.2 Enhancements by Data Partitioning

Multiple meta-learning methods which employ some kind of data partitioning strategy

to evolve multiple sub-models, and combine the predictions to achieve increased

classification performance and/or scalability, have been proposed in the scientific community

[Bre96, Cha96, Fre97]. This section presents our work on the analysis of such an existing

technique and several enhancements and proposes new strategies for data partitioning and

combined prediction. Also, in the context of a specific DM application scenario, two case

studies are presented, in which hierarchical classification models using data partitioning

strategies are proposed, for two application scenarios: offline signature recognition and

network intrusion detection.

8.2.1 The Arbiter-Combiner

In [Mer09], we have explored several strategies for improving the classification

performance, via data partitioning. Based on the general arbiter method proposed in [Cha96],

we have developed a new method, which considers several enhancements over the general

scheme: automatic building of a perfectly balanced n-order tree; building a user specified

structure of the tree; different learners on each node of a specified tree structure; different

learners for arbiters and base classifiers with automatic tree building; data partitioning

according to the tree structure; no union of subsets required. We have performed empirical

evaluations on the new method, analyzing the impact of different parameters on the

performance: leaf number, order of the tree (and implicitly the height of the tree and number

of meta-classifiers), selection rule, and also of using a cost sensitive learning strategy instead

of the traditional ones. Also, we tried to improve the accuracy for under-represented classes

by applying random oversampling to the training data. We have also analyzed how the

predictive performance of classifiers improves along each level of the tree. Training the

classifiers was done using the same or different learning algorithms. The results indicated that

arbiter trees have similar or higher predictive performance when compared to the individual

classifiers, achieving a relative improvement of up to ~7% for the J4.8 classifier and of ~6.5

for the NB classifier. Binary arbiter trees obtained better results than higher order trees. The

different-arbiter selection rule performs the best compared to the other selection rules and

individual learners. Cost-sensitive learning on the leaves boosts the classification and/or

balances the confusion matrix. Moreover, random oversampling balances the confusion

matrix too. However, due to randomization, the predictive performance can sometimes

degrade.

In the same work, an original classification method using data partitioning has been

proposed: the arbiter-combiner, which specifies a regression model for each class, in each

node, except for the leaf nodes [Mer09]. During the evaluations performed on the method,

different order trees with different number of leaves were induced, in order to study the effect

of the number of leaves on the predictive performance of the model. During preliminary

testing, it was observed that too few instances propagate up to the meta-learner. The

minimum number of meta-instances was restricted to the number of records for a base/leaf

classifier. Two methods were tested to complete the training set for the meta-learner: include

instances randomly and weight the meta-instances and add them in increasing order of their

weight. The results have indicated that both binary and higher order trees yield good results.

Also, the arbiter-combiner strategy is fitted for imbalanced datasets with multiple class labels.

Chapter 8 – Case Studies

91

In real-world classification problems (such as medical diagnosis) such a situation often

occurs, and thus, the arbiter-combiner strategy might provide a more robust solution in these

cases than the strategies which first binarize the problem and then apply customized methods

for two-class imbalanced problems (as the ones presented in Chapter 7 of the current thesis).

8.2.2 A Hierarchical Model for Offline Signature Recognition

 The handwritten signature is perhaps the most employed authentication mechanism in

formal agreements, financial systems, various documents and artifacts. Despite several

known limitations, such as the relatively reduced robustness to forgery or signature style

variation when compared to more evolved biometrics authentication strategies, signature

recognition systems are widely employed, especially in authenticating banking documents,

due to their satisfactory performance per cost ratio. Just like any other DM system, a

signature recognition system operates in two phases: training and recognition. In offline

systems, the recognition phase does not occur in real-time, i.e. such systems do not employ

data on speed of writing, acceleration or number of strokes in writing for each sample.

However, their reduced cost makes them suitable for interpreting handwritten postal

addresses on envelopes, sorting mail by postal code, automated reading of checks and tax

returns or reading courtesy amounts on bank checks. The image processing and feature

extraction steps are of vital importance in such systems, since they produce the data for the

recognition process.

In [Bar09] an offline signature recognition system, which considered a wide collection of

predictive features, employed separately by different other systems, has been proposed. Also,

a new taxonomy of the types of features employed by such systems has been established and

two new distance-based features have been introduced. Several iterations on the data mining

process have been performed, completing the specific steps that were required by the specific

problem requirements. Two feature selection strategies have been explored (a wrapper and a

filter method), together with two classification strategies: Naïve Bayes and the Multilayer

Perceptron. The Naïve Bayes classifier has been found to obtain the best results under the

initial classification conditions, when compared to the Multilayer Perceptron – an accuracy of

~ 85%, compared to ~80%. Feature selection has further improved the recognition

performance to ~91.4%, for the Naïve Bayes classifier. The analysis on the learning curves of

the two classifiers indicated that the signature collection process should continue, since

neither curve seemed to stabilize, when using less than 20 instances per class. With the

addition of new data, increasing both the number of signatures/individual (i.e. instances/class)

and the number of individuals (i.e. classes), the model based on a single multi-class

classification step proved to possess insufficient separation capabilities (under-fitted the

problem).

Therefore, in [Bar10, Pot11a], the previously proposed system has been enhanced by

introducing a new method for hierarchically partitioning the training data using clustering.

The aim of the method was to improve the recognition rate and the scalability of the system,

by splitting the training data into smaller datasets, via clustering, and building classification

sub-models for each split. When a new signature instance is to be classified, the hierarchical

classifier first clusters it to find the best classification sub-model. It then presents the instance

to the specific classification sub-model, which assigns the appropriate class label to the

instance. Experimental evaluations have indicated that, for 76 classes and up to 20

instances/class, a number of 7-8 clusters generally yields good results. However, the optimal

value for the number of clusters depends on the number of instances used for training. Also,

several classifiers have been investigated for the classification step. The Naïve Bayes learner

was selected as being the most appropriate in the majority of cases, providing accurate sub-

models. Feature selection was again found to further improve the recognition performance,

Chapter 8 – Case Studies

92

achieving an increase of 1.62% on the accuracy against the initial model on a training set

having 14 instances/class and 3.23% on a training set with 20 instances/class.

8.2.3 A Hybrid Approach for Network Intrusion Detection

A Network Intrusion Detection Systems (NIDS) represents a combination of hardware

and software resources that are employed together in order to maintain system security by

examining network traffic and detecting signs of potential violations of security policies in a

computer network. NIDS’s are divided into two categories: misuse (also known as signature-

based) and anomaly detection systems. The first category encompasses systems which match

traffic data against a database of known attack signatures, while anomaly detection systems

employ learning models to separate between normal and anomalous traffic. Misuse systems

are heavily based on human expert knowledge about real world attack patterns. Anomaly

detection systems have an advantage over misuse systems because they can detect zero-day

attacks or new attacks that are not part of an attack signature database. Also, misuse detection

can impose noticeable overhead on systems when the network behavior matches multiple

signatures.

In [Lem12c] a hierarchical model for network intrusion detection has been proposed,

which combines the predictions of several binary classifiers at the first level and employs an

additional classifier on the second level, specialized on classifying “difficult” instances –

such as new types of attacks. The basic flow of the method starts with an initial data

preparation step, in which several pre-processing operations are performed on the available

training data, to improve its quality and generate the appropriate training sub-sets for the

binary classification stage. Each binary classification module is specialized on correctly

classifying a specific class of interest, and possesses the highest performance for that specific

class. The predictions obtained from the binary classifiers are processed using a voting model

which combines the individual predictions and generates the output prediction. In addition to

existing voting strategies, a new method for prediction combination is proposed, which takes

into account the data and error cost imbalance ((figure 8.4). More precisely, the predictions of

the binary modules are initially ranked according to domain knowledge – data distribution

and the gravity of failing to identify a specific class. Then, the instance to be classified is

presented, in turn, to each binary model, until one of them produces a positive identification,

i.e. the probability that the instance belongs to the given class is larger than the identification

threshold value. The identification threshold values are learned for each individual binary

model. Instances which cannot be classified via this mechanism (i.e. the voting strategy

cannot indicate a certain output label) are delivered to the level 2 classification module. The

conceptual architecture of the system is presented in figure 8.5.

The experiments were conducted on a dataset derived from the NSL-KDD Dataset

[Tav09], which is an improved version of the KDD CUP ’99 Dataset, having the following

classes: normal and anomalous traffic. Redundant or incorrect data, as well as duplicate

records have been removed from the initial dataset. The KDD CUP ’99 Dataset has been pre-

processed in a similar manner, to obtain a five-class dataset: the 4 classes of attacks

corresponding to four main attack categories (DoS - Denial of Service, Probe, R2L - Remote

to Local and U2R - User to Root) and the Normal class for non-attacks. Thus, starting from

the initial training set, which contains 23 classes (22 types of attacks and normal traffic

records), and testing dataset, with an addition of 17 new types of attacks, the attacks have

been grouped into the above mentioned 4 attack categories. This resulted in a KDD+4

Training and Testing sub-sets, each containing 41 attributes, divided into 3 categories

[Far09]. The first is represented by the duration, source bytes, destination bytes, service and

TCP flags; the second category comprises of the features related to packet content and the

last contains connection-related features, such as the connection time.

Chapter 8 – Case Studies

93

Figure 8.4 – Hierarchical prediction combination strategy

Figure 8.5 – Classification architecture

The resulting training and testing sets have been employed throughout the experiments and

are further referred to as KDD+4 sets.

The major challenge with the KDD+4 training and testing datasets is that they have

imbalanced class distributions. The class imbalance problem has been presented in Chapter 7

of the current thesis. Table 8.1 and Table 8.2 display the number of instances of each class in

the training and testing datasets. The second row of each table shows the value of the

imbalance ratio (IR) for each category of attack, relative to the normal traffic instances. It can

be seen that the R2L class has an IR of 1 attack instance to 67.68 instances of normal traffic,

but the highest IR appears for U2R, which has 1 attack instance to 1295 normal instances.

When handling such a dataset, classification algorithms are biased towards the majority class

due to its over-prevalence [Cha03].

Chapter 8 – Case Studies

94

Table 8.1 - KDD+4 Training Dataset

 DoS Probe R2L U2R Normal Total

No. Inst 45927 11656 995 52 67343 125973

IR 1.47 5.78 67.68 1295

Table 8.2 - KDD+4 Testing Dataset

 DoS Probe R2L U2R Normal Total

No. Inst 7458 2421 2852 67 9746 22544

IR 1.31 4.03 3.42 145.46

In addition, according to [Ngu08] and preliminary evaluations performed on the

training set, no single classifier can achieve a high detection rate for all types of attacks.

Thus, the focus is to obtain a high detection rate for each attack class, with major

improvements for the two least represented attack classes R2L and U2R – for which similar

systems in the literature achieved low recognition rates.

The tuning flow for the multiple classifier system on the first level is presented in

figure 8.6. Each binary classification sub-model has to be built such as to distinguish, as best

as possible, between a certain type of attack and normal packets. We have experimented with

several classifiers and settings for each individual binary problem. Following a series of

comparative evaluations, specific choices regarding the classifiers and settings, as well as

sizing and finding the optimal distribution for each binary problem have been made. They are

presented in the following. To determine the classifier that has the highest detection rate for a

certain class, the 5 binary datasets have been generated: the first four containing all instances

of a given attack type (as the positive class) and a sub-sample of normal instances (as the

negative class), respectively, and the fifth containing all the instances of the normal (positive)

class and a sub-sample taken from all attack types (negative class). The tests have been

performed using 5-fold cross validation and default classifier parameter settings, on nine

different classifiers belonging to different categories, employed previously by similar

systems. The top two classifiers which achieved highest TPrates and lowest FPrates for each

sub-problem are considered for further testing. Thus, the following classifiers have been

selected for subsequent evaluations: REPTree and RandomForest for the DoS module,

RandomForest and NBTree for Probe, BayesNet and NaïveBayes for R2L, NaiveBayes and

BayesNet for U2R, RandomForest and NBTree for Normal.

Modifying the distribution and volume of the dataset is done by using re-sampling

techniques. This set of tests has been performed by varying the distribution of the primary

class from 10% to 90%, with a 10% increment. Two different re-sampling strategies have

been explored: simple re-sampling and smart re-sampling. Simple re-sampling performs

random under-sampling on the majority class while oversampling randomly the minority

class. Smart re-sampling, on the other hand, performs oversampling by artificially generating

minority class instances using the SMOTE algorithm [Cha02]. The tests have been run on the

previously selected classifiers configured with the default parameters. The classifiers were

trained on 40% of each binary training set and validated on the remaining 60%. In order to

compare the results the Fβ-measure was employed, with β=2 for the strongly represented

classes (DoS, Probe, Normal) and β =4 for the weakly represented classes (R2L and U2R).

Chapter 8 – Case Studies

95

Figure 8.6 – Tuning stages for the multiple classifier system

We have selected this metric to assess the results since it is easier to compare between

different performance levels than analyzing the confusion matrix; moreover, by varying β

different importance levels can be assigned to the different attack classes. The results

indicated that the best distribution depends heavily on the problem at hand and the employed

learning method (table 8.3). Only in some of the cases the smart re-sampling produces

superior performance to the simple re-sampling strategies. If we take into account also the

speed of each approach, the employment of smart re-sampling techniques over simple

strategies is not justified.

For tuning the parameters of the classifiers employed in the binary modules, 5-fold

cross validation was employed, on the naturally occurring distribution. The best choices for

each module are: 16 trees and 11 attributes for the RandomForest in the Probe+Normal

module; for the DoS+Normal module, 4 trees and 22 features for the RandomForest

classifier; for R2L+Normal and the U2R+Normal module the default BayesNet settings; for

the Normal+Attack module, 20 trees and 14 features.

Table 8.3 – The best learning distributions for each module

Simple resampling Smart resampling

% minority Fβ-measure % minority Fβ-measure

DoS
REPTree 50 0.9997 40 0.9996

Random Forest 80 0.9999 70 0.9999

Probe
Random Forest 30 0.9977 40 0.9971

NBTree 50 0.997 20 0.9962

R2L
BayesNet 10 0.9578 10 0.9465

Naïve Bayes 30 0.7264 30 0.7204

U2R
Naïve Bayes 90 0.2382 60 0.3597

BayesNet 20 0.6607 20 0.6492

Normal
Random Forest 70 0.9988 80 0.9989

NBTree 70 0.9986 80 0.9983

Chapter 8 – Case Studies

96

Table 8.4 - TP and FN values obtained by the different voting strategies

Several different voting strategies have been considered for combining the individual

predictions of the binary classification sub-modules: majority voting (Maj), product voting

(Prod), average voting (Avg), maximum voting (Max), median voting (Med) – all available in

WEKA and the proposed voting strategy (Hierarchical).

All the configurations previously identified have been employed to train the overall

system. The results obtained by evaluating the fully configured system on the test set can be

seen in the first column of the Table 8.5. The results obtained by our system have been

compared to other systems evaluated on the KDD’99 datasets. The proposed hybrid system

yields significant improvements in the detection of minority classes compared to the other

systems [Gog10, Elk00]: 90% correctly labeled instances for the R2L class and 85% for the

U2R. These results are achieved with the level 1 multiple classification method alone; the

level 2 classifier is currently under development. We expect its addition to produce further

improvement in the recognition of attack instances.

8.3 Speedup and Scalability through Parallel/Distributed Strategies

There are situations in which specific problem requirements impose additional

constraints on the DM process. For example, when dealing with extremely dynamic

distributions (e.g. spam sdetection, network intrusion detection, etc) periodic re-training and

model fitting are necessary, making training time also a potential constraint. By exploiting

the parallelization potential of existing techniques, faster methods can be developed to

respond to such demands. In this sub-section we present our efforts to achieve speed-up

through parallelization on two important DM techniques, widely employed in the present

thesis: decision trees and genetic search. A parallel version of the Evolutionary Cost-

Sensitive Balancing method proposed in Chapter 7 is also presented.

8.3.1 dECSB – Distributed Evolutionary Cost-sensitive Balancing

In [Lem12a], an original distributed version of the ECSB method proposed in Chapter

7 has been developed. The necessity for such an approach has been dictated by the inability

to produce learning models, via ECSB, for relatively slower algorithms, such as SVM, on

slightly larger datasets (~5000 instances). This is because fitness evaluation within the GA

implies training and evaluating a cost-sensitive meta-classifier in a cross-validation loop.

Table 8.5 - Recognition rates/classes

Class Our System KDD Winner Catsub FCM SVM +DGSOT

DoS 97% 97% 100% 99% 97%

Probe 100% 83% 37% 93% 91%

R2L 90% 8% 82% 83% 43%

U2R 85% 13% 0% 0% 23%

Normal 89% 99% 82% 96% 95%

 DoS Probe R2L U2R Normal

TP FN TP FN TP FN TP FN TP FN

Maj 22587 4969 3814 3179 41 556 1 30 40401 4

Avg 22709 4847 3793 3200 43 554 1 30 40402 3

Max 27535 21 6761 232 462 135 5 26 40393 12

Med 6 0 22 0 25 0 11 0 0 40354

Prod 26869 20 3720 216 4 134 0 26 40393 11

Hierarchical 27556 0 6981 12 593 4 28 3 39954 451

Chapter 8 – Case Studies

97

Therefore, the complexity of the method depends on: the population size (N), the

number of generations (I) and the complexity of the cost-sensitive classifier, which, in turn,

depends on the complexity of its base classifier; since the cost-sensitive classifier intervenes

only at prediction time, by altering the predictions according to the given cost matrix, its time

complexity is dominated by the complexity of the base classifier employed; thus, the leading

term for the time complexity of ECSB is:

TECSB(m, n, N, I, k) = N × I × (k × Tbase(m, n)) (8.2)

where k is the number of folds in the cross-validation loop, m is the number of instances, n is

the number of attributes in the training set. Tbase can be further divided into training and

evaluation time complexity – most algorithms are computationally-intensive for the training

stage; an exception to this is the kNN classifier, or other “lazy” methods (i.e. which don’t

build a prediction model).

The distributed algorithm has five key elements: a candidate factory, evolutionary

operators (crossover and mutation), a fitness evaluator, a selection strategy and a

termination condition (as depicted in figure 8.6). The candidate factory is responsible for

generating the population of n candidate individuals. The genotype of an individual consists

of two chromosomes associated with the misclassification costs and two chromosomes

representing parameters of the base classifier used; these chromosomes are encoded in Gray;

their phenotypes are expressed as integers.

The evolutionary operators – crossover and mutation – are applied at bit level for each

chromosome. Multiple point crossover and single bit uniform mutation have been considered,

in the attempt to increase search variability. As different problems may require separate

evaluation strategies, we have assessed several evaluation metrics as fitness functions, both

balanced and imbalanced. In Chapter 7, we have concluded that the geometric mean, the

balanced accuracy and the linear combination between the true positive rate and precision are

the most appropriate under various settings, for different domains/problems. Fitness

evaluation is the major point for parallelization in our approach.

For the selection strategy used to filter the individuals in the current generation for the

evolution of the future generation, an elitism strategy has been considered. The amount of

individuals from the old generation which will be kept in the new one can be specified. This

mechanism has been employed in conjunction with the increased search variability, to

improve the robustness of the search, by encouraging the exploration of the search space

rather than favoring early convergence to highly fit individuals. Two parent selection

methods have been employed: rank selection and roulette wheel selection. Rank selection

provides an effective mechanism for controlling the selective pressure.

The end of the evolution cycle is controlled through the termination condition,

represented by reaching the predefined number of evolution cycles or a certain fitness level.

In the sequential ECSB, when evolving from one generation to another, fitness

computation represents the main bottleneck. Two types of “data” are utilized within ECSB:

(1) the instances in the training set used to build the classification model and (2) the

individuals in the genetic population (cost matrix and base classifier settings). Accordingly,

two distribution strategies have been considered.

The first approach is computation-driven (figure 8.8): the training set is replicated in a

distributed environment capable of splitting the GA population in multiple subsets of

individuals and performing parallel fitness evaluation for each subset of individuals (as

depicted in Fig. 3).

The time complexity of this approach can be expressed as:

 (8.3)
overheadT

r

n))(m,T *(k
*I*N= r)k,I,N,n,(m,T Base

dECSB

Chapter 8 – Case Studies

98

Figure 8.7 – Conceptual architecture of the Evolutionary Engine

where r represents the number of processing nodes, or, otherwise said, the splitting ratio, and

Toverhead represents the overhead introduced by splitting the problem and combining the

results. Generally, the first term is significantly larger than the second. This method should

provide the same quality of solutions as the sequential ECSB. As a possible limitation, since

the complexity of model generation and evaluation for a particular classifier is strongly

influenced by the size of the training set, when handling large training-sets this approach it

might not scale.

The second approach, which aims to avoid this drawback, is data-driven (figure 8.9):

the training set is divided into several partitions, keeping the same distribution in each

partition. The entire population is evaluated in parallel for each partition, and the fitness value

for an individual is computed as the average of the values evaluated on each partition. The

time complexity of this second approach can be expressed as:

 (8.4)

where r is the number of computation nodes and T’overhead is the overhead corresponding to

the distribution via this approach. Again, the leading term is the first one. It is easy to prove

that the data-driven approach has a lower time complexity than the computational-driven one

and thus we expect it to be faster and scale better to large datasets. The question with this

strategy is whether the overall performance of the solution is affected, due to the lack of

sufficient representative instances in some partitions. Which of the two approaches is better

depends on the specific problem characteristics.

The development context for our proposed solution plays an important part in the

success of the deployment. The major prerequisites are: a background capable of sustaining

distributed computations on large training sets. Such an infrastructure should expose its

features to a more abstract layer were the conception of data and computation intensive

solutions are not dependent on low level infrastructure issues.

Figure 8.8 – Computation-driven approach

Figure 8.9 – Data-driven approach

overheadT 'n)) ,
r

m
(T *r*(k*I*N= r)k,I,N,n,(m,T BasedECSB 

Chapter 8 – Case Studies

99

On top of these two layers, a framework for developing evolutionary algorithms is

required. In figure 8.10, the layers discussed above are illustrated, with reference to the

existing frameworks employed to sustain our approach.

For the outmost layer Hadoop
3
 has been selected. It provides a distributed file system

and also a distributed computation engine based on the map/reduce paradigm, for performing

real time computations in a scalable context. From a practical point of view, we use Hadoop

map tasks for evaluating an individual or a population of individuals. This is done by writing

Java-based Hadoop map tasks where WEKA is used for performing the actual evaluation.

The basic flow covers: deploying the map task to a node where the dataset is present, loading

the dataset, creating a WEKA evaluator, training the evaluator on the loaded dataset,

evaluating the created model(s) and expose the evaluation result(s) in the Hadoop context.

The reduce task implementation depends on the distributed fitness evaluation strategy used.

On the second layer we need a solution able to distribute our fitness evaluation. The

Mahout
4
 framework provides a possible solution for this layer, making all configuration and

implementation details transparent to the developer when writing a scalable machine learning

application. One feature of Mahout is the possibility of running distributed genetic algorithms

implemented in the Watchmaker
5
 framework. For the second approach in distributing fitness

evaluation (data-driven fitness evaluation) we developed our own solution. It is a Java-based

implementation of Hadoop and Watchmaker interfaces, acting a bridge between Hadoop and

Watchmaker.

For the third layer, the Watchmaker framework is used, which supports the

development of scalable GA’s, by providing a non-invasive API and a reasonable collection

of specific GA mechanisms. From a structural point of view, our solution is mapped onto the

Watchmaker architecture, using some components already available within the framework.

We are currently performing a series of evaluations, comparing dECSB to the

sequential version of the method and to other techniques for imbalanced classification.

Preliminary results indicate that dECSB improves the performance of the classifiers, under

almost all the metrics considered. Also, tuning the GA parameters is likely to produce further

improvements in performance. Time measurements indicate that the data-driven approach is

the most appropriate of the two strategies adopted [Lem12a].

Figure 8.10 – Architectural context

3
 http://hadoop.apache.org/

4
 http://lucene.apache.org/mahout/

5
 http://watchmaker.uncommons.org/

Chapter 8 – Case Studies

100

8.3.2 A Parallel Decision Tree

A serious limitation of decision trees, rooted in the splitting mechanism, is the

memory requirement. In order to compute the value of the splitting function for an attribute,

all training instances need to be processed. As the size of the training set increases, loading

all instances into the main memory at once becomes impossible. Several solutions address

this shortcoming, the most prominent being the SPRINT („Serial PaRallizable INduction of

decision Trees”) algorithm [Agr96] and SLIQ [Meh96]. Starting from the SPRINT decision

tree, an original parallel version of the algorithm, with several proposed improvements over

the sequential version has been proposed [Dod11]. The splitting criterion employed is the

Gini index and pre-pruning was used as control mechanism for the size of the resulting tree.

The method eliminates the memory issue by using the auxiliary structure proposed in

SPRINT – the attribute list – and maintaining the data in a relational database. Speed-up is

achieved by evaluating each possible split point in parallel.

The experiments performed have shown that the parallel implementation outperforms

the sequential implementation on each platform considered, achieving significant speed-up

factors (up to 3 times faster on a quad core). Moreover, the results have indicated that by

increasing the number of threads which can be generated at a time, the performance of the

parallel implementation improves significantly (the parallel implementation achieved 4x

speed-up on a quad core compared to the dual core).

8.3.3 A Lightweight Parallel Genetic Algorithms Framework

In [Fei11] a series of genetic mechanisms, which have later been employed in a

lightweight parallel genetic framework, have been introduced. In the above cited work, the

developed mechanisms have been presented in the context of providing efficient solutions to

NP-complete problems. Therefore, a parallel genetic algorithm has been developed, using the

General-Purpose Computation on Graphics Hardware (GPGPU) paradigm and the available

NVIDIA CUDA
6
 parallel computing platform and programming model. An island-based

approach for the genetic search engine has been investigated, to isolate populations within a

block and minimize inter-block communications. This is desirable for both the algorithm and

the GPU-based implementation: at algorithm-level, subsets of individuals search for an

optimum, while at implementation-level no inter-block synchronization is required, each

island evolving separately in a block. Each population is mapped on a CUDA block, and each

genotype in the population on a thread. The entire algorithm is run on the GPU to minimize

the communication between the GPU and CPU. The result is passed to the CPU at the end of

the execution. During the evolution, each thread generates an offspring from two selected

parents, using crossover and mutation operators. Parent selection is roulette wheel with

scaling on the fitness scores.

Evaluations on several traditional NP-complete problems existing in literature have

been performed. The results have indicated that the parallel GPU-based GA implementation

achieves significant speed-ups when compared to a sequential GA implementation, while

maintaining the solution quality.

8.4 Domain-specific Data Mining Process Instantiations

8.4.1 User Type Identification: Static and Dynamic User Profile in Adaptive E-

learning Systems

Adaptive e-learning systems represent a new paradigm in modern learning

approaches. In the attempt to preserve the quality of the teaching effort (as in face to face

6
 http://www.nvidia.com/object/cuda_home_new.html

http://www.nvidia.com/object/cuda_home_new.html

Chapter 8 – Case Studies

101

education), current trends in this area focus on improving the user's performance throughout

the learning process, by stimulating faster learning and helping students develop new,

desirable learning abilities. This is achieved by continuously monitoring and adapting the

process to the user’s capabilities, needs and desirable behavior. In [Fir09] we have proposed

and designed an adaptive e-learning system which ensures content adjustment according to

the user profile, similarly to face to face education. The system performs user profiling and

employs concept maps to adapt the content accordingly. The design specifies both static and

dynamic features for characterizing the student's profile. The strength of the adaptive e-

learning model is based on the intelligent component, which defines rules based on both

matching and mismatching between teaching strategies and learning styles. It is continuously

evaluating the user profile, and adapts the content to improve the student's performance. Four

different types of users were considered, according to the most prominent findings in

literature [Ver96]: understanding based, memorization-based, concrete and non-directed.

The intelligent component for the adaptive e-learning system has been developed by

performing several iterations of the data mining process. Static data has been collected from a

sample of 304 Romanian students in the engineering field, using a psychological test. The

answers are partitioned, according to psycho-pedagogical knowledge, to form intermediate

attributes, which determine an initial classification of the user. A Bayes Network (BN) static

model of the user was initially assessed. The BN model evaluated the percentage of

membership of each individual to each of the four learning styles, yielding narrow separation

boundaries between the four classes. In the attempt to achieve a better separation of the

typologies, several experiments have been conducted with the k-means clustering technique,

using three different values for k: 3, 4 and 5 [Tri10]. The results suggested that a 3-type based

analysis explained the data better than the theoretical 4-type based. The few discrepancies

observed have been attributed to two sources: (1) the cultural and regional differences

between the populations evaluated and the ones reported in literature and (2) the non-uniform

distribution of the population evaluated (all the individuals were from the same study year).

In [Lem11a], the quality of the static user model has been assessed through various

unsupervised techniques. The sub-goals were to compare and contrast different models – a

clustering technique with a Self-Organizing Map (SOM) approach and to analyze the feature

– user type correlations. Again, a 3-type model has been found to best fit the static user

profile. Also, a series of attribute-user type correlations have been identified in the data

sample. A design which integrates the static and the dynamic user profiles into a common

approach has been proposed (figure 8.11). It consists of two sub-components: a k-means

clustering component and a SOM. The first it is used for initial user type identification based

on static attributes. Its results are used for initial SOM training and evaluation. The input of

the SOM component has two parts: a static part (the static attributes, as recorded by the initial

psychological test) and a dynamic part (the attributes identified during the user’s interaction

with the system).

Figure 8.11 – User type identification component

Chapter 8 – Case Studies

102

The values of the dynamic attributes may change over time, as the user learning style

evolves; however, the static attributes are not re-assessed (the pre-test is presented to the user

only once, during his/her first interaction with the system). The SOM component training

process is continuous – the map configuration may adjust as the users interact with the

system, and the values of their dynamic attributes change.

The SOM component is initially built using only the static attributes; all the dynamic

attributes have the value zero. After this initial construction phase, the learning rate and the

neighborhood radius of the SOM are set to low values in order to ensure that changes due to

dynamic attributes are made in time, representing a consistent user behavior. This is

necessary because the user learning style cannot change abruptly and, therefore, a spike in the

user’s dynamic behavior does not produce major changes to the map topology. However, if

the same modified behavior persists in time, this means that the user learning style has

evolved and this will have an effect on the map topology and user classification. This

desirable behavior is ensured through another mechanism: user history. The values of the

dynamic attributes represent aggregates of the actual recorded values at different moments.

More recent interactions weigh more, and the influence of distant interactions is minimal, or

absent. Otherwise said, a decay function will be employed to aggregate the values of different

user interactions with the system. In time, due to an increasing number of users being

clustered based on their dynamic attributes especially – since the static attributes don’t

change their values, the SOM component evolves and the influence of the dynamic attributes

in the user type identification increases.

Thus, the employment of SOMs allows for continuous updating of the user model,

while k-means clustering provides an initial assessment. An evaluation on artificially

generated data has been performed, to study how the two components (static and dynamic)

are integrated in the proposed model. The results have indicated a smooth passage between

the static and the dynamic components – the SOM built on the static attributes is slowly

modified by the introduction of the dynamic attributes (i.e. the user starts to interact with the

system), but the separation between the learning styles remains well defined.

8.4.2 Handwriting Recognition: Historical Documents Transcription using

Hierarchical Classification and Dictionary Matching

Historical documents are difficult to read and require the expertise of trained

specialists, mainly due to the vast number of sources, quality of the target manuscripts and

numerous existent scripts [Min01]. In practice, transcriptions are performed by hand, by a

scholar specialized in the target form of writing (paleographer) and take a considerable

amount of time and effort; hence the need for a flexible system capable of performing a

(semi-)automatic transcription of such documents, while taking into problem-specific

constraints.

In [Lem12b], a solution which aims to translate documents written in a difficult

alphabet (the German script Kurrent Schrift) has been proposed. It does not aim to restore

severely damaged manuscripts. It assumes that the text is visibly separable from the

background – though most historical documents are expected to present some imperfections

(paper folding, material aging).

We have identified three major stages – Document Processing, Word Processing and

Word Selection, connected in a linear pipeline (as seen in Figure 12). First, the document

image (i.e. the scanned version of the historical handwritten document) is processed by the

Document Processor. After separating the text from the background through a two-step

procedure and removing malignant noisy areas, the document is de-skewed to improve the

correctness of subsequent processing steps. It is then successively partitioned into lines of

text and individual words.

Chapter 8 – Case Studies

103

Document
Processor

Word
Processor

Word Selector

Handwritten
Document

[Color Image]

Extracted
Word Images

[B/W Image
Array]

Recognized
Words

[String Array
per Word]

Document
Transcription

[Text File]

Letter Frequency
Analysis

Dictionary
Matching

Knowledge
Base

Dictionary

Figure 8.12 – System conceptual architecture

The Word Processor, the core component of the system, finalizes the preprocessing of

the input word images, by performing slant correction and character splitting. The shape of

the binary character objects is then captured using a skeletonization filter, and important

features that discriminate the characters are extracted. A classifier identifies each character

and word variants are constructed.

The words are validated by the Word Selector using a local dictionary database and a

Knowledge Base, generating transcription variants with attached probability. Inappropriate

matches are pruned and the words reordered such as to generate the final transcription, the

output of the system.

Preliminary experiments with the letter recognition module, within the word

processor, indicate that the performance of a single-model recognition system is insufficient,

the accuracy being too small for such an automated translator. Further experiments run over

the best selected classifiers and analysis of the extracted results revealed that predictable

confusions are produced amongst certain groups of characters. The groups of confusable

characters are constructed based on pair-wise confusions between any two characters

belonging to the same group. For this reason, a character can either be directly identified by

the classifier, or belong to one or more confusable groups. Therefore, the groups do not form

a partition of the alphabet, nor are they disjoint. Thus, a composite two-layer model is more

appropriate for the letter identification step.

A multi-class single classifier is employed at the first level, responsible for

discriminating amongst non-confusable characters, as well as propagating instances predicted

as belonging to confusable sets to the second layer. Level two model comprises of an array of

individually constructed classifiers, each responsible for discriminating only inside a distinct

group of confusable letters.

Significant numerical features are extracted from the character image shape resulted after

a series of image processing operations have been applied to the document scans [Lem12b].

In order to better discriminate among the characters, the following mix of features is

considered [Vam09]: projections, profiles, transitions and zone densities. Because histogram-

based features are dependent on the character image resolution (width, height), we propose

histogram-compression based on the Discrete Cosine Transform. This approach captures the

shape of the histogram. The resulting sequence is then normalized in the [0,1] interval, and

only the first few coefficients are considered. This ensures both a fixed-dimension feature

vector and noise reduction (generally located in the higher part of the signal’s spectrum).

Chapter 8 – Case Studies

104

Parameter tuning is possible by varying the number of considered harmonics (coefficients),

the optimal truncation index being determined empirically.

Several experiments have been performed to identify the best level 1 classifier for the

word processor components. Moreover, parameter tuning has been considered in order to

obtain more fitted models, for the selected classifier. The extracted letter dataset is a balanced

dataset (25 classes with approximately 50 instances per class) having 37 features (represented

by the computation of 4 Discrete Cosine Transform (DCT) components). Stratified 10 fold

cross-validation has been employed for these tests, with accuracy as performance metric,

since all classes are of the same interest and equally represented. The best results have been

obtained by the SVM (82.12%) and the MLP(75.28%) classifiers. J48 (53.18%) and Naïve-

Bayes (66.08%) performed well below the expected accuracy, the latter giving even worse

results after a boosting mechanism was applied. The components of the system presented in

this section are currently in different stages of development and evaluation.

8.4.3 Social Mining: Distributed Community Detection in Social Networks Using

Genetic Algorithms

One of the current important research topics in data mining applications, triggered by

the emergence of the social network phenomenon, is community detection. One interesting

sub-problem is the identification of the community structure. In [Hal10] a distributed

community detection approach has been developed, using genetic search mechanisms on top

of Apache Hadoop. The algorithm uses the genetic representation proposed in [Par98]. An

analysis of two possible fitness functions is provided, both from the point of view of

efficiency and adaptability to a distributed context: the community score function proposed in

[Piz98], and a new fitness function, which switches from the network modularity score to the

community score measure during the evolution. This new fitness function represents an

original contribution. The Apache Watchmaker framework has been employed for

implementing the algorithm, on top of the Mahout Machine Learning library, which provided

the possibility of running the genetic algorithm implemented in the Watchmaker framework

in a distributed manner. The fitness evaluators were encapsulated using the infrastructure

provided by Mahout and distributed on Hadoop nodes.

During the evaluations performed on well-known real-world networks, the community

structure obtained by running the algorithm with the two fitness functions has been compared

with results obtained by similar approaches, reported in literature. Several parameter settings

for the genetic search algorithm have been investigated. The scalability of the approach has

also been evaluated. The results have indicated that the proposed fitness measure achieves

similar results to the community score-based fitness function, but reduces the running time

significantly. Also, the distribution of the genetic algorithm has proved beneficial, since it has

made possible to consider larger subsets of the input data and thus discover more complex

relationships [Hal10].

8.4.4 Opinion Mining: Semi supervised opinion mining with lexical knowledge

Opinion prediction from text, i.e. automatically detecting the positive or negative

attitude towards a topic of interest has received increasing attention over the last years. The

proliferation of user-generated content on the internet has triggered the interest towards large

scale mining of public opinion. To that end, we have examined an approach for building a

graph-based semi-supervised sentiment polarity classifier, where a knowledge base for

opinion mining is provided [Bal10]. In the development flow, we have created our own

dictionary, using SentiWordNet, for tagging the words in the documents with the

corresponding polarity. Then, we have implemented a semi-supervised classification

algorithm, using the sentiment dictionary, similarly to the approach available in [Sin08]. To

assess the flexibility of the resulting classifier, we have performed several evaluations on

Chapter 8 – Case Studies

105

review datasets from various domains. The results have indicated that unlabeled data can

improve the classification performance in some cases. Time, processor and memory usage

have also been considered, since opinion mining is a complex problem in essence, and the

input data is usually large. The system can be easily integrated with the Rapid Miner tool.

8.4.5 Spam Detection: A Filter

In recent years, anti-spam filters have become ubiquitous tools in fighting this new

but continuously growing phenomenon – spam. Whether we talk about internet service

providers, or large organizations, e-mail providers or even individuals, everybody is

interested in keeping the irrelevant, inappropriate and unsolicited emails to a minimum. Thus,

we have developed a prototype for a new spam detection filter, which employs the kNN

algorithm for the classification module, on a set of frequency–based features [Fir10].

Training set re-sampling was employed to determine the most appropriate learning

distribution. A data update mechanism was considered to enable the system to employ the

information coming in new emails, and thus continuously improve its performance. User

feedback, used to correct misclassifications has also been implemented.

8.5 Conclusions

Specific domains may impose additional constraints on the general DM flow. Several

non-functional requirements (such as model generation time, model complexity and

interpretability) may also be of importance. Also, depending on the problem particularities,

the general flow of the data mining process may be altered to accommodate for the specific

domain needs. This chapter investigates several such scenarios, and attempts to provide

viable solutions, at a level of generality such as not to be restricted to the specific domains

they have been initially designed for.

The original contributions presented in this chapter include:

 The proposal and evaluation of a cascaded method for classifier baseline

performance assessment, using the Dempster-Shafer theory of evidence

 An original meta-learning framework for automated classifier selection, which

employs various meta-features and several different prediction strategies,

while reducing user involvement at a minimum

 A composite metric for general classifier performance assessment

 A hierarchical model for classification problems having a large number of

classes, based on clustering and classification sub-models, with application to

offline signature recognition

 A hierarchical model for classification of multi-class imbalanced problems,

which consists of a multiple classifier on a first level, and a classifier which

focused on labeling difficult cases on the second level; the system has been

applied to a network intrusion detection case study

 A distributed version for the original ECSB method proposed in Chapter 7

 The proposal and evaluation of an original classification meta-technique,

based on data partitioning: the arbiter-combiner

 A model for static and dynamic user-type identification in adaptive e-learning

systems

 A model for historical documents transcription based on hierarchical

classification and dictionary matching

 An original system for distributed community detection, using genetic

algorithms

 A dynamic composite fitness function for the community detection problem

Chapter 8 – Case Studies

106

 An original parallel version of the SPRINT decision tree classifier

 A lightweight GPGPU parallel genetic framework

 An original system for opinion mining, using semi-supervised learning with

lexical knowledge

 An original spam detection filter, with learned training distribution

The original user profiling method proposed in section 8.4.1 is the result of research

supported by PNII grant no.12080/2008: SEArCH – Adaptive E-Learning Systems using

Concept Maps.

The original methods presented in this chapter have been validated through the

publication of 3 journal papers:

1. Potolea, R., Vidrighin B. C., Trif, F., “Intelligent Component for adaptive E-

learning Systems”, The Automation, Computers, Applied Mathematics Journal,

Vol. 18, pp. 270-275, 2009

2. Potolea, R., Trif, F., Lemnaru, C., "Enhancements on Adaptive E-learning

Systems", The Automation, Computers, Applied Mathematics Journal (ACAM),

Vol. 19, no.3, pp. 475-482, 2010

3. Potolea, R., Trif, F., Lemnaru, C., “Adaptive E-Learning Systems with Concept

Maps”, Revista Romana de Informatica si Automatica, vol. 21, no.4/2011, pp. 43-

56, 2011

2 book chapters:

1. Potolea, R., Barbantan, I., Lemnaru, C.,"A Hierarchical Approach for the Offline

Handwritten Signature Recognition", Lecture Notes in Business Information

Processing , 2011, Volume 73, Part 3, 264-279, DOI: 10.1007/978-3-642-19802-1

2. Potolea, R., Cacoveanu, S., Lemnaru, C., "Meta-learning Framework for

Prediction Strategy Evaluation", Lecture Notes in Business Information

Processing , 2011, Volume 73, Part 3, 280-295, DOI: 10.1007/978-3-642-19802-1

and several research papers in the proceedings of well-known international conferences:

1. T. Moldovan, C. Vidrighin, I. Giurgiu, R. Potolea, "Evidence Combination for

Baseline Accuracy Determination", Proceedings of the 3
rd

 IEEE International

Conference on Intelligent computer Communication and Processing, pp. 41-48,

2007

2. Bărbănţan, I., Vidrighin, C., Borca, R., “An Offline System for Handwritten

Signature Recognition”, Proceedings of Proceedings of the 5
th

 IEEE

International Conference on Intelligent computer Communication and Processing,

Cluj-Napoca, Romania, pp. 3-10, 2009

3. Cacoveanu, S., Vidrighin, B.C., Potolea, R.,”Evolutional meta-learning

framework for automatic classifier selection”, Proceedings of Proceedings of the

5
th

 IEEE International Conference on Intelligent computer Communication and

Processing, pp. 27-30, 2009

4. Firte, A.A., Vidrighin, B.C., Cenan, C., “Intelligent component for adaptive E-

learning systems”, Proceedings of Proceedings of the 5
th

 IEEE International

Conference on Intelligent computer Communication and Processing, Cluj-

Napoca, Romania, pp. 35-38, 2009

5. Merk, A.B., Vidrighin, B.C., Potolea, R., ”Meta-learning enhancements by data

partitioning”, Proceedings of Proceedings of the 5
th

 IEEE International

Chapter 8 – Case Studies

107

Conference on Intelligent computer Communication and Processing, Cluj-

Napoca, Romania, pp. 59-62, 2009

6. Trif, F., Lemnaru, C., Potolea, R., “Identifying the User Typology for Adaptive

E-learning Systems”, Proceedings of AQTR 2010 - IEEE International

Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, May 28-

30, 2010, pp. 192-198/Tome III

7. Balla-Muller, N., Lemnaru, C., Potolea, R., "Semi-supervised learning with

lexical knowledge for opinion mining," Proceedings of Proceedings of the 6
th

IEEE International Conference on Intelligent computer Communication and

Processing, Cluj-Napoca, Romania, pp.19-25, 2010

8. Bărbănţan, I., Lemnaru, C., Potolea, R., “A Hierarchical Handwritten Offline

Signature Recognition System”, Proceedings of the 12
th

 International Conference

on Enterprise Information Systems, Funchal, Madeira, Portugal, pp. 139-147,

2010

9. Cacoveanu, S., Vidrighin, B. C., Potolea, R., ”Evaluating Prediction Strategies in

an Enhanced Meta-learning Framework”, Proceedings of the 12
th

 International

Conference on Enterprise Information Systems, Funchal, Madeira, Portugal, pp.

148-156, 2010

10. Firte, L., Lemnaru, C., Potolea, R., "Spam detection filter using KNN algorithm

and resampling", Proceedings of Proceedings of the 6
th

 IEEE International

Conference on Intelligent computer Communication and Processing, Cluj-

Napoca, Romania, pp.27-33, 2010

11. Halalai, R., Lemnaru, C., Potolea, R., "Distributed community detection in social

networks with genetic algorithms", Proceedings of Proceedings of the 6
th

 IEEE

International Conference on Intelligent computer Communication and Processing,

Cluj-Napoca, Romania, pp.35-41, 2010

12. R.F. Muresan, C. Lemnaru, R. Potolea, "Evidence Combination for Baseline

Accuracy Determination", Proceedings of Proceedings of the 6
th

 IEEE

International Conference on Intelligent computer Communication and Processing,

Cluj-Napoca, Romania, pp. 11-18, 2010

13. Dodut, A.A., Lemnaru C. and Potolea R., “The parallel classification of very

large collections of data on multi-core platforms”, in Proceedings of the 10
th

International Symposium in Parallel and Distributed Computing, pp.57-62, 2011

14. Feier, M., Lemnaru C. and Potolea R., “Solving NP-Complete Problems on the

CUDA Architecture using Genetic Algorithms”, in Proceedings of the 10
th

International Symposium in Parallel and Distributed Computing, pp.278-281,

2011

15. Lemnaru, C., Firte, A., Potolea, R., “Static and Dynamic User Type

Identification in Adaptive E-learning with Unsupervised Methods”, Proceedings

of ICCP 2011, pp. 11-18, 2011

16. Lemnaru, C., Cuibus, M., Alic, A., Bona, A. and Potolea, R., “A Distributed

Methodology for Imbalanced Classification Problems”, presented at the 11
th

International Symposium on Parallel and Distributed Computing, Munich, June

2012

17. Lemnaru, C., Sin-Neamtiu, A., Veres, M.A., Veres, M and Potolea, R., “A

System for Historical Documents Transcription based on Hierarchical

Classification and Dictionary Matching”, accepted at KDIR 2012

18. Lemnaru, C., Tudose-Vintila, A., Coclici, A. and Potolea, R., “A Hybrid Solution

for Imbalanced Classification Problems. Case Study on Network Intrusion

Detection”, accepted at KDIR 2012

Chapter 9 – Contributions and Conclusions

108

9 Contributions and Conclusions

This thesis presents a systematic analysis of several steps involved in a data mining

process, providing both theoretical and practical contributions. The general context is that of

labeling a potentially large volume of noisy data, (possibly) containing irrelevant and/or

redundant pieces of information; in many real-world applications, in the available data the

distribution of instances belonging to each class is non-uniform, meaning that one class

contains fewer instances in comparison with the others. However, the correct identification of

underrepresented classes is generally of increased importance, which results in different

errors possessing different degrees of gravity. Consequently, the correct choice of the metric

to assess, and ultimately improve during the data mining process, is difficult – since

improving one metric generally degrades others. Also, application domains may impose

specific constraints on the data mining process flow.

The following specific data and goal-related issues have been addressed:

 Missing data: the available data is generally incomplete. The majority of

classification techniques have not been designed to deal with missing values, and

often employ basic and inefficient approaches to deal with such issues. Missing data

techniques are available in literature, mainly as pre-processing methods; their success

in a certain scenario depends on several factors. Also, most imputation methods are

oblivious to the relation between the incomplete attribute(s) and the target attribute.

This thesis presents a structured analysis of existing methods (with their advantages

and disadvantages – section 3.2). Also, an original global imputation method, based

on non-missing data is proposed (section 3.3). The strongest assumptions made by the

method are related to the existence of correlations between the incomplete and the

complete attributes (including the class). The particular technique employed for

learning the model used to impute each incomplete attribute – an artificial neural

network ensemble – reduces the risk of imputing wrong values. Experimental results

have indicated a strong correlation between the success of the imputation method on a

certain attribute and the prediction power of that attribute with respect to the class.

Consequently, an original joint pre-processing methodology has been introduced

(section 5.1) which proposes an information exchange between data imputation and

feature selection: only the attributes which are predictive for the attribute being

imputed are used to build the imputation model for that attribute, and only the

attributes which are predictive for the class should be imputed. The method has been

currently evaluated for MCAR univariate incompleteness patterns, yielding

significant performance improvements when compared to the un-processed dataset. It

can be extended to accommodate random multivariate patterns as well, as long as a

complete data kernel can be extracted from the data.

 Irrelevant/redundant data: feature extraction is a highly laborious and domain

dependent task, resulting in situations in which not all attributes recorded are relevant

for the classification task, while some attributes convey redundant information.

Irrelevant/redundant attributes have been shown to harm the classification process.

Various feature selection techniques which tackle this issue exist in literature, with

wrappers providing the most promising strategy for performance improvement;

however, there is no method which is guaranteed to always produce the best possible

feature subset for the given problem and selected classification method. Moreover,

some method may perform significantly better than others on one particular problem,

and achieve no/low performance improvement on a different problem. Also,

according to the present knowledge, although the literature offers several wrapper

Chapter 9 – Contributions and Conclusions

109

evaluation studies, they are not focused on comparing the performance of different

wrapper combinations or analyzing how feature selection affects the choice of

classification method. This thesis provides such an analysis (section 4.4.1); the results

have shown that, generally, the ranking of classifiers is not significantly altered by

feature selection; also, combining different classifiers for wrapper feature selection

and learning is not beneficial. An original subset combination method for improving

the stability of feature selection across different problems and providing an

assessment of the baseline performance of feature selection in a new problem has

been proposed in section 4.3 and evaluated in section 4.4.2. The method selects the

most appropriate attributes by applying a global selection strategy on the attribute

subsets selected individually by the search methods. Its evaluation has confirmed the

fact that the method achieves better stability than individual feature selection

performed via different search methods, while reducing the number of attributes

significantly.

 Imbalanced data: generally, in a real data mining application setting, interest cases

are more difficult to collect, resulting in the interest class(es) containing fewer

instances in comparison with the other classes. Although – theoretically – the class

imbalance problem should affect learning algorithms, there are few systematic studies

in literature which study this aspect. The present thesis provides an extensive

systematic analysis on the effect of the class imbalance problem on the performance

of different categories of classifiers, proposing a novel dataset characterization

measure (section 7.1.3). The study revealed that all traditional algorithms are affected

to some extent by the class imbalance problem, with the Multilayer Perceptron being

the most robust. As opposed to the results yielded by earlier studies on artificial data,

imbalance-related factors proved to have a significant impact on the performance of

the Support Vector Machines. This behavior comes as a side effect appearing in

imbalanced problems: the appropriate support vectors are not present in the available

data. The original meta-feature proposed – the IAR, which aggregates dataset size and

complexity information, has proved to offer, in conjunction with the IR, a correct

indication on the expected performance of classifiers in an imbalanced problem. The

present thesis presents also a thorough study on the existing approaches for dealing

with imbalanced problems (section 7.2). Some methods require significant experience

to produce improvements, while others are restricted to a specific category of

classifiers. To address these issues, an original meta-classification strategy, has been

proposed – Evolutionary Cost-Sensitive Balancing (section 7.3). The method

performs a genetic search in order to simultaneously tune the base classifier’s

parameters and identify the most appropriate cost matrix, which is then employed by a

cost-sensitive meta-learner, in conjunction with the base classifier. An advantage of

the method, besides its generality, is the fact that the cost matrix is determined

indirectly. Thus, the difficult problem of setting appropriate error costs is translated

into selecting the appropriate fitness measure, given the specific problem goals.

Comparative empirical evaluations on benchmark data have proved that ECSB

significantly improves the performance of the base classifiers in imbalanced

conditions, achieving superior results to sampling with SMOTE or adapting the

algorithm to the imbalance via evolutionary parameter selection; also, ECSB achieves

superior results to current prominent approaches in literature: Evolutionary Under-

Sampling and a complex Support Vector Machines ensemble; the most successful

cost-sensitive strategy is predicting the class with minimum expected

misclassification cost, instead of the most likely class; balanced metrics are generally

appropriate as fitness functions; for extreme problems, such as those in which

Chapter 9 – Contributions and Conclusions

110

precision is of utmost importance, or recall is the only important measure, imbalanced

metrics – such as parameterized combinations between primary metrics, are more

suitable.

 Imbalanced error costs: classification errors may possess different degrees of

gravity, according to the domain specifics. Such situations are covered by cost-

sensitive learning, with a series of algorithms existing in literature; the present thesis

presents a structured analysis of prominent cost-sensitive methods (section 6.2). Most

algorithms focus on a single type of cost, whereas real-world scenarios frequently

include two types of costs: test and error costs. The best known method which

considers simultaneously both types of costs is the ICET algorithm. The main

contributions presented in this area focus on a series of improvements to the original

ICET algorithm, as well as filling in the gap in the algorithm evaluation part (section

6.3). Consequently, a new version of the algorithm has been developed, ProICET,

which follows the basic ICET technique, while improving the robustness of the

genetic component, by: the employment of a single population technique and elitism,

with rank-based fitness assignment for parent selection, and increasing search

variability via the recombination operators. A series of evaluations focused on

assessing the performance of ProICET under a series of different aspects have been

performed: a systematic empirical analysis on the effectiveness of stratification in

reducing cost asymmetries and a comparative empirical study on the misclassification

and total costs. The results indicate that it provides a robust approach, achieving

lowest total costs. Also, ProICET has been applied to a real problem related to

prostate cancer diagnosis and prognosis (within the CEEX 18/2005 IntelPRO research

grant): predicting the value of post-operative PSA for patients who have undergone

prostate surgery, from data recorded pre- and immediately after the operation,

confirming its robustness.

 Classifier and metric selection: There is no universally best classifier which

performs better than all the others on every possible problem, given any evaluation

metric. Moreover, no general rules which indicate the appropriate metric to select in a

certain context exist, although there are some application domains which benefit from

specialized metrics. Translating data characteristics and the ultimate goal of the

classification process into the appropriate performance metric, selecting the most

appropriate classifier given the data and goal characteristics, finding the best

parameter settings for the classifier are therefore essential points in achieving a

successful data mining process. The current thesis presents an analysis of the most

important performance metrics (section 2.3); also, throughout the thesis – but mainly

in Chapters 6 and 7 – the suitability of different measures for special classification

scenarios is analyzed. Section 8.1 presents an original meta-learning framework for

automated classifier selection, together with a method for baseline performance

assessment. Several original design elements have been introduced into the

framework, the most important being a wide selection of dataset meta-features,

several neighbor selection strategies, a general-purpose aggregate metric and the

possibility to output a ranking of classifiers, rather than a single candidate.

Experimental results on benchmark datasets have made possible the identification of a

best prediction strategy among several investigated.

 Data mining process instantiations: Application domains may impose specific

constraints on the data mining process, such as having an interpretable classification

model, or a reasonable training time, the capacity to perform classification on a large

number of classes, each having a limited amount of training instances. Several such

Chapter 9 – Contributions and Conclusions

111

applicative issues are tackled and original contributions (both theoretical and

practical) are presented (sections 8.2-8.4).

The main original contributions presented throughout this thesis can be grouped into:

1. General DM contributions - theoretical:

 a systematic analysis of existing issues and solutions for: handling

incomplete data, feature selection, imbalanced classification, cost-

sensitive classification, classification algorithms and performance

assessment strategies and metrics

 a global imputation method, based on non-missing data

 a combination method for wrapper search strategies, to improve

selection stability

 an original joint pre-processing strategy, which employs feature

selection information in the data imputation step

 proposal of a new meta-feature – IAR – for characterizing a dataset

with respect to the imbalance-related factors; the new meta-feature, in

conjunction with the IR, has been proven to offer correct indication on

the expected performance of classifiers in imbalanced problems

 a general method for imbalanced classification – ECSB – a meta-

classification strategy, which can be applied to any error-reduction

classifier

 a cascade combination method for classifier baseline performance

assessment, with improved stability across different domains

 a composite metric for general classifier performance assessment

2. General DM contributions – practical:

 a systematic empirical study on wrapper combinations for feature

selection, to study possibility of combining different classifiers for the

steps of feature selection and learning, the effect of pruning on feature

selection and how feature selection affects, generally, the choice of the

learning scheme

 enhancements on the ICET cost-sensitive classifier. The new version

of the algorithm, ProICET, achieves superior performance to the

original algorithm and to other known cost-sensitive algorithms in

literature in terms of total cost and accuracy

 a systematic analysis on the effect of the class-imbalance problem on

the performance of different types of classifiers, considering a large

number of benchmark problems, several imbalance-related factors and

performance metrics and six different classification techniques

 a meta-learning framework for automated classifier selection, which

employs various meta-features and several different prediction

strategies, while reducing user involvement at a minimum

 a distributed version for the original ECSB method from Chapter 7

 a hierarchical classifier for problems having a large number of classes,

based on clustering and classification sub-models

 a hierarchical model for classification of multi-class imbalanced

problems, which consists of a multiple classifier on a first level, and a

level 2 classifier focused on labeling difficult cases

Chapter 9 – Contributions and Conclusions

112

 a classifier based on data partitioning

 a parallel version for the SPRINT decision tree classifier

 a lightweight GPGPU parallel genetic framework

3. Domain specific contributions – theoretical:

 a dynamic composite fitness function for the community detection

problem

 a model for static and dynamic user-type identification in adaptive e-

learning systems

4. Domain specific contributions – practical:

 a system for offline signature recognition

 a system for network intrusion detection

 a system for historical documents transcription based on hierarchical

classification and dictionary matching

 a system for distributed community detection, using genetic algorithms

 a system for opinion mining, using semi-supervised learning with

lexical knowledge

 a spam detection filter, with learned training distribution

All newly proposed classification methods have been empirically evaluated and

compared to other prominent approaches in literature. For pre-processing methods, their

effect on the overall performance of a classification task has been studied.

The results of the research efforts have been partially applied in three research grants,

between 2007 and 2011. Also, they have been disseminated within the scientific community,

through the publication of:

- 4 journal papers – 1 as first author – out of which 3 published in B+ journals

- 1 paper submitted at the Journal of Data Mining and Knowledge Discovery (ISI

indexed) – review requested

- 4 book chapters – 2 as first author – out of which 3 published in Springer Lecture

Notes in Business Information Processing series

- 30 research papers – 12 as first author – in the proceedings of renowned

international conferences (indexed by IEEEXplore – 19, ISIPro – 14, DBLP – 12

and CSDL – 7)

- 8 independent citations – out of which 4 in ISI-indexed journals

The current research efforts focus on adding an extra genetic algorithms tuning level

to the dECSB method, and validating the strategy for larger datasets as well as for multi-class

real-world imbalanced problems. In addition, the joint pre-processing methodology has to be

extended to accommodate successfully any incompleteness mechanism and pattern.

The original methods presented in this work have been successfully validated on a

number of benchmark real-world datasets – well known and intensely employed by the

scientific community, which originate from real-world scenarios. The ProICET enhanced

cost-sensitive method has also been deployed successfully in a real-world medical diagnosis

problem. I believe that the original pre-processing methods and the methodology for

imbalanced classification will improve the quality of the DM classification process in real

world settings displaying the issues addressed in the current thesis.

References

113

References

1. [Agr96] Agrawal R., Shafer J.C., Mehta M. (1996). SPRINT: A Scalable Parallel

Classifier for Data Mining. Proceedings of the 22
nd

 International Conference on Very

Large Data Bases. pp. 544-555

2. [Ala08] Alaiz-Rodríguez R. and Japkowicz N. (2008). Assessing the impact of

changing environments on classifier performance. In Canadian AI’08: Proceedings of

the Canadian society for computational studies of intelligence, 21st conference on

advances in artificial intelligence (pp. 13–24). Berlin, Heidelberg: SpringerVerlag

3. [Ali06] Aliamiri A. (2006). Statistical Methods for Unexploded Ordnance

Discrimination. PhD Thesis. Department of Electrical and Computer Engineering.

Northeastern University. Boston MA

4. [All09] Allison, P.D. (2009). Missing Data. The SAGE Handbook of Quantitative

Methods in Psychology, edited by Roger E. Millsap and Alberto Maydeu-Olivares.

Thousand Oaks, CA: Sage Publications Inc. pp. 72-89

5. [Alm08] Almohri H., Gray J.S., Alnajjar H. (2008). A Real-time DSP-Based Optical

Character Recognition System for Isolated Arabic characters using the TI

TMS320C6416T. PhD Thesis.

6. [Alm97] Almuallim H., Dietterich T.G. (1997). Learning with many irrelevant

features. In Proceedings of Ninth National Conference on AI, pp. 547-552.

7. [Bac06] Bach F.R., Heckerman D., and Horvitz E. (2006). Considering cost

asymmetry in learning classifiers. The Journal of Machine Learning Research,

7:1713–1741. [Bac06] Bach F.R., Heckerman D., and Horvitz E. (2006). Considering

cost asymmetry in learning classifiers. The Journal of Machine Learning Research,

7:1713–1741.

8. [Bac91] Bäck, T. and Hoffmeister, F. (1991). Extended Selection Mechanisms in

Genetic Algorithms. In Proceedings of the Fourth International Conference on

Genetic Algorithms, San Mateo, California, USA: Morgan Kaufmann Publishers, pp.

92-99

9. [Bal10] Balla-Muller N., Lemnaru C. and Potolea R. (2010). Semi-supervised

learning with lexical knowledge for opinion mining. Proceedings of the 2010 IEEE 6
th

International Conference on Intelligent Computer Communication and Processing.

pp.19-25

10. [Bar03] Barandela R., Sanchez J.S., Garcia V. and Rangel E. (2003). Strategies for

learning in class imbalance problems. Pattern Recognition. 36(3): 849–851.

11. [Bat03] Batista G.E.A.P.A. and Monard M.C. (2003). An analysis of four missing

data treatment methods for supervised learning. Applied Artificial Intelligence, vol.

17, no. 5-6, pp. 519-533.

References

114

12. [Băr09] Bărbănţan I., Lemnaru C. and Borca R. (2010). An Offline System for

Handwritten Signature Recognition. Proceedings of the 5
th

 IEEE ICCP, Cluj-Napoca,

pp. 3-10.

13. [Băr10] Bărbănţan I., Lemnaru C. and Potolea R. (2010). A Hierarchical

Handwritten Offline Signature Recognition System. Proceedings of the 12
th

International Conference on Enterprise Information Systems, Funchal, Madeira,

Portugal. pp. 139-147

14. [Ben00] Bensusan H., Giraud-Carrier C. and Kennedy C.J. (2000). A Higher-Order

Approach to Meta-Learning. Proceedings of the ECML-2000 Workshop on Meta-

Learning: Building Automatic Advice Strategies for Model Selection and Method

Combination. pp. 33-42

15. [Bha08] Bhatnagar V. and Gupta S.K. (2008). Modeling the KDD Process.

Encyclopedia of Data Warehousing and Mining, Second Edition. Information Science

Reference, Hershey, New York, pp. 1337 – 1344

16. [Bre11] Brehar R. and Nedevschi S. (2011). A comparative study of pedestrian

detection methods using classical Haar and HoG features versus bag of words model

computed from Haar and HoG features. Proceedings of IEEE Intelligent Computer

Communication and Processing, pp. 299–306.

17. [Bre84] Breiman, L., Friedman J. H., Olshen R. A. and Stone C.J. (1984).

Classification and regression trees. Monterey, Calif., U.S.A.: Wadsworth, Inc

18. [Bre96] Breiman L. (1996). Bagging predictors. Machine Learning, 24, pp. 123-140

19. [Bro10] Brodersen K.H., Ong C.S., Stephen K.E., and Buhmann J.M. (2010) The

balanced accuracy and its posterior distribution. Proc. of the 20th Int. Conf. on Pattern

Recognition. pp. 3121–3124

20. [Cac09] Cacoveanu S., Vidrighin B.C. and Potolea R. (2009). Evolutional meta-

learning framework for automatic classifier selection. Proceedings of the 5th IEEE

ICCP, pp. 27-30.

21. [Cac10] Cacoveanu S., Vidrighin B.C. and Potolea R. (2010). Evaluating prediction

strategies in an enhanced meta-learning framework. Proceedings of the 12th

International Conference on Enterprise Information Systems, Funchal, Madeira,

Portugal, pp. 148-156.

22. [Cha04] Chai X., Deng L., Yang Q., Ling C.X. (2004). Test-Cost Sensitive Naive

Bayes Classification. Proceedings of the 4
th

 IEEE International Conference on Data

Mining (ICDM'04), p.51-58.

23. [Cha96] Chan P. (1996). An Extensible Meta-Learning Approach for Scalable and

Accurate Inductive Learning. PhD thesis. Columbia University.

24. [Cha98] Chan P. and Stolfo S. (1998). Toward scalable learning with non-uniform

class and cost distributions: a case study in credit card fraud detection. In Proceedings

References

115

of the Fourth International Conference on Knowledge Discovery and Data Mining,

AAAI Press, pp. 164-168.

25. [Cha02] Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. (2002). SMOTE:

Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence

Research. 16:321—357.

26. [Cha03] Chawla N.V., Lazarevic A., Hall L.O. and Bowyer K.W. (2003).

SMOTEboost: Improving prediction of the minority class in boosting. In Proceedings

of the Seventh European Conference on Principles and Practice of Knowledge

Discovery in Databases. 107—119.

27. [Cha04] Chawla N.V., Japkowicz N., Kotcz A. (2004). Editorial: special issue on

learning from imbalanced datasets. SIGKDD Explorations. 6(1):1–6.

28. [Cha06] Chawla N. (2006). Data Mining from Imbalanced Datasets: An Overview.

Data Mining and Knowledge Discovery Handbook. Springer US. 853—867.

29. [Che96] Cherkauer K. J. and Shavlik J. W. (1996). Growing simpler decision trees to

facilitate knowledge discovery. In Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining. AAAI Press.

30. [Das97] Dash M. and Liu H. (1997). Feature Selection for Classification. Intelligent

Data Analysis 1, INSTICC Press. 131–156.

31. [Den10] Denil, M. and Trappenberg, T. (2010). Overlap versus imbalance. In

Canadian AI 2010, LNAI, Vol. 6085, pp. 220–231.

32. [Der02] Derderian K. (2002). General Genetic Algorithm Tool,

http://www.karnig.co.uk/ga/ggat.html, last accessed Nov. 2011

33. [Dev82] Devijver P.A. and Kittler J. (1982). Pattern Recognition – A Statistical

Approach. Prentice Hall, London, GB.

34. [Dod11] Doduţ A.A., Lemnaru C. and Potolea R. (2011). The parallel classification

of very large collections of data on multi-core platforms. In Proceedings of ISPDC

2011, pp. 57-62.

35. [Dom97] Domingos, P. (1997). Context-sensitive feature selection for lazy learners.

Artificial Intelligence Review, (11):227–253.

36. [Dom99] Domingos P. (1999). MetaCost: A General Method for Making Classifiers

Cost-Sensitive. Proceedings of the Fifth International Conference on Knowledge

Discovery and Data Mining, ACM Press, 155-164.

37. [Dra94] Draper, B., Brodley, C. and Utgoff, P. (1994). Goal-directed classification

using linear machine decision trees. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 16(9):888-893.

http://www.karnig.co.uk/ga/ggat.html

References

116

38. [Elk00] Elkan C. (2000). Results of the KDD’99 classifier learning. SIGKDD

Explorations, vol.1, no.2, pp. 63-64.

39. [Est01] Estabrooks A. and Japkowicz N. (2001). A mixture-of-experts framework for

text classification. Proceedings of the 2001 workshop on Computational Natural

Language Learning - Volume 7. Toulouse, France. pp. 34-43.

40. [Fan00] Fan W., Stolfo S., Zhang J. and Chan P. (2000). AdaCost: Misclassification

cost-sensitive boosting. Proceedings of the 16
th

 International Conference on Machine

Learning, pp. 97–105.

41. [Far09] Farid D.M., Darmont J., Harbi N., Hoa N.H., Rahman M.Z. (2009). Adaptive

Network Intrusion Detection Learning: Attribute Selection and Classification. World

Academy of Science, Engineering and Technology 60.

42. [Faw97] Fawcett T. and Provost F.J. (1997). Adaptive Fraud Detection. Data Mining

and Knowledge Discovery, 1(3), pp. 291-316

43. [Faw06] Fawcett T. (2006). An introduction to ROC analysis. Pattern Recognition

Letters, 27, 861–874.

44. [Fay96] Fayyad U.M., Piatetsky-Shapiro G. and Smyth P. (1996). From Data Mining

to Knowledge Discovery in Databases. Artificial Intelligence Magazine, 17(3): 37-54.

45. [Fei11] Feier M., Lemnaru C. and Potolea R. (2011). Solving NP-Complete

Problems on the CUDA Architecture using Genetic Algorithms. In Proceedings of

ISPDC 2011, pp. 278-281,

46. [Fir09] Firte A.A., Vidrighin B.C. and Cenan C. (2009). Intelligent component for

adaptive E-learning systems. Proceedings of the IEEE 5
th

 International Conference on

Intelligent Computer Communication and Processing. 27-29 August 2009, Cluj-

Napoca, Romania. pp. 35-38.

47. [Fir10] Firte L., Lemnaru C. and Potolea R. (2010). Spam detection filter using

KNN algorithm and resampling. Proceedings of the 2010 IEEE 6
th

 International

Conference on Intelligent Computer Communication and Processing, pp.27-33.

48. [Fre97] Freund Y. and Shapire R. (1997). A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of Computer and System

Sciences, 55(1):119–139.

49. [Gar09] García S. and Herrera F. (2009). Evolutionary Undersampling for

Classification with Imbalanced Datasets: Proposals and Taxonomy. Evolutionary

Computation, Vol. 17, No. 3. pp. 275-306.

50. [Ged03] Gediga G. and Duntsch I. (2003). Maximum consistency of incomplete data

via noninvasive imputation. Artificial intelligence Review, vol. 19, pp. 93-107.

51. [Gen89] Gennari, J.H., Langley P. and Fisher D. (1989). Models of incremental

concept formation. Artificial Intelligence, 40, pp.11-61.

References

117

52. [Gog10] Gogoi P., Borah B., Bhattacharyya D.K., (2010). Anomaly Detection

Analysis of Intrusion Data using Supervised & Unsupervised Approach. Journal of

Convergence Information Technology, vol. 5, no. 1, pp. 95-110

53. [Gre86] Grefenstette, J.J. (1986). Optimization of control parameters for genetic

algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 16, 122-128.

54. [Grz02] Grzymala-Busse J.W., Grzymala-Busse W.J. and Goodwin L.K. (2002). A

comparison of three closest fit approaches to missing attribute values in preterm birth

data. International journal of intelligent systems, vol. 17, pp. 125-134

55. [Grz05] Grzymala-Busse J.W., Stefanowski J. and Wilk S. (2005). A comparison of

two approaches to data mining from imbalanced data. Journal of Intelligent

Manufacturing, 16. Springer Science+Business Media Inc. pp. 565–573

56. [Guo04] Guo H. and Viktor H.L. (2004). Learning from imbalanced datasets with

boosting and data generation: The Databoost-IM approach. SIGKDD Explorations,

6(1), pp. 30–39.

57. [Guy02] Guyon I. Weston J., Barnhill S. and Vapnik V. (2002). Gene selection for

cancer classification using support vector machines. Machine Learning, Vol. 46, pp.

389–422.

58. [Guy03] Guyon I. and Elisseeff A. (2003). An Introduction to Variable and Feature

Selection. Journal of Machine Learning Research, no. 3/2003, pp. 1157-1182.

59. [Hal10] Halalai R., Lemnaru C. and Potolea R. (2010). Distributed community

detection in social networks with genetic algorithms. Proceedings of the 2010 IEEE

6th International Conference on Intelligent Computer Communication and

Processing, pp. 35-41.

60. [Hal00] Hall, M. (2000). Correlation-based feature selection for machine learning.

PhD Thesis, Department of Computer Science, Waikato University, New Zealand.

61. [Han06] Hand D.J. (2006) Classifier technology and the illusion of progress (with

discussion). Statistical Science, 21, 1-34

62. [Har68] Hart P.E. (1968). The Condensed Nearest Neighbor Rule. IEEE Transactions

on Information Theory IT-14, 515—516.

63. [Hol89] Holte R.C., Acker L.E. and Porter B.W. (1989). Concept learning and the

problem of small disjuncts. In Proceedings of the Eleventh International Joint

Conference on Artificial Intelligence, pp. 813-818.

64. [Hua06] Huang K., Yang H., King I., and Lyu M.R. (2006). Imbalanced Learning

with a Biased Minimax Probability Machine. IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, 36(4): 913—923.

References

118

65. [Jap02] Japkowicz N. and Stephen S. (2002). The Class Imbalance Problem: A

Systematic Study. Intelligent Data Analysis Journal, Volume 6, Number 5. pp. 429—

449.

66. [Joh94] John G.H., Kohavi R. and Pfleger P. (1994). Irrelevant features and the subset

selection problem. In Machine Learning: Proceedings of the Eleventh International

Conference. Morgan Kaufmann.

67. [Kar98] Karakoulas G. and Shawe-Taylor J. (1998). Optimizing classifiers for

imbalanced training sets. In: Proceedings of Neural Information Processing

Workshop, NIPS'98, pp. 253-259.

68. [Kir92] Kira, K., Rendell, L. A., The feature selection problem - Traditional methods

and a new algorithm. In Proceedings of Ninth National Conference on AI, pp. 129-

134.

69. [Koh95] Kohavi, R. (1995). Wrappers for Performance Enhancement and Oblivious

Decision Graphs. PhD thesis, Stanford University, Computer Science Department

70. [Koh97] Kohavi R. and John J.H. (1997). Wrappers for feature subset selection.

Artificial Intelligence, Volume 7, Issue 1-2.

71. [Kol06] Koljonen J. and Alander J.T. (2006). Effects of population size and relative

elitism on optimization speed and reliability of genetic algorithms. In Proceedings of

the Ninth Scandinavian Conference on Artificial Intelligence (SCAI

2006), Honkela, Kortela, Raiko, Valpola (eds.), pp. 54–60

72. [Kon94] Kononenko, I. (1994). Estimating attributes: analysis and extensions of

Relief. In De Raedt, L. and Bergadano, F., editors, Machine Learning: ECML-94,

pages 171-182. Springer Verlag.

73. [Kub97] Kubat M. and Matwin S. (1997). Addressing the Course of Imbalanced

Training Sets: One-sided Selection. In ICML. 179—186

74. [Lan94a] Langley P. and Sage S. (1994). Induction of selective Bayesian classifiers.

In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence,

Seattle, W.A, Morgan Kaufmann, pp. 399-406

75. [Lan94b] Langley P. and Sage, S. (1994). Scaling to domains with irrelevant features.

In R. Greiner, editor, Computational Learning Theory and Natural Learning Systems,

volume 4. MIT Press.

76. [Lau01] Laurikkala J. (2001). Improving Identification of Difficult Small Classes by

Balancing Class Distribution. Technical Report A-2001-2, University of Tampere.

77. [Lem11a] Lemnaru C, Firte A. and Potolea R. (2011). Static and Dynamic User

Type Identification in Adaptive E-learning with Unsupervised Methods. Proceedings

of 7
th

 ICCP, pp. 11-18.

References

119

78. [Lem11b] Lemnaru C. and Potolea R. (2011). Imbalanced Classification Problems:

Systematic Study, Issues and Best Practices. To appear in Lecture Notes in Business

Intelligence, Springer-Verlag.

79. [Lem12a] Lemnaru C., Cuibus M., Bona A., Alic A. and Potolea R. (2012). A

Distributed Methodology for Imbalanced Classification Problems, presented at the

11
th

 International Symposium on Parallel and Distributed Computing, Munich, June

2012.

80. [Lem12b] Lemnaru C., Sin-Neamtiu A., Veres M.A. and Potolea R. (2012). A

System for Historical Documents Transcription based on Hierarchical Classification

and Dictionary Matching, accepted at KDIR 2012.

81. [Lem12c] Lemnaru C., Tudose-Vintila A., Coclici A. and Potolea R. (2012). A

Hybrid Solution for Imbalanced Classification Problems – Case Study on Network

Intrusion Detection, accepted at KDIR 2012.

82. [Lin02] Lin Y., Lee Y., Wahba G. (2002). Support vector machines for classification

in nonstandard situations, Mach. Learn. 46. 191–202

83. [Lin04] Ling C.X., Yang Q., Wang J. and Zhang S. (2004). Decision trees with

minimal costs. ACM International Conference Proceeding Series: 21
st
 International

Conference on Machine Learning. C.E. Brodley (ed.), New York, USA: ACM Press

Article No. 69, pp. 4–8.

84. [Liu96] Liu H., Setiono R. (1996). A probabilistic approach to feature selection–a

filter solution. In Proceedings of International Conference on Machine Learning, pp.

319-327.

85. [Liu00] Liu B., Ma Y., Wong C.K. (2000). Improving an association rule based

classifier. Proceedings of the 4
th

 European Conference on Principles of Data Mining

and Knowledge Discovery. pp. 504–509

86. [Liu10] Liu W., Chawla S., Cieslak D., Chawla N. (2010). A Robust Decision Tree

Algorithm for Imbalanced Datasets. In: Proceedings of the Tenth SIAM International

Conference on Data Mining, 766–777

87. [Liu11] Liu W. and Chawla S., (2011). Class Confidence Weighted kNN Algorithms

for Imbalanced Datasets. Advances in Knowledge Discovery and Data Mining, LNCS,

Volume 6635/2011. 345-356.

88. [Mag04] Magnani, M. (2004). Techniques for Dealing with Missing Data in

Knowledge Discovery Tasks, (available at

http://magnanim.web.cs.unibo.it/index.html)

89. [Mar00] Margineantu D.D. (2000). When does imbalanced data require more than

cost-sensitive learning? In Workshop on Learning from Imbalanced Data, Artificial

Intelligence (AAAI-2000).

http://magnanim.web.cs.unibo.it/index.html

References

120

90. [Mar03] Margineantu D. and Dietterich T. (2003). A wrapper method for cost-

sensitive learning via stratification. Available at

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.1102 (Accessed Nov

2011)

91. [Mas10] Masnadi-Shirazi H. and Vasconcelos N. (2010). Risk minimization,

probability elicitation, and cost-sensitive SVMs. In Proceedings of the International

Conference on Machine Learning, pp. 204-213. ACM Press.

92. [Meh96] Mehta M., Agrawal R. and Rissanen J. (1996). SLIQ: A fast scalable

classifier for data mining. In Proc. of the 5
th

 Intl. Conference on Extending Database

Technology (EDBT), Avignon, France. pp. 18-32.

93. [Mer09] Merk A.B., Vidrighin B.C., Potolea R. (2009). Meta-learning enhancements

by data partitioning. Proceedings of the 5th IEEE ICCP, pp. 59-62.

94. [Min01] Minert R.P. (2001). Deciphering Handwriting in German Documents:

Analyzing German, Latin and French in Vital Records Written in Germany. GRT

Publications.

95. [Mol07] Moldovan T., Vidrighin C., Giurgiu I., Potolea R. (2007). Evidence

Combination for Baseline Accuracy Determination. Proceedings of the 3rd ICCP

2007, 6-8 September, Cluj-Napoca, Romania, pp. 41-48.

96. [Mol02] Molina L.C., Belanche L., Nebot A. (2002). Feature Selection Algorithms: A

Survey and Experimental Evaluation. In Proceedings of the 2002 IEEE International

Conference on Data Mining (ICDM'02), p.306.

97. [Moo94] Moore A.W. and Lee M.S. (1994). Efficient algorithms for minimizing cross

validation error. In Machine Learning: Proceedings of the Eleventh International

Conference. Morgan Kaufmann.

98. [Mur10] Muresan R.F., Lemnaru C. and Potolea R. (2010). Evidence Combination

for Baseline Accuracy Determination. Proceedings of the 6th ICCP, pp. 11-18.

99. [Ned10] Nedevschi S., Peter I.R., Dobos, I.A. and Prodan C. (2010). An improved

PCA type algorithm applied in face recognition. Proceedings of 2010 IEEE Intelligent

Computer Communication and Processing, (ICCP 2010), August 26-28, pp. 259-262.

100. [Ned09] Nedevschi S., Bota S. and Tomiuc C. (2009). Stereo-Based Pedestrian

Detection for Collision-Avoidance Applications. IEEE Transactions on Intelligent

Transportation Systems, vol. 10, no. 3, pp. 380-391.

101. [Ngu08] Nguyen H.A., Choi D. (2008). Application of Data Mining to Network

Intrusion Detection: Classifier Selection Model, APNOMS, LNCS 5297, pp. 399–

408.

102. [Nil07] Nilsson R. (2007). Statistical Feature Selection, with Applications in Life

Science. PhD Thesis. Linkoping University.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.1102

References

121

103. [Nor89] Norton S.W. (1989). Generating better decision trees. Proceedings of the

Eleventh International Joint Conference on Artificial Intelligence, IJCAI-89, pp 800-

805.

104. [Nun91] Nunez M. (1991). The Use of Background Knowledge in Decision Tree

Induction. Machine Learning, 6, 231-250.

105. [Ona07] Onaci A., Vidrighin C., Cuibus M. and Potolea R. (2007). Enhancing

Classifiers through Neural Network Ensembles. Proceedings of the 3rd ICCP 2007,

6-8 September, Cluj-Napoca, Romania, pp. 57-64.

106. [Par98] Park Y. and Song M.A. (1998). Genetic Algorithm for Clustering Problems.

In Genetic Programming 1998: Proceedings of the Third Annual Conference, pp.

568–575.

107. [Paz94] Pazzani M., Merz C., Murphy P., Ali K., Hume T. and Brunk C. (1994).

Reducing misclassification costs. Proceedings of the 11
th

 International Conference on

Machine Learning, USA: Morgan Kaufmann, 217–225.

108. [Paz95] Pazzani, M. (1995). Searching for dependencies in Bayesian classifiers. In

Proceedings of the Fifth International Workshop on AI and Statistics.

109. [Pen03] Pendharkar P.C., Nanda S., Rodger J.A. and Bhaskar R. (2003). An

Evolutionary Misclassification Cost Minimization Approach for Medical Diagnosis.

In P. Pendharkar (Ed.), Managing Data Mining Technologies in Organizations:

Techniques and Applications, pp. 32-44.

110. [Piz98] Pizzuti C. (2008). GA-Net: A genetic algorithm for community detection in

social networks. Lecture Notes in Computer Science, vol. 5199. pp. 1081-1090.

111. [Pot11a] Potolea R., Bărbănţan I. and Lemnaru C. (2011). A Hierarchical Approach

for the Offline Handwritten Signature Recognition. Lecture Notes in Business

Information Processing, Volume 73, Part 3, 264-279.

112. [Pot11b] Potolea R., Cacoveanu S. and Lemnaru C. (2011). Meta-learning

Framework for Prediction Strategy Evaluation. Lecture Notes in Business

Information Processing, Volume 73, Part 3, 280-295.

113. [Pot11c] Potolea R., Lemnaru C. (2011). A Comprehensive Study of the Effect of

Class Imbalance on the Performance of Classifiers. Proceedings ICEIS 2011, pp. 14-

21.

114. [Pro97] Provost F. and Fawcett T. (1997). Analysis and Visualization of Classifier

Performance: Comparison under Imprecise Class and Cost Distributions.

Proceedings of the Third International Conference on Knowledge Discovery and

Data Mining, pp. 43-48.

115. [Qui91] Quinlan J.R. (1991). Improved estimates for the accuracy of small disjuncts.

Mach. Learn. 6. 93–98.

References

122

116. [Qui93] Quinlan J.R. (1993). C4.5: Programs for Machine Learning, Morgan

Kaufmann.

117. [Qui96] Quinlan J.R. (1996). Boosting first-order learning. Proceedings of the 7th

International Workshop on Algorithmic Learning Theory. 1160:143–155.

118. [Rub87] Rubin, D.B. (1987). Multiple imputation for non-response in surveys, John

Wiley and Sons.

119. [Rub87b] Rubin D.B. and Little RJA (1987). Statistical Analysis with Missing Data,

J. Wiley & Sons, New York.

120. [Sar98] Sarle, W.S. (1998). Prediction with missing inputs. Technical Report, SAS

Institute Inc., SAS Campus Drive, Cary, NC 27513, USA.

121. [Sch04] Schoner H. (2004). Working with Real-World Datasets. PhD Thesis. School

of Engineering , Technical University of Berlin. 176p.

122. [She06] Sheng V.S. and Ling C.X. (2006). Thresholding for Making Classifiers

Cost-sensitive. In Proceedings of the 21
st
 National Conference on Artificial

Intelligence, 476-481.

123. [Sin08] Sindhwani V. and Melville P (2008). Document-Word Co-Regularization for

Semi-supervised Sentiment Analysis. IEEE International Conference on Data Mining

(ICDM). pp. 1025–1030.

124. [Spe91] Spears W.M. and De Jong K.A. (1991). An Analysis of Multi-Point

Crossover. In Foundations of Genetic Algorithms. San Mateo, California, USA:

Morgan Kaufmann Publishers, 1991, pp. 301-315.

125. [Sun07] Sun Y., Kamel M.S., Wong A.K.C., Wang Y (2007). Cost-sensitive

boosting for classification of imbalanced data. Pattern Recognition, v.40 n.12,

p.3358-3378.

126. [Tan89] Tan M. and Schlimmer J. (1989). Cost-Sensitive concept learning of sensor

use in approach and recognition. Proceedings of the Sixth International Workshop on

Machine Learning, ML-89, pp. 392-395.

127. [Tav09] Tavallaee M., Bagheri M., Wei L., Ghorbani A.A. (2009). A Detailed

Analysis of the KDD CUP 99 Dataset. Proceedings of the IEEE Symposium on

Computational Intalligence in Security and Defense Applications, pp. 53-58.S

128. [The97] Therneau T.M. and Atkinson E.J. (1997). An introduction to recursive

partitioning using the RPART routines. Technical Report, Mayo Foundation.

Department of Statistics, Stanford University, USA.

129. [Tia11] Tian J., Gu H. and Liu W. (2011). Imbalanced classification using support

vector machine ensemble. Neural Comput. Appl. 20, 2:203-209.

References

123

130. [Tin98] Ting K.M. (1998). Inducing cost-sensitive decision trees via instance

weighting. Proceedings of the 2
nd

 European Symposium on Principles of Data

Mining and Knowledge Discovery. Berlin: Springer Verlag, 139–147.

131. [Tin02] Ting K.M. (2002). An instance-weighting method to induce cost-sensitive

decision trees. IEEE Transactions on Knowledge and Data Engineering. 14, 659–

665.

132. [Tom76] Tomek I. (1976). Two Modifications of CNN. IEEE Transactions on

Systems Man and Communications SMC-6, 769—772.

133. [Tri10] Trif F., Lemnaru C,. Potolea R. (2010). Identifying the User Typology for

Adaptive E-learning Systems. Proceedings of AQTR 2010 - IEEE International

Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, May 28-30,

2010, pp. 192-198/Tome III.

134. [Tur95] Turney P. (1995). Cost sensitive classification: Empirical evaluation of a

hybrid genetic decision tree induction algorithm. Journal of Artificial Intelligence

Research, (2):369–409.

135. [Tur00] Turney P. (2000). Types of Cost in Inductive Concept Learning. In:

Proceedings of the Workshop on Cost-Sensitive Learning at the Seventeenth

International Conference on Machine Learning, Stanford University, California, pp.

15-21.

136. [Two99] Two Crows Corp. Introduction to Data Mining and Knowledge Discovery,

Third Edition, http://www.twocrows.com/intro-dm.pdf , 1999, last accessed in

November, 2008

137. [UCI] UCI Machine Learning Data Repository, http://archive.ics.uci.edu/ml (last

accessed on Jan. 2012)

138. [Vam09] Vamvakas G., Gatos B., Perantonis S.J. (2009). A Novel Feature Extraction

and Classification Methodology for the Recognition of Historical Documents. Proc.

of 10
th

 International Conference on Document Analysis and Recognition

(ICDAR’09), pp 491-495.

139. [Ver96] Vermunt J.D. (1996). Metacognitive, cognitive and affective aspects of

learning styles and strategies: A phenomenographic analysis. Higher Education 31,

25–50.

140. [Vil04] Vilalta R., Giraud-Carrier C., Brazdil P., and Soares C. (2004). Using Meta-

Learning to Support Data Mining. International Journal of Computer Science &

Applications, pp. 31-45.

141. [Vis05] Visa S. and Ralescu A. (2005). Issues in mining imbalanced datasets-a

review paper. In: Proc. of the Sixteen Midwest Artificial Intelligence and Cognitive

Science Conference, 67–73.

http://www.twocrows.com/intro-dm.pdf
http://archive.ics.uci.edu/ml

References

124

142. [Wei03] Weiss G. and Provost F. (2003). Learning when Training Data are Costly:

The Effect of Class Distribution on Tree Induction. Journal of Artificial Intelligence

Research 19. pp. 315-354.

143. [Wei04] Weiss, G. (2004). Mining with Rarity: A Unifying Framework, SIGKDD

Explorations 6(1), 7—19.

144. [Wil09] Williams D., Myers V., Silvious M. (2009). Mine classification with

imbalanced data. IEEE Geoscience and Remote Sensing Letters. 6(3):528–532.

145. [Wit05] Witten I.H. and Frank E. (2005). Data Mining: Practical Machine Learning

Tools and Techniques. Morgan Kaufmann, San Francisco, 2
nd

 edition.

146. [Wu03] Wu G., Chang E.Y. (2003). Class-boundary alignment for imbalanced

dataset learning. Proceedings of the ICML’03 Workshop on Learning from

Imbalanced Datasets, pp. 49-56.

147. [Yen06] Yen S. and Lee Y. (2006). Under-sampling approaches for improving

prediction of the minority class in an imbalanced dataset. In ICIC, LNCIS 344, pages

731–740.

148. [Yoo05] Yoon K. and Kwek S. (2005). An unsupervised learning approach to

resolving the data imbalanced issue in supervised learning problems in functional

genomics. In HIS ’05: Proceedings of the Fifth International Conference on Hybrid

Intelligent Systems, pages 303–308.

149. [Zad01] Zadrozny B., Elkan C. (2001). Learning and making decisions when costs

and probabilities are both unknown. In: Proceedings of the Seventh International

Conference on Knowledge Discovery and Data Mining, 204–213.

150. [Zad03] Zadrozny B., Langford J. and Abe N. (2003). Cost-Sensitive Learning by

Cost-Proportionate Example Weighting. ICDM '03 Proceedings of the Third IEEE

International Conference on Data Mining, 435-442.

151. [Zho06] Zhou Z.H. and Liu X.Y. (2006). Training Cost-Sensitive Neural Networks

with Methods Addressing the Class Imbalance Problem. IEEE Trans. on Knowl. and

Data Eng. 18, 1. 63-77.

Research Grants and Publications

125

Research Grants and Publications

Research Grants

1. IntelPRO - Intelligent System for Assisting the Therapeutic Decision for Patients

with Prostate Cancer, National research grant funded by ANCS, CEEX - INFOSOC,

(2005-2008), no. 18/2005; http://cv.utcluj.ro/intelpro/

2. SEArCH - Adaptive eLearning Systems using Concept Maps, National grant

funded by CNMP Program 4: Research partnership for priority domains, (2008-

2011), no. 12080/2008; http://search.utcluj.ro/

3. PhD Researcher grant, National Research grant funded by CNCSIS – BD type,

2008-2010, no.348/2008

Journal Papers

1. Potolea R. and Lemnaru C., “Evolutionary Cost-Sensitive Balancing: A Generic

Method for Imbalanced Classification Problems”, submitted at Data Mining and

Knowledge Discovery, revision requested

2. Potolea, R., Trif, F., Lemnaru, C., “Adaptive E-Learning Systems with Concept

Maps”, Revista Romana de Informatica si Automatica, vol. 21, no.4/2011, pp. 43-56,

2011

3. Potolea, R., Trif, F., Lemnaru, C., "Enhancements on Adaptive E-learning Systems",

The Automation, Computers, Applied Mathematics Journal (ACAM), Vol. 19, no.3,

pp. 475-482, 2010

4. Potolea, R., Vidrighin B. C., Trif, F., “Intelligent Component for adaptive E-learning

Systems”, The Automation, Computers, Applied Mathematics Journal, Vol. 18, pp.

270-275, 2009

5. C. Vidrighin Bratu and R. Potolea, "ProICET: a cost-sensitive system for prostate

cancer data", Health Informatics Journal, Dec 2008, vol. 14: pp. 297-307, ISSN:

1741-2811 (online); 1460-4582

Book chapters

6. Lemnaru C. and Potolea R., “Imbalanced Classification Problems: Systematic Study,

Issues and Best Practices”, to appear in Lecture Notes in Business Information

Processing, 2012

7. Potolea, R., Barbantan, I., Lemnaru, C.,"A Hierarchical Approach for the Offline

Handwritten Signature Recognition", Lecture Notes in Business Information

Processing , 2011, Volume 73, Part 3, 264-279, DOI: 10.1007/978-3-642-19802-1

8. Potolea, R., Cacoveanu, S., Lemnaru, C., "Meta-learning Framework for Prediction

Strategy Evaluation", Lecture Notes in Business Information Processing , 2011,

Volume 73, Part 3, 280-295, DOI: 10.1007/978-3-642-19802-1

9. C. Vidrighin Bratu and R. Potolea, Advances in Greedy Algorithms – chapter 9:

"Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems", IN-

TECH, 2008, pp. 151-168, ISBN 978-953-7619-27-5 (print)

http://cv.utcluj.ro/intelpro/
http://search.utcluj.ro/

Research Grants and Publications

126

Conference Papers

2012

10. Lemnaru, C., Cuibus, M., Alic, A., Bona, A. and Potolea, R., “A Distributed

Methodology for Imbalanced Classification Problems”, presented at the 11
th

International Symposium on Parallel and Distributed Computing, Munich, June 2012

11. Lemnaru, C., Sin-Neamtiu, A., Veres, M.A., Veres, M and Potolea, R., “A System

for Historical Documents Transcription based on Hierarchical Classification and

Dictionary Matching”, accepted at KDIR 2012.

12. Lemnaru, C., Tudose-Vintila, A., Coclici, A. and Potolea, R., “A Hybrid Solution for

Imbalanced Classification Problems. Case Study on Network Intrusion Detection”,

accepted at KDIR 2012

13. Lemnaru, C., Dobrin, M., Florea, M., Potolea, R., “Designing a Travel

Recommendation System using Case-Based Reasoning and Domain Ontology”,

accepted at ICCP 2012.

2011

14. Potolea, R., Lemnaru C., "A Comprehensive Study of the Effect of Class Imbalance

on the Performance of Classifiers" Proceedings of the 13
th

 International Conference

on Enterprise Information Systems, pp. 14-21, 2011

15. Lemnaru, C., Firte, A., Potolea, R., “Static and Dynamic User Type Identification in

Adaptive E-learning with Unsupervised Methods”, Proceedings of the 2011 IEEE 7
th

International Conference on Intelligent Computer Communication and Processing,

pp. 11-18, 2011

16. Dodut, A.A., Lemnaru C. and Potolea R., “The parallel classification of very large

collections of data on multi-core platforms”, in Proceedings of the 10
th

 International

Symposium on Parallel and Distributed Computing 2011, pp.57-62, 2011

17. Feier, M., Lemnaru C. and Potolea R., “Solving NP-Complete Problems on the

CUDA Architecture using Genetic Algorithms”, in Proceedings of the 10
th

International Symposium on Parallel and Distributed Computing 2011, pp.278-281,

2011

2010

18. Balla-Muller, N., Lemnaru, C., Potolea, R., "Semi-supervised learning with lexical

knowledge for opinion mining," Proceedings of the 2010 IEEE 6
th

 International

Conference on Intelligent Computer Communication and Processing, pp.19-25, 2010

19. Bărbănţan, I., Lemnaru, C., Potolea, R., “A Hierarchical Handwritten Offline

Signature Recognition System”, Proceedings of the 12
th

 International Conference on

Enterprise Information Systems, Funchal, Madeira, Portugal, pp. 139-147, 2010

20. Cacoveanu, S., Vidrighin, B. C., Potolea, R., ”Evaluating Prediction Strategies in an

Enhanced Meta-learning Framework”, Proceedings of the 12
th

 International

Conference on Enterprise Information Systems, Funchal, Madeira, Portugal, pp. 148-

156, 2010

21. Firte, L., Lemnaru, C., Potolea, R., "Spam detection filter using KNN algorithm and

resampling", Proceedings of the 2010 IEEE 6
th

 International Conference on

Intelligent Computer Communication and Processing, pp.27-33, 2010

22. Halalai, R., Lemnaru, C., Potolea, R., "Distributed community detection in social

networks with genetic algorithms", Proceedings of the 2010 IEEE 6th International

Conference on Intelligent Computer Communication and Processing, pp.35-41, 2010

23. R.F. Muresan, C. Lemnaru, R. Potolea, "Evidence Combination for Baseline

Accuracy Determination", Proceedings of the 6th ICCP, pp. 11-18, 2010

Research Grants and Publications

127

24. Potolea, R., Lemnaru, C., “Dealing with Imbalanced Problems: Issues and Best

Practices”, Proceedings of the 12
th

 International Conference on Enterprise

Information Systems, Volume 2, AIDSS, June 8 - 12, pp. 443-446, ISBN 978-989-

8425-05-8, 2010

25. Trif, F., Lemnaru, C., Potolea, R., “Identifying the User Typology for Adaptive E-

learning Systems”, Proceedings of AQTR 2010 - IEEE International Conference on

Automation, Quality and Testing, Robotics, Cluj-Napoca, May 28-30, 2010, pp. 192-

198/Tome III

2009

26. Bărbănţan, I., Vidrighin, C., Borca, R., “An Offline System for Handwritten

Signature Recognition”, Proceedings of the 5
th

 IEEE International Conference on

Intelligent computer Communication and Processing, Cluj-Napoca, pp. 3-10, 2009

27. Cacoveanu, S., Vidrighin, B.C., Potolea, R.,”Evolutional meta-learning framework

for automatic classifier selection”, Proceedings of the 5
th

 IEEE International

Conference on Intelligent computer Communication and Processing, pp. 27-30, 2009

28. Firte, A.A., Vidrighin, B.C., Cenan, C., “Intelligent component for adaptive E-

learning systems”, Proceedings of the 5
th

 IEEE International Conference on

Intelligent computer Communication and Processing, pp. 35-38, 2009

29. Merk, A.B., Vidrighin, B.C., Potolea, R., ”Meta-learning enhancements by data

partitioning”, Proceedings of the 5
th

 IEEE International Conference on Intelligent

computer Communication and Processing, pp. 59-62, 2009

30. Vidrighin, B.C., Potolea, R.,“Towards a Unified Strategy for the Preprocessing Step

in Data Mining”, Proceedings of the 11
th

 International Conference on Enterprise

Information Systems, pp. 230-235, 2009

31. Vidrighin, B.C., Potolea, R., “Unified Strategy for Feature Selection and Data

Imputation”, Proceedings of the 11
th

 International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing, Timisoara, pp. 413 – 419, 2009

2008

32. Vidrighin Bratu, C., Muresan, T. and Potolea, R., “Improving Classification

Performance on Real Data through Imputation”, Proceedings of the 2008 IEEE

International Conference on Automation, Quality and Testing, Robotics, 22-25 May,

Cluj-Napoca, Romania, Vol. 3, pp. 464-469, ISBN: 978-1-4244-2576-1

33. Vidrighin, B. C, Potolea, R., “Towards a Combined Approach to Feature Selection”,

Proceedings of the 3
rd

 International Conference on Software and Data Technologies,

pp. 134-139, 2008

34. Vidrighin,B.C., Muresan,T., Potolea,R.,“Improving Classification Accuracy through

Feature Selection”, Proceedings of the 4
th

 IEEE International Conference on

Intelligent computer Communication and Processing, pp 25-32

2007

35. T. Moldovan, C. Vidrighin, I. Giurgiu, R. Potolea, "Evidence Combination for

Baseline Accuracy Determination", Proceedings of the 3
rd

 IEEE International

Conference on Intelligent computer Communication and Processing, pp. 41-48, 2007

36. C. Vidrighin Bratu, C. Savin, R. Potolea, "A Hybrid Algorithm for Medical

Diagnosis". Proceedings of EUROCON 2007, 9-12 September, Warsaw, pp. 668-673

37. A. Onaci, C. Vidrighin, M Cuibus and R. Potolea, "Enhancing Classifiers through

Neural Network Ensembles", Proceedings of the

3

rd
 IEEE International Conference

on Intelligent computer Communication and Processing, pp. 57-64, 2007

Research Grants and Publications

128

38. R. Potolea, C. Vidrighin, C. Savin, "ProICET - A Cost-Sensitive System for the

Medical Domain", Proceedings of the 3
rd

 International Conference on Natural

Computation ICNC 2007, Haikou, August 2007, China, Volume 2, Session 3

39. C. Vidrighin, R. Potolea, I. Giurgiu, M. Cuibus, "ProICET: Case Study on Prostate

Cancer Data", Proceedings of the 12th International Symposium of Health

Information Management Research, 18-20 July 2007, Sheffield, pp. 237-244

Citations

C. Vidrighin Bratu, C. Savin, R. Potolea, "A Hybrid Algorithm for Medical Diagnosis".

Proceedings of EUROCON 2007, 9-12 September, Warsaw, pp. 668-673 (2007)

 Barros, R. C., Basgalupp, M. P., de Carvalho, A. C. P. L. F., Freitas, A. A., “A Survey

of Evolutionary Algorithms for Decision-Tree Induction”, in IEEE Transactions on

Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. PP, issue 99,

pp. 1-10 (I.F. according to UEFISCDI = 1.6148)

 Weiss, Y., Elovici, Y., Rokach, L., “The CASH algorithm-cost-sensitive attribute

selection using histograms”, Information Sciences, Available online 2 February 2011,

ISSN 0020-0255, 10.1016/j.ins.2011.01.035 (I.F. according to UEFISCDI = 1.2769)

http://www.sciencedirect.com/science/article/pii/S0020025511000624

C. Vidrighin Bratu, T. Muresan and R. Potolea, "Improving Classification Performance on

Real Data through Imputation", Proceedings of the 2008 IEEE International Conference on

Automation, Quality and Testing, Robotics, 22-25 May, Cluj-Napoca, Romania, Vol. 3, pp.

464-469 (2008)

 Gheyas, I.A., Smith, L.S., “A neural network-based framework for the reconstruction

of incomplete datasets”, Neurocomputing, Volume 73, Issues 16–18, October 2010,

Pages 3039-3065, ISSN 0925-2312, 10.1016/j.neucom.2010.06.021, (I.F. according to

UEFISCDI = 0.86616)

http://www.sciencedirect.com/science/article/pii/S0925231210003188

 Gheyas, I.A., Novel Computationally Intelligent Machine Learning Algorithms for

Data Mining and Knowledge Discovery, PhD Thesis, University of Stirling, 2009

http://hdl.handle.net/1893/2152

C. Vidrighin, R. Potolea, I. Giurgiu, M. Cuibus, “ProICET case study on prostate cancer

data”, Proceedings of the 12th International Symposium of Health Information Management

Research, 2007, pp. 237–244. (2007)

 Weiss, Y., Elovici, Y., Rokach, L., “The CASH algorithm-cost-sensitive attribute

selection using histograms”, Information Sciences, Available online 2 February 2011,

ISSN 0020-0255, 10.1016/j.ins.2011.01.035 (I.F. according to UEFISCDI = 1.2769)

http://www.sciencedirect.com/science/article/pii/S0020025511000624

C. Vidrighin Bratu, T. Muresan and R. Potolea, "Improving Classification Accuracy

through Feature Selection", Proceedings of the 4th IEEE International Conference on

Intelligent Computer Communication and Processing, ICCP 2008, 28-30 August, pp. 25-32

(2008)

 Marcano-Cede o, A., Quintanilla-Dom nguez, J., Cortina-Januchs, M.G., Andina,

D.,” Feature selection using Sequential Forward Selection and classification applying

Artificial Metaplasticity Neural Network” , Proceedings of IECON 2010 - 36th

Annual Conference on IEEE Industrial Electronics Society, 2845 - 2850

http://www.sciencedirect.com/science/article/pii/S0020025511000624
http://www.sciencedirect.com/science/article/pii/S0925231210003188
http://hdl.handle.net/1893/2152
http://www.sciencedirect.com/science/article/pii/S0020025511000624

Research Grants and Publications

129

 Špečkauskienė, V. and Lukoševičius, A, “A data mining methodology with

preprocessing steps”, Information Technology and Control, Vol.38, No.4, 2009, 319-

324.

S. Cacoveanu, C. Vidrighin and R. Potolea, "Evolutional meta-learning framework for

automatic classifier selection", Proceedings of the IEEE 5
th

 International Conference on

Intelligent Computer Communication and Processing, ICCP2009, 27-29 August, pp. 27-30

(2009)

 Hilario,M., Nguyen, P., Do, H., Woznica, A. and Kalousis, A., “Ontology-Based

Meta-Mining of Knowledge Discovery Workflows”, Meta-Learning in

Computational Intelligence, series Studies in Computational Intelligence, vol. 358,

Springer, 2011, 273-315

Appendix A

130

Appendix A – Description of the Datasets Employed in the Experiments

Datasets from Chapter 3

Table A.3.1 – Datasets used in the evaluations on data imputation

Dataset
No.

Attributes
No.

Instances
Attributes

type
 Pima Indian Diabethes 8+1 768 Num

7
 Cars 6+1 1729 Nom

8

Datasets from Chapter 4

Table A.4.1 – Datasets used in the evaluations on wrapper feature selection (section 4.4.1)

Dataset
No.

Attributes
No.

Instances
Attributes

type
 Australian 14+1 690 Num, Nom
 Breast-cancer 9+1 286 Nom
 Bupa 5+1 345 Num
 Cleve-detrano 14+1 303 Num, Nom
 Crx 15+1 690 Num, Nom
 German 20+1 1000 Num, Nom
 Heart 13+1 270 Num, Nom
 Cleveland 13+1 303 Num, Nom
 Monk3 7+1 432 Nom
 Pima Diabethes 8+1 768 Num
 Thyroid 20+1 7200 Num, Nom
 Tic-tac-toe 9+1 958 Nom
 Vote 16+1 435 Nom
 Wisconsin 9+1 699 Num

Table A.4.2 – Datasets used in the evaluations on the search combination method for wrapper feature

selection (section 4.4.2)

Dataset
No.
Attributes

No.
Instances

Attributes type

 Australian 14+1 690 Num, Nom
 Breast-cancer 9+1 286 Nom
 Cleve-detrano 14+1 303 Num, Nom
 Crx 15+1 690 Num, Nom
 German 20+1 1000 Num, Nom
 Heart 13+1 270 Num, Nom
 Hepatitis 19+1 155 Num, Nom
 Labor 16+1 57 Num, Nom
 Lymphography 18+1 148 Nom
 Pima Diabethes 8+1 768 Num
 Tic-tac-toe 9+1 958 Nom

7
 Numeric

8
 Nominal

Appendix A

131

Datasets from Chapter 5

Table A.5.1 – Datasets used in the evaluations on the combined pre-processing strategy (section 5.2)

Dataset
No.

Attributes
No.

Instances
Attributes

type
 Bupa 5+1 345 Num
 Cleveland Heart Disease 13+1 303 Num, Nom
 Pima Diabethes 8+1 768 Num

Datasets from Chapter 6

Table A.6.1 – Datasets employed in the experiments on ProICET (section 6.3.3)

Dataset No.

Att.
Att. Domain No.

Inst.
No.

Classes
Breast Cancer Wisconsin 10 Nom 699 2
Bupa Liver Disorder 6 Num 345 2
Pima Indian Diabethes 9 Num 768 2
Cleveland Heart Disease 14 Num, Nom 303 5
Thyroid 21 Num, Nom 7200 3

Table A.6.2 – Attribute information and costs for the Heart Disease Cleveland dataset

Crt.

No.
Attribute

Name
Attribute Description Attribute Domain Attribute

Cost
1 Age Patient age Numeric 1.0
2 Sex Patient gender Binary: 0/1 1.0
3 Cp Chest Pain Type Nominal:

 Value 1: typical angina
 Value 2: atypical angina
 Value 3: non-anginal pain
 Value 4: asymptomatic

1.0

4 Trestbps Resting Blood Pressure Numeric 1.0
5 Chol Serum cholestoral Numeric 7.27
6 Fbs Fasting Blood Sugar Binary: 0/1 5.20
7 Restecg Resting EKG results Binary:

 Value 0: normal elevation of

depression of >0.05 mV
 Value 2: showing probable or definite

left ventricular hypertrophy by Estes’

criteria

15.50

8 Thalach Maximum rate achieved Numeric 102.90
9 Exang Exercise induced angina Binary: 0=no; 1=yes 87.30
10 Oldpeak ST depression induced by

exercise relative to rest
Numeric 87.30

Appendix A

132

Crt.

No.
Attribute

Name
Attribute Description Attribute Domain Attribute

Cost
11 Slope The slope of the peak

exercise ST segment
Nominal:
 Value 1: up-sloping
 Value 2: flat
 Value 3: down-sloping

87.30

12 Ca Number of major vessels Nominal: 0-3 100.90
13 Thal Nominal:

 Value 3: normal
 Value 6: fixed effect
 Value 7: reversible effect

102.90

14 Class Diagnosis of heart disease Nominal:
 Value 0: missing
 Values 1-4: degrees of seriousness of

heart disease.

0.0

Cost matrix:
 0 1 2 3 4  classified as

























0.00.500.1000.1500.250

0.100.00.500.1000.150

0.200.100.00.500.100

0.300.200.100.00.50

0.400.300.200.100.0

_ matrixCost

 4

3

2

1

0

 classactual

Table A.6.3 – Attribute information and costs for the Bupa Liver Disorder dataset

Crt.No. Attribute

Name
Attribute Description Attribute Domain Attribute

Cost

1 Mcv Mean corpuscular volume Numeric 7.27

2 Alkphos Alkaline Phosphotase Numeric 7.27

3 Sgpt Alamine Aminotransferase Numeric 7.27

4 Sgot Aspartate Aminotransferase Numeric 7.27

5 Gammagt Gamma-glutamyl Transpeptidase Numeric 9.86

6 Drinks Number of half-pint equivalents of

alcoholic beverages drunk per day

(class attribute)

Binary: ‘less than 3’,

‘more than 3’
0.0

7 Selector Not used - -

Cost matrix: 33  classified as











0.00.15

0.50.0
_ matrixCost

 classactual

Appendix A

133

Table A.6.4– Attribute information and costs for the Thyroid dataset

Crt.

No.
Attribute Name Attribute Description Attribute Domain Attrib.

Cost

1 Age Age in years Numeric 1.00

2 Sex Gender Binary: 0/1 1.00

3 On_Thyroxin Patient on thyroxin Binary: 0/1 1.00

4 Query_On_Thyroxin Query on thyroxin Binary: 0/1 1.00

5 On_AntiThyroid_Med On antithyroid medication Binary: 0/1 1.00

6 Sick Patient reports malaise Binary: 0/1 1.00

7 Pregnant Patient is pregnant Binary: 0/1 1.00

8 Thyroid_Surgery Thyroid surgery history Binary: 0/1 1.00

9 I131_treatment On I131 treatment Binary: 0/1 1.00

10 Query_Hypothyroid Maybe Hypothyroid Binary: 0/1 1.00

11 Query_Hyperthyroid Maybe Hyperthyroid Binary: 0/1 1.00

12 Lithium Patient on lithium Binary: 0/1 1.00

13 Goitre Patient has goitre Binary: 0/1 1.00

14 Tumor Patient has tumor Binary: 0/1 1.00

15 Hypopituitary Patient hypopituitary Binary: 0/1 1.00

16 Psych Psychological Symptoms Binary: 0/1 1.00

17 TSH TSH value Numeric 22.78

18 T3 T3 value Numeric 11.41

19 TT4 TT4 value Numeric 14:51

20 T4U T4U value Numeric 11:41

21 FTI FTI – computed from20 and

21
Not used -

22 Class Diagnostic class Nominal:
 Value 3: not ill
 Value 2: hyperthyroid
 Value 1: hypothyroid

0.0

Cost matrix: 3 2 1 asclassified



















0.00.120.20

0.50.00.12

0.70.50.0

_ matrixCost

1

2

3

 classactual

Appendix A

134

Table A.6.5 – Attribute information and costs for the Pima Indian Diabethes dataset

Crt.

No.
Attribute Name Description Domain Cost

1 NbTimesPreg Number of times pregnant Numeric 1.0
2 GlucTest Plasma glucose concentration a 2 hours

in an oral glucose tolerance test
Numeric 17.61

3 BloodPress Diastolic blood pressure (mm Hg) Numeric 1.0
4 SkinThickness Triceps skin fold thickness (mm) Numeric 1.0
5 SerumInsuline 2-Hour serum insulin (mu U/ml) Numeric 22.78
6 BodyMassIndex Body mass index (weight in kg/(height

in m)^2)
Numeric 1.0

7 PedigreeFct Diabetes pedigree function Numeric 1.0
8 Age Patient age (years) Numeric 1.0
9 Class Class attribute Binary: 0-

absence, 1-

presence

0.0

Cost matrix: 0 1  classified as











0.00.20

0.70.0
_ matrixCost

1

0

 classactual

Table A.6.6 – Attribute information and costs for the Prostate Cancer dataset

Crt.
No.

Attribute Name and Description Domain

1 One (TNM) Symbolic (1a, 1b, 1c, 2a, 2b, 3a, 3b)

2 Two (Gleason Score) Numeric (2-10)

3 Three (Presence on Median Intravesical

Lobe)

Symbolic (not present in the ultrasound,

voluminous, intravesical)

4 Four (Prostate Volume) Numeric

5 Five (Preoperative PSA) Numeric (ng/ml)

6 Six (IIEF - International Index of

Erectile Function)

Numeric

7 Seven (Quality of Life) Numeric (0-2)

8 Eight (Surgery Type) Symbolic (TP, EP)

9 Nine (Operative Technique) Symbolic (Ante Grade, Retro Grade, Bipolar)

10 Ten (Nerve Sparing) Symbolic (Non, NS Left, NS Right)

11 Eleven (Bleeding) Numeric (minutes)

12 Twelve (Anastomosis) Symbolic (Continuous, Separate, Van Velt)

13 Thirteen (Operative Time) Numeric (minutes)

14 Fourteen (Postoperative

Hospitalization)

Numeric (days)

15 Fifteen (Complications) Boolean

16 Class (Postoperative PSA) Symbolic (low: PSA < 0.1, medium:

PSA  [0.1, 1], high: PSA > 1)

Appendix A

135

Cost matrices

 low med high asclassified



















0.00.30.5

7.00.05.1

0.15.00.0

1_ matrixCost

high

med

low

 classactual

 low med high asclassified



















0.00.60.10

7.00.00.3

0.15.00.0

2_ matrixCost

high

med

low

 classactual

 low med high asclassified



















0.05.15.2

7.00.075.0

0.15.00.0

3_ matrixCost

high

med

low

 classactual

 low med high asclassified



















0.00.30.5

5.00.00.3

0.15.00.0

4_ matrixCost

high

med

low

 classactual

Number of instances: 389

Missing values: yes

Appendix A

136

Datasets from Chapter 7

Table A.7.1: Benchmark datasets employed in the experiments on the effect of class-imbalance on the

performance of classifiers (section 7.1.3)

Dataset No.

Att.
No.

Inst.
IR IAR C Dataset No.

Att.
No.

Inst.
IR IAR C

Bupa 6 345 1 58 3 Ecoli_im_rm 8 336 3 42 2

Haberman_1 4 367 1 92 3 Glass_NW 11 214 3 19 4

Cleve 14 303 1 22 5 Vehicle_van 19 846 3 45 4

Monk3 7 554 1 79 4 Chess_IR5 37 2002 5 54 5

Monk1 7 556 1 79 5 Segment_1 20 1500 6 75 3

Australian 15 690 1 46 5 Ecoli_imu 8 336 9 42 4

Crx 16 690 1 43 5 Segment_1 _IR10 20 1424 10 71 3

Chess 37 3196 1 86 5 Tic-tac-toe_IR10 10 689 10 69 6

Mushrooms 23 8124 1 353 4 German_IR10 21 769 10 37 7

Breast-cancer 10 286 2 29 2 Sick-euthyroid 26 3163 10 122 5

Glass_BWNFP 11 214 2 19 3 Glass_VWFP 11 214 12 19 3

Glass_BWFP 11 214 2 19 4 Sick 30 3772 15 126 5

Vote 17 435 2 26 3 Ecoli_bin 8 336 16 42 3

Wisconsin 10 699 2 70 4 Caravan 86 5822 16 68 11

Pima 7 768 2 110 4 Ecoli_im_rm 8 336 3 42 2

Tic-tac-toe 10 958 2 96 7 Glass_NW 11 214 3 19 4

German 21 1000 2 48 7 Vehicle_van 19 846 3 45 4

A number of multi-class problems were modified to obtain binary classification

problems from multi-class data. Also, three of the relatively large datasets were under-

sampled to generate higher IR values (contain _IR in their name). The complexity of each

dataset was approximated, as suggested in (Jap02), to C = log2L, where L is the number of

leaves generated by the C4.5 decision tree learner. Also, the values for IR, IAR and C have

been rounded.

Table A.7.2 – Large IR, small IAR datasets, employed in the experiments on ECSB (section 7.3.2)

Dataset #Examples #Attributes IR IAR

Chess_IR5 2002 37 5 54

Ecoli_om_remainder_binary 336 8 15.8 42

Ecoli_imu_remainder_binary 336 8 8.6 42

Glass_VWFP_binary 214 10 11.59 21

German_IR10 769 21 10.14 37

Appendix A

137

Table A.7.3 – Datasets employed for comparison of ECSB with EUS

(section 7.3.2)

Dataset #Examples #Attrs IR Dataset #Examples #Attrs IR
GlassBWNFP 214 9 1.82 Optdigits0 5,564 64 9.1
EcoliCP-IM 220 7 1.86 Satimage4 6,435 36 9.28
Pima 768 8 1.9 Vowel0 990 13 10.1
GlassBWFP 214 9 2.06 GlassVWFP 214 9 10.39
German 1,000 20 2.33 EcoliOM 336 7 13.84
Haberman 306 3 2.68 GlassContainers 214 9 15.47
Splice-ie 3,176 60 3.15 Abalone9-18 731 9 16.68
Splice-ei 3,176 60 3.17 GlassTableware 214 9 22.81
GlassNW 214 9 3.19 YeastCYT-POX 483 8 23.15
VehicleVAN 846 18 3.25 YeastME2 1,484 8 28.41
EcoliIM 336 7 3.36 YeastME1 1,484 8 32.78
New-thyroid 215 5 4.92 YeastEXC 1,484 8 39.16
Segment1 2,310 19 6 Car 1,728 6 71.94
EcoliIMU 336 7 8.19 Abalone19 4,177 9 128.9

Table A.7.4 – Datasets employed for comparison of ECSB with the SVM ensemble (section 7.3.2)

Dataset #Examples # Attributes IR
Breast-cancer 286 10 2.36
Cars 1729 7 25.2
Glass-headlamps 214 9 6.38
Balance-scale 625 5 11.76

Appendix B

138

Appendix B – Relevant Research Papers

 The following pages provide a listing of three relevant research papers for the work

presented in the current thesis.

