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Abstract 

A series of challenges have recently emerged in the data mining field, triggered by the 

rapid shift in status from academic to applied science and the resulting needs of real-life 

applications. The current thesis is concerned with classification tasks and related issues which 

may appear in real-world scenarios, such as: incomplete records and irrelevant and/or 

redundant pieces of information, imbalanced class distribution and imbalanced error costs. 

Also, there is no universally best classifier which performs better than all the others on every 

possible problem, given any evaluation metric. Moreover, no general rules which indicate the 

appropriate metric to select in a certain context exist. Translating the data characteristics and 

problem goals into appropriate performance metrics, selecting the most appropriate classifier 

with the best parameter settings are therefore essential points in achieving a successful data 

mining process. Moreover, application domains may impose specific constraints on the data 

mining process, such as having an interpretable classification model, or a reasonable training 

time, or the capacity to perform classification on a large number of classes, each having a 

limited amount of training instances. 

The current thesis ascertains the problem statement and provides an analysis of 

existing approaches for the major theoretical problems tackled – and, in some cases, also 

systematic empirical studies. Also, it proposes a series of novel methods for improving the 

behavior of traditional classifiers in such imperfect scenarios. In the data pre-processing step, 

the current thesis introduces an original global imputation method, based on non-missing data 

and a novel joint pre-processing methodology, which proposes an information exchange 

between data imputation and feature selection. Also, an original subset combination method 

for improving the stability of feature selection across different problems and providing an 

assessment of the baseline performance of feature selection in a new problem is presented.  

For the actual processing step, an original meta-classification strategy has been 

proposed – Evolutionary Cost-Sensitive Balancing. The method performs a genetic search in 

order to simultaneously tune the base classifier’s parameters and identify the most 

appropriate cost matrix, which is then employed by a cost-sensitive meta-learner, in 

conjunction with the base classifier. An advantage of the method, besides its generality, is the 

fact that the cost matrix is determined indirectly. Also, this thesis proposes a series of 

significant enhancements to an existing cost-sensitive classifier: the employment of a single 

population technique and elitism, with rank-based fitness assignment for parent selection, and 

increasing search variability via appropriate recombination operators.  

An original meta-learning framework for automated classifier selection is presented in 

the case studies section, together with a method for baseline performance assessment. Also in 

the case studies chapter, a series of additional constraints imposed by specific domains are 

analyzed, and original solutions are provided, in which the general flow of the data mining 

process may be altered to accommodate for the specific domain needs, without restricting the 

solutions to the specific domains they have been initially designed for.  

 

Keywords: data mining, classification, incomplete data, imputation, attribute/feature 

selection, joint pre-processing methodology, imbalanced class distribution, cost-sensitive 

learning, evaluation metrics, automated classifier selection, classification case studies.   
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1 Introduction  

1.1 Motivation 

A series of challenges have recently emerged in the data mining field, triggered by the 

rapid shift in status from academic to applied science and the resulting needs of real-life 

applications. The current thesis is concerned with classification tasks. Therefore, the general 

context is that of labeling (a potentially large volume of) data which may contain incomplete 

records and irrelevant and/or redundant pieces of information. Interesting cases tend to occur 

less frequently; therefore they possess poorer representation in the available data. However, 

the correct identification of such cases is often of utmost importance. In the following, the 

motivation behind the main objectives of the thesis is presented. 

A first issue tackled is that of incomplete data, i.e. the existence of unknown values in 

the available data. While a common occurrence in real-world problems, it represents a 

challenge for classification, since most algorithms have not been originally designed to deal 

with missing data, and most of them employ simple and rather inefficient adaptations do deal 

with this issue. Several more evolved missing data techniques (MDTs) are available in 

literature, either as pre-processing methods – filter or imputation-based – or as embedded 

approaches. Filter methods attempt to eliminate missing records/attributes such that 

subsequent analyses are performed on complete data. Imputation methods try to reach the 

same goal, but by searching for a replacement value for each missing one. Embedded 

approaches designate mechanisms for dealing with missing data specific to a certain learning 

algorithm, such as the strategies employed by some decision trees. The problem with pre-

processing MDTs is that the majority have been developed to alleviate the effect of 

incomplete data on subsequent statistical analyses, and not on improving a classification task 

– for which different assumptions may be necessary. Also, filters tend to introduce bias in the 

learning process and reduce the volume of available data, while existing imputation methods 

either require strong assumptions which don’t generally hold in real situations (e.g. multiple 

imputation), or employ knowledge about the data distribution (e.g. expectation 

maximization), which is not always accessible. Computational complexity may also represent 

an issue for some imputation techniques. Embedded methods are restricted to the particular 

learner (or category of learners). Thus, an imputation method which is focused on improving 

subsequent classification performance and does not require strong assumptions is of interest. 

Also, though imputation methods make assumptions related to the existence of correlations 

between the attributes, they do not perform an explicit analysis of the strength of the 

correlations, and the class attribute is generally discarded. Selecting – for each attribute to be 

imputed – a subset of strongly predictive attributes (in which the class may be included) 

could produce a better imputation quality with respect to the subsequent classification step.   

Another important aspect related to the preparation of the available data for the actual 

classification step is associated with dimensionality reduction. Such an operation may 

produce several benefits in the overall economy of the data mining process, such as: 

performance improvement, by alleviating the curse of dimensionality and improving the 

model generalization capabilities, speed-up by reducing the computational effort, improved 

model interpretability by reducing its complexity, cost reduction by avoiding “expensive” 

features. The feature selection problem has been studied both intensively and extensively in 

the literature, with available solutions being split into: filter, wrapper and embedded 

approaches. For the purpose of performance improvement, wrappers generally provide the 

most appropriate strategy. However, the best wrapper instantiation depends on the problem 

particularities and the specific learner used for classification. One particular wrapper method 

may produce significant improvements in one given problem for a specific algorithm, while 

fail to improve the classification performance of the same algorithm on a different problem 
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(or a different optimization objective), or the same problem and a different learning 

algorithm. Also, it is not clear how wrapper feature selection affects the initial choice of the 

learning algorithm, and which strategy would be appropriate if the ranking of classifiers is 

affected: prefer a stable, yet not the best performance over a better, less stable one?   

In many real-world applications, instances belonging to different classes may be non-

uniformly distributed in the available data, meaning that one class may contain fewer 

instances in comparison with the others. However, the correct identification of 

underrepresented classes is generally of increased importance, which results in different 

errors possessing different degrees of gravity. Thus, between the different classes involved in 

the recognition process, imbalance may occur at two levels: one at data level, which results in 

an imbalanced class distribution problem, and one at the level of the impact produced by 

different errors, which results in imbalanced error costs problem. Each of the two resulting 

issues is addressed in this thesis. 

There are few systematic studies in literature which analyze how an imbalanced class 

distribution affects learning algorithms, using a variety of learning strategies, problems and 

under several evaluation metrics. Techniques which attempt to address class imbalance are 

available in the literature, either as sampling methods, algorithm-based methods (including 

modifications to existing algorithms or newly proposed methods, built to deal with the 

imbalance intrinsically) and hybrid methods (which include strategies which mix data- with 

algorithm-oriented techniques, or apply meta-approaches, such as cost-sensitive learning). 

While each category provides prominent representative methods, the following drawbacks 

appear: to maximize their effect, sampling methods need to be matched to the specific 

learning method employed; several sampling methods require the analyst to set the amount of 

re-sampling needed – which requires both experience and intuition or a considerable amount 

of time; the application of algorithm-based methods is restricted to the specific categories of 

classifiers they have been designed for; cost-sensitive hybrid strategies require the analyst to 

set the cost-matrix, a difficult task – similar to setting the amount of re-sampling – but which 

could result, in some areas, into serious social dilemmas, such as putting a price tag on 

human life. Therefore, a general method aimed at alleviating the effect of the class imbalance 

problem and is applicable to any existing classification method without requiring extensive 

familiarity with the mechanisms involved or detailed domain knowledge, is of interest.     

While the imbalanced class distribution problem is theoretically independent of the 

application domain, imbalanced error costs appear in areas in which the impact produced by 

different errors varies according to the error particularity. A straightforward example is the 

medical diagnosis problem, in which failing to identify a positive diagnosis is almost 

unacceptable, whereas a certain level of false positive predictions is considered manageable. 

In such domains, the effort of acquiring data values has to be considered also: medical tests 

are usually costly (economically) and may produce patient discomfort; in addition, collecting 

test data is time consuming. Each of these aspects has an implication on whether it is 

practical to perform a certain test or not. Cost-sensitive learning addresses these 

particularities, using two important types of costs to model the above-mentioned 

asymmetries: misclassification and test costs. Most cost-sensitive algorithms existing in 

literature focus on a single type of cost: either misclassification or test costs. Significantly 

less work has been invested towards developing a technique which considers both, the most 

prominent such method being the ICET algorithm. While the strategy proposed by ICET is 

promising, the initial work on ICET lacked a comprehensive study of the misclassification 

cost component. Also, an attempt to improve the algorithm behavior via a more appropriate 

selection of the genetic strategies employed might be of interest.       

Although the central objective of any classification algorithm is the minimization/ 

maximization of some objective function on a data sample, different classification algorithms 
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employ different theories to accomplish this goal. The main consequence of this fact is 

formulated by the no-free lunch theorem, which essentially states that there is no universally 

best classification method. This triggers the need to select the appropriate learning scheme for 

a given problem. In addition, the classification algorithms and/or their resulting models 

posses several particularities, which can be evaluated when determining their suitability for a 

specific context: robustness to noise, scalability, speed (prediction speed mostly, but – in 

certain scenarios – training speed also), model interpretability, robustness to 

irrelevant/redundant features, robustness to numeric features, etc. Such aspects have been 

considered throughout the thesis, according to specific problem particularities and goals. 

The initial assessment of the appropriate learning scheme for the analyzed data 

represents a complex and time-consuming task even for an experienced data analyst. 

Consequently, several systems which employ meta-learning strategies in the attempt to 

provide a certain degree of automation to the classifier selection problem have been proposed 

in literature. They utilize various dataset meta-features and specific prediction strategies in 

the attempt to indicate the most appropriate learning scheme for a new problem. Besides their 

individual drawbacks (too few meta-features, speed, necessity for user involvement), a 

common disadvantage of such systems is that employ the accuracy alone as the classification 

performance metric, which has proven to be insufficient in domains which present class- or 

error-imbalance issues. Therefore, a scalable framework which brings together efficiently the 

tools necessary to analyze new problems and make predictions related to the learning 

algorithms’ performance, while keeping the analyst’s involvement at a minimum, is of 

interest.  

 In addition to the principal motivation presented above, the current thesis tackles 

specific application-related constraints which may be imposed on the general data mining 

process, such as generating an interpretable classification model, using a reasonable training 

time, or the capacity to perform classification on a large number of classes, each having a 

limited amount of training instances. Also, specific data mining process instantiations in the 

following domains have been explored: written signature recognition, handwritten documents 

transcription, network intrusion detection, community detection, opinion mining and spam 

filtering.       

The thesis acknowledges the existence of several other issues involved in a 

classification data mining process, such as those related to: data visualization techniques, 

noise reduction, feature construction or aggregation, knowledge presentation strategies. 

However, it does not address those issues specifically.           

1.2 Thesis Overview 

Chapter 2 presents a general view on data mining as a field and the data mining 

process, outlining the steps involved in the process (section 2.1), the main types of data 

mining tasks (section 2.2), an overview of the main types of classification algorithms 

available in literature (section 2.3)  and classifier evaluation strategies and measures (section 

2.4). 

Chapter 3 addresses the missing data problem, starting with the problem statement 

(section 3.1) and providing a structured analysis of existing missing data techniques (section 

3.2). Section 3.3 proposes an original global imputation method based on non-missing 

attribute values. The method employs a different neural network classifier ensemble model to 

impute values for each incomplete attribute in turn. It makes use of the existing correlations 

between the attributes – including the class attribute, to learn a different imputation model for 

each class. The main assumption needed for the method to produce good results is the 

existence of a complete data kernel. The evaluation of the method using an univariate MCAR 

incompleteness mechanism is presented in section 3.3.2. 
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The first two sections of Chapter 4 (4.1 and 4.2) present an overview on the feature 

selection problem and the main strategies for performing feature selection in practice. Section 

4.3 proposes a combination of different subset selection strategies, via individual feature 

voting. The purpose is to remove the bias introduced by different search methods in selecting 

a specific feature subset, thus improving the stability of the method across several problems. 

A systematic analysis on different wrapper combinations and an empirical validation of the 

proposed combination method are presented in section 4.3. 

In Chapter 5, a methodology for joining two previously independent pre-processing 

steps is presented and its effect on the classification step is evaluated (section 5.2). The 

method proposes the information exchange between the data imputation and feature selection 

step – most specifically to employ only a subset of attributes with high prediction power for 

an attribute to build the imputation model for that attribute. Also, the imputation of strongly 

predictive attributes with the class is important, since weakly predictive attributes tend to be 

eliminated via feature selection. 

Chapter 6 addresses the concept of cost in classification problems. Section 6.2 

provides a systematic review of the main techniques for cost-sensitive learning – both 

methods which tackle test costs and those which focus on misclassification costs, with ICET 

being one of the most prominent approaches which considers both types of cost. Section 6.3 

proposes a series of enhancements on the genetic component of the algorithm, meant to 

increase the search variability while always propagating the best solutions in the next 

generation unchanged – thus avoiding getting trapped at local optima and the loss of good 

candidates. Section 6.3.3 provides a comprehensive analysis on the performance of the 

enhanced ProICET method, with a comparative evaluation of the misclassification cost 

component and total cost on benchmark medical datasets, and a study on the effect of 

stratification as a strategy for tackling error cost asymmetries. Section 6.3.4 presents a case 

study for the application of ProICET to a real prostate cancer medical problem, which comes 

as a result of the involvement in the CEEX research grant no. 18/2005 – IntelPRO. 

Chapter 7 tackles the class imbalance problem – starting with a systematic analysis of 

the effect of class imbalance on the performance of several types of classification methods, 

on a large sample of benchmark datasets, and under various performance metrics (section 

7.1.3). An original dataset meta-feature is proposed – the Instances per Attributes Ratio, 

which aggregates size and complexity information and can be used in conjunction with the 

Imbalance Ratio to provide a general indication on the expected performance of classifiers in 

a new imbalanced problem. Section 7.2 supplies a thorough analysis of the main approaches 

for dealing with class imbalance from literature. Section 7.3 presents an original meta-

approach for improving the behavior of base classifiers in imbalanced scenarios. The method 

employs a genetic search to find appropriate parameter settings and a cost matrix which are 

then applied to the base classifier in conjunction with a cost-sensitive learning strategy. 

Extensive comparative evaluations have been performed on the newly proposed method, 

described in section 7.3.2. 

Chapter 8 presents a number of case studies, which adapt the general data mining 

process flow to specific requirements of several application domains, and provides a series of 

solutions with a higher level of generality, such that they are not restricted to the exact 

problem constraints they are designed for. All solutions investigate several data mining 

process steps, and some apply methods from previous chapters. Section 8.1 tackles the 

problem of automated classifier selection, with an original proposal for an automated 

framework to perform this task (section 8.1.2). Section 8.2 presents three original methods 

which employ data partitioning to evolve multiple sub-models and combine their predictions 

to achieve increased classification performance and/or scalability: an arbiter-combiner 

technique (section 8.2.1) and two hierarchical models, one based on clustering and 
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classification sub-models, applied in the context of offline signature recognition (section 

8.2.2); a second, which consists of a multiple classifier which combines the predictions of 

binary classifiers, and employs an additional classifier for handling difficult to classify 

instances (section 8.2.3). Section 8.3 addresses problems related to speed-up and scalability, 

and proposes two original systems: a parallel version of the SPRINT decision tree classifier 

(section 8.3.2) and a lightweight parallel genetic algorithms framework, which utilizes the 

General-Purpose Computation on Graphics Hardware paradigm (section 8.3.3). Also, a 

distributed version for the original method proposed in Chapter 7 is presented (section 8.3.1). 

Section 8.4 explores several specific data mining applications: user type identification in 

adaptive e-learning systems (section 8.4.1), handwritten document transcription of historical 

documents (section 8.4.2), community structure detection in social mining (section 8.4.3), a 

semi-supervised opinion mining technique (section 8.4.4) and spam prediction in spam 

filtering (section 8.4.5). The user-type identification model presented in section 8.4.1 has 

been applied within PNII research grant no. 12080/2008 – SEArCH.  

The concluding remarks, with discussions on the original elements of the thesis are 

presented in Chapter 9. A list of research grants, important publications and citations is 

available after the references section. 
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2 Data mining: Concepts and Definitions 

The search for patterns in data is a human endeavor that is as old as it is ubiquitous, 

and has witnessed a dramatic transformation in strategy throughout the years. Whether we 

refer to hunters seeking to understand the animals’ migration patterns, or farmers attempting 

to model harvest evolution, or turn to more current concerns, like sales trend analysis, 

assisted medical diagnosis, or building models of the surrounding world from scientific data, 

we reach the same conclusion: hidden within raw data we could find important new pieces of 

information and knowledge. 

Traditional approaches for deriving knowledge from data rely strongly on manual 

analysis and interpretation. For any domain – scientific, marketing, finance, health, business, 

etc. – the success of a traditional analysis depends on the capabilities of one/more specialists 

to read into the data: scientists go through remote images of planets and asteroids to mark 

interest objects, such as impact craters; bank analysts go through credit applications to 

determine which are prone to end in defaults. Such an approach is slow, expensive and with 

limited results, relying strongly on experience, state of mind and specialist know-how.      

Moreover, the volume of generated data is increasing dramatically, which makes 

traditional approaches impractical in most domains. Within the large volumes of data lay 

hidden strategic pieces of information for fields such as science, health or business. Besides 

the possibility to collect and store large volumes of data, the information era has also 

provided us with an increased computational power. The natural attitude is to employ this 

power to automate the process of discovering interesting models and patterns in the raw data. 

Thus, the purpose of the knowledge discovery methods is to provide solutions to one of the 

problems triggered by the information era: “data overload” [Fay96]. 

A formal definition of data mining (DM), also known – historically – as data fishing, 

data dredging (1960-), knowledge discovery in databases (1990-), or – depending on the 

domain, as business intelligence, information discovery, information harvesting or data 

pattern processing – is [Fay96]: 

 

Definition: Knowledge Discovery in Databases (KDD) is the non-trivial process of 

identifying valid, novel, potentially useful, and ultimately understandable patterns in 

data. 

 

 By data the definition refers to a set of facts (e.g. records in a database), whereas 

pattern represents an expression which describes a subset of the data, i.e. any structured 

representation or higher level description of a subset of the data. The term process designates 

a complex activity, comprised of several steps, while non-trivial implies that some search or 

inference is necessary, the straightforward derivation of the patterns is not possible. The 

resulting models or patterns should be valid on new data, with a certain level of confidence. 

Also, we wish that the patterns be novel – at least for the system and, ideally, for the analyst – 

and potentially useful, i.e. bring some kind of benefit to the analyst or the task. Ultimately, 

they need to be interpretable, even if this requires some kind of result transformation. 

 An important concept is that of interestingness, which normally quantifies the added 

value of a pattern, combining validity, novelty, utility and simplicity. This can be expressed 

either explicitly, or implicitly, through the ranking performed by the DM system on the 

returned patterns. A short note should be made on the fact that, even if initially DM 

represented a component in the KDD process, responsible with finding the patterns in data, 

currently the two terms are used interchangeably, both being employed to refer to the overall 

discovery process, which is comprised of several steps, as presented in the next section. 
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2.1 Data Mining as Process 

A reduced/idealist view of the DM process presents it as the development of computer 

programs which automatically examine raw data, in the search for models and regularities. In 

reality, performing data mining implies undergoing an entire process, and requires techniques 

from a series of domains, such as: statistics, machine learning, artificial intelligence, 

visualization. Essentially, the DM process is iterative and semi-automated, and may require 

human intervention in several key points. 

Figure 2.1 presents a generic model for the DM process, with the main logical steps 

involved. The colored-background boxes represent steps for which original contributions will 

be presented throughout this dissertation.  

Data filtering is responsible with the selection of relevant data for the intended 

analysis, according to the problem formulation. Data cleaning is responsible for handling 

missing values, smoothing noisy data, identifying or removing outliers, and resolving 

inconsistencies, such as to compensate for the learning algorithms’ inability to deal with such 

data irregularities. Data transformation activities include aggregation, normalization and 

solving syntactic incompatibilities, such as unit conversions or data format synchronization 

(according to the requirements of the algorithms used in the processing steps). Data 

projection translates the input space into an alternative space, (generally) of lower 

dimensionality. The benefits of such an activity include processing speed-up, increased 

performance and/or reduced complexity for the resulting models. 

During the processing steps, learning models/patterns are inferred, by applying the 

appropriate learning scheme on the pre-processed data. The processing activities are included 

in an iterative process, during which the most appropriate algorithm and associated parameter 

values are established (model generation and tuning). The correct choice of the learning 

algorithm, given the established goals and data characteristics, is essential. There are 

situations in which it is required to adapt existing algorithms, or to develop new methods in 

order to satisfy all requirements. Subsequently, the output model is built using the results 

from the model tuning loop, and its expected performance is assessed. 

 

 

Figure 2.1 - Main steps of a data mining process  
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Knowledge presentation employs visualization methods to display the extracted 

knowledge in an intuitive, accessible and easy to understand manner. Decisions on how to 

proceed with future iterations are made based on the conclusions reached at this point.  

DM process modeling represents an active challenge, through their diversity and 

uniqueness within a certain application. All process models contain activities which can be 

conceptually grouped, into the three types: pre-processing, processing and post-processing. 

Several standard process models exist in literature, the most important being: William’s 

model, Reinartz’ model, CRISP-DM, I-MIN or Redpath’s model [Bha08]. Each model 

specifies the same process steps and data flow; they differ in the control flow. Essentially, 

they all try to achieve maximum possible automation. 

2.2 Knowledge Extraction Tasks 

The purpose of a data mining system is defined through the desired employment 

mode. According to [Fay96], two main categories of goals can be distinguished: verification 

and discovery. With verification, the system is limited to validating user hypotheses (which 

can be accomplished through OLAP techniques as well), but for discovery the system infers 

new patterns autonomously – this is actually pure DM. Description and prediction are the 

main types of discovery tasks. 

Description tasks generate models and present them to the user in an easy-to-

understand form. Summarization and visualization, clustering, link analysis and outlier 

analysis represent descriptive tasks. Prediction tasks generate models for predicting future 

behavior of certain entities. Classification, regression and time series prediction are the main 

tasks falling in this category.  

A dataset is a finite set T of elements, named instances, or examples: 

T  = { xi | i=1 to m }        (2.1) 

An instance xi is a tuple of the form (x
(1)

, ..., x
(n)

, y)i, where x
(1)

, ..., x
(n)

 represent values 

for the predictive attributes (features), while y is the value of the target attribute, the class: 

xi = (x
(1)

, ..., x
(n)

, y)i        (2.2) 

A predictive attribute Xi represents a recorded data characteristic, a feature, and the 

class Y is the target concept. The process of building the learning model is called training and 

is generally performed on a portion of the dataset, called the training set. In order to assess 

the expected value of the model its performance is measured on a test set, as we will see in 

section 2.3. For certain tasks, such as clustering, or outlier detection, the value of the target 

attribute may be unknown. This type of learning is referred to as unsupervised learning, as 

opposed to supervised learning, in which the class is used during model generation (e.g. 

classification). There exists also a special category of methods which perform semi-

supervised learning, i.e. use for training a small amount of labeled data in conjunction with a 

large amount of unlabeled data. From a statistical perspective, Xi and Y are random variables; 

from the representation perspective, they can be either numeric, nominal or binary, or more 

complex data types, such as hierarchical, time series, etc. The range of Y calls for another 

distinction: if Y is continuous, then we are faced with a regression problem. On the other 

hand, if Y is discrete, we have a classification problem. A special case is binary 

classification, in which Y takes one of two values. The current thesis is concerned with 

classification tasks alone. We denote the cardinality of |Y| with c, and the possible values of 

Y with y
k
. Therefore, Y = {y

1
, …, y

c
}. 

Summarization and visualization 

This task performs initial data analysis. Descriptive statistics (mean, standard 

deviation, etc.) and data distribution visualization (through box plots, histograms, or 2D 

scatter plot) are the main alternatives for performing it. 
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Clustering 

Clustering is involved with grouping the data into several clusters, by considering the 

similarity between individuals. The similarity computation is applied to the predictive 

attributes X1, …Xn alone; the class attribute is unknown. The aim is to generate groups of 

individuals with a high degree of intra-cluster similarity and a low degree of inter-cluster 

similarity. Special attention should be allocated to the similarity metrics – they should be in 

accordance with the feature’s nature and significance. 

Link analysis 

This task focuses on identifying relationships between data values. Two of the most 

common approaches are sequence and association mining. An association presents elements 

which co-occur in an event. It has the form LHS=>RHS, where LHS is a conjunction of terms 

from the set {X1, ..., Xn} and RHS contains another term from the set. Sequences are 

associations in time. 

Outlier detection 

Techniques for outlier detection generally build a model for identifying those 

instances in the dataset which deviate from normality. It is an unsupervised learning task, for 

which the training data is sampled from the “normal” instances. 

Classification 

Classification problems try to determine the characteristics which correctly identify 

the class to which each instance belongs to. Thus, the scope is to learn a model from the 

training set which describes the class Y, i.e. predict y from the values of (a subset of) (x
(1)

, ..., 

x
(n)

). The resulting model can be employed either for descriptive, or predictive tasks. 

Classification is similar to clustering, the main difference being that, in classification, the 

class to which each instance in the dataset belongs to is known a priori.  

The most intense research efforts in DM and connected fields (machine learning, 

statistics) have focused on finding efficient classification algorithms, such that at the present 

there is a large collection of state-of-the-art methods available in the literature. This thesis  

focuses on DM classification tasks.  

Regression 

Regression is similar to classification, the difference being that the resulting model is 

able to predict numeric values – i.e. the class is numeric. There exist classifiers which can be 

used for regression as well (artificial neural networks, some decision trees). 

Time series prediction 

This task involves the prediction of future values from a series of time-varying 

predictors. Thus, (x
(1)

, ..., x
(n)

) represent values recorded (at certain time intervals t1 to tn) of 

the same measure, and y represents the predicted value for tn+1 . Like regression, time series 

prediction employs past values for prediction. The models must consider different properties 

of the time periods, especially seasonality and holidays, and must also establish how much of 

the past recordings is relevant. 

2.3 Classification Methods 

A wide variety of classification methods have become available during the last three 

decades. Among them, the most utilized general-purpose methods can be grouped into 

several categories (Table 2-1). Classification algorithms employ different theories for 

generating the model. The distinction between them is performed at the following levels: 

model representation and assessment strategies, form of the separation frontier, or model 

search techniques.   
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Table 2.1: The main categories of classification methods 

Group of methods , 

with   representatives 

Model 

representation 

Model 

evaluation 
Model search 

Separation 

frontier 

Inductive methods: 
- decision trees: C4.5, 

CART,  

Decision tree 

(interpretable) 

Probabilistic 

methods, penalty 

on  complexity 

Greedy Box –like 

Coverage methods: 
- decision rules: OneR, 

PART, RIPPER 

Decision rules: 

ranked disjunction 

of conjunctive rules 

(interpretable) 

Classification error Greedy Similar to that of 

decision trees 

Bayesian methods: 
- Bayes Net 

Probabilistic, 

graphical  

(interpretable) 

Likelihood, or 

posterior 

probability 

EM N/A 

Linear methods
1
: 

- logistic regression, 

Fisher’s Linear 

Discriminant, Support 

Vector Machines 

Separation 

hyperplane 

(non-interpretable) 

Likelihood, error, 

geometric margin 

SMO, metoda 

punctului interior 

Linear 

Non-linear methods: 
- artificial neural networks 

 

Network of 

interconnected 

neurons, links with 

weights 

(non-interpretable)  

Mean squared 

error, cross entropy 

Gradient descent, 

conjugate gradient, 

Newton’s method, 

simm. annealing, 

EM,  evolutionary, 

etc  

Non-linear – 

depends on the 

activation 

function 

employed 

Lazy methods: 
- k-Nearest Neighbor 

Implicit (in data); no 

explicit model  

(non-interpretatable) 

Classification error External, non-

specific to 

algorithm   

Non-linear, 

irregular 

Meta-techniques: 
- ensemble: bagging, 

boosting, wagging; 

stacking; multiple models 

techniques 

Group of models, 

one for each base 

classifier 

(non-interpretatable) 

Specific to the base 

classifiers 

Specific to the base 

classifiers, boosting 

Specific to the 

base classifiers 

 

The main consequence of this fact is formulated by the no-free lunch theorem, which 

essentially states that there is no universally best classification method, which can achieve 

superior performance to all the others on any problem. Table 2.1 summarizes the specific 

choices made by different types of classification algorithms. 

In addition, the classification algorithms and/or their resulting models possess several 

particularities, which can be evaluated when determining their suitability for a specific 

context: robustness to noise, scalability, speed (prediction speed mostly, but – in certain 

scenarios – training speed also), model interpretability, robustness to irrelevant/redundant 

features, robustness to numeric features, etc. These meta-characteristics are important for 

making the decision on which classifiers to consider initially for a certain application domain, 

given the specific constraints.  

2.4 Model Evaluation   

Many learning algorithms have become available to the community during the last 

few decades. However, according to the no-free lunch theorem, there is no “winner” method, 

which achieves superior performance to all the other methods, on all problems. Thus emerges 

the need for systematic procedures and measures which quantify performance and allows the 

comparison of the algorithms between each-other in different settings. 

                                                 

 
1
Linear methods can be converted into non-linear, operating in a different input space, by using the kernel trick 
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2.4.1 Evaluation Tactics 

The main difficulty in predicting the expected classifier performance on a new 

problem is the limited amount of data available and the fact that the sample may not be 

representative enough. Therefore, performing a single train-test split on the data, generating 

the model on the training set and evaluating its performance on the test split is, in most 

situations, insufficient, since it may provide a significantly biased estimation. Several 

different learner evaluation strategies are available in literature. All involve averaging the 

performance over several train-test iterations. The main idea in predicting the expected 

performance of a model is to do this on a new sample of instances, which was not “seen” by 

the learner during training. This is because estimations performed on the training set provide 

over-optimistic values. 

The de facto standard in classifier evaluation is k-fold stratified cross-validation, in 

which the available data is divided into k folds of approximately the same size, each having 

the same distribution of instances as the original data. A number of k train-test trials are 

performed. In each trial, k-1 folds are kept for training and one for testing, each time using a 

different fold for testing. The community is still debating on which value for k is the most 

appropriate, considering the time – accuracy of the estimation trade-off. The most frequent 

value is 10, but values of 2 and 5 are also very common. A single k-fold cross-validation 

might not provide a sufficiently reliable performance estimate, because of the effect of the 

random variation in choosing the folds. Therefore, it is common practice to repeat the 

process, usually 10 times. Thus, obtaining a good estimate of the performance of a classifier 

is a computation- and time-intensive task. 

Leave-one-out cross-validation, or m-fold cross-validation, involves m trials; in each 

trial, the classifier is trained on m-1 instances and tested on the remaining one. The main 

advantages of this approach are the large volume of data that can be employed for training 

and the fact that, since the procedure is deterministic, there is no need to repeat it several 

times. Unfortunately, the computational cost of executing it even once is high, since the 

learning-evaluation process has to be repeated m times. For large datasets this procedure is 

therefore unfeasible. Another drawback is the impossibility to ensure stratification. However, 

for small datasets, this method may provide a serious alternative to k-fold stratified cross-

validation. 

Bootstrap evaluation is based on the sampling with replacement statistical procedure. 

It applies the sampling strategy to the available data to generate the training set. Because 

some instances will be repeated in the resulting set, there will be a set of instances from the 

original data that do not appear in the training set. These will be employed for testing. It is 

known that the bootstrap estimate is a pessimistic one [Wit05]. Therefore, the output estimate 

is a linear combination of the bootstrap error and the error on the training set. The procedure 

is repeated several times, using different replacement samples, and the results are averaged.     

2.4.2 Metrics 

Almost all performance metrics are represented in terms of the elements of the 

confusion matrix generated by the model on a test sample. Table 2.2 presents the structure of 

a confusion matrix for a two-class problem, with classes positive and negative. A column 

represents an actual class, while a row represents the predicted class. The total number of 

instances in the test set is represented on the top of the table (P=total number of positive 

instances, and N=total number of negative instances), while the number of instances 

predicted to belong to each class are represented to the left of the table (p= total number of 

instances classified as positive; n=total number of instances classified as negative). TP (true 

positives) is the number of correctly classified positive examples. 
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Table 2.2: The confusion matrix returned by a classifier 

Total no. of instances 

P N 

Actual class 

positive negative 

p Predicted 
class 

positive TP FP 

n negative FN TN 

 

In a similar manner, FN (false negatives) is the number of positive examples 

classified as negative, TN (true negatives) – the number of correctly classified negative 

examples and, finally, FP (false positives) – the negative examples for which the positive 

class was predicted.  

The true positive rate (TPrate): TPrate = TP/(TP+FN) represents the rate of recognition 

of the positive class. It is also known as sensitivity (in ROC curves) and recall (in information 

retrieval). The corresponding measurement for the negative class is the true negative rate 

(TNrate), also called specificity, and is computed as the number of negative examples correctly 

identified, out of all negative samples: TNrate=TN/(TN+FP). In many applications, it is 

important to assess also how many examples which are identified as belonging to a given 

class actually belong to that class. This is done by the positive and negative predicted values. 

The positive predicted value (PPV), named also precision in information retrieval, is given by 

the number of actual examples identified as positive, out of all classified as positives: 

PPV=TP/(TP+FP), while the negative predictive value (NPV) represents the number of 

negatives correctly identified out of all examples classified as negative, NPV=TN/(TN+FP). 

The TPrate, TNrate, PPV and NPV indicate some true occurrences, which need to be 

maximized; sometimes their complements are more interesting. Their definitions may be 

found in [Wei03]. All these parameters provide a more exact view on the performance of a 

classification method. However, it is difficult to focus on all at the same time. Therefore, we 

should identify a connection between the problem objective and a subset of these eight 

measurements, and focus on those alone, or provide a composite metric which serves the 

given objective the best.  

The most widely employed such metric in the early (theoretical) stage of data mining 

research was the accuracy (Acc) of the classifier, or its complement – the error rate (Err). 

Acc is defined as the ratio between the total number of correctly classified instances and the 

total number of instances, Acc = (TP+TN)/(TP+TN+FP+FN), while Err is the ratio between 

incorrect classified instances and all of the instances, Err = (FP+FN)/(TP+TN+FP+FN) = 1-

Acc. They are usually expressed as percentages. The disadvantage of using these metrics is 

that they do not offer a realistic estimation when the distribution of instances is imbalanced. 

For example, for a problem in which 99% of the instances are negative and 1% positive, a 

model which always estimates the negative class achieves 99% accuracy, while failing to 

identify any positive instance. Such imbalanced distributions are common in real world 

scenarios, as we will see in Chapter 7 of this thesis. 

Another such composite metric can be derived from the analysis of ROC curves 

[Faw06], which are graphs representing the TPrate as a function of FPrate (or, equivalently, 

they represent sensitivity as a function of 1-specificity). A model built by a classifier 

generates a single point in this representation. A good model should be situated in the upper-

left region of the chart. Point (0,0) represent a model which identifies all instances as being 

negatives, (1,1) one which identifies all as positives, while a random classifier lays on the 

y=x curve. The ideal model generates the point (0,1), meaning that FPrate=0, (no negative 

instance identified as positive), and TPrate =1 (all positives are identified). While this is the 

ideal case, very seldom a classifier can reach this performance. The ROC curve for a 



Chapter 2 – Data mining: Concepts and Definitions   

17 

classifier is built by generating several models (i.e. points in the ROC space). This can be 

done by repeatedly modifying the decision threshold of the classifier. ROC curves allow for 

the comparison of several classifiers. However, by simply analyzing the ROC curve, one can 

only get an approximate comparison. A more exact measure is provided by the area under 

the curve (AUC). It is a scalar measure which should be maximized. However, in many 

situations we cannot identify a single dominating curve, but intervals in which different 

curves dominate all the others. This means that the curve yielding maximal AUC might not 

be the most appropriate under all circumstances. For instance, a curve with smaller AUC 

dominates the curve with highest overall AUC on a narrow interval, i.e. is more appropriate 

for that set of requirements. In such complex cases, for the same problem, based on the 

specific problem requirements and objectives, different classifiers might be preferable for 

each set of constraints, as suggested by the convex hull methodology [Pro97]. This requires a 

more sophisticated approach, which is not so easy to follow. 

A good option for when both recall and precision are important is the F-value 

[Guo04], which is the harmonic mean between precision and recall; a generalization of the 

metric – the Fi-value – can be tuned to put more emphasis on either the recall or precision:  

Fi-value = (1+i
2
)  precision  recall/(i

2recall+precision)   (2.3) 

When we need to accentuate recall more, i should be greater than 1. For a specific problem, 

the goal is to identify the appropriate i such that the proper amount of penalization for the 

false negatives is provided [Est01]. 

In certain situations, besides the TPrate, keeping a high TNrate may be important. For 

such situations, equidistant metrics, such as the geometric mean: GM = raterate TNTP   

[Bar03], or the balanced accuracy: BAcc = (TPrate+TNrate)/2 [Bro10] are appropriate 

performance assessment metrics. 

The choice of the performance metric should be influenced strongly by the specifics 

of the problem at hand. Any performance metric may be perfectly appropriate in a given 

scenario, yet fail to provide a real estimation on the expected performance in a different 

problem setting. For example, in medical diagnosis, it is essential to maximize the TPrate, 

even if this means that a certain number of FPs are introduced. On the other hand, in 

contextual advertising, precision is of utmost importance, since it is more important that the 

ads predicted as being relevant are actually relevant, than to identify as many relevant ads as 

possible. Therefore, selecting the appropriate performance metric, which is in accordance 

with the specific problem goals, is essential in reducing the risks of a failed data mining 

process. 
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3 Handling Incomplete Data 

Incomplete data has proved to be the rule rather than an exception in real-world data 

mining problems. At the same time, it represents a challenge for achieving a successful data 

mining process, since statistical and machine learning methods have not been designed to 

deal with incomplete data, and most of them employ simple and inefficient approaches: 

consider all missing values as a special value, replace all missing values with NULL, remove 

all instances/attributes having missing values. A limited number of learning algorithms, such 

as the C4.5 decision tree learner, apply slightly more evolved methods. Adequate handling of 

missing data in the pre-processing phase, for improving the quality of raw data and thus 

reducing the risk of a failed DM process, is therefore essential. 

3.1 Problem Statement 

An incomplete instance is characterized by unknown values for at least one of the 

predictor attributes Xp:  

(xj)inc=(x
(1)
, …, x

(p-1)
, ?, x

(p+1)
, …, x

(n)
, y)j, 

 

where ”?” denotes an unknown value for attribute Xp. Of course, an instance may have 

several unknown values. 

 In selecting the appropriate approach for handling incompleteness, knowledge about 

the mechanisms which generated the incomplete data, as well as about incompleteness 

models – if avaliable – may provide valuable support. In [Rub87b], the incompleteness 

mechanism is modeled probabilistically, by defining (for the training set T) the 

incompleteness matrix M:  

mij = 






recordedisxif

absentisxif

ij

ij

,0

,1
       (3.1) 

The form of the matrix M characterizes the incompleteness model. The three most 

encountered patterns are:  

 univariate non-response – in which a single attribute Xi is incomplete  

 monotone – in which if 
)(i

jx is missing (i.e. ijx = 1), then 
)1( i

jx , ..., 
)(n

jx are also 

missing; otherwise said, the 1s in the matrix form a stair-like pattern 

 general (arbitrary) – the matrix M has no special form 
 

The incompleteness mechanism, i.e. the law generating the missing values is crucial, 

since, by knowing it, missing values could be estimated more efficiently. It is characterized 

by the conditional distribution of M, given T – f(M | T, ) – where  represents unknown 

parameters. If we consider T = Tobs + Tinc, i.e. decompose the training set into a complete 

component and an incomplete component, we distinguish the following mechanisms 

[Rub87b]: 

 MCAR („Missing Completely At Random”): the incompleteness probability density 

function does not depend on the data in any way: 

  f(M | T, ) = f(M | ),   T,  

 MAR („Missing At Random”): the incompleteness probability density function may 

depend on the recorded data, but not on the incomplete data:  

  f(M | T, ) = f(M |Tobs ,),   Tinc,  

 

 NMAR („Not Missing At Random”): the missing probability depends on the missing 

value: 

  f(M | T, ) = f(M |Tobs , Tinc , ),   
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To make the differences between the missingness mechanisms more clear, suppose 

that, in the available data for a medical diagnosis problem, each record contains the patient id, 

age, sex and the value of a medical test. Some values for the medical test are missing. If the 

fact that the test result is missing doesn’t depend on the recorded or missing data (i.e. the test 

is expensive, so it is performed only on a subset of patients, randomly chosen), then the data 

are MCAR. If, on the other hand, the test is mainly performed on elder females, then the data 

are MAR (the fact that the test result is missing depends on the observed variables age and 

sex). If the missing data comes as a result of the fact that the device used to perform the test 

is not able to record values above some threshold, then the data are NMAR. This formalism is 

particularly important for statistical inference [Rub87b]. MCAR ang MAR provide ignorable 

incompleteness: since the missingness is not related to the missing values, it can be ignored. 

NMAR data is informatively missing, which means not only that the incompleteness 

mechanism is non-random and cannot be predicted from the other variables in the dataset, but 

also that it cannot be ignored. In practice, it is generally very difficult to determine the 

incomleteness mechanism. Data can generally provide evidence against MCAR. However, it 

cannot, in general, distinguish between MAR and NMAR, without making distributional 

assumptions.  

For classification problems, a very important distinction should be made for the 

incompleteness mechanisms – whether they are: 

 Informative: the fact that the value is missing provides information about the target 

attribute 

 Non-informative: missing value distribution is uniform for all target attribute values 
 

This distinction is important since informative incompleteness should be treated as a 

distinct value, because it provides additional information about the target attribute. For non-

informative incompleteness, imputation methods are appropriate. Also, most embedded 

mechanisms for handling incompleteness are appropriate only for non-informative 

incompleteness [Sch04]. The two incompleteness mechanisms typologies – 

MAR/MCAR/NMAR and informative/non-informative – overlap somehow, even if the 

former targets estimation methods for statistical density/models (where the existence of a 

target concept) is not mandatory. However, we can state that: MCAR are always non-

informative; MAR can be both informative and non-informative, depending on the dataset it 

applies to – whether it contains the target attribute or not; for NMAR, a value is (potentially) 

informative if the true value is statistically dependent on the target attribute, and non-

informative otherwise. 

3.2 Methods for Dealing with Missing Data 

Missing data techniques (MDTs) are available either as pre-processing methods or as 

embedded approaches – several learning methods possess specific strategies for handling 

incompleteness. Pre-processing methods build a complete dataset and are preferred since the 

resulting data can be subsequently analyzed using any of the traditional learning methods. 

The main strategies which apply here are filtering and imputation. It is worth mentioning that 

not all MDTs are equally appropriate for estimation or prediction tasks [Sar98]. 

3.2.1 Filter-based MDTs   

Traditionally, filtering methods simply remove the incomplete data parts: list-wise 

deletion (or complete-case analysis) deletes all incomplete instances; it is therefore 

appropriate only when there are few incomplete instances, whose influence on the rest of the 

population is minimal; pair-wise deletion (or available-case analysis) applies a more 

efficient approach for rare information – whether a particular case is missing or not depends 

on the particular goal of the analysis. These methods have been the most common approaches 
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for handling missing data for several years, despite their evident drawbacks: they generally 

induce bias in the subsequent analysis (if the data is not MCAR, which is seldom the case), 

and they do not maximize the use of available data [All09]. 

More evolved methods which employ filtering as part of their strategy include: the 

multiple models and the sub-model derivation methods [Sch04]. The multiple models 

approach splits the available data into complete sub-sets and generates learning models on 

each sub-set. The main disadvantage of this method is represented by the combinatorial 

explosion of sub-sets for spaces with many attributes and different incompleteness 

mechanisms. Also, some sub-sets may be too small for inferring acceptable models. 

Prediction combination and the existence of several appropriate models for certain cases also 

represent challenges for this approach. Sub-model derivation is similar with the multiple 

models approach, but avoids the combinatorial models explosion; the condition is the 

possibility to derive a sub-model for any attribute sub-set from the model on the complete 

attribute space. This way, the complete model is built only once, and whenever we have to 

make a prediciton for an incomplete instance, we derive the appropriate sub-model from the 

complete one. For building the complete model, the strategy can be extended such as to allow 

the adjustment of the complete model whenever a sub-model changes. 

3.2.2 Imputation-based MDTs 

The main assumption employed by imputation-based methods is related to the 

existence of correlations between the incomplete variables and the other variables in the 

dataset. For each missing item, a replacement value is derived from the available data, such 

as to produce a complete dataset. There exist several different strategies for devising 

imputation-based MDTs. Imputations may be deterministic (i.e. by repeating the process you 

always get the same replacement value) or stochastic (i.e. randomly drawn from some 

distribution). Depending on the type of information used to derive replacement values, 

imputation methods are either based on the missing attribute or based on non-missing 

attributes; depending on the amount of data used, MDTs may be global or local. The most 

appropriate classification of imputation-based methods is the one proposed in [Mag04] – 

which we further employ to present imputation-based MDTs. 

Global imputation based on missing attribute 

This category of methods assigns values to an incomplete attribute by analyzing the 

existing values for that attribute. The most common approaches are mean, median, or mode 

imputation. Their major drawback is the fact that they bias standard deviation estimations, 

even for MCAR data. The non-deterministic mean imputation method, which introduces a 

random disturbance to the mean, achieves better performance from a statistical point of view, 

but is still not satisfactory for learning tasks. 

A variation of this method is to assign all possible values to the missing data item. 

This produces an inconsistent dataset, but the biggest problem with the approach is its 

computational complexity and the fact that it systematically introduces information to the 

data.   

Global imputation based on non-missing attribute 

The main assumption employed by global imputation based on non-missing attribute 

methods is the existence of correlations between missing and non-missing variables. They 

employ these correlations to predict missing values. Imputation by regression is one such 

method, which treats missing attributes as the target attribute, in turn, and performs 

regression to impute missing values. In [Mag04], it is noted that this strategy possesses two 

main problems: (1) the selection of the appropriate type of regression model is crucial (e.g. if 

linear regression is performed but the data doesn’t fit a linear model, erroneous values are 



Chapter 3 – Handling Incomplete Data   

21 

imputed) and (2) only one value is imputed for each missing data and this fails to represent 

correctly the uncertainty associated with missing values. 

Multiple imputation, or MI, [Rub87] comes as a solution to the second issue stated 

above. It consists of 3 steps: imputation – create m complete datasets, through single 

imputation; analysis of each of the m datasets; combination, by integrating the results of the 

m analyses into the final result. Even if MI appears to be the most appropriate method for 

general-purpose handling of incomplete data in multivariate analysis, in practice, the 

requirements which have to be met in order to achieve MI’s desirable properties, are 

normally violated: the data is not generally MAR, and producing random imputations that 

yield unbiased parameter estimates is not a trivial task.  

Local imputation 

A large number of local imputation methods are grouped under the name of hot-deck 

imputation. It is a generic procedure, which doesn’t have a strong theoretical formulation, but 

has been implemented in practice in several different versions [Grz02, Bat03, Ged03]. For 

each value to impute, it: 

1. finds similar records with the current record 

2. use a certain strategy to derive the replacement value from the corresponding 

values of the neighboring records 

  The assumption al hot-deck procedures are based on, that instances can be grouped in 

classes, with small variation within each class, is generally verified in DM tasks [Mag04]. 

Exceptions may appear for attributes which don’t exhibit any (or a very low) correlation with 

the other attributes in the dataset.   

Imputation via parameter estimation 

Imputation values may be deduced also by first estimating the parameters of the 

multivariate probability density function and then using the resulting data model to impute 

the missing portion of the data. Expectation Maximization (EM) is such an approach, which 

uses maximum likelihood to estimate the parameters of a probabilistic model which best 

explain the data. For incomplete data, missing values represent hidden variables. It is an 

iterative method, which performs two operations in each iteration: (1) the E step – compute 

the expectation of the likelihood, using the distribution of the hidden variables, which can be 

derived from the current parameter estimations; (2) the M step – maximize similarity relative 

to the parameters. The main drawbacks of the approach are related to the computational 

complexity and the fact that in real DM problems it is generally difficult to guess the 

probability density function in advance.  

3.2.3 Embedded MDTs 

Several decision tree classification methods possess non-trivial methods for handling 

incomplete data. In C4.5 [Qui93], for example, in the training phase, the gain ratio of each 

attribute is adjusted by a factor which depends on the number of complete records (in that 

attribute) in the training set. Every incomplete record is distributed among all partitions, with 

a probability which depends on the size of the partition (fractional cases). In the prediction 

phase, when a test on an unknown attribute has to be performed, the instance is again 

propagated on all available paths, on each branch having a weight that corresponds to the 

relative frequency of a value assigned to that branch. 

The CART (Classification and Regression Trees) method [Bre84] applies the so-

called Surrogate Variable Splitting (SVS) strategy. The method employs “surrogate 

splitters”, i.e. predictor variables which yield similar splitting results with the primary splitter, 

to replace the primary splitter in nodes when there are missing values. This strategy can only 

be used in the prediction phase. The RPART (Recursive Partitioning and Regression Trees) 
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method [The97] contains an extension of the basic method, which can handle missing data 

during training as well.   

3.3 A New Method for Data Imputation 

 Considering the superior performance achieved by ensembles of artificial neural 

networks on various problems [Ona07], a new imputation method, which applies the 

predictive capabilities of an ensemble of artificial neural networks to impute missing values, 

has been proposed. This section presents the technique, together with the empirical 

evaluations performed to validate the idea. The proposed method employs global imputation 

based on non-missing attributes. The strongest assumptions made by the method are related 

to the existence of correlations between the incomplete and the complete attributes (including 

the class). The particular technique employed for learning the model used to impute each 

incomplete attribute reduces the risk of choosing an inappropriate model. Also, even if there 

is a single imputation performed for each missing value, the replacement value is determined 

by an ensemble of predictors, using a voting strategy. Even if this doesn’t improve the 

representation of the uncertainty associated with missing values, it reduces the risk of 

imputing wrong values.       

3.3.1 Method Description 

Before describing the actual technique, we should make a note on the fact that the 

purpose of the method is to improve the classification performance, i.e. the prediction 

capabilities of the model built on incomplete data. The technique implies training an artificial 

neural network ensemble model for each attribute, using the complete data sub-sets for the 

particular attribute, considered as target. For each predictor attribute Xj, j = 1 to n, from the 

available training data T two sub-sets are extracted: 

 a complete data kernel – CTj – which is employed to build the attribute I 

imputation model 

  the Xj–incomplete subset – ITj – which contains all instances with the value of 

attribute Xj missing. 

For univariate incompleteness, for each attribute Xj and instance xiT, xiCTj if 
)( j

ix is 

known, and xi ITj otherwise (
)( j

ix = „?”). The artificial neural network ensemble is trained on 

CTj, considering Xj as target attribute, and the resulting model is employed to impute the 

values of Xj in ITj, obtaining ITj’. The resulting training set possesses a higher quality and 

thus improves the quality of the resulting prediction model. 

 

Procedure NNE_Impute (T,Xj)  

(1)  Create Tc = T  

(2)  for each instance  Tc   
(3)        if   =”?” then  

(4)   ITj= ITj  {  }  

(5)         else  

(6)   CTj=CTj  {  }    

(7)       end if  

(8)  end for   

(9)  Model Mj= NNE_Train(CTj, Xj)  

(10) for each instance xiITj  
(11)       Ik = Select corresponding instance from Tc  

(12)      Set Ik=Mj(Ik)   

(13) end for  

(14) return Tc  

 

ix
)( j

ix
)( j

ix

 )( j

ix
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The code snippet on the previous page presents imputation method for the univariate 

case – in which T = ITj   CTj and ITj CTj = ∅. For more complex incompleteness 

mechanisms, the difference is in the strategy for extracting the complete data subset. 

3.3.2 Experimental Evaluation 

The purpose is to show that, by using the imputation method, higher prediction 

performance is obtained than by using the incomplete dataset. The quality of the imputed 

values results indirectly, from the superior classification performance. We have performed 

several evaluations, considering univariate incompleteness with varying levels and measuring 

the classification accuracy of the J4.8 decision tree classifier – which possesses also 

embedded mechanisms for handling incomplete data. The incompleteness mechanism is 

MCAR. 

 For each attribute in turn, we have compared the performance of the models trained 

on: 

 The complete dataset: ITj = ∅, T = CTj 

 The p% incomplete dataset: p% values for attribute Xj are artificially removed, using 

an MCAR strategy, with p varied between 5 and 30, using an increment of 5 

 The p% imputed dataset: the same p% values for attribute Xj from before are imputed 

using our imputation method 
 

The evaluations have been performed on two complete UCI datasets (Pima Indian 

Diabethes and Cars), using 10 different trials of 10-fold cross validation loops (100 runs in 

total). We have studied the impact of the imputed values on the performance of the prediction 

models. The relation set as goal between the three measures is: 

Accuracy(complete train set) >       

  Accuracy(imputed train set) >     

 Accuracy (incomplete train set) 

The diagrams (a) – (d) from figure 3.1 present the results obtained for two strongly, 

one moderately and one weakly correlated attribute with the class, for the Pima dataset. The 

results indicate that, for strongly correlated attributes with the class, the expected relationship 

between the accuracies on the different versions of the training set is correct. A moderately 

correlated attribute (attribute 8 – age) exhibits a relation close to the expected one, and the 

rest of the attributes achieve the highest classification accuracy when using missing or 

imputed values (which is a deviation from the expected behavior). Moreover, the curve 

representing the class accuracy when using missing values in the training phase should 

decrease as the percentage of the incompleteness increases. Again, only some attributes 

exhibit this behavior. If we further analyze the ranking of the attributes (using the gain ratio 

as ranking metric), we come across the following order: 2, 6, 8, 1, 5, 7, 4, 3. The complete 

attribute list for the Pima dataset can be found in table A.6.5 of Appendix A. For this dataset, 

which does not represent the problem well enough (since the accuracy is around 84%), only 

imputation on the attributes which are highly correlated with the class guarantee performance 

improvement. 

A second batch of tests was conducted on the Cars dataset, which consists of nominal 

attributes, and yields a high accuracy on the complete training set (~96%). For this dataset 

(figure 3.2, diagrams (a) – (f)), almost all the attributes exhibit the normal relation between 

the three curves. Also, we can observe how the class accuracy decreases as the number of 

missing attribute values increases, which is the expected behavior. The attribute ranking for 

the Cars dataset is: 6, 4, 1, 2, 5, 3. 

 

 
 


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(a) Attribute 2 – strongly correlated 

 

(b) Attribute 6 – strongly correlated 

 

(c) Attribute 8 – moderately correlated 

 

(d) Attribute 3 – weakly correlated 

Figure 3.1 - The variation of the accuracy with different incompleteness percentages  for several attributes of 

the Pima dataset 

Therefore, when the dataset represents well the search space, our method boosts the 

accuracy of learners (the accuracy when using the predicted values for the attributes is higher 

than the one achieved with incomplete data). Although the method has been evaluated for 

handling one missing attribute at a time, it can be applied to multivariate incompleteness, 

provided that a complete subset of instances can be extracted from the available training data. 

Then, imputation can be performed incrementally, first on instances having one missing 

attribute value, then two, and so on.  

3.4 Conclusions on Data Imputation  

The successful application of learning methods to real-world problems is frequently 

conditioned by aspects involving the quality of the available data, such as noise or 

incompleteness. MDTs are available either as pre-processing methods – filters and imputation 

methods – or as embedded approaches. Their success in a certain scenario depends on both 

the match between the assumptions made by the MDT technique and the incompleteness 

mechanism (which is data dependent) and on the subsequent processing applied to the data 

(for pre-processing methods). Moreover, filters tend to introduce bias in the learning process 

and reduce the volume of available data, while existing imputation methods may require 

strong assumptions which don’t generally hold in real situations, or employ knowledge about 

the data distribution, which is not always accessible. Computational complexity may also 

represent an issue for some imputation techniques. 

Having the high accuracy obtained by the ensemble of neural networks as motivation, 

a new global imputation method based on non-missing attributes has been proposed, 

implemented and evaluated on benchmark data, using univariate MCAR as incompleteness 

mechanism. 
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(a) 

 

(b) 

 

(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3.2 - The variation of the accuracy with different incompleteness percentages  for  the attributes of the 

Cars dataset 

The results have shown that the method can improve the classification performance 

by imputing missing values, but not for all attributes in a dataset. Thus, for a dataset with a 

high level of accuracy (e.g. Cars, ~96% accuracy on complete set) improvements have been 

observed for almost all the attributes. But for the Pima dataset, on which classifiers achieve a 

lower accuracy (~84%), improvements have been observed only for the attributes strongly 

correlated with the class. The method can be extended to accommodate more complex 

incompleteness patterns – by performing incremental imputations – initially identify 

complete data kernels, and perform imputation incrementally, one attribute at a time. 

The experiments have shown a strong connection between the correlation of a certain 

attribute with the class and the performance of our imputation method for that attribute. 

Therefore, considering feature selection information in the imputation step may boost the 

success of the imputation. Current research efforts focus on evaluating the method on other 

incompleteness mechanisms and patterns.  
 

The original data imputation method proposed in this chapter is the result of research 

supported by PNII grant no.12080/2008: SEArCH – Adaptive E-Learning Systems using 
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Concept Maps. The results have been acknowledged by the scientific community through 

publication of 1 research paper, presented at an international conference: 

1. Vidrighin Bratu, C., Muresan, T. and Potolea, R., “Improving Classification 

Performance on Real Data through Imputation”, Proceedings of the IEEE 

International Conference on Automation, Quality and Testing, Robotics, 22-25 May, 

Cluj-Napoca, Romania, Vol. 3, pp. 464-469, ISBN: 978-1-4244-2576-1, 2008 
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4 Feature Selection 

Dimensionality reduction through the selection of a relevant attribute (feature) subset 

may produce multiple benefits to the actual data mining step, such as: performance 

improvement, by alleviating the curse of dimensionality and improving generalization 

capabilities, speed-up by reducing the computational effort, improving model interpretability 

and reducing costs by avoiding “expensive” features. These goals are not fully compatible 

with each other. Thus, there exist several feature selection problems, according to the specific 

goals. In [Nil07], feature selection problems are classified into two main categories: finding 

the optimal predictive features (for building efficient prediction models) and finding all the 

relevant features for the class attribute. 

From a purely theoretical perspective, the selection of a particular attribute subset is 

not of interest, since the Bayes optimal prediction rule is monotonic, hence adding more 

features cannot decrease accuracy [Koh97]. In practice, however, this is actually the goal of 

feature selection: selecting the best possible attribute subset, given the data and learning 

algorithm characteristics (such as biases, heuristics). Even if there exist certain connections 

between the attributes in the subset returned by some techniques and the theoretically-

relevant attributes, they cannot be generalized to form a practical methodology, applicable to 

any learning algorithm and dataset. This is because the information needed to compute the 

degree of relevance of an attribute (i.e. the true distribution) is not generally available in 

practical settings.     

4.1 Problem Statement 

The concept of relevance is central to the theoretical formulation of feature selection. 

There are several definitions of relevance available in literature. In [Gen89], a feature is 

defined as relevant if its values vary systematically with the class attribute values. In 

[Koh97], this is formalized as: 

Definition 1: Xj is relevant iff                                                                                             

 x and y for which p(Xj = x )>0, s.t. p(Y = y | Xj = x ) ≠ p(Y = y), 

meaning that an attribute is relevant if the class attribute is conditionally dependent on it. 

Another possible definition of relevance is that by removing attribute Xj from the 

feature set F the conditional class probability changes [Koh97]: 

Definition 2: Xi is relevant iff  

            x, y and f for which p(Xj = x, Fj= f )>0, s.t. p(Y = y | Xj = x, Fj= f ) ≠ p(Y = y | Fj = f) 

where Fj = {X1, ... Xj-1, Xj+1,, ... Xn} denotes the set of all attributes except Xj and f represents a 

value assignment to Fj. 

However, these definitions may yield unexpected results. Take the Boolean xor problem, for 

example, with Y = X1X2. Both X1 and X2 are indispensable for a correct prediction of Y. 

However, by the first definition, both X1 and X2 are irrelevant, since p(Y=y | X1 = x) = p(Y=y) 

= 0.5, i.e. for any value X1 there are two different values for y. The same is true for X2.  Also, 

if we add feature X3 =X2, then by the second definition, both X2 and X3 are considered 

irrelevant, since neither adds information to F3 and F2, respectively. 

To address such issues, in [Koh97] two degrees of relevance are introduced: strong 

relevance and weak relevance, by quantifying the effect of removing the attribute on the 

performance of the Bayes optimal classifier. Thus, an attribute is strongly relevant if it is 
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indispensable, i.e. its removal results in performance loss of the optimal Bayes classifier. The 

actual definition is equivalent to the second definition of relevance presented before.   

The definition for weak relevance is the following: 

Definition 3: An attribute Xj is weakly relevant iff it is not strongly relevant and  a 

subset of features Fj
’ 
of Fj for which  x, y and f

’
 with p(Xj = x, Fj

’
 = f 

‘
)>0, s.t.  

p(Y = y | Xj = x, Fj
’
 = f 

‘
) ≠ p(Y = y | Fj

’
 = f 

‘
) 

A feature is relevant if it is either strongly or weakly relevant, and irrelevant 

otherwise. For the xor problem, X1 is strongly relevant, and X2 and X3 are weakly relevant. 

The above definitions of relevance do not imply attribute usefulness for a specific 

learner. Therefore, we define feature selection in the following manner: 

Definition 4: Feature selection represents the extraction of the optimal attribute 

subset,  

Fopt = {Xk1, ..., Xkn}, where {k1, ..., kn} {1,...,n} 

The definition of optimality is specific to the feature selection technique (on the 

subset evaluation measure), and it depends on the learning algorithm characteristics (such as 

biases, heuristics) and on the end goal of the classification.  

4.2 Feature Selection Techniques 

There exist two possible strategies to follow for feature selection: search for the best 

subset of predictive features (for building efficient prediction models), or find all the relevant 

features for the class attribute. The latter is achieved by performing a ranking of the attributes 

according to their individual predictive power, estimated via different tactics: (i) compute the 

performance of a classifier built with each single variable, (ii) compute statistic measures, 

such as a correlation coefficient or the margin and (iii) employ information theory measures, 

such as the mutual information [Guy03]. However, this approach fails to identify redundant 

features, which have been shown to harm the classification process of the naïve Bayes 

classifier [Lan94a]. Therefore, most feature selection techniques focus on searching for the 

best subset of predictive features. They differ in two important aspects: the search strategy 

employed and the attribute subset evaluation method. 

There exist several comprehensive studies on feature selection algorithms in 

literature. Dash [Das97] classifies feature selection algorithms using two criteria: the 

generation procedure and the evaluation function. Three generation procedures – heuristic, 

complete and random – and five evaluation measures – distance, information, dependency, 

consistency and classifier error rate – are identified. This results in fifteen possible 

combinations; the representative algorithms in each class are reviewed. Empirical evaluations 

are performed on three artificial datasets, to study the capacity of each algorithm to select the 

relevant features. Another comprehensive survey is presented in [Mol02]. The classification 

of feature selection algorithms presented there is similar to that in [Das97]. The difference is 

that the generation procedure is further divided into search organization and generation of 

successors, resulting in a 3-dimension characterization of the feature selection methods. 

Other valuable studies can be found in [Guy03, Nil07]. 

Feature selection algorithms are traditionally divided in machine learning literature 

into: filter methods (or filters), wrapper methods (or wrappers), and embedded methods (i.e. 

methods embedded within the learning process of certain classifiers). 
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4.2.1 Search Strategies 

For the feature selection problem, the order of the search space is O(2
|F|

). Therefore, 

performing an exhaustive search is unfeasible except for domains with a small number of 

features. Complete search strategies perform a complete search for the optimal subset, 

according to the evaluation function used. Their complexity is smaller than O(2
|F|

), because 

not all subsets are evaluated. The optimality of the solution is guaranteed. Representatives of 

this category are: branch and bound with backtracking or breadth-first search. 

A more efficient trade-off between solution quality and search complexity is provided 

by heuristic search procedures. With a few exceptions, all search strategies falling in this 

category follow a simple process: in each iteration, the remaining features to be 

selected/rejected are considered for selection/rejection. The order of the search space for 

these procedures is generally quadratic in the number of features – O(|F|
2
). Therefore, such 

methods are very fast, and although they do not guarantee optimality, the quality of the 

solution is usually good. Representative of this category are: greedy hill climbing, which 

considers local modifications to the feature subset (forward selection, backward elimination 

or stepwise bi-directional search), best-first search, which also makes local changes but 

allows backtracking along the search path and genetic algorithms, which consider global 

changes. Given enough time, best-first search will perform a complete search. Greedy hill-

climbing suffers from the horizon effect, i.e. it can get caught at local optima. Given enough 

search variability, population size and number of iterations, genetic algorithms usually 

converge to the optimal solution.  

A less investigated strategy is random search, which limits the number of evaluated 

subsets by setting a maximum number of iterations possible. The optimality of the solution 

depends on the resources available and adequate values for certain parameters. 

Representative for this category is the Las Vegas search algorithm. Also, a certain degree of 

randomness can be found in genetic algorithms and simulated annealing; greedy hill climbing 

can be injected with randomness by starting from an initial random subset.  

4.2.2 Evaluation Measures 

Whether or not a certain sub-set is optimal depends on the evaluation criterion 

employed. The relevance of a feature is relative to the evaluation measure. 

Since, most often, the end goal of feature selection is to obtain an efficient 

classification model in the processing phase, setting the target of feature selection to 

minimize the (Bayesian) probability of error might be appropriate. The probability of error is 

defined as [Dev82]: 

Pe =   dxxpxyP k

k
)()]|(max1[          (4.1) 

where p(x) =  

c

k

kk yPyxp
1

)()|(  is the unconditional probability distribution of the 

instances, and P(y
k
 | x) is the posterior probability of y

k
 being the class of x. 

The goodness of a feature subset F’ is therefore: J = 1 – Pe. P(y
k
 | x) are usually unknown, and 

have to be modeled, either explicitly (via parametric or non-parametric methods), or 

implicitly, by building a classification model which learns the decision boundaries between 

the classes on a sample dataset. For a feature subset F’, an estimate 


eP  of the error is 

computed, by counting the errors produced by the classifier built on a subset of the available 

data, using only the features in F’, on a holdout test set taken also from the available data. 

The feature subset which minimizes the error is returned. This forms the basis of the wrapper 

methodology. The estimation of 


eP  may require more sophisticated procedures than simple 
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holdout validation set: k-fold cross-validation or repeated bootstrapping may yield more 

accurate values.  

Distance (or discrimination, separability) measures favor features which induce a 

larger distance between instances belonging to different classes. The Euclidean distance is 

one of the metrics used to compute the distance. The best feature subset is that which 

maximizes the inter-class distance [Mol02]: 
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represents the interclass distance between the k
th

 and l
th

 class labels, Nk and Nl are the number 

of instances belonging to classes Nk and Nl, respectively, and x(k,k1) is the instance k1 of class 

y
k
. Such measures do not necessitate the modeling of the probability density function. As a 

result, their relation to the probability of error can be loose [Mol02].  

 Divergence measures are similar to distance measures, but they compute a 

probabilistic distance between the class-conditional probability densities: 

 dxyxpyxpfJ lk )]|(),|([       (4.4) 

Classical choices for f include: the Kullback-Liebler divergence or the Kolmogorov distance. 

Such measures provide an upper bound to Pe. 

 Statistical dependence quantify how strongly two features are associated with one 

another, i.e. by knowing the value of either one, the other can be predicted. The most 

employed such measure is the correlation coefficient: 

Correlation(Xi, Xj) = 
XjX

XjjXi

i

i
XXE


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      (4.5) 

where   represents the expected values and  standard deviations. The correlation can be 

estimated from a data sample, i.e. the training set:  

)()(

)()(

)1(

)()( )()(

1

)()(

ji

ji

xx

jj

k

m

k

ii

k

xx ssm

xxxx
r





 

     (4.6) 

where x
(i)

and x
(j)

 represent the value sets of attributes Xi and Xj, respectively, 
)(ix  and 

)( jx  

represent the sample means and )( ix
s and )( jx

s  represent the sample standard deviations. 

This measure may be used in several ways: rank features according to their individual 

correlation with the class – those exhibiting a large correlation are better; a second possibility 

is investigated in [Hal00], where the heuristic “merit” of a subset of features is proposed, 

according to which subsets whose features exhibit higher individual correlation with the class 

and lower inter-correlation receive higher scores: 
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where k = |F’|, r represents the sample correlation coefficient, c represents the class and f 

represents a predictive feature; cfr is the mean feature-class correlation, 'Ff  and ffr  is the 

mean feature-feature inter-correlation.  
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 Similar to the statistical dependence measures, there are several measures from 

information theory, based on Shannon’s entropy, which can help determine how much 

information on the class Y has been gained by knowing the values of Xi. The most employed 

is the information gain, which can be used without knowledge of the probability densities, 

such as in decision tree induction. 

 Consistency measures are characteristically different than all the other evaluation 

measures. They rely heavily on the training data. Also, the methods that employ them apply 

the Min-Features bias, i.e. favor consistent hypotheses definable over as few features as 

possible. An inconsistency in F’ appears when two instances belonging to different classes 

are indistinguishable by their values of the features in F’ alone. The inconsistency count of an 

instance xi with respect to feature subset F’ is: 

ICF’(xi) = F’(xi) – )('max ik
k

xF            (4.8) 

where F’(xi) is the number of instances in training set T equal to x
i 
 using only attributes in F’, 

and )(' ik xF  is the number of instances in T of class y
k 

equal to x
i
 using only the features in 

F’. The inconsistency rate of a subset of features F’ in the training set T is expressed as the 

average of the inconsistency scores of T’s instances with respect to F’. This is a monotonic 

measure, which has to be minimized. 

4.2.3 Filter Methods 

Filters perform feature selection independently of any particular classifier, being 

motivated by the properties of the data distribution itself. There are several robust algorithms 

in literature which employ a filter strategy. Among the most cited are: RELIEF [Kir92], LVF 

[Liu96], FOCUS [Alm97], Correlation-based filter – CFS [Hal00], or statistical methods 

based on hypothesis tests. 

RELIEF [Kir92] is based on the idea employed by nearest neighbor learners: for each 

instance in a randomly chosen sample, it computes its nearest hit (closest instance from the 

same class) and miss (closest instance from a different class), and uses a weight update 

mechanism on the features. After all the training instances in the sample have been analyzed, 

the features are ranked according to their weights. The limitations of this method come from 

the fact that insufficient instances may fool it, and there is no general methodology for 

choosing the sample size. 

LVF (Las Vegas Filter) [Liu96] uses a probabilistically-guided random search to 

explore the attribute subspace, and a consistency evaluation measure, different from the one 

employed by FOCUS. The method is efficient, and has the advantage of being able to find 

good subsets even for datasets with noise. Moreover, a good approximation of the final 

solution is available during the execution of the algorithm. One drawback is the fact that it 

may take longer to find the solution than algorithms using heuristic generation procedures, 

since it does not take advantage of prior knowledge.  

FOCUS [Alm97] is one of the earliest multivariate filters. It is devised for binary 

class problems, and employs the min-features bias, meaning that it tries to find a minimal 

consistent feature set (a set which is able to separate the classes on the training data). Its 

drawbacks include the inability to handle noisy data and its predisposition towards over-

fitting. Also, since it performs an exhaustive search, it is only tractable for small sets.  

CFS (Correlation-based Feature Selection) [Hal00] is a filter method which selects 

those attributes which exhibit a strong correlation with the target attribute, and a weak 

correlation between each-other. For each candidate subset, a ratio of the group attribute-class 

correlation against attribute-attribute correlation is computed, as in equation (4.7). The subset 

which maximizes the ratio is the reduced attribute set.  

PCA (Principal Components Analysis) is a filter method widely employed for feature 

selection and extraction in image processing applications [Ned09] (numeric attributes). It 
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performs an orthogonal transformation on the input space, to produce a lower dimensional 

space in which the main variations are maintained. There are several different versions to 

perform PCA – a review on several approaches is available in [Ned10]. 

4.2.4 Wrapper Methods 

Since filters fail to capture the biases inherent in learning algorithms, for the purpose 

of boosting the classification performance, filter methods may not achieve significant 

improvements. Instead, wrapper methods should be considered. Experimental results which 

validate this assumption can be found in [Lan94a, Koh95]. Wrappers [Joh94, Koh95], as 

opposed to filter methods, search for the optimal subset by using an empirical risk estimate 

for a particular classifier (they perform empirical risk minimization). Thus, they are adjusted 

to the specific relations between the classification algorithm and the available training data. 

One drawback is that they tend to be rather slow. 

In general wrapper methodology consists of three main steps: 

 a generation procedure 

 an evaluation procedure 

 a validation procedure 

Thus, a wrapper is a 3-tuple of the form <generation, evaluation, validation>. The 

feature selection process selects the minimal subset of features, considering the prediction 

performance as evaluation function: minimize the estimated error, or equivalently, maximize 

the expected accuracy. Each selected feature is considered to be (strongly) relevant, and 

rejected features are either irrelevant or redundant (with no further refinement). The 

differences in the application of the wrapper methodology are due to the methods used for 

generation, the classifier used for evaluation and the strategy for estimating the off-sample 

accuracy. 

The generation procedure is a search procedure that selects a subset of features (Fi) 

from the original feature set (F), Fi  F, as presented in section 4.2.1. The evaluation 

procedure measures the quality of a subset obtained from a given generation procedure. As 

the selected feature subset depends on the evaluation function, the process of selecting the 

appropriate evaluation function is dependent on the particular initial dataset. In the case of 

wrappers the evaluation is performed by measuring the performance of a certain classifier on 

the projection of the initial dataset on the selected attributes (i.e. estimate the probability of 

error, as presented in section 4.2.2). The validation procedure tests the validity of selected 

subset through comparisons obtained from other feature selection and generation procedure 

pairs. The objective of the validation procedure is to identify the best performance that could 

be obtained in the first two steps of the method for a given dataset, i.e. to identify the 

selection method which is most suitable for the given dataset and classification method. As a 

consequence, the minimal feature subset is selected. All features from the subset are 

considered relevant to the target concept. Moreover, the classification method performs the 

best, so it is to be considered for further classifications.  

The initial work on wrappers has been carried out by John, Kohavi and Pfleger 

[Joh94], which conducted a series of experiments to study the effect of feature selection on 

the generalization performance of ID3 and C4.5, using several artificial and natural domain 

datasets. The results indicated that, with one exception, feature selection did not change the 

generalization performance of the two algorithms significantly. Genetic search strategies 

were employed in [Che96] within a wrapper framework for decision tree learners (SET-Gen), 

in an attempt to improve both the accuracy and simplicity of the resulting models. The fitness 

function proposed by the authors was a linear combination of the accuracy, the size of the 

resulting trees (normalized by the training set size) and the number of features. 
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OBLIVION has been proposed in [Lan94b], to alleviate the effect of irrelevant 

features on the kNN classifier. The algorithm uses backward elimination as generation 

procedure and an oblivious decision tree as classifier [Koh95]. A context sensitive wrapper 

for instance based learners is proposed in [Dom97], which selects a (potentially) different 

subset of features for each instance in the training set. Backward elimination is employed as 

search strategy and cross-validation to estimate the accuracy. The method is especially useful 

in domains where the features present local relevance. 

Improvements on the naïve Bayes classifier via the employment of wrapper-based 

feature selection are reported in [Paz95, Koh97]. 

RFE (Recursive Feature Elimination) [Guy02] is a combination of a wrapper and a 

feature ranking scheme. In each iteration, an SVM is trained on the current subset of features; 

then, a ranking of the features is computed from their weights in the model – i.e. the 

orientation of the hyperplane. The least important feature is removed and the process 

continues with the next iteration. The stopping criterion is typically a risk estimate (i.e. 

wrapper based), but the method can be used also to generate a ranking of the features. 

The most important criticism brought to the wrapper approach is concerned with its 

computational cost, since each feature subset has to be evaluated by training and evaluating a 

classifier, possibly several times (if cross-validation, or repeated bootstrapping are used). To 

address this issue, efficient search strategies have been proposed in [Moo94] – race search 

and schemata search – and [Koh95] – compound search space operators. In addition, greedy 

search strategies have a reduced time complexity and seem to be robust against overfitting 

[Guy03].  

4.3 Combining Generation Strategies  

A first motivation for tackling a combination approach for the generation strategies 

can be found in the no-free lunch theorem. It is known that, due to the selective superiority of 

classifiers, there is no universally best method, i.e. one which yields superior performance to 

all other methods, on any problem. Intuitively, this issue should affect the generation 

strategies used in feature selection as well. As will be shown in section 4.3.2, there is no 

superior wrapper combination, although there are certain combinations which constantly 

yield good performance improvement. Different search strategies in the generation step may 

yield significantly different results.  

A second motivation for such an approach is the fact that combination methods via 

ensemble learning or the Dempster-Shafer Theory of Evidence have been shown to improve 

the stability of individual classifiers across a wide range of problems [Mol07, Mur10]. Such 

approaches reduce the variance associated to single learners, and by combining different 

methods the resulting bias is expected to be lower than the average bias of the individual 

methods.  

Also, wrappers are known to be significantly slower than filters, since they require 

training and evaluating a classifier for each attribute subset generated during the search 

process. Thus, using faster search strategies without affecting the quality of the solution is 

important. 

As a result, this section proposes an original wrapper-based attribute selection 

method, which combines the selections of several generation procedures, via voting. The 

expected effect is an increased stability over several problems, while keeping a high 

reduction rate in the number of attributes. 

The procedure is presented at the beginning of the next page. T is the available 

training set, Sp is the set of available generation procedures and sEval is the subset evaluation 

method, i.e. the strategy employed and the classifier used by the wrapper.  
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COMBINE GENERATION STRATEGIES 

 

Given:  Set         of search strategies 

  sEval – subset evaluation method 

  T – training set 

Do: 

1. Generate individual feature subsets corresponding to each 

search method, using sEval and T:  

, where  

 

- local score of attribute Xj in set  

 

2. Compute, for each attribute, a global score: 
 

 

 

3. Select the final attribute subset: 
 

 
where   is the selection threshold for attribute Xj 

     

 is the feature subset generated by search strategy Spk individual, in which each feature 

possesses a corresponding selection score. One approach to generate such a feature subset is 

to run the wrapper in a cross-validation loop and assign to each feature a score equal to the 

number of folds in which it was selected. Using the local selection scores, we compute a 

global weighted score for each feature, and apply a selection strategy to obtain the final 

feature subset. Currently, an above average uniform selection strategy has been applied, but 

the method can be extended to accommodate other voting strategies. 
 

4.4 Experimental Evaluation 

4.4.1 Evaluating the Wrapper Methodology 

 A series of evaluations on the wrapper methodology have been conducted in order to 

study its capacity to improve the learning performance of classifiers. Accuracy has been 

employed as a measure of the classification performance. The possibility of combining 

different classifiers for the steps of feature selection and learning has been analyzed. It is 

known that the Bayesian classifier is able to deal with irrelevant features, but not with the 

redundant ones. On the contrary, decision trees exhibit good behavior in the presence of 

redundant features, but usually fail when dealing with irrelevant features.  Evaluations have 

been performed to study the behavior of their combinations. 

A second problem addressed by the evaluations is related to the use of pruning when 

wrapping feature selection around decision trees. The problem was originally formulated in 

[Koh95], where it was indicated that pruning should be avoided in this case. 

Another issue analyzed in the current evaluations is related to the flow of the mining 

process. In [Mol07], it is argued that, due to the selective superiority of classifiers, the 

baseline accuracy of a dataset should be assessed before starting to mine a new real problem. 

A certain classifier is then considered appropriate for that problem only if it achieves a higher 

accuracy than the baseline accuracy. The question here is: does the feature selection step 

affect the initial selection of the learning scheme? Does the “most appropriate” algorithm for 

the given problem change after feature selection, or does it remain the same as in the initial 

choice? 
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In the attempt to provide answers to these questions, a series of comparative 

evaluations on several instantiations of the wrapper methodology have been performed. 

Fourteen UCI datasets were employed, described in table A.4.1 of Appendix A. In selecting 

the datasets, the criteria stated in [Koh95] were used: dataset size, reasonable encoding, 

comprehensibility, non-triviality and age. The evaluation scenarios have been set up using the 

WEKA framework [Wit05]. Following a series of preliminary evaluations on several search 

strategies, greedy stepwise backward search and best first search have been selected as 

generation procedures. Three different learning schemes, representing three prominent 

classes of algorithms: decision trees (C4.5 – revision 8 – J4.8, as implemented by WEKA); 

Naïve Bayes and ensemble methods (AdaBoost.M1, with Decision Stump as a base learner) 

were employed for the evaluation and validation procedures. For J4.8, experiments were 

performed both with and without pruning. 

In presenting the results, the following abbreviations have been employed: 

 for the generation procedure:  

o BFS: best first search 

o GBW: greedy stepwise backward search 

 for the evaluation function and the validation procedure: 

o JP: J4.8 with pruning 

o JNP: J4.8 without pruning 

o NB: Naïve Bayes 

o AB: AdaBoost.M1 
 

A “_” is used to signal a “don’t care” situation (e.g. all combinations yield the same 

results). 

Table 4.1 presents the results obtained by wrappers using the classifier which initially 

yielded the highest accuracy for the evaluation and validation procedures. In all but two cases 

we find that the accuracy increases after performing feature selection using the wrapper 

approach on the initially best classifier.  

Table 4.1 – Results obtained by wrapper combinations using the initially best classifier 

Dataset A1 M1 A2 M2 RI (%) 

Australian 86.26 JP 87.43 GBW/JP/JP 1.36 

 Breast-cancer 75.03 JP 75.67 _/JP/JP 0.85 

 Bupa 63.1 NB 65.17 BFS/NB/NB 3.28 

 Cleve_detrano 83.73 NB 85.74 BFS/NB/NB 2.40 

 Crx 84.93 JP 86.68 GBW/JNP/JNP 2.06 

 German 75.16 NB 75.72 BFS/NB/NB 0.75 

 Heart 83.13 NB 85.48 BFS/NB/NB 2.83 

 Cleveland 56.54 NB 60.71 GBW/NB/NB 7.38 

 Monk3 98.91 JP 98.92 _/J_/J_ 0.01 

 PimaDiabethes 75.75 NB 77.58 BFS/NB/NB 2.42 

 Thyroid 99.45 AB 99.28 BFS/J_/J_ -0.17 

 Tic-tac-toe 83.43 JP 83.47 BFS/J_/JNP 0.05 

 Vote 96.22 JP 96.73 GBW/JP/JP 0.53 

 Wisconsin 96.24 NB 96.07 BFS/NB/NB -0.18 

A1 = Initial best accuracy; M1 = Initial best classifier; A2 = Accuracy for the wrapper 

method which uses the initial best classifier for both evaluation and validation; M2 = 

Wrapper method which uses the initial best classifier for both evaluation and validation; 

RI = Relative Improvement (%) = (A2-A1)/A1 
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On the Thyroid dataset no improvement is found. This behavior is explained by the 

very high initial accuracy. Due to that value, improvements are difficult to obtain. Thus, there 

is no reason for performing feature selection. The other exception is the Wisconsin dataset, 

for which NB attains the highest initial accuracy. Even if no improvement can be found when 

using this classifier, other combinations used for the wrapper lead to an accuracy increase on 

this dataset as well (see table 4.2). 

Table 4.2 presents the results obtained by the best <generation, evaluation, 

validation> combinations. In most of the cases, the BFS/NB/NB combination achieves the 

highest accuracy, while combinations using JP or JNP come in second. There are three 

exceptions to this rule: 

 the Breast-cancer dataset: the only dataset on which combinations employing AB 

obtain the highest accuracy 

 the Cleveland dataset: here, GBW obtains the best accuracy. Also, the Cleveland 

dataset is the only one in which GBW selected fewer attributes than BFS. 

 the Wisconsin dataset: as shown earlier, for this set a mix of classifiers in the 

evaluation/validation steps achieves the highest accuracy. 

Table 4.3 presents the results obtained by the _/JNP/JNP wrapper. The great 

advantage of this wrapper is that it is extremely stable. It constantly boosts the accuracy, even 

though it does not obtain the best improvement all the time. The _/J_/J_ wrappers obtain the 

best accuracies on 4 datasets (out of 14), while in 1 case the best accuracy is obtained with a 

wrapper using J4.8 as evaluation function. Moreover, on 8 datasets, a wrapper based on J4.8 

obtains the second best performance, while on 2 other datasets, it is considered as evaluation 

function, or validation function respectively. The best relative accuracy improvement of this 

wrapper is of 11% (on Heart dataset, for both search procedures), while the average 

improvements are 2.29% for BFS and 3.0% for GBW. Thus, instead of using J4.8 with 

pruning as the learning scheme, it is preferable to perform an initial feature selection using 

J4.8 without pruning, and then apply, in the learning step, again J4.8 without pruning. 

Table 4.2 – Best wrapper combinations 

Dataset A1 M1 A2 M2 RI (%) 

 Australian 77.35 NB 87.58 BFS/NB/NB 13.23 
 Breast-cancer 72.38 AB 76.1 GBW/AB/AB 5.14 
 Bupa 63.1 NB 65.17 BFS/NB/NB 3.28 
 Cleve_detrano 83.73 NB 85.74 BFS/NB/NB 2.40 
 Crx 77.86 NB 87.51 BFS/NB/NB 12.39 
 German 75.16 NB 75.72 BFS/NB/NB 0.75 
 Heart 83.13 NB 85.48 BFS/NB/NB 2.83 
 Cleveland 56.54 NB 60.71 GBW/NB/NB 7.38 
 Monk3 98.91 JP 98.92 _/J_/J_ 0.01 
 PimaDiabethes 75.75 NB 77.58 BFS/NB/NB 2.42 
 Thyroid 99.3 JP 99.28 N/A -0.02 
 Tic-tac-toe 83.43 JP 83.47 BFS/J_/JNP 0.05 
 Vote 96.22 JP 96.73 GBW/JP/JP 0.53 
 Wisconsin 96.24 NB 96.48 BFS/JP/NB 0.25 

A1 = Initial accuracy for the classifier used in the best wrapper; M1 = Classifier of the 

best wrapper; A2 = Accuracy for best wrapper; M2 = Best wrapper; RI = Relative 

Improvement 
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Table 4.3 – Results obtained by the _/JNP/JNP wrapper 

Dataset Initial BFS GBW Dataset Initial BFS GBW 

Australian 86.2 86.26 86.03 Cleveland 53.46 53.32 59.55 

Breast-cancer 73.68 75.03 75.19 Monk3 98.91 98.92 98.92 

Bupa 59.13 64.80 64.80 PimaDiabethes 73.82 73.35 74.00 

Cleve_detrano 76.63 82.08 80.33 Thyroid 99.3 97.73 97.78 

Crx 84.93 86.14 86.68 Tic-tac-toe 83.43 83.47 83.47 

German 71.72 73.11 72.26 Vote 96.22 96.64 96.66 

Heart 76.16 84.85 84.85 Wisconsin 94.41 94.99 95.23 

 

Table 4.4 shows how the number of attributes is significantly reduced through feature 

selection (54.65% and 52.33% on average, for the best wrapper, and respectively second best 

wrapper). This limits the search space and speeds up the training process. Generally, BFS 

selects fewer attributes than GBW, and the resulting datasets prove to be more efficient. The 

exception is the Cleveland dataset, for which GBW selects fewer attributes than BFS. In this 

case also the performance is better. The general conclusion is that fewer attributes lead to a 

better performance (both increased accuracy and reduced training time). 

Table 4.5 shows the first and second best accuracies obtained after feature selection. It 

can be observed that the second best improvement is significant as well, which indicates that 

feature selection should be used in any data mining process, regardless of how good the 

available learning algorithm is. 

4.4.2 Evaluating the Combination Strategy 

 A series of evaluations on 10 UCI benchmark datasets have been performed, to 

analyze the effects produced by the proposed combination method on the classification 

performance of J4.8. Four different search strategies have been considered: best-first search 

(bfs), bi-directional best-first search (bfs_bid), forward and backward greedy stepwise search 

(gsf and gsb, respectively). J4.8 has been employed for the wrapper evaluation function. 10-

fold cross-validation has been used for both performance evaluation and in the execution of 

the combination method. 

The accuracy values obtained by the various methods are presented in table 4.6, while 

the number of attributes selected by each method is displayed in table 4.7. As the results 

indicate, an individual method can achieve the best accuracy on a dataset and the worst on a 

different dataset, whereas the combination method always yields superior performance to the 

worst individual method. 

Table 4.4 – Number of attributes selected 

Dataset N1 N2 N3 Dataset N1 N2 N3 

Australian 14 8 8 Cleveland 13 5 5 

Breast-cancer 9 2 4 Monk3 7 3 3 

Bupa 5 2 2 PimaDiabethes 8 5 5 

Cleve_detrano 14 6 6 Thyroid 20 5 7 

Crx 15 6 6 Tic-tac-toe 9 7 7 

German 20 9 9 Vote 16 7 7 

Heart 13 8 8 Wisconsin 9 5 5 

N1 = Number of initial attributes in the dataset (without the class attribute); N2 = 

Number of attributes selected by the best wrapper method; N3 = Number of attributes 

selected by the wrapper which uses the best classifier (the classifier which achieved the 

best accuracy on the original dataset)  
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Table 4.5 – First and second best accuracies obtained after feature selection 

Dataset A1 A2 A3 RI2 (%) 

  Australian 86.26 87.58 87.43 1.36 

  Breast-cancer 75.03 76.10 75.67 0.85 

  Bupa 63.1 65.17 64.8 2.69 

  Cleve_detrano 83.73 85.74 84.88 1.37 

  Crx 84.93 87.51 86.68 2.06 

  German 75.16 75.72 75.56 0.53 

  Heart 83.13 85.48 85.33 2.65 

  Cleveland 56.54 60.71 60.49 6.99 

  Monk3 98.91 98.92 98.92 0.01 

  PimaDiabethes 75.75 77.58 77.06 1.73 

  Thyroid 99.45 99.28 99.27 -0.18 

  Tic-tac-toe 83.43 83.47 83.47 0.05 

  Vote 96.22 96.73 96.71 0.51 

  Wisconsin 96.24 96.48 96.32 0.08 

A1 = initial accuracy for the best classifier; A2 = Accuracy for the best wrapper method;    

A3 = Accuracy for the second best wrapper method; RI2 = Relative improvement for the 

second best wrapper method 
 

 Also, its performance is similar to the average of the individual methods, and in 

several cases it achieves the best, or close to the best performance (6 out of 10 datasets). The 

Wilcoxon statistical signed ranked test has indicated that there is no significant statistical 

difference between the individual methods and the combination method (at p=0.05). Also, 

except for the GSF-based wrapper, there is a statistical difference between the performance of 

the individual methods and the initial performance, and also between the combination method 

and the initial performance. The stability of the selection is therefore achieved, thus reducing 

the risk of selecting an inappropriate method in a new problem.  

The reduction in the number of attributes produced by the combination method is also 

significant – similar to the average reduction achieved by the individual generation strategies. 

The relative reduction to the initial attribute set is of ~62%. 

Therefore, the combination method provides a correct assessment of the expected 

performance improvement via feature selection, by establishing a baseline performance level 

for the analyzed dataset and classification method. 

 

Table 4.6 – J4.8 accuracies on attribute subsets resulted from wrapper subset selection                                   

with various search strategies 

Dataset  Initial  BFS  BFS_bi  GSB  GSF  Average 
Combination 

method 

Breast-cancer  73.68  75.67  75.67  75.67  75.60  75.65 75.67  

Cleve-detrano  76.63  79.84  78.86  78.64  77.28  78.66 82.88  

Crx  84.93  85.87  85.36  86.32 85.49  85.76 86.25  

German  71.72  73.82  74.12  73.85  74.86  74.16 73.88 

Heart  76.16  83.19  82.00  80.19  83.19  82.14 83.19  

Hepatitis  78.05  83.59 83.45  82.28  83.59  83.23 83.18 

Labor  78.38  80.17 80.17  79.90 81.63  80.47 81.63  

Lymphography  76.46  82.90  82.90  82.20  81.23  82.31 82.90  

Pima diabethes  73.82  74.26  74.26  75.73  74.26  74.63 74.26 

Tic-tac-toe  83.43  82.96  81.44  69.94  81.44  78.95 75.08 
 



Chapter 4 – Feature Selection   

 

39 

Table 4.7 – Size of attribute subsets resulted from wrapper subset selection                                                      

with various search strategies 

Dataset 
Initial 

Attrib. 
bfs  

Attrib. 
bfs_bid 

Attrib. 
gsb 

Attrib. 
gsf 

Attrib. 
Average 

Attrib. 
Combination 

Attrib. 

Breast-cancer 9 4 4 4 3 4 4 

Cleve-detrano 13 7 5 5 5 6 5 

Crx 15 5 6 6 4 5 8 

German 20 10 7 10 8 9 9 

Heart 13 4 5 7 4 5 4 

Hepatitis 19 3 4 10 3 5 7 

Labor 17 6 6 7 4 6 4 

Lymphography 18 6 6 8 4 6 6 

Pima diabethes 8 3 3 3 3 3 3 

Tic-tac-toe 9 7 6 6 1 5 3 

4.5 Conclusions on Feature Selection 

Among the many possible advantages of feature selection, perhaps the most important 

is improving the classification performance. All feature selection methods can be modeled as 

a combination of three steps: generation, evaluation and validation. The different alternatives 

available for achieving each step provide for a very wide spectrum of feature selection 

methods. However, just like in the case of learning algorithms, there is no universally best 

feature selection method. For the purpose of performance improvement, wrappers provide the 

most appropriate strategy. An original contribution presented in this dissertation is the 

systematic analysis and the identification of the most promising combinations of search 

methods for generation, and classifiers for evaluation and validation, such that the 

performance (i.e. the accuracy) increase is guaranteed. 

As the experimental results prove, wrappers can always improve the performance of 

classifiers. In most cases, the classifier which initially achieved the highest accuracy 

maintains its high performance after feature selection (first or second best performance). This 

means that once a dataset has been initially assessed and a certain learning scheme has been 

selected as being appropriate, that scheme will maintain its performance throughout the 

mining process. Also, for all the datasets considered, the second best performance after 

feature selection still yields significant improvements over the initial classifier, which proves 

the necessity for such a step. 

Although there is no absolute best method, BFS/B/B achieves the highest accuracy in 

most of the cases. The wrapper _/JNP/JNP achieves the most significant improvements 

relative to the initial accuracy (up to 11%). The number of attributes is considerably reduced 

(over 50%), which results in faster training, yet another advantage of attribute selection. 

In the attempt to reduce the bias introduced by the search methods used in the 

generation procedure and improve the stability of feature selection, without increasing its 

complexity, an original combination method has been proposed, which selects the most 

appropriate attributes by applying a global selection strategy on the attribute subsets selected 

individually by the search methods. Greedy methods have been considered for combination, 

since they provide good quality solutions relatively fast. The evaluations performed on the 

newly proposed method have confirmed that the method achieves better stability than 

individual feature selection performed via different search methods, while keeping the high 

reduction level. The method can be employed for initial problem assessment, to establish a 

baseline performance for feature selection. 
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The original combination method and the analysis presented in this chapter have been 

acknowledged by the research community through the publication of 2 research papers in the 

proceedings of renowned international conferences: 
1. Vidrighin, B.C., Muresan, T., Potolea, R.,“Improving Classification Accuracy through 

Feature Selection”, Proceedings of the 4
th
 IEEE International Conference on Intelligent 

Computer Communication and Processing, pp. 25-32, 2008 

2. Vidrighin, B.C., Potolea, R., “Towards a Combined Approach to Feature Selection”, 

Proceedings of the 3
rd

 International Conference on Software and Data Technologies, pp. 

134-139, 2008 
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5 Joining Pre-processing Steps: A Methodology 

Even if significant efforts have been conducted to develop methods which handle 

incomplete data or perform feature selection, with notable achievements in both fields 

independently, to our knowledge there hasn’t been any attempt to address the two issues in a 

combined manner. This is what is proposed in this chapter – a joint feature selection – data 

imputation pre-processing methodology. 

5.1 A Joint Feature Selection – Data Imputation Methodology 

The novelty of our methodology consists in the enhancement of the data imputation 

step with information provided by the attribute selection step. It considers the pre-processing 

activity as a homogeneous task, joining the two formerly independent steps: 

 attribute selection 

 data imputation  

   

More specifically, the methodology explicitly performs attribute selection for the data 

imputation phase, i.e. only the values of the attributes which are relevant for the attribute 

being imputed are employed when determining the replacement value. The methodology 

imposes neither the technique for attribute selection, nor the data imputation technique. 

However, an imputation technique based on supervised learning methods should be 

employed, in order to make use of the selected attributes. 

There are two variants of the methodology. One performs data imputation first and 

then attribute subset selection, and the second which uses the reverse order for the two. 

Subsequently, we employ the following abbreviations: 

 F – the original attribute set in the training set 

 CT – subset of complete training instances 

 ITj – subset of training instances with value for Xj missing 

 AOSj – the predictive attribute subset for Xj 

 COS – the predictive attribute subset for the class Y 
 

5.1.1 FSAfterI 

In the FSAfterI version of the methodology, each attribute Xj except the class is 

considered. If there are any instances in the training set with unknown values for the current 

attribute, the methodology considers the attribute for imputation. CT represents a subset of 

complete instances. For each attribute Xj in turn, a subset containing the incomplete instances 

with respect to the attribute is extracted. The complete subset, CT, is used to build the 

imputation model for the incomplete part, as described further: the feature subset predictive 

for attribute Xj, AOSj, is extracted from the complete training subset. Then, a model is built for 

attribute Xj using the complete instances subset and the features in AOSj. Using this model, 

the replacement values for the incomplete instances are computed and imputed in the initial 

training set. Thus, the training set becomes complete in Xj. After all the attributes have been 

considered, all instances in the training set are complete. At this point, feature selection is 

applied on the training set to determine the class-predictive feature subset, COS. The 

projection of the training set on COS is the result of the procedure.  

Performing data imputation first may induce a bias in the attribute selection step for 

determining the class-optimal attribute subset. Thus, an irrelevant attribute could be selected 

in COS due to its imputed values. 
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FSAfterI 

 

CT = extract_complete(T) 

T’  = T   

For each attribute Xj  

 AOSj  = fSelect(F – {Xj}  {Y}, CT, Xj)  

 T’ = Impute(prAOSjT’, Xj) 

COS = fSelect(F,T’,Y) 

Tresult = prCOST’  

 

 

5.1.2 FSBeforeI 

The second version of the proposed methodology, FSBeforeI, considers the two 

phases in reverse order. It does not include any bias in the class-optimal attribute selection 

phase, since the operation is performed before the imputation phase. For determining AOSj 

the original feature set F and the class Y are employed. Thus we ensure that all the relevant 

attributes for Xj are employed to build the imputation model. For performing feature 

selection, in both the generation of COS and AOSj, k-fold cross-validation is employed, and 

the attributes which are “better” on the average are selected. The tactic for quantifying 

“better” on the average depends on the feature selection method employed: ranking methods 

yield average merit/rank measures, while other methods may indicate a percentage 

corresponding to the number of folds in which the attribute has been selected. Based on this 

information, the predictive subset can be deduced. 

 
FSBeforeI 

 

CT = extract_complete(T) 

COS = fSelect(F,CT,Y) 

 

T’  = T   

For each attribute Xj in COS 

 AOSj  = fSelect(F – {Xj}  {Y}, CT, Xj)  

 T’ = Impute(prAOSjT’, Xj) 

Tresult = prCOST’  

 

 

5.2 Experimental Evaluation 

We have performed several evaluations with different implementations of the 

combined methodology, implemented within the WEKA framework. Initial experiments have 

been conducted on 14 benchmark datasets, obtained from the UCI repository. The current 

evaluations have been conducted on the following complete UCI datasets: Bupa Liver 

Disorders, Cleveland Heart Disease, and Pima Indian Diabetes (described in Appendix A, 

table A.5.1). 

The following specializations of the methodology have been considered: 

 For attribute selection (f):  

o ReliefF [Kon94] 

o CFS – Correlation-based Feature Selection [Hal00] 

o Wrapper  

 For data imputation (i): 

o kNN – k Nearest Neighbor (denoted also as IBk) 




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 For evaluating the performance (c): the average classification accuracy computed 

using 10 trials of a stratified 10-fold cross validation for: 

o J4.8  

o Naïve Bayes (NB) 

The search method (generation procedure) employed in the attribute selection is best-

first search. The predictive attribute subset is obtained via 10-fold cross validation. For 

imputation with kNN, k has been set to 5. We have employed the following evaluation 

strategy: 

 Incompleteness has been simulated, at different levels, using the strategy described in 

section 3.3.2. 

 In each trial of a stratified 10-fold cross-validation, for each attribute Ai in the trial 

training set (except the class) vary the percentage of incompleteness. Then apply the 

pre-processing methodology, in its current specialization, to obtain the preprocessed 

trial training set. Finally, build a model from the modified training set, using a 

classification algorithm, and estimate its accuracy using the trial testing set.  

 In addition, for each attribute Ai, the average classification accuracy has been 

estimated for different versions of the training set: complete, incomplete, imputed and 

pre-processed through feature selection. 

 

The evaluations attempt to validate empirically the following statements: the 

combination is more efficient than the individual steps it combines, and the specializations of 

the combination are stable across the attributes of a dataset – the same specialization is 

identified as being the best for all the significant attributes. By significant attribute we mean 

the attributes which are constantly selected by different feature selection techniques. These 

are the attributes that will influence the most the quality of the learned model. 

The diagrams (a) – (d) from figure 5.1 present the results obtained by the FSAfterI 

specialization of the methodology on the significant attributes of the Pima dataset, as 

computed in Chapter 3: attribute 2 – Glucose test and attribute 6 – Body-Mass Index. Each 

curve in the diagrams represents the accuracy obtained by the given specialization of the 

methodology. The performance of the classifiers on the complete and p% incomplete datasets 

have also been recorded. For both attributes considered, the most stable improvements are 

obtained by specializations for NB (~1% absolute improvement). For attribute Body-Mass 

Index, the Wrapper specialization yields good results for J4.8 as well (up to 4%). 

For the significant attributes of the Bupa dataset, considerable improvements have 

been obtained by specializations for J4.8 (1-2% absolute improvement achieved by the CFS 

specializations, 1-3% by the wrapper up to 1% by the ReliefF based specializations). 

However, NB seems to be more efficient on the incomplete dataset, and the pre-processing 

methodology cannot, generally, boost J4.8’s accuracy over NB’s level (with the exception of 

the wrapper based specialization). Therefore, specializations for NB should be considered 

here as well. 

For the Cleveland dataset, the most significant improvements are obtained by 

specializations for J4.8 (3-4% achieved by the CFS based specialization). However, the 

ReliefF specializations for NB yields the highest accuracy levels: ~58% for both attributes 

analyzed, as opposed to ~56% - the accuracy obtained by NB on the incomplete versions of 

the dataset, and ~56-56.5% - the accuracy obtained by the best specialization for J4.8 (using 

CFS). The results presented so far have indicated that we can perform the selection of the 

learning algorithm prior to performing pre-processing with the proposed methodology.   
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 5.1– Accuracy obtained by different FSAfterI specializations, when compared to the accuracy on the 

incomplete dataset, for attributes strongly correlated with the class, Pima dataset 

In the following, we present a comparative analysis for the classification performance 

on different versions of the training set, obtained through several pre-processing strategies: 

imputation, attribute selection and the combined methodology (both FSAfterI and FSBeforeI). 

Also, the classification performance on the complete and p% incomplete datasets is reported. 

Tables 5.1-5.2 present the accuracy levels obtained for two significant attributes of the 

Cleveland dataset. The specialization considered for the combined methodology employs 

CFS for attribute selection. In both cases, the two versions of the combined methodology 

yield better classification accuracies than the incomplete dataset (up to 5% absolute increase). 

A clear improvement can be observed over the imputation step also (up to 5% absolute 

increase, the rows in dark grey shading in the tables). The performance of feature selection 

approaches is similar to that of our proposed methodology on this dataset.  

5.3 Conclusions 

There exist a series of pre-processing tasks and associated techniques which focus on 

preparing the raw data for the mining step. However, each technique focuses on a single 

aspect of the data, and there is no information exchange between independent pre-processing 

steps. This chapter presents a new approach for pre-processing, which joins two formerly 

independent pre-processing steps: data imputation and feature selection. The methodology 

explicitly performs attribute selection for the data imputation phase. 

Two formal versions of the proposed methodology have been introduced: FSAfterI 

and FSBeforeI. The two differ in the order of the two phases of the methodology: the first 

performs data imputation first and then selects the class-optimal feature subset, while the 

second considers the reverse order. FSBeforeI should be preferred, since it doesn’t introduce 

any imputation bias in the feature selection phase. 
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Several particularizations of the methodology have been implemented, using two 

different filter attribute selection techniques and a wrapper, two classification methods and an 

imputation method. The resulting particularizations have been evaluated comparatively on 

benchmark data, using the accuracy of the same classification algorithms on the incomplete 

versions of the datasets as reference performance. The results have shown that the joint pre-

processing methodology generally improves the performance of the classification algorithm, 

when using the preprocessed training set, as compared to the performance it obtains on the 

incomplete training set. Although there is no single definite winner combination for all 

datasets, a best combination can be usually identified for a particular dataset. Moreover, 

specializations using CFS for attribute selection and NB for the final classification have 

always yielded higher accuracy levels when compared to the accuracy on the incomplete 

data. Also, the combination proves to be superior to the data imputation and attribute 

selection tasks performed individually, which recommends it as a robust approach for 

performing data pre-processing.  

The results have indicated that, in most cases, the improvement over the imputation 

task is significant (an absolute increase in accuracy of up to 5%). As for the comparison with 

the individual attribute selection task, in most situations the performance of the combined 

methodology is superior to that of the attribute selection step (absolute improvement of up to 

1%). In the exception cases, feature selection yields the highest performance of all the other 

approaches. 

 

The original data pre-processing methodology proposed in this chapter is the result of 

research supported by PNII grant no.12080/2008: SEArCH – Adaptive E-Learning Systems 

using Concept Maps. The proposed method has been accepted by the research community 

through the publication of two research papers in the proceedings of renowned international 

conferences: 
1. Vidrighin, B.C., Potolea, R., “Unified Strategy for Feature Selection and Data 

Imputation”, Proceedings of the 11
th
 International Symposium on Symbolic and 

Numeric Algorithms for Scientific Computing, Timisoara, 26-29 sept. 2009, pp. 413 – 

419 

2. Vidrighin, B.C., Potolea, R.,“Towards a Unified Strategy for the Preprocessing Step 

in Data Mining”, Proceedings of the 11
th
 International Conference on Enterprise 

Information Systems, pp. 230-235, 2009 
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Table 5.1 – The average accuracy (and standard deviation) obtained by J4.8 on different versions of the training set and different incompleteness levels (5-30%),   

for attribute STDepression, Cleveland dataset (specialization iIBk_fCfsSubsetEval_cJ48) 

ATTRIBUTE 

STDepression 
5% 10% 15% 20% 25% 30% 

 Acc. Stdd. Acc. Stdd. Acc. Stdd. Acc. Stdd. Acc. Stdd. Acc. Stdd. 

COMP (Complete) 52.38 (2.6) 

INC(Missing) 53.41 2.64 52.31 2.65 52.83 3.06 52.66 2.64 52.83 2.64 52.79 2.64 

IMP (Imputation) 52.86 2.12 53.17 2.17 53.62 2.68 54.07 2.59 53.07 2.4 53.55 2.64 

FS(Feature Selection) 57.03 1.95 57.66 1.85 57.07 1.83 57.14 1.83 57.55 1.83 57.83 1.83 

FSAfterI 57.07 1.11 57.31 1.37 56.97 1.55 56.45 1.17 56.79 2.77 57.17 1.97 

FSBeforeI 57.1 1.01 57.17 1.1 57.34 1.72 56.31 1.76 57.9 2.67 58 2.04 

COMPL-IMP -0.48 - -0.79 - -1.24 - -1.69 - -0.69 - -1.17 - 

IMP-INC -0.55 - 0.86 - 0.79 - 1.41 - 0.24 - 0.76 - 

FSAfterI –INC 3.66 - 5 - 4.14 - 3.79 - 3.97 - 4.38 - 

FSAfterI –IMP 4.21 - 4.14 - 3.34 - 2.38 - 3.72 - 3.62 - 

FSAfterI –FS 0.03 - -0.34 - -0.1 - -0.69 - -0.76 - -0.66 - 

FSAfterI –COMP 4.69 - 4.93 - 4.59 - 4.07 - 4.41 - 4.79 - 

FSBeforeI –INC 3.69 - 4.86 - 4.52 - 3.66 - 5.07 - 5.21 - 

FSBeforeI –IMP 4.24 - 4 - 3.72 - 2.24 - 4.83 - 4.45 - 

FSBeforeI –FS 0.07 - -0.48 - 0.28 - -0.83 - 0.34 - 0.17 - 

FSBeforeI –COMP 4.72 - 4.79 - 4.97 - 3.93 - 5.52 - 5.62 - 
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Table 5.2 – The average accuracy (and standard deviation) obtained by J4.8 on different versions of the training set and different incompleteness levels (5-30%), 

for attribute Thal, Cleveland dataset  (specialization iIBk_fCfsSubsetEval_cJ48) 

ATTRIBUTE  
Thal 

5% 10% 15% 20% 25% 30% 

 Acc. Stdd. Acc. Stdd. Acc. Stdd. Acc. Stdd. Acc. Stdd. Acc. Stdd. 

COMP (Complete) 52.38 (2.6) 

INC(Missing) 52.79 2.43 53.28 1.97 53.41 2.77 54.03 2.7 53.66 2.94 53.97 2.58 

IMP (Imputation) 52.66 1.62 51.93 1.74 53.21 2.46 52.76 2.95 53.14 2.53 53.48 3.2 

FS(Feature Selection) 56.79 1.48 56.55 1.88 55.76 1.9 56.21 1.87 56.45 2.81 56.55 2.84 

FSAfterI 57.69 1.05 56.72 2.24 56.66 1.26 57 1.4 57.31 1.77 56.38 1.48 

FSBeforeI 57.76 1.34 56.83 2.08 56.41 1.76 57.07 1.7 57.1 1.68 56.38 2.25 

COMPL-IMP -0.28 - 0.45 - -0.83 - -0.38 - -0.76 - -1.1 - 

IMP-INC -0.14 - -1.34 - -0.21 - -1.28 - -0.52 - -0.48 - 

FSAfterI –INC 4.9 - 3.45 - 3.24 - 2.97 - 3.66 - 2.41 - 

FSAfterI –IMP 5.03 - 4.79 - 3.45 - 4.24 - 4.17 - 2.9 - 

FSAfterI –FS 0.9 - 0.17 - 0.9 - 0.79 - 0.86 - -0.17 - 

FSAfterI –COMP 5.31 - 4.34 - 4.28 - 4.62 - 4.93 - 4 - 

FSBeforeI –INC 4.97 - 3.55 - 3 - 3.03 - 3.45 - 2.41 - 

FSBeforeI –IMP 5.1 - 4.9 - 3.21 - 4.31 - 3.97 - 2.9 - 

FSBeforeI –FS 0.97 - 0.28 - 0.66 - 0.86 - 0.66 - -0.17 - 

FSBeforeI-COMP 5.38 - 4.45 - 4.03 - 4.69 - 4.72 - 4 - 
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6 Classification in Practice I: Imbalanced Error Costs and Expensive 

Tests 

6.1 Problem Statement 

 The traditional approach to classification considers the error reduction strategy, i.e. 

the cost function uniformly quantifies the difference between the actual and the predicted 

class values, regardless of the class. Therefore, all errors are equally important. In real-world 

domains, however, there are numerous scenarios in which non-equal misclassification costs 

are inherent [Faw97, Pen03]. In fraud detection, for example, false negatives are clearly more 

harmful than false positives. The same situation occurs in medical diagnosis, where failing to 

identify a positive is almost unacceptable, whereas a certain level of false positive predictions 

is manageable. In contextual advertising, on the other hand, posting an irrelevant ad for the 

current context should be penalized more than failing to identify all the relevant ads. This is 

because only the top two or three ads are considered at a time and therefore it is more 

important that those predicted as being relevant are actually relevant, than to identify as many 

relevant ads as possible.  

 Moreover, there are situations in which the effort of acquiring certain data items has 

to be considered. Turning again to the medical diagnosis problem, another particularity is the 

fact that medical tests are usually costly (economically). Moreover, in terms of patient 

comfort, they normally range from mildly uncomfortable to painful. Also, collecting test 

results may be time-consuming. Arguably, time and patient comfort may not be real costs, 

but they do have some implication for the decision on whether it is practical to take a certain 

test or not. Performing all possible tests in advance is unfeasible and only a relevant subset 

should be selected. The decision on performing or not a certain test should be based on the 

relation between its cost and potential benefits. When the cost of a test exceeds the penalty 

for a misclassification, further testing is no longer justified. 

 These particularities are addressed by cost-sensitive learning, which is directed 

towards the reduction of the total cost, instead of just minimizing the number of 

misclassification errors. [Tur00] provides taxonomy of all the types of costs involved in 

inductive concept learning, the most important being the misclassification costs and the test 

costs. The situations which they cover are the ones detailed in the two paragraphs above: 

misclassification costs attempt to capture the non-uniform gravity of errors, while test costs 

quantify various aspects related to the acquisition of certain data values – monetary cost, 

acquisition time, pain inflicted, a.s.o. 

The misclassification costs are represented via a cost matrix M = (cij)nxn, where cij 

represents the cost of misclassifying an instance of class j as being of class i. For binary 

classification problems, n=2: 











2221

1211

cc

cc
M  (6.1) 

The main diagonal elements (c11 and c22) represent the costs of correct identification and are 

normally smaller than or equal to 0 (i.e. reward or no penalty); c12 is the cost of a false 

positive (i.e. failing to identify a negative), while c21 captures the reverse situation. One of the 

most important difficulties when dealing with different error costs is quantifying 

misclassification costs. Even if it is relatively easy to determine which errors are more severe 

than others (e.g. in medical diagnosis c12 > c21), it is difficult to quantify the gravity of an 

error, since this may translate, indirectly, into more serious social/moral dilemmas, such a 

putting a price tag on human life.  

 Test costs are associated with the predictor attributes, i.e. each attribute has an 

associated scalar cost value, which represents the overall cost, including monetary, time or 
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pain. Even if it is straightforward to quantify each of the categories involved, combining them 

into a single value may be difficult. Moreover, in applications in which both types of costs be 

considered, such as medical diagnosis, correct calibration of the misclassification costs to the 

test costs is essential.   

6.2 State of the Art in Cost-Sensitive Learning  

This section reviews the main strategies for cost-sensitive learning existing in 

literature. Mainly, there exist two categories of approaches: those which focus on minimizing 

misclassification costs and those which focus on test costs. Significantly less effort has been 

invested in combining the two strategies.  

6.2.1 Reducing Misclassification Costs 

Misclassification costs are considered to be the most important in cost-sensitive 

learning, and, therefore, the literature contains a rich spectrum of techniques and strategies 

for handling this type of costs. Roughly, the approaches can be grouped into: direct methods, 

which include adaptations to existing algorithms or newly developed techniques and indirect 

(meta-) methods, which refer to general approaches, applicable to any base classifier – such 

as sampling, or meta-learning. 

Direct methods 

This category of methods attempts to introduce and utilize misclassification costs 

directly into the learning algorithms. Most such approaches target modifications to the 

training and/or prediction stage(s) of decision trees, so as to make them cost-sensitive. One of 

the earliest such methods is I-gain [Paz94], which considers the misclassification costs at 

prediction time, i.e. instead of predicting the most probable class it predicts the class having 

the least expected cost. GINI Altered Priors [Paz94] applies Breiman’s altered prior 

probabilities principle, which takes costs into consideration by weighting the prior 

probabilities of each class with the relative cost of misclassifying the examples of that class. 

[Paz94] incorporates this correction during training, with the GINI index attribute selection 

scheme, but the strategy can be employed with any entropy-based selection scheme. [Tin98, 

Tin02] proposes a strategy of incorporating misclassification costs via weights, similar to 

stratification [Mar03]. In this approach, a weight is assigned to each example, to reflect its 

importance – i.e. use costs as example weights, during the tree training and pruning 

processes. The Linear Machines Decision Tree (LMDT) method [Dra94] builds a multi-

variate decision tree, by training a linear machine at each internal node and having a class 

label at each leaf. Misclassification costs are considered during the training of the linear 

machines – in the weight learning and feature elimination processes. 

Several strategies have been proposed for modifying the basic Support Vector 

Machines (SVMs) learning algorithm to achieve cost-sensitivity: (1) the boundary movement 

method (BM-SVM) [Kar98] shifts the decision boundary of the classical SVM by changing 

the threshold; (2) the biased penalties method (BP-SVM) [Bac06] introduces different penalty 

factors for the SVM slack variables during training; (3) [Mas10] propose a cost-sensitive loss 

function for the standard SVM algorithm and prove that the new cost-sensitive SVM achieves 

cost sensitivity for both separable and non-separable training data, enforcing a larger margin 

for the preferred class. Evaluations have yielded superior performance to methods (1) and (2). 

Indirect methods 

Perhaps one of the most straightforward indirect solutions for the problem of reducing 

the total misclassification cost was a procedure called stratification [Mar03]. In this 

approach, the actual classifier is not altered in any way; instead, the distribution of examples 

for each class is changed. The modified training set includes proportionally more examples of 
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the classes having high misclassification costs and may be generated either by under-

sampling or by over-sampling. Each alternative comes at a certain price ([Dom99] contains a 

detailed discussion on the subject), but the most serious limitation of the approach is that it 

restricts the dimension or the form of the misclassification cost matrix – the technique is only 

applicable to two-class problems or to problems where the cost is independent of the 

predicted class. Costing [Zad03] is a meta-method which weighs the training instances 

according to the costs. It can be achieved either by feeding the weights directly to the 

classification algorithm (if possible), or by guided sub-sampling.  

More complex techniques, which overcome the limitations of sampling, involve meta-

learning algorithms, which typically are applicable to a range of base classifiers. In this 

category we include algorithms based on various ensemble methods, the most important 

being boosting [Fre97]. It works by combining several learners through voting; the resulting 

composite classifier generally has a higher predictive accuracy than any of its components. 

Each distinct model is build through the same learning mechanism, by varying the 

distribution of examples in the training set. After each boosting phase, the weights of the 

misclassified examples are increased, while those for the correctly classified examples are 

decreased. It has been mathematically proved that the error rate for the composite classifier 

on the un-weighted training examples approaches zero exponentially with an increasing 

number of boosting steps [Fre97, Qui96]. Also, various experimental results report that the 

reduction in error is maintained for unseen examples. The base classifiers may be either weak 

learners or more elaborate, cost-sensitive learners. The most prominent algorithms which 

apply this strategy are AdaBoost.M1 [Fre97] and AdaCost [Fan00]. 

Another solution for reducing misclassification costs is MetaCost [Dom99]. The 

algorithm is based on the Bayes optimal prediction principle, which minimizes the 

conditional risk of predicting that an example belongs to class i, given its attributes x. The 

solution requires accurate estimates for the class probabilities of the examples in the training 

set. This distribution is obtained through an ensemble method, by uniform voting from 

individual classifiers. Once the conditional probabilities are estimated, the algorithm re-labels 

the examples in the training set, according to their optimal predictions and generates the final 

classifier, using the modified training set. The main advantages of this procedure are related 

to its applicability to wide range of base classifiers, the fact that it generates a single, 

understandable model, and its efficiency under changing costs (the conditional probabilities 

need to be computed only once, after which they can be used to generate models for various 

cost matrices).  

 Cost-Sensitive Classifier (CSC) [Wit05] is a meta-approach which makes error-

reduction classifiers cost-sensitive. Two alternatives may be employed to induce cost-

sensitivity: (1) reweight training instances according to the total cost assigned to each class 

(similar to costing) or (2) predict the class with minimum expected misclassification cost 

(rather than the most likely class) – similar to I-gain. 

 Empirical Thresholding (ET) [She06] is another meta-approach which can transform 

an error-reduction classifier into a cost-sensitive one, by selecting a proper threshold from 

training instances according to the misclassification cost; experiments conducted by the 

authors have indicated that the method has the least sensitivity on the misclassification cost 

ratio. 

6.2.2 Reducing Test Costs 

Several approaches exist also for tackling the problem of test costs. They are direct 

methods based on the decision tree paradigm, and typically involve some alteration of the 

information gain function, as to make it cost-sensitive. Various cost dependent functions have 

been proposed in the literature. Perhaps the best known algorithm in this category is Eg2 
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[Nun91] which uses the Information Cost Function (ICF) as the attribute selection criterion. 

For the i
th

 attribute, ICF may be defined as follows: 

w

i

I

i
C

ICF
i

)1(

12








 

           (6.2) 

where 10  w . 

This means that the attribute selection criterion is no longer based solely on the 

attribute’s contribution to obtaining a pure split, but also on its cost, Ci. Also, the Information 

Value Function contains parameter w, which adjusts the strength of the bias towards lower 

cost attributes. Thus, when w = 0, the cost of the attribute is ignored, and selection by ICF is 

equivalent to selection by the information gain function. On the other hand, when w = 1, ICF 

is strongly biased by the cost component. 

IDX [Nor89] is a top-down inductive decision tree learner that chooses the attribute 

which maximizes the following heuristic: 
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where ∆Ii represents the information gain of attribute i, and Ci is is its cost. 

CS-ID3 [Tan89] uses a lazy evaluation strategy, constructing only part of the tree that 

classifies the current case. Its attribute selection function is very similar to that of IDX, with 

the difference that the information gain of an attribute carries a heavier weight: 
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6.2.3 Reducing the Overall Cost 

Significantly less work has been done for aggregating several cost components. The 

most prominent approach in the literature is Inexpensive Classification with Expensive Tests – 

ICET [Tur95], which combines a greedy search heuristic (decision tree) with a genetic search 

algorithm. A detailed discussion on ICET is provided in section 6.3ss. 

Other, less known approaches generally consider test and misclassification costs as 

the attribute selection process of decision trees, instead of using one of the classical entropy-

based principles [Paz94, Lin04]. Cost-Sensitive Naïve Bayes (CSNB) [Cha04] propose the 

employment of a test strategy to determine how unknown attributes are selected in order to 

minimize the sum of the misclassification and test costs. 

6.3 ProICET: Enhancements on a Cost-sensitive Classifier 

6.3.1 ICET: Inexpensive Classification with Expensive Tests 

Classical tree induction uses hill climbing search, which, as most greedy techniques, 

suffers from the horizon effect, i.e. it tends to get caught in local optima. One possible way to 

avoid the pitfalls of simple greedy induction is to perform a heuristic search in the space of 

possible decision trees through evolutionary mechanisms. ICET (Inexpensive Classification 

with Expensive Costs) is such a hybrid algorithm. Introduced by Peter Turney, the technique 

tackles the problem of cost-sensitive classification by combining a greedy search heuristic 

(decision tree) with a genetic algorithm [Tur95]. 

The ICET algorithm has the following key features: 

 It is sensitive to test costs; 

 It is sensitive to misclassification costs; 

 It combines a greedy search heuristic with a genetic search algorithm 

These key features make ICET a very promising candidate for solving problems like 

medical diagnosis and prognosis, credit risk assessment or oil-slick detection, where different 
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errors cost different amounts, and where making a classification is costly in that the tests that 

have to be taken to determine attribute values carry a certain cost. 

As described in [Tur95], the ICET algorithm can be viewed as working on two levels:  

 On the bottom level, a greedy search in the space of decision trees is performed 

 On the top level, the evolutionary component performs a genetic search through a 

space of biases; the biases are used to control EG2’s preference for certain types 

of decision trees.   

The algorithm starts by the genetic component evolving a population of randomly 

generated individuals (an individual corresponds to a decision tree). Each individual in the 

initial population is then evaluated by measuring its fitness. Standard mutation and crossover 

operators are applied to the trees population and, after a fixed number of iterations, the fittest 

individual is returned. The genetic algorithm used in the original work is GENESIS [Gre86], 

and the decision tree algorithm is a modified version of Quinlan’s C4.5 [Qui93] which uses 

ICF (Information Cost Function) as attribute selection function, same as in EG2. An 

important remark is that, unlike EG2, ICET does not minimize test costs directly. Instead, it 

uses ICF for the codification of the individuals in the population. The n costs, Ci, are not true 

costs, but bias parameters. They provide enough variation to prevent the decision tree learner 

from getting trapped in a local optimum, by overrating/underrating the cost of certain tests 

based on past trials’ performance. However, it is possible to use true costs, when generating 

the initial population, which has been shown to lead to some increase in performance 

[Tur95].  

Each individual is represented as a bit string of n + 2 numbers, encoded in Gray. The 

first n numbers represent the bias parameters (“alleged” test costs in the ICF function). The 

last two stand for the algorithm’s parameters CF and w; the first controls the level of pruning 

(as defined for C4.5), while w is needed by ICF.  

 

 
 

Figure 6.1 – ICET algorithm flow2 

Each trial on an individual consists in training and evaluating a decision tree on a 

given dataset, using the biases in the individual to set the attribute costs, CF and w. This is 

done by splitting the available dataset into two subsets: sub-training and sub-testing dataset. 

                                                 

 
2
 [Tur95] 
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Since the split is random, there may be that two identical individuals will yield different 

outcomes (since the form of a decision tree is strongly related to the distribution in the 

training set – different training sets produce different trees). The evaluation of the tree gives 

the fitness function needed by the genetic algorithm to evaluate the individuals. 

In ICET, the fitness function for an individual is computed as the average cost of 

classification of the corresponding tree obtained by randomly dividing the training set in two 

subsets, the first used for the actual tree induction and the second for error estimation). The 

average cost of classification is obtained by normalizing the total costs (obtained by summing 

the test and misclassification costs) to the test set size. Test costs are specified as attribute – 

cost value pairs. The classification costs are defined by the cost matrix M = (Cij)nxn, where Cij 

– the cost of misclassifying an instance of class i as being of class j. If the same attribute is 

tested twice along the path (numeric attribute), the second time its cost is 0. 

The particularity presented by ICET, of allowing the test costs (encoded inside a genetic 

individual) to vary freely in the search domain and then applying the fitness evaluation to 

guide the individuals towards an optimal solution, increases the variability in the heuristic 

component. Moreover, w and CF – two key features in the form of the decision tree – are also 

varied by the evolutionary component, providing even more possibility of variation in the 

decision trees search space. Theoretically, this variability is desirable, especially for greedy 

algorithms such as decision tree learners – that yield unique structures for a fixed training set. 

Figure 6.1 presents a sketch of the algorithm flow. The genetic algorithm (GA) begins with a 

set of randomly generated individuals, whose fitness is evaluated by first running EG2 on a 

training set, using the biases generated by the GA, and then computing the average cost of the 

generated tree. Then, for a specific number of iterations, it evolves new individuals and 

computes their fitness. After the last iteration, the fittest individual is returned – its biases are 

used to train the output classifier. 

6.3.2 Enhancements on ICET 

A significant problem related to the ICET algorithm is rooted in the fact that costs are 

learned indirectly, through the fitness function. Rare examples are relatively more difficult to 

be learned by the algorithm. This fact was also observed in [Tur95], where, when analyzing 

complex cost matrices for a two-class problem, it is noted that: “it is easier to avoid false 

positive diagnosis [...] than it is to avoid false negative diagnosis [...]. This is unfortunate, 

since false negative diagnosis usually carry a heavier penalty, in real life”. This phenomenon 

is attributed to the distribution of positive and negative examples in the training set. In this 

context, our aim is to modify the fitness measure as to eliminate such undesirable 

asymmetries. Last, but not least, previous ICET papers focus almost entirely on test costs and 

lack a comprehensive analysis of the misclassification costs component. We attempt to fill 

this gap, by providing a comparative analysis with prominent classic approaches for cost-

sensitive learning, such as AdaBoost.M1 and MetaCost. 

We have considered a series of enhancements to the basic ICET algorithm as well. 

For each individual, the n + 2 chromosomes are defined (n being the number of attributes in 

the dataset, while the other two correspond to parameters w and CF); each chromosome is 

represented as a 14 bits binary string, encoded in Gray. Gray coding avoids a situation which 

appears in regular binary coding, the “Hamming Cliffs”, in which individuals with similar 

phenotypes possess significantly different genotypes. The population size has been increased 

to 50 individuals, since it has a significant impact on the quality of the solution [Kol06]. The 

rank-based fitness assignment technique is used for parent selection, i.e. the fitness assigned 

to each individual for parent selection depends only on the individual’s position in the ranked 

population, and not on the absolute fitness value. This mechanism ensures uniform scaling 

across the population and reduces the selective pressure, by limiting the reproduction range, 

so that no individuals generate an excessive number of offspring [Bac91]. As a result, 
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stagnation and premature convergence are avoided. As recombination techniques, single 

point random mutation with mutation rate 0.2, and multipoint crossover, with 4 randomly 

select crossover points are employed, to increase search variability rather than favoring the 

convergence to highly fit individuals early in the search, thus making the search more robust 

[Spe91].  

The algorithm is run for 1000 fitness evaluation steps or until convergence. Due to the 

fact that a new generation is evolved using single population, which implements elitism 

implicitly, the final result yielded by the procedure is the best individual over the entire run. 

This makes the decision on when to stop the evolution less critical. More than that, 

experiments show that usually the best individual does not change significantly after 800 

steps: in more than 90% of the cases the algorithm converges before the 800
th 

iteration, while 

in the rest of the cases the variations after this point are small (less than 3.5%).  

The specific choices for the parent selection and recombination methods are based on 

the intention to increase the search variability by encouraging the exploration of the search 

space rather than favoring early convergence to highly fit individuals. Simultaneously, the 

population size and the number of cycles have been increased, and previous best solutions are 

maintained in the current population, via elitism, to avoid premature convergence. Fitness 

ranking provides an effective mechanism for controlling the selective pressure.   

The heuristic component has been developed by altering the J4.8 decision tree 

classifier to employ ICF as attribute selection function, same as in EG2.  

6.3.3 Experimental Evaluation 

The experiments evaluate whether the enhancements considered in the genetic 

component of the ICET algorithm make it perform better in real cases than other similar 

algorithms. Moreover, we intend to prove that this implementation is better than the original 

version of the algorithm. In order to do so, we planned three series of tests: the first one tries 

to solve a problem related to the asymmetry in tree costs for rare examples; a second set of 

tests provides a more comprehensive analysis of the misclassification cost component; a third 

set of tests focus on studying the behavior of the ProICET algorithm in real world problems 

(medical diagnosis problems), also by comparing it with other prominent algorithms. 

The datasets used in the evaluations were obtained from the UCI machine learning 

data repository website (UCI). All are from the medical field and contain test cost 

information (available on the website as well). Most of the datasets were also used in the 

original work on ICET, and are presented in appendix A, towards the end of the present 

dissertation. Other algorithms included in the evaluations are: MetaCost (MC) and EG2 – as 

state of the art cost-sensitive algorithms, AdaBoost.M1 (AB) – since it is one of the most 

prominent classifiers focused on error minimization, with proved performance in real-world 

scenarios [Bre11], and J4.8 as baseline. 

The same GA settings were used throughout the evaluations (except for the ones that 

were dataset-dependent, i.e. the number of chromosomes in an individual). Therefore, for 

each individual, the n + 2 chromosomes were defined (n being the number of attributes in the 

dataset, while the other two correspond to parameters w and CF); each chromosome is 

represented as a 14 bits binary string, encoded in Gray. The rest of the setting values are 

listed in table 6.1. 

Since the algorithm involves a large heuristic component, the evaluation procedure 

assumes averaging the costs over 10 runs. Each run uses a pair of randomly generated 

training-testing sets, in the proportion 70% - 30%; these ten training-testing sets were 

employed in the evaluations of all algorithms on a particular dataset. The same proportion of 

70/30 is used when separating the training set into a component used for training and one for 

evaluating each individual (in the fitness function). 
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Table 6.1 – Genetic component settings 

Setting Value 
Population type Single 
Initial population generation random 
Population size 50 
Crossover cycles 1000 
Parent Selection Roulette wheel 
Recombination Operators Crossover: multiple random crossover, 4 points 

Mutation: single point random mutation, 0.2 rate 

Fitness function Average cost 

Other Fitness ranking 
Elitism 

 

Symmetry through Stratification 

A significant problem related to the ICET algorithm is rooted in the fact that costs are 

learned indirectly, through the fitness function. Rare examples are relatively more difficult to 

be learned by the algorithm. Moreover, in [Wei03] it is shown that there exists a strong 

connection between classifier performance (in terms of accuracy and AUC) and the class 

distribution employed during training. In this context, the aim is to assess the impact of an 

imbalanced class distribution on the misclassification cost and to modify the distribution of 

negative examples in the training set as to eliminate undesirable asymmetries.  

First, an evaluation is performed to check whether by providing a balanced training 

set, ProICET yields better results on some test set than if it were built on an unbalanced set. If 

the assumption is true, the problem could be eliminated by altering the distribution of the 

training set, either by over-sampling, or by under-sampling. This hypothesis was tested by 

performing an evaluation of the ProICET results on two datasets: the Wisconsin breast cancer 

dataset and Pima Indian diabetes dataset. 

Test costs are set to one (1.0) during individual evaluation in the training stage, in 

order to avoid over-fitting or degenerate solutions. Since the misclassification costs are the 

one studied by the procedure, test costs are ignored during the evaluation of the final results. 

For the stratified training set, the distribution is altered using random uniform over-

sampling with replacement on the negative class. Over-sampling is preferred, despite the 

increase in computation time, because no information loss occurs while the under-represented 

(minority) class gains in “visibility”. Under-sampling is the practical solution for very large 

databases. In this situation, over-sampling is no longer feasible, as the time required for the 

learning phase on the extended training set becomes prohibitive, and, thus, under-sampling 

should be selected. 

The misclassification cost matrix used for this analysis has the form: 
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where p is varied with a 0.05 increment. Small values for p mean higher costs for 

misclassifying positive class instances as being negative (this is actually the cost we want to 

minimize); in the same way, as p approaches 1, the cost of misclassifying negative instances 

grows. Although there could be an interest in minimizing this cost also, this is not as 

important as the first situation, because in most real life problems this case is not 

encountered. As an example of why the second situation is not encountered in real life, 

suppose the problem of diagnosing a patient of having some heart disease problem. 

Obviously, it is far riskier to tell a patient having the disease that he is healthy, than the other 

way around. 
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The results for the Wisconsin dataset are presented in figure 6.2. Generally, we 

observe a decrease in misclassification costs for the stratified case throughout the parameter 

space (with a few small exceptions). This reduction is visible especially in the left side, where 

we notice a significant reduction in the total cost for expensive rare examples, which was the 

actual goal of the procedure. Starting from the assumption that the stratification technique 

may be applicable to other cost-sensitive classifiers, we have repeated the procedure on the 

WEKA implementation of MetaCost, (MC) using J4.8 as base classifier. J4.8 was also 

considered in the analysis, as baseline estimate. The results for this set of tests are presented 

in figure 6.3. We observe that MC yields significantly higher costs, as the cost matrix drifts 

from the balanced case.  

Another important observation is related to the fact that the cost characteristic in the 

case of J4.8 is almost horizontal for the normal case. This could give an explanation on the 

general ProICET behavior, of being insensitive to the particular form of the cost matrix (with 

a few exceptions for the cases with very unbalanced costs). This behavior changes in the 

stratified case, where the characteristic for J4.8 presents a positive slope; this means that 

while obvious improvements are achieved for the rare cases (left part of the diagram in fig. 

6.3), the cases that are better represented in the original dataset have a higher cost when 

stratification is applied (right part of the diagram). This observation could also be extended to 

the way stratification affects ICET behavior, by making it perform a little worse when the 

“common” cases have a higher misclassification cost. Once again, this is not a tragedy, since 

those situations do not appear in real life. 

A second batch of tests, whose purpose was to study the stratification effect on a 

dataset having numeric attributes, was performed on the Pima Indian diabetes dataset. The 

first one to be tested was again ProICET. The results obtained can be observed in figure 6.4. 

They indicate a poorer performance for the model obtained on the stratified dataset than for 

the one trained on the original distribution of instances. One reason for this could be found in 

the nature of the Pima dataset; because all its attributes are numeric, the tree-based classifier 

must first pre-discretize the attributes. Since stratification applies oversampling and changes 

the original distribution in the dataset, it may affect the discretization process also, which will 

choose other values as breakpoints than those chosen for the normal distribution. Therefore, 

since both models are evaluated on a test set that preserves the original class distribution, the 

one that was trained on the normal distribution yields better results. 

The results yielded by the two other algorithms on the Pima dataset are similar to 

those obtained for the Wisconsin dataset; they are illustrated in figure 6.5. In this situation, 

stratification yields only slightly better results for the rare cases than normal training. 

Moreover, a few observations have to be made. The first one is related to the fact that for 

balanced costs, MC performs better in the normal case than in the stratified case. The second 

one refers to the slope of J4.8’s characteristic in the stratified case, which is faster ascending 

than in the Wisconsin case, while the slope for the normal case remains horizontal. An 

explanation of why these two things happen could be found again in the fact that the Pima 

dataset has only numeric attributes (except for the class, which is binary), while the 

Wisconsin dataset has nominal attributes.  

A quick note should be made on the fact that the misclassification cost yielded by J4.8 for the 

Pima dataset is approximately four times higher than the one obtained on the Wisconsin 

dataset. A reason for this could be found in the nature of the two datasets, since it is a known 

fact that classification trees perform slightly worse when numeric attributes are involved.  

The behavior of the algorithms is mostly uniform on the two datasets (with the 

exception ProICET presents for the Pima dataset), in that they present an improvement in the 

misclassification cost for the rare cases when stratification is applied. 
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Figure 6.2 – ProICET average misclassification costs 

for the Wisconsin dataset 

 

Figure 6.3 – MetaCost and J4.8 average 

misclassification costs for the Wisconsin Dataset 

 

Figure 6.4 – ProICET average misclassification costs 

for the Pima dataset 

 

Figure 6.5 – MetaCost and J4.8 misclassification costs 

for the Pima Dataset 

This is a very important result for two reasons: first because of the fact that, although 

a simple technique, stratification improves ProICET’s performance on the cases that are 

poorer represented in the initial dataset. Secondly, by being algorithm-independent, this 

technique can easily improve the performance of almost any classifier (exception from this 

rule are the algorithms that take into account the initial distribution in the dataset, such as 

AdaBoost.M1 (AB)). Another remark is related to the unexpected results yielded by ProICET 

on the Pima dataset. Due to this fact, further testing is required before making any general 

formulations in this matter. 

Comparing Misclassification Costs 

The procedure employed when comparing misclassification costs is similar to that 

described in the previous section. Again, the Wisconsin and the Pima datasets were used, and 

misclassification costs were averaged on 10 randomly generated training/test sets. For all the 

tests described in this section, the test costs are not considered in the evaluation, in order to 

isolate the misclassification component and eliminate any bias. However, a test cost of one 

(1.0) is considered during the training stage of the ProICET algorithm, in order to avoid over-

fitted or degenerate solutions. 

As illustrated by figure 6.6, for the Wisconsin dataset MC yields the poorest results. 

ProICET performs slightly better than J4.8, while the smallest costs are obtained for AB, 

using J4.8 as base classifier. The improved performance is related to the different approaches 

taken when searching for the solution. If ProICET uses heuristic search, AB implements a 

procedure that is guaranteed to converge to minimum training error, while the ensemble 

voting reduces the risk of over-fitting. However, the approach cannot take into account test 

costs, which should make AB perform worse on problems involving both types of costs. 
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Figure 6.6 – Misclassification costs for the Wisconsin 

dataset 

 

Figure 6.7 – Misclassification costs for the Pima 

dataset 

For the Pima dataset, the misclassification costs obtained by each of the four analyzed 

algorithms are illustrated in figure 6.7. Again, MC has a very poor performance for the 

unbalanced cases; ProICET and J4.8 yield similar costs (with ProICET performing slightly 

better); we can say that these three algorithms have almost the same behavior on the Pima 

dataset as on the Wisconsin dataset. This is not the case with AB, whose costs are higher than 

those obtained by ProICET or J4.8. 

Total Cost Analysis on Benchmark Medical Problems 

When estimating the performance in real life problems of the various algorithms 

presented, we have considered four benchmark datasets from the UCI repository, 

representing medical problems: Bupa liver disorders, heart disease Cleveland, Pima Indian 

diabetes and Thyroid. For the first dataset, we have used the same modified set as in [Tur95]. 

Also, the test costs estimates are taken from the previously mentioned study. The 

misclassification costs values were more difficult to estimate, due to the fact that they 

measure the risks of misdiagnosis, which do not have a clear monetary equivalent. These 

values are set empirically, assigning higher penalty for undiagnosed disease and keeping the 

order of magnitude as to balance the two cost components (the actual values are presented in 

Appendix A, tables A.6.2-A.6.5, along with the attribute test costs). 

Since, as far as we know, there exists no other algorithm that would be sensitive to 

both misclassification and test costs, ProICET had to be evaluated against algorithms which 

either take at least one of the cost components into consideration, or yield very good error 

estimates. Bearing this in mind, four algorithms were selected: EG2 as a representative of the 

algorithms that consider test costs, MetaCost (MC) as a scheme that considers 

misclassification costs, AdaBoost.M1 (AB) as a very successful ensemble learning method, 

and J4.8 as a baseline performance measure. We expect ProICET to outperform the other four 

algorithms since it induces higher variability in the trees search space, and guides that 

variability into the right direction by using an intelligent evaluation function.  

As anticipated, ProICET significantly outperforms all other algorithms, being the only 

one built for optimizing total costs (figure 6.8). Surprisingly, our implementation performs 

quite well on the heart disease dataset, where the original algorithm obtained poorer results. 

This improvement is probably owed to the alterations made to the genetic algorithm, which 

increase population variability and extend the heuristic search. The cost reduction is 

relatively small in the Thyroid dataset, compared to the others, but is quite large for the two 

cases, supporting the conclusion that ProICET is the best algorithm for problems involving 

complex costs. Another remark is related to the fact that, generally, EG2 closely “follows” 

ProICET’s lead, in that its costs are just a little higher than those yielded by ProICET (with 

one exception for the Bupa dataset). One reason for this would be the relation between test 

costs and misclassification costs; the misclassification costs were chosen such as to have the 
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same magnitude order with the test costs that came with the datasets and follow the idea of 

expensive test costs relative to misclassification costs. 

On the Bupa dataset, AB performs slightly better than ProICET, while the other 

algorithms have significantly poorer performances. This could be a consequence of the 

relation between test and misclassification costs; for the Bupa dataset the test cost of 

misclassifying a negative case as positive is lower than any attribute test cost, and the other 

misclassification cost has the cost of approximately 2 attributes (see Appendix A for details); 

this particularity in the cost setting procedure makes the algorithms that are best at error 

reduction perform better than the others (this is the case with AB). Still, a note should be 

made on the fact that on this dataset, ProICET achieves the second best performance. 

Moreover, the next tests will show that, for the other datasets, ProICET outperforms all the 

considered algorithms. 

On the Thyroid dataset, ProICET achieves the best cost. Still, this error reduction is 

not as clear as in the other datasets. The fact that the costs are so uniform for this dataset may 

be rooted in the size of the dataset – 7200 instances. Although it is a rather difficult “to learn” 

dataset, because it has many attributes, of which several are numeric, the dimension of the set 

seems to compensates for that complexity. 

As illustrated in figure 6.8 (c), on the Cleveland dataset ProICET outperforms by far 

MC, and the error reduction algorithms (AB and J4.8), while EG2 yields a very good cost 

also. This is a rather surprising result, since in the initial paper ICET obtained very poor 

results when tested on this dataset. The reasons could be rooted in the fact that the number of 

iterations for the individual training in the genetic component was significantly smaller, and 

standard values for GA parameters were used, which proved to be not so helpful; also, a 

50/50 split was used for the sub-training and sub-testing sets during the training stage, 

therefore drastically affecting EG2’s capacity of building successful trees. 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.8 – Total costs obtained by the classifiers on different benchmark medical problems 
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The results on the Pima dataset are illustrated in figure 6.8 (d). Although the cost 

distribution for the Pima dataset is rather uniform, ProICET yields visibly lower costs. Again 

we notice that EG2 is the second in line, while the others have higher costs. 

6.3.4 Case Study: ProICET on a Prostate Cancer Problem 

Medical data mining is considered to be one of the most challenging areas of 

application in knowledge discovery. Main difficulties are related to the complex nature of 

data (heterogeneous, hierarchical, time series), or to its quality (possibly many missing 

values) and quantity. Domain knowledge or ethical and social issues are also of great 

importance. But maybe the most important particularity of medical data mining problems is 

the concept of cost. 

When mining a medical problem, the concept of cost interferes in several key points. 

First of all, a doctor must always consider the potential consequences of a misdiagnosis. In 

this field, misclassification costs may not have a direct monetary quantification, but they 

represent a more general measure of the impact each particular misclassification may have on 

human life. These costs are non-uniform (diagnosing a sick patient as healthy carries a higher 

cost than diagnosing a healthy patient as sick). Another particularity of the medical diagnosis 

problem is that medical tests are usually costly. Moreover, collecting test results may be time-

consuming. Arguably, time may not be a real cost, but it does have some implication for the 

decision whether it is practical to take a certain test or not. In the real case, performing all 

possible tests in advance is unfeasible and only a relevant subset should be selected. The 

decision on performing or not a certain test should be based on the relation between its cost 

and potential benefits. When the cost of a test exceeds the penalty for a misclassification, 

further testing is no longer economically justified. 

Since ProICET considers both test and misclassification costs, and employs a 

promising learning strategy, it has the potential for providing a successful solution in data 

mining problems involving medical diagnosis. This section presents a case study of applying 

the ProICET algorithm on a prostate cancer diagnosis problem. The current research has been 

performed within the CEEX research grant no. 18/2005 – IntelPRO (Intelligent system for 

assisting the therapeutic decision at patients with Prostate cancer) 

 Prostate cancer occurs when cells of the prostate (gland in the male reproductive 

system) mutate and begin to multiply out of control, spreading to other parts of the body 

(bones and lymph nodes mainly). Symptoms include pain, difficulty in urinating, erectile 

dysfunction, and many others. Physical examination and PSA (Prostate Specific Antigen) 

blood tests are crucial for early diagnosis of the disease. Confirmation is received upon 

performing a biopsy of the prostate tissue. Further investigations, such as X-rays and bone 

scans, may be performed to determine the degree of spread. There are several possible 

treatments for prostate cancer, such as: surgery, radiation therapy, chemotherapy, hormone 

therapy, or a combination of these – depending on the extent of spread of the disease, age and 

general state of health, and so on. The medical tests performed during the diagnosis of the 

disease – especially the biopsy – are costly. Also, it is evident that missing to identify a 

positive diagnosis is far more harmful than the reverse error.  

   The main goal of applying to the prostate cancer diagnosis problem has been to 

verify that it maintains its behavior in this real-world medical problem, yielding low costs 

while maintaining a high precision rate. A second direction of investigation involved ranking 

the predictor attributes, such as to try and match results obtained by the data mining system 

with the medical staff assumptions. The dataset has been provided by the Medicine and 

Pharmacy University of Cluj-Napoca. During the discussions with the medical team, a set of 

major/immediate interest parameters were defined (presented in Appendix A, table A6.6). 

The same evaluation procedure was employed as in the previous section (repeated percentage 

split). Two different values for the test costs were used – 0 and 0.1 – and four different cost 
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matrices (built such as to emphasize the unbalance in different errors’ severity) – also 

presented in Appendix A, table A6.6. This resulted in eight different evaluation scenarios. 

The results are presented in table 6.2. 

It can be observed that, when both types of costs are considered, ProICET yields the 

lowest total costs, which proves once again it is the best approach for cost reduction in 

medical problems. The fact that the accuracy rates (~84%) do not reach very high values 

could be rooted in the characteristics of the dataset: the number of instances was reduced 

during the pre-processing stage, because of the high number of missing values. 

Another important result is related to the ranking of the attributes in the order of their 

prediction power. Since during the training process equal test costs were assigned to each 

attribute, the cost component did not influence in any way the choice of one attribute over 

another (it only affects the total cost of the trees in the sense that bigger trees yield higher 

total costs). By analyzing the output the following attributes resulted as possessing the 

highest prediction power (the same list was obtained by the other algorithms as well): 

• Prostate Volume 

• Operation Technique 

• Bleeding 

• Gleason Score 

• IIEF 

• Pre-Op PSA 
 

The fact that the prostate volume appears the first in most tests is new, and, according 

to the medical team’s opinion, it is the confirmation of a fact they have been suspecting for 

some time now. 

6.4 Conclusions on Cost-Sensitive Classification 

Several efforts have been made in the machine learning community to develop 

learning schemes that are sensitive to a particular type of cost. Considerably less research has 

been conducted to develop an algorithm that tackles both costs, the most significant such 

method being ICET. It has been shown to yield better results when compared to algorithms 

that are sensitive only to test costs. The initial work on ICET lacked a comprehensive study 

on the misclassification cost component though, as well as an evaluation of ICET in real 

problems.  
 

Table 6.2 – Total costs and accuracy rates of the various algorithms on the Prostate Cancer dataset (TC – 

value of Test Costs; CM – Cost Matrix) 

Cost Settings 

Average Accuracy Rate (%) Average Total Cost 

Pro 

ICET 
AB EG2 J4.8 MC Pro 

ICET 
AB EG2 J4.8 MC 

TC:0,CM:1 84.18 

7
9

.1
8
 

8
4

.0
7
 

8
4

.0
7
 

84.18 
0.28 0.284 0.269 0.269 0.293 

TC:0.1,CM:1 83.77 0.414 0.734 0.430 0.430 0.448 

TC:0,CM:2 83.87 
83.26 

0.561 0.52 0.52 0.52 0.65 

TC:0.1,CM:2 84.07 0.678 0.97 0.682 0.682 0.812 

TC:0,CM:3 84.28 
84.38 

0.146 0.166 0.142 0.142 0.145 

TC:0.1,CM:3 84.07 0.252 0.616 0.305 0.305 0.310 

TC:0,CM:4 84.07 
83.36 

0.213 0.44 0.44 0.44 0.502 

TC:0.1,CM:4 83.77 0.575 0.89 0.603 0.603 0.647 
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There are two main particularities of ICET that make it an appropriate for solving 

cost-sensitive problems: 

 It considers both test costs and misclassification costs, while other cost-sensitive 

algorithms considered just one of these components 

 The strategy it uses, of combining evolutionary methods with classical top-down 

inductive search (a greedy search), is very fresh and promising, because it introduces 

an element of variability in the search space where the greedy component performs 

 

The main contributions presented in this chapter focus on a series of improvements 

that could be added to the initial algorithm, as well as filling in the gap in the algorithm 

evaluation part. Consequently, a new version of the algorithm has been developed, ProICET, 

which employs the basic technique proposed by ICET, while improving the strategies used in 

specific parts. A series of evaluations which focused on assessing the performance of 

ProICET under a series of different aspects have been performed. 

The first set of tests was focused on finding the validity of a theory formulated in the 

initial work on ICET, concerning the asymmetry in the misclassification costs component – 

that for the “rare” cases, both ICET and the other algorithms considered yielded higher costs. 

Stratification was proposed there as a theoretical solution, but no tests were performed to try 

and check the hypothesis’ validity. Therefore, the current dissertation attempts to prove 

empirically that the theory holds, and, moreover, that it is extendable to other schemes. The 

second batch of tests was aimed at analyzing the misclassification cost component. A third 

series of tests were developed to evaluate the behavior of ProICET in real medical diagnosis 

problems, which contained both types of costs. 

The results allow for the formulation of the following conclusions: 

 ProICET outperforms its direct competition (algorithms that are also sensitive to some 

kind of cost). This improvement can be seen in the evaluation of the misclassification 

cost component, where ProICET performs better than the other algorithms, with one 

single exception for the Wisconsin dataset, where it yields higher costs than 

AdaBoost.M1. In the tests that have been performed on benchmark medical, ProICET 

yields constantly better costs than algorithms that consider only test costs, or 

algorithms that are aware to misclassification costs. Most importantly, when evaluated 

on a real prostate cancer problem, ProICET always yielded lowest total cost of all the 

algorithms considered, when both test and misclassification costs were included, 

keeping a high level of accuracy. 

 This particular implementation has proved to be even more successful than the 

original version of the algorithm, because it yields better results on the Cleveland 

heart disease dataset, where the initial implementation obtained rather modest results. 

This improvement is due to the modifications made in the evolutionary component: 

the introduction of elitism, increased search variability factor, and extended number 

of iterations. Also, increasing the size of the training set proved to be successful. 

 Stratification generally produces improvements in the misclassification cost of rare 

cases, for all classifiers; an exception to this rule is observed for ProICET and J4.8 in 

the case of datasets with numeric attributes – the pre-discretization process affects 

stratification. A note should be made on the fact that for the stratification problem, 

ProICET is almost symmetric, in that it is insensitive to the particular form of the cost 

matrix. This could be a consequence of the fact that the tree learner is a modified 

version of J4.8 (which displays a horizontal characteristic). 

The original work presented in this chapter comes as a result of the involvement in the 

CEEX research grant no. 18/2005 – IntelPRO (Intelligent system for assisting the 

therapeutically decision at patients with Prostate cancer). The ProICET algorithm has been 
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applied to a real problem related to prostate cancer diagnosis and prognosis: predicting the 

value of post-operative PSA for patients who have undergone prostate surgery, from data 

recorded pre- and immediately after the operation. The results confirmed yet again that the 

method provides the most suitable approach in such problems, yielding lowest total costs and 

high accuracy rates under different evaluation scenarios. Also, the ranking of predictive 

attributes produced a new piece of information, which confirmed (previously un-validated) 

medical team assumptions.  

The results presented in this chapter have been disseminated and accepted by the 

research community through the publication of 1 journal paper (in Health Informatics 

Journal): 
1. C. Vidrighin Bratu and R. Potolea, "ProICET: a cost-sensitive system for prostate 

cancer data", Health Informatics Journal, Dec 2008, vol. 14: pp. 297-307, ISSN: 

1741-2811 (online); 1460-4582 

1 book chapter (in Advances in Greedy Algorithms): 
1. C. Vidrighin Bratu and R. Potolea, "Enhancing Greedy Policy Techniques for 

Complex Cost-Sensitive Problems", in Advances in Greedy Algorithms,  IN-TECH, 

2008, pp. 151-168, ISBN 978-953-7619-27-5 (print) 

and 3 conference papers, presented in the proceedings of established international 

conferences: 

1. C. Vidrighin, R. Potolea, I. Giurgiu, M. Cuibus, "ProICET: Case Study on Prostate 

Cancer Data", Proceedings of the 12
th
 International Symposium of Health 

Information Management Research, 18-20 July 2007, Sheffield, pp. 237-244 
2. R. Potolea, C. Vidrighin, C. Savin, "ProICET - A Cost-Sensitive System for the 

Medical Domain", Proceedings of the 3
rd

 International Conference on Natural 

Computation ICNC 2007, Haikou, August 2007, China, Volume 2, Session 3  
3. C. Vidrighin Bratu, C. Savin, R. Potolea, "A Hybrid Algorithm for Medical 

Diagnosis". Proceedings of the  IEEE The International Conference on 

Computer as a Tool, 9-12 September 2007, Warsaw, pp. 668-673  
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7 Classification in Practice II: Imbalanced Class Distribution 

7.1 Problem Statement 

One of the current important challenges in data mining research is classification under 

an imbalanced data distribution. This issue appears when a classifier has to identify a rare, 

but important case. Traditionally, domains in which class imbalance is prevalent include 

fraud or intrusion detection, medical diagnosis, risk management, text classification and 

information retrieval [Cha04]. More recent reports include unexploded ordnance detection 

[Ali06], or mine detection [Wil09]. 

A classification problem is imbalanced if, in the available data, a certain class is 

represented by a very small number of instances compared to the other classes [Jap02]. In 

practice, the problem is addressed with 2-class problems; multi-class problems are translated 

to binary. As the minority instances are of greater interest, they are referred to as positive 

instances (positive class); the majority class is referred to as the negative class. 

7.1.1 Imbalance-Related Factors 

The first step in providing viable solutions for imbalanced domains is to understand 

the problem: what is the real issue with the imbalance? Initially, the difficulty of dealing with 

imbalance problems was thought of coming from its imbalance rate (IR), i.e. the ratio 

between the number of instances in the majority (mMaj) and minority classes (mMin): 

Min

Maj

m

m
IR           (7.1) 

More recent studies suggest that the nature of imbalanced problems is actually 

manifold. In [Wei04], two issues are considered as being crucial: (1) insufficient data to build 

a model, in case the minority class has only a few examples (similar to dealing with small 

samples/small datasets), (2) too many “special cases” in the minority class, so that in the class 

itself, some kind of sub-clustering occurs, which might lead again to insufficient examples 

for correctly identifying such a sub-cluster. These two cases translate into two types of rarity: 

between-class (1) vs. within-class (2). While the between-class imbalance faces the issue of a 

peculiar class distribution only, for which some intelligent sampling techniques could help 

[Cha98], within class imbalance is trickier. Besides an increased complexity of the data 

(which implies that the model should identify a rule for each sub-cluster), the small sample 

problem could override it, which hinders the identification of each sub-cluster. The between 

class imbalance is also referred to as rare class, while within-class as rare case. For the 

within class imbalance, a special case is represented by the small disjuncts problem [Hol89]. 

It has been observed that, in most cases, imbalanced problems suffer from the small disjuncts 

problem – the existence of “isolated” subsets of only a few instances in the minority class, 

surrounded by instances from the other class(es), making them difficult to identify [Wei04]. 

Ideally, a concept is best identified when it can be defined as a purely conjunctive definition. 

In real settings, for complex concepts this is not always possible. Therefore, a concept is 

defined by several disjuncts, each being a conjunction expressing a sub-concept. In many 

cases, some of those disjuncts have small coverage, and are therefore difficult to identify. 

Small disjuncts are much more error prone [Hol89] than large disjuncts. Dataset shift [Ala08] 

and class overlapping [Den10] have also been recently identified as being important factors 

related to the imbalance. 

An important theoretical result related to the nature of class imbalance is presented in 

[Jap02], where it is concluded that the imbalance problem is a relative problem, which 

depends on: (1) the imbalance ratio, i.e. the ratio of the majority to the minority instances, (2) 

the complexity of the concept represented by the data, (3) the overall size of the training set 
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and (4) the classifier involved. The experiments there were conducted on artificially 

generated data, in the attempt to simulate different imbalance ratios, complexities and dataset 

sizes. The concept complexity has been approximated through the size of the decision tree 

generated on the data (as ).(log2 leavesno ). The results have indicated that C5.0 is the most 

sensitive learner to the imbalance problem, while the Multilayer Perceptron showed a less 

categorical sensitivity pattern and the Support Vector Machine seemed to be insensitive to the 

problem.  

In [Pot11c] we have extended the analysis by performing a set of experiments on 

benchmark datasets, to study the effect of the class imbalance problem on a broader spectrum 

of algorithms. An initial study focused on the factors described in [Jap02] – dataset size, 

imbalance ratio, complexity and learning algorithm, in an attempt to address some of the 

open questions presented in the above mentioned work, related to the applicability of the 

conclusions drawn on artificial data in real-world settings. The results (which are detailed in 

section 7.1.3) suggest that a more meaningful analysis can be performed by considering IR 

and a new meta-feature, which combines data size and complexity information. The 

instances-per-attribute ratio (IAR), i.e. the ratio between the total number of instances (m) 

and the number of attributes recorded per instance (n) is more significant than the separate 

size and complexity measures, allowing for a faster and easier initial assessment of a 

particular dataset: 

n

m
IAR           (7.2) 

7.1.2 Estimating Performance 

Establishing how to assess performance is an essential task in imbalanced problems. 

The selection of an inappropriate evaluation measure may lead to unexpected predictions, 

which are not in agreement with the problem goals.  

The most widely employed metric in the early (theoretical) stage of data mining 

research was the accuracy (Acc) of the classifier. Even today it is widely employed when 

assessing the performance of new learning schemes, being an appropriate metric even for 

real-world, balanced problems. When dealing with an imbalanced problem, however, it 

provides an insufficient measure of the performance [Wei04, Cha06], because the minority 

class contributes very little to its value. In highly imbalanced problems, a good recognition of 

the majority class will translate into a high accuracy, regardless of how well the model 

identifies minority cases. Thus, for a dataset with 99% examples for one class and 1% for the 

other, a model which classifies everything as belonging to the majority class will yield 99% 

accuracy, while failing to identify any minority example. 

 Therefore, the evaluation of imbalanced problems requires other metrics which 

provide a more directed focus. Such a metric, which focuses on the recognition of the 

minority class, is the TPrate (sensitivity/recall). Generally, the TNrate (specificity) is not so 

important in imbalanced problems [Grz05]. On the other hand, in some situations it is 

important to "improve recall without hurting precision" [Cha06]. Therefore, besides 

sensitivity, precision may also have an important role when dealing with such problems. 

Controlling the relative importance between precision and recall is another strategy which 

could provide a correct assessment in imbalanced scenarios, by employing a precision/recall 

curve, or the Fi-value – which can be tuned to put more emphasis on either the recall or 

precision: i > 1 for when recall is more important. In certain situations, besides TPrate, keeping 

a high TNrate may be important. For such situations, equidistant metrics, such as the 

geometric mean or the balanced accuracy (defined in Chapter 2) provide appropriate 

performance assessment. 
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Thus, according to the specifics of the problem at hand, one should carefully assess 

which metrics to consider. In many information extraction applications, for example, the f-

measure is considered to offer the best trade-off between precision and recall, since it is 

desired to detect as many positive items as possible, without introducing false positives. On 

the other hand, in medical diagnosis, it is essential to identify all positive cases, if possible, 

even at the risk of introducing false alarms (which may be eliminated through additional 

medical investigations). The same occurs in fraud detection, where the cost of missing to 

identify a fraud is so high that a certain level of false positives is acceptable. The opposite 

situation can also appear. In credit risk assessment, for example, introducing false positives is 

unacceptable. However, a mild decrease of the number of identified positive cases is usually 

acceptable, since it is preferable to lose a potential client in the attempt to avoid a default. 

Thus, there are situations in which maximizing the TPrate is of utmost importance, situations 

in which precision must be kept at high levels, even at the cost of mildly decreasing the 

TPrate, or situations in which both are equally significant.  

In view of what has been presented, we argue that metric selection in imbalanced 

problems is essential for both model quality assessment and guiding the learning process. The 

metric should also reflect the goal of the specific classification process, not just focus on the 

data imbalance. Thus, if we are additionally dealing with imbalance at the level of the error 

costs, then associating a cost parameter to account for such disproportions is appropriate. If, 

on the other hand, the focus is on identifying both classes correctly, then an equidistant 

metric provides a fair estimation. 

7.1.3 The Effect of the Class Imbalance on the Performance of Classifiers  

In order to study the nature of the imbalance problem, we have considered 34 datasets 

from the UCI machine learning data repository (Appendix A, table A.7.1). A number of 

problems were modified to obtain binary classification problems from multi-class data. 

Learning algorithms belonging to 6 different classes were considered: instance based learning 

– kNN (k Nearest Neighbor), Decision Trees – C4.5, Support Vector Machines – SVM, 

Artificial Neural Networks – MLP (Multilayer Perceptron), Bayesian learning – NB (Naïve 

Bayes) and ensemble learning – AB (AdaBoost.M1). We have employed the implementation 

in the WEKA framework for the six methods selected, and their default parameter values. 

The evaluations were performed using 10-fold cross validation, and reporting the average 

values obtained. The following metrics were recorded: the accuracy (Acc), TPrate, and TNrate. 

Also, the geometric mean (GM), the balanced accuracy (BAcc) and the f-measure (FM) have 

been computed. The minority class in all problems is the positive class. An initial analysis 

was carried out on the data grouped by size, IR and complexity (C), into the categories 

presented in Table 7.1. Not all combinations of the three categories can be found in the 

datasets we have evaluated: for example, a very large complexity is only represented in the 

large datasets category.  

Table 7.2 presents a summary of the results obtained by the learning algorithms on the 

different categories of problems. Shaded rows represent data categories sensitive to 

imbalance, while non-shaded rows represent groups of problems on which classifiers have a 

robust behavior, under TPrate. We have selected this metric to assess robustness since, as 

suggested in [Jap02], performance degradation is related to a large drop in the TPrate.  
 

Table 7.1 – Dataset grouping on size, IR, C 

Dimension Category Very small Small Medium Large Very large 

Size (no. of instances) <400 400-1500 2000-5000 >5000 - 
Rounded IR - <9 - >=9 - 
Rounded C - <=2 [3,4] [5,9] >=10 
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Table 7.2 – TPrates obtained by classifiers on the different categories of problems 

Set 

Size 
IR Complexity kNN C4.5 SVM MLP NB AB 

very 

small 
 
<9 
 

Small .53 .5 .5 .61 65 .57 
Medium .72 .71 .3 .61 .65 .65 
Large .73 .72 .79 .76 .8 .81 

>=9 Medium .52 .6 .15 .59 .83 .4 
small <9 Medium .88 .89 .89 .9 .89 .83 

Large .81 .77 .85 .81 .62 .67 
>=9 Medium .98 .94 .98 .99 .98 .99 

Large .24 .09 .47 .65 .09 .0 
medium 
 

<9 Large .74 .97 .92 .98 .69 .85 
>=9 Medium .6 .91 .5 .86 .78 .89 

Large .57 .88 .04 .73 .84 .82 
large <9 Large 1 1 1 1 .92 .98 

>=9 Very Large .06 .0 .01 .0 .39 .0 

 

Also, for each dataset category the best performance and the worst performance have been 

marked (bold-face and underline, respectively). The results agree with the conclusions 

presented in [Jap02] that the value of the IR plays an important role in the performance of the 

classifiers. However, an increase in the complexity does not necessarily lead to classifier 

performance degradation, as the results for the [IR<9, size – very small] category indicate. 

Moreover, size and complexity are related, since, the size increases, the data exhibits higher 

complexity. 

As it can be observed from figures 7.1 – 7.4, the behavior of classifiers on large 

complexity datasets is better than on categories of problems of smaller complexity (in fig. 7.3 

almost all classifiers seem to be robust to the imbalance problem). Still, for the other set size 

categories (small, medium and large), a large imbalance (IR>=9) associated with increased 

complexity (large, large and very large) always affects the learning process (Table 7.2).  
 

  

Figure 7.1 - Size very small, IR<9, C small Figure 7.2 - Size very small, IR<9, C medium 

  

Figure 7.3 - Size very small, IR<9, C large Figure 7.4 - Size very small, IR>=9, C medium 
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The results suggest that neither dataset size, nor the complexity alone represent strong 

(monotonic) indicators of the IR's influence in the classification process. We consider that 

poor concept identification is related to the lack of information caused by insufficient 

examples to learn from. However, a relation between problem size, complexity and classifier 

performance is revealed, i.e. the larger the dataset size, the higher the complexity for which 

the performance degradation becomes clear. This suggested the existence of another meta-

feature which better discriminates the classifier robustness when faced with imbalanced 

problems, the instance per attribute ratio (IAR). 

The diagrams in figures 7.5 – 7.7 present the performance of the same classifiers, 

under different metrics, on the problem categories which affect their learning capacity. The 

accuracy alone is not a good measure of performance. The analysis should focus on the 

following criteria: high values for TPrate, GM, BAcc and Fmeasure indicate a good 

classification, while high TNrate values reveal a classification which is biased towards the 

majority class. Moreover, the larger the difference between the TNrate and the TPrate, the more 

biased the classification process is. 

The results prove that the learning capabilities of the classifiers considered are 

affected to some extent by an increased imbalance in conjunction with the other data-related 

particularities. It can be observed that, like in [Jap02], MLPs are generally more robust than 

C4.5 to the imbalance problem. Moreover, they are the least affected by the imbalance-

related factors, in most cases. As an exception, C4.5 performs noticeably better than MLP 

(and all the others, actually) on medium sized datasets, with large IR and C (fig. 7.6). The 

analysis also reveals that the NB classifiers have a good general behavior when dealing with 

a very large imbalance. In some cases they even yield the best performance (figures 7.1, 7.4, 

7.7 – all with IR>=9). However, they are not as robust as MLPs, since, in some cases, they 

achieve a very poor performance (fig. 7.5). Although not always the best classifier, MLPs 

yield at least the second best performance in all cases, which makes them the most robust out 

of all the classifiers evaluated. None of the kNN and AB show remarkable results in any of 

the cases studied, which makes them suitable only for baseline problem assessment.    

The above observations provide an affirmative answer to one of the open questions in 

[Jap02], whether the conclusions presented there can be applied to real-world domains. 

However, our results also indicate that SVM are the most sensitive to imbalance. This means 

that, for the particular case of SVMs, the conclusion drawn from experiments on artificial 

data cannot be extended to real datasets. A justification for this could be the following: in the 

case of artificial datasets, even for large IRs, the examples which represent reliable support 

vectors are present in the data, due to the systematic data generation process, while in the 

case of real problems, these vital learning elements might be missing. This makes SVMs the 

weakest classifiers in most real-world imbalanced problems. 

We have performed a second analysis for studying the effect of imbalanced problems 

on the performance of the classifiers, using another dataset grouping: by IR and by the ratio 

between the number of instances and the number of attributes (IAR). 

 

   

Figure 7.5 - Size small, C large Figure 7.6 - Size med., C large Figure 7.7 - Size large, C v. large 
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Table 7.3 - Dataset grouping on IR, IAR 

Parameter Category Value Range 

Rounded IR 

Balanced  ~1 

Small [2,3] 

Large >=4 

Rounded IAR 

Small <=60 

Medium (60, 100] 

Large (100, 200] 

Very large >200 

 

Table 7.4 - TPrates on IR and IAR grouping 

IR IAR kNN C4.5 SVM MLP NB AB 
Balanced Small .68 .71 .72 .7 .58 .75 

Medium .94 .95 .8 .86 .78 .85 
Very large 1 1 1 1 .92 .98 

Small Small .71 .69 .53 .72 .78 .65 
Medium .81 .77 .82 .83 .67 .63 

Large 
 

Small .5 .55 .27 .62 .64 .4 
Medium  .53 .52 .72 .73 .59 .49 
Large .58 .89 .19 .74 .82 .84 

 

We consider this new meta-feature successfully combines size and complexity 

information: a small IAR should yield a higher classifier sensibility to the imbalance 

problem, while a very large IAR should provide more robustness to the imbalance. The 

categories for this second analysis are summarized in Table 7.3. By re-grouping the 

evaluations according to this new criterion, we noticed a more clear separation between the 

different categories and that classifiers better learn with larger IARs. Indeed, as we can 

observe from Table 7.4, the larger the IAR, the larger the IR for which the TPrate value of the 

classifiers decreases. Also, for the same IR, as IAR increases, classifiers are more robust to 

the imbalance. The different levels of shading used for the rows indicate the performance 

level (more shading, better average performance). Again, we have marked the highest and 

lowest TPrate values for each problem category (bolded and underlined, respectively). 

Figures 7.8 – 7.11 present the performance of the classifiers under this second 

categorization, for all metrics considered, on the relevant groups (problems which are 

affected the most by the imbalance related issues). The diagrams indicate again that SVM are 

unstable classifiers for imbalanced problems (strongly biased towards the majority class). Out 

of all classifiers, MLP are the most robust, yielding either the best or second best 

performance. The NB classifier generally achieves the best recognition of the minority class 

(maximum TPrate). However, it is not the best classifier due to poor recognition of the 

majority class (lowest TNrate in all cases). This makes the NB classifier the most appropriate 

for imbalanced problems in which the minority class possesses a significantly larger 

importance than the majority class. Similar to the previous analysis, kNN and AB have a 

variable behavior, which hinders the identification of a situation in which they could 

guarantee quality results. If we have found that a large IAR improves the behavior of 

classifiers for the same IR, it appears that C4.5 is the most responsive to a large IAR, as it can 

be observed from fig. 7.11. All the above measurements refer to pruned versions of C4.5. 
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Figure 7.8 - IR small imbalance, IAR small Figure 7.9 - IR large, IAR small 

  

Figure 7.10 - IR large, IAR medium Figure 7.11 - IR large, IAR large 

In [Jap02], it is argued that, for large IRs, unpruned C4.5 models are better than the 

pruned versions. We have performed an evaluation to validate this statement, using the 

Mushrooms benchmark problem – large size, balanced dataset – by varying the IR up to 100. 

The evaluation was performed in a 10-fold cross validation loop. The results are presented in 

the diagrams from fig. 7.12. We have employed the logarithmic scale for the horizontal axis 

(IR), to better differentiate between the two curves at smaller IRs. By comparing the two 

diagrams we notice that GM is more fitted for this situation, as it is more realistic in 

estimating the performance (BAcc being overoptimistic), and it better differentiates between 

the pruned/unpruned versions. This is due to the fact that a larger difference between two 

variables is more visible in the product than the sum of their values.  

On the same relatively large dataset (Mushrooms), a series of experiments have been 

conducted to study the effect of varying IR and IAR on the performance of the different 

classifiers. The IAR has been varied via two mechanisms: (1) by varying the size of the 

training set (via random sampling) and keeping the number of attributes constant and (2) by 

varying the number of attributes and apply obtain the maximum possible size for the given 

IR, IAR and number of attributes (via random sampling). 
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Figure 7.12 - Performance degradation for C4.5 on mushrooms dataset, under the balanced accuracy (BAcc) 

and the geometric mean (GM) 
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For the second scenario, the attributes have been initially ranked using the gain ratio 

as measure, and the size of the predictive attribute subsets was varied between 2 and the 

number of predictive attributes in the dataset (22). The results of these evaluations are 

presented in diagrams (a) – (l) from figure 7.13. The diagrams on the left present the BAcc 

levels obtained by the different classifiers by varying IR and IAR by size (scenario 1), and 

the right-side diagrams present the results obtained by varying IR and IAR by the number of 

attributes (scenario 2).  
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(i)  

 
(j)  

 

 

 

 
(k) (l) 

Figure 7.13 - The effect of varying IR and IAR on the performance of different classifiers 

As it can be observed from the diagrams, the results obtained on the same classifier in 

the two scenarios are similar, with the observation that the second scenario presents ampler 

variations. This is expected since removing one predictive attribute from the training set can 

produce more acute changes in performance than removing a subset of instances, if the size is 

reasonably large (in this situation, the smallest training set size reached was around 2200 

instances). The trends of the curves obtained for the same classifier via the two scenarios are, 

however, similar. 

The results indicate that, generally, for the same IR, the performance improves as IAR 

increases (as expected). Another observation is related to the fact that as the IR increases, 

better performance is achieved at higher IAR values. The one exception is presented by AB: 

the curves for different IRs do not present an increasing trend. However, as IR increases, the 

instability of AB is more pronounced (the variations between different IAR values become 

more ample). This inconsistent behavior was observed for AB in the earlier evaluations as 

well. Also, AB seems to be affected the most by the imbalance – if, at IR = 1, its BAcc values 

are around 0.98, when IR = 100, they decrease below 0.85. A somewhat unexpectedly good 

behavior is observed for SVM – high BAcc values even at high IR values and stable across 

different IAR levels. As before, this is the result of the existence of the appropriate support 

vectors in the training data. As expected, the MLP yields good performance and increased 

stability with respect to IR and IAR variations – its BAcc values never decrease below 0.96, 

even at high IR and small IAR values. 

To conclude, this experimental study has indicated that all methods are affected by the 

imbalance. Decision trees are greatly affected when the data is imbalanced, but reducing the 

level of pruning improves their performance considerably. As the IR increases, pruning 

deteriorates the performance of the decision tree model. This result supports the statement in 

[Wei04], that pruning might eliminate rare and important cases, thus affecting the correct 

identification of the minority class. However, no pruning at all results in an increase of 

complexity for the majority class as well, which might lead to over-fitting in that area. A 

more sophisticated approach is therefore required for imbalanced domains, an intelligent 
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pruning mechanism, which adjusts the level of pruning for branches according to the number 

of minority cases they contain.  

As opposed to the conclusions stated in [Jap02, Vis05], we found that SVMs are 

strongly affected by the imbalance problem. A justification for this difference could be found 

in the data employed for evaluation: in the case of artificial data (used by in [Jap02]), even 

for large IRs, the examples which represent reliable support vectors are present in the data, 

due to the systematic data generation process (and, hence, the data periodicity), while in the 

case of real problems (i.e. the benchmark data used in our evaluations), these vital learning 

elements might be missing. Also, out of the methods we have evaluated, MLPs have proved 

to be the most robust to the imbalance problem.  

 

The reduction in performance becomes more severe as the IR increases. However, for 

the same IR, larger IAR values are associated with improved classifier performance. 

Therefore, techniques for increasing the value of IAR (i.e. larger dataset size and/or smaller 

complexity) may lead to an improved behavior. 

Therefore, developing new, general methods to improve the robustness of traditional 

learning algorithms in imbalanced scenarios is necessary. In section 7.3 I will present a new 

general methodology as a solution for imbalanced classification problems.  

7.2 State of the Art in Imbalanced Classification 

Several different strategies for improving the behavior of classifiers in imbalanced 

domains have been reported in the scientific community. Broadly, the approaches for dealing 

with imbalanced problems can be split into: data-centered (sampling methods), algorithm-

centered and hybrid solutions. 

7.2.1 Sampling Methods 

Sampling techniques focus on altering the distribution of the training data: either 

randomly, or by making an informed decision on which instances to eliminate or add (by 

multiplying existing examples, or artificially generating new cases). Under this category we 

find random over- and under-sampling, or more elaborated approaches, such as: 

a. Synthetic Minority Over-sampling Technique (SMOTE) [Cha02]: which synthetizes 

new, prototype minority samples, thus pushing the separation boundary further into 

the majority class; it can be combined with random under-sampling;   

b. Tomek links [Tom76]: a Tomek link is formed by 2 neighboring instances xi and xj 

belonging to different classes, if  xl  s.t. d(xi, xl) < d(xi, xj) or d(xj, xl) < d(xi, xj). 

According to the method, the two instances are either noise or borderline. 

Consequently, Tomek links can be employed both for sampling (by removing the 

majority class instances) and as a cleaning strategy (by removing both instances); 

c. The Condensed Nearest Neighbor Rule (CNN) [Har68]: attempts to form a 

consistent subset of instances by removing majority instances which are distant 

from the decision border. The consistency is checked using a 1-nearest neighbor 

classifier (1-NN), i.e. a subset is consistent if using 1-NN all instances are correctly 

classified;   

d. One-Sided Selection (OSS) [Kub97]: eliminates “unsafe” instances by applying first 

Tomek links as an under-sampling method (i.e. remove borderline/noisy majority 

examples), followed by the application of CNN (i.e. remove majority examples 

which are distant from the decision border);   

e. The Neighborhood Cleaning Rule (NCL) [Lau01]: for each instance xi  find its three 

nearest neighbors; if xi  is misclassified by the neighbors and xi  belongs to the 

majority class, then xi  is removed; if xi  is misclassified by the neighbors and it 
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belongs to the minority class, then, out of the three neighbors, the ones belonging to 

the majority class are removed; 

f. Class Purity Maximization(CPM) [Yoo05]: employs a hierarchical clustering 

technique to partition the data, until no reduction  in cluster impurity can be found. 

The impurity is defined as the proportion of minority instances in the cluster. 

g. Under-Sampling Based on Clustering (SBC) [Yen06]: initially clusters all instances 

in the dataset into k clusters. Then, it computes, for each cluster, the appropriate 

sample size for the majority class instances, given the overall IR and the cluster 

data. In each cluster, random under-sampling on the majority class is then applied. 

h. Evolutionary Under-Sampling (EUS) [Gar09]: is an under-sampling method in 

which the search for the best sample is guided through evolutionary mechanisms; 

the fitness functions employed by the authors attempt to provide the optimal trade-

off between balance in the distribution of classes and performance 

 

 Sampling methods can be employed as pre-processing techniques [Gar09]. This is 

both a blessing and a curse: a blessing because the computational effort to prepare the data is 

needed only once; a curse because it cannot be employed as a systematic method since there 

are no guidelines on which specific method is expected to produce the best quality dataset. In 

order to maximize the classification performance in the mining step, one should carefully 

match the appropriate sampling technique to the learning algorithm employed at that stage. 

For example, Support Vector Machines (SVM) should perform better when paired with a 

sampling strategy which cleans the boundary region, such as CNN or OSS, whereas the k-

Nearest Neighbor may achieve better results with a neighborhood cleaning rule (NCL).  

Also, some methods require the analyst to set the amount of re-sampling needed, and 

this is not always easy to establish. It is acknowledged that the naturally occurring 

distribution is not always the best for learning [Wei03]. A balanced class distribution may 

yield satisfactory results, but is not always optimal either. The optimal class distribution is 

highly dependent on the particularities of the data at hand. Moreover, as the dimension of the 

training set decreases, more positive examples are needed to induce a good model. 

7.2.2 Algorithm-based Methods 

Algorithm-centered techniques, also known as internal approaches, refer to strategies 

which adapt the inductive bias of classifiers, or newly proposed methods for tackling the 

imbalance. For decision trees, such strategies include adjusting the decision threshold at leaf 

nodes [Qui91], adapting the attribute selection criterion [Liu10], or changing the pruning 

strategy [Zad01, Lem11b]. For classification rule learners, using a strength multiplier or 

different algorithms for learning the rule set for the minority class is proposed in [Grz05], 

while for association rule learners, multiple minimum supports are employed in rule 

generation [Liu00]. In [Liu11], confidence weights are associated to attribute values (given a 

class label) in a kNN approach. For SVMs, class boundary alignment is proposed in [Wu03] 

and the use of separate penalty coefficients for different classes is investigated in [Lin02]. 

Newly proposed methods, which deal with the imbalance intrinsically, include the biased 

minimax probability machine (BMPM) [Hua06], or the infinitely imbalanced logistic 

regression (IILR) [Wil09]. 

7.2.3 Hybrid Methods 

Hybrid approaches combine data- and algorithm-centered strategies. A number of 

approaches in this category consist of ensembles built via boosting, which also employ 

replication on minority class instances to second the weight update mechanism, in the attempt 

to focus on the hard examples. Also, the base classifiers may be modified to tackle 
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imbalanced data. Such approaches include SMOTEBoost [Cha03], DataBoost-IM [Guo04], 

and a complex SVM ensemble [Tia11].  

Another hybrid strategy which may prove beneficial in imbalanced problems is the one 

employed in cost-sensitive problems, to bias the learning process according to the different 

costs of the errors involved [Dom99, Zho06, Sun07].  

Two main directions for cost-sensitive methods employed in imbalanced classification 

have been identified: 

o Consider the cost matrix known [Tin02, Liu06] 

o Utilize a cost matrix which compensates for the value of the IR [Mar00, Han06] 

Unfortunately, the cost matrix is seldom known in real world problems, and this is one 

of the open issues in cost sensitive learning – employing an appropriate cost matrix. Also, 

cost-sensitive learning by IR compensation is inappropriate for the following reason: 

extensive empirical evaluations performed in [Wei03] show that the best distribution for 

learning is not the balanced distribution, but depends on the problem at hand. 

The strategy we propose in this paper addresses the above mentioned drawbacks, by 

identifying the best cost matrix for a given problem via evolutionary search strategies. The 

search criterion, i.e. the fitness function of the genetic algorithm, can be specified according 

to the particularities of the given problem. Selecting the appropriate fitness criterion is in 

closer relation to specific domain goals, than setting the exact costs in the cost matrix.  

7.3 ECSB: Evolutionary Cost-Sensitive Balancing 

Imbalanced class distributions are common in real world data. Our analyses have shown 

that the performance of all classifiers is affected under such conditions. Out of the existing 

solutions, sampling methods can be employed as pre-processing strategies; however, some 

techniques require experience for applying them properly; moreover, to maximize their 

effect, they should be matched with the learning method – again – requiring experience. 

Modifications to basic algorithms have also been proposed in the literature, with good 

performance improvements, but each is restricted to a specific class of techniques. To address 

these issues, we propose a new general methodology for classification in imbalanced 

domains: Evolutionary Cost-Sensitive Balancing (ECSB). The objective of the ECSB method 

is to improve the performance of a classifier in imbalanced domains. It is a meta-

methodology, which can be applied to any error-reduction classifier. Two strategies are 

simultaneously followed by the method: (1) use a cost-sensitive meta-classifier to adapt to the 

imbalance and (2) tune the base classifier’s parameters.  

7.3.1 Method Description 

The outcome of the method is a tuple <M, S> for the triple <p, i, m>, where M is a cost 

matrix and S is the set of resulting parameter settings for the given problem – data (d), 

selected classifier (c) and performance  metric (p).  M is employed in conjunction with the 

cost-sensitive classifier, in order to build a more efficient classification model, focused on 

better identifying the underrepresented/interest cases. The search for M and S is performed 

through evolutionary mechanisms. The cost-sensitive component employs a meta-classifier to 

make its base classifier cost-sensitive, taking into account the misclassification costs. The 

main mechanisms for wrapping cost-sensitivity around traditional classifiers usually focus on 

employing a larger penalty for the errors on classes with higher misclassification cost, or 

modifying the training data such that the costly cases are proportionally better represented 

than the others.  

The general flow of the method is presented in Figure 7.14.  The inputs are: the problem 

(d), translated in terms of a set of labeled examples (i.e. the training set), the base classifier 

(c) and the metric (p) to use for assessing the performance of c.  
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Figure 7.14 – General ECSB flow 

The result of the method is a <M, S> tuple, which is used by a (meta-) cost-sensitive 

classifier to build the final classification model. 

The Cost-Sensitive Component 

A discussion on the types of costs and related definitions has been presented in 

Chapter 6. For the purpose of imbalanced classification, the focus is on misclassification 

costs alone, since they can be employed to bias the learning process such as to provide a 

better identification for the minority class instances. As presented previously, 

misclassification costs are represented via a cost matrix M = (cij)nxn. One of the most 

important difficulties when dealing with different error costs is the quantification of 

misclassification costs. Even if it is relatively easy to determine which errors are more severe 

than others (e.g. in medical diagnosis c12 > c21), it is difficult to quantify the gravity of an 

error exactly, since this may translate, indirectly, into more serious social/moral dilemmas, 

such a putting a price tag on human life.  

In the ECSB approach, the cost matrix (M) for the given imbalanced problem is 

determined indirectly, following a genetic search. The result of the search is influenced by 

tuning the fitness function employed, which can be more easily translated, given a specific 

problem, than directly setting the cost matrix. For example, it is more reasonable to state that 

the objective is to maximize both TPrate and TNrate in medical diagnosis, or to maximize 

precision in online advertising, than it is to set specific error costs. 

The implementation of the cost-sensitive component considers three cost-sensitive 

strategies:  

(1) Reweight/resample training instances according to the total cost assigned to each class 

(CSr) [Wit05]; 

 

(2) predict the class with minimum expected misclassification cost, instead of the most 

likely class (CS) [Wit05]: 

(7.3) 

 

           (7.4) 

 

 

(3) Utilize an ensemble method to re-label the training instances according to the Bayes 

optimal prediction principle, which minimizes the conditional risk (MC) [Dom99].  
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The Genetic Component 

 We have utilized the General Genetic Algorithm Tool for implementing the genetic 

component [Der02]. It provides the traditional genetic algorithms (GA) search organization, 

parent selection and recombination techniques. The specificity of our implementation is the 

problem representation and the fitness function(s) employed. The following sub-sections 

present the GA flow and the employed GA mechanisms, and the specific problem 

representation.  

 Search Organization 

 The search process starts with the initial population, i.e. a set of potential solutions, 

generated randomly (lines 1 and 2 in the pseudocode snippet below). By repeatedly applying 

recombination operators to some of the individuals in the population over a number of cycles, 

an element (or group of elements) is expected to emerge as a good quality approximate 

solution to the given problem (the loop between lines 3 and 9). Following a strategy similar 

to steady state evolution, in each cycle a number of new offspring is generated (additional 

pool). After evaluating their fitness (line 7), the fittest p_size individuals out of the old 

population and the additional pool (the newly generated offspring) will constitute the new 

population (line 8): 
 

(1) population = generate_initial_population(p_size) 

(2) evaluate_fitness (population) 

(3) repeat  

(4)  parents = select(population) 

(5)  offspring = crossover(parents) 

(6)  mutate(offspring) 

(7)  evaluate_fitness (offspring) 

(8)  insert (offspring, population) 

(9) until (termination_condition) 

(10) return best_individual 
 

 This strategy considers elitism implicitly. The search process stops when one of the 

following occurs: the optimal fitness value is reached, the difference between the fitness 

values of the best and the worst individuals in the current population is 0, or a fixed (pre-

determined) number of crossover cycles have been performed: 

Representation and Fitness Function 

 Each individual consists of four chromosomes (Figure 7.15): the first two representing 

each a misclassification cost (elements of M), and the last two representing parameters for the 

base classifier (elements of S). Although we have considered only two parameters for S – 

since most base classifiers used in the experiments have only two important learning 

parameters – the method can be extended to search for a larger number of parameters, 

depending on the tuned classifier. The first two chromosomes in the individual represent the 

meaningful coefficients of the 2x2 cost matrix. We assume the same reward (i.e. zero cost) 

for the correct classification of both minority and majority classes. Each chromosome 

consists of 7 genes, meaning that each cost is an integer between 0 and 127. We considered 

this to be sufficient to account even for large IRs. Gray coding is employed to ensure that 

similar genotypes produce close manifestations (phenotypes). 

 Fitness ranking is used to avoid premature convergence to a local optimum, which 

can occur if in the initial pool some individuals dominate, having a significantly better fitness 

than the others. Since establishing how to assess performance is essential in imbalanced 

problems and there is no universally best metric, which captures efficiently any problem’s 

goals, we have implemented several different fitness functions, both balanced and (possibly) 

imbalanced.  
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c1,2 c2,1 setting_value1 setting_value2 

Figure 7.15 – Individual representation 

For consistency with the literature, we sometimes employ TPrate and sometimes recall 

for referring to the same measure: 

 

1. GM (geometric mean)                                          = raterate TNTP *
 

(7.5) 

2. BAcc (balanced accuracy)                                    = 
2

raterate TNTP 

 
(7.6) 

3. FM (fβ-measure)                                                   = 
recallprec

recallprec




*
)1( 2  (7.7) 

4. LIN (linear combination between TPrate, TNrate)  = α*TPrate + (1-α)*TNrate (7.8) 

5. PLIN (linear combination between recall, prec.) = α*Recall + (1- α)*Prec (7.9) 

 

7.3.2 Experimental Evaluation 

 This section presents the experiments performed to validate the ECSB method and to 

compare it with recent proficient strategies. The next sub-section presents the general setup: it 

includes the evaluation methodology employed throughout the experiments, as well as the 

mechanisms and settings employed. Three different evaluation suites are then presented, with 

discussions of the results. A first set of tests evaluates comparatively the performance of 

different specializations of ECSB on large IR, small IAR datasets, since previous analyses 

[Lem11b] have shown that classifiers are most affected on such problems; the second 

presents a comparison between ECSB and a prominent under-sampling strategy for 

imbalanced data: Evolutionary Under-Sampling [Gar09]; and the third analyzes the 

improvement of ECSB on the SVM classifier, in comparison with a recent SVM ensemble 

method for imbalanced problems [Tia11].  

Experimental Setup 

 Experiments have been carried out following a 2-fold cross-validation schematic 

(except for the third set of experiments). Generally, the following have been compared: (1) 

the results of the classifier on the imbalanced domain with default settings (Base) with (2) the 

results obtained by the same classifier following data pre-processing with SMOTE [Cha02] 

and default settings (Base+SMOTE), (3) the results obtained by the classifier on the 

imbalanced domain following a parameter tuning stage, performed with the genetic 

component of ECSB (ECSBT) and (4) the results obtained by a classifier wrapped in our 

ECSB method (ECSB).   

 The specific mechanisms and setting values employed for the genetic component are 

presented in Table 7.5. Several fitness functions have been considered. No tuning has been 

performed on the settings of the component so far. Five classifiers have been included in the 

experimental study, belonging to different categories: lazy methods (k-nearest neighbor – 

kNN), Bayesian methods (Naïve Bayes – NB), decision trees (C4.5), support vector machines 

(SVM) and ensemble methods (AdaBoost.M1 – AB). MLP has been excluded from these 

experiments because it generally proved to be more robust than the other five methods in 

imbalanced scenarios, and therefore the necessity for improvement is not as acute; moreover, 

it is impractically slow in combination with the ECSB method. Table 7.6 describes the 

parameters considered for each classifier (for ECSB and ECSBT).  
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Table 7.5 – Specific genetic mechanisms employed 

Setting Value 
Population type Single, similar to steady state 
Initial population generation Random 
Population size 20 
Additional pool 10 
Crossover cycles 200 
Parent Selection Roulette wheel 
Recombination Operators Crossover: random crossover, 4 points 

Mutation: single bit uniform mutation, 0.2 rate 

Fitness functions GM; BAcc; FM; LIN; PLIN 

Other Fitness ranking 
Elitism, implicit with use of single population 

Table 7.6 – Classifier parameters considered 

Classifier Parameters Type and range 

kNN K – number of neighbors Integer between 1 and 10 

C4.5 C – confidence ratio Real, between 0 and 0.4 

M – minimum number of instances per leaf Integer, between 1 and 5 

NB n.a. n.a. 

AB P – weight threshold for weight pruning Integer, between 1 and 127 

I – number of iterations Integer, between 1 and 30 

SVM C – complexity  Real, between 1 and 100 
E – exponent Integer, between 1 and 11 

 

General validation on large IR, small IAR datasets 

 A first analysis has been performed on benchmark datasets having large IR and small 

IAR, as considered in [Lem11b], i.e. five datasets with IR between 5 and 16 and IAR below 

60 (Table A.7.2, Appendix A). This combination of imbalance-related factors has been 

shown to produce a strong reduction in the performance of classifiers. Our experiments have 

yielded an average TPrate value between .27 (SVM) and around .6 (NB and MLP). All three 

cost-sensitive strategies were considered (MC, CS and CSr), and five different fitness 

functions (GM, BAcc, FM with β=1, LIN and PLIN, the last two having α=0.7). This results 

in 15 combinations for the ECSB method, compared with the results obtained by the 

classifier alone (Base), the classifier with SMOTE (Base+SMOTE) and the classifier with 

tuned parameter values (ECSBT). 

 The results are presented in fig. 7.16. For viewing purposes, the different methods 

have been numbered from 1 to 18; please refer to the legend for identification. Each bar in the 

diagrams represents the overall average score (under the specific metric) obtained by all five 

classifiers, using the corresponding method. For example – in diagram (c), the first bar 

represents the overall average TPrate obtained by all five classifiers on all datasets, under 

imbalance conditions (~2.2), while the fourth bar represents the overall average TPrate 

obtained by all five classifiers on all datasets obtained by ECSB using BAcc as fitness 

measure and CS as cost-sensitive strategy (~2.8). 

Several remarks can be made regarding these results: (1) using balanced metrics as 

fitness measures, such as GM or BAcc, produces significant improvements in the TPrate 

(second and fourth groups in Figure 7.16 (c)) and good improvements in FM and BAcc 

(second and fourth groups in 7.16 (a) and (b)); (2) FM is not effective as fitness measure 

(third group in all diagrams); (3) the linear combination between TPrate and TNrate (α=0.7) as 
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fitness function does not improve TPrate significantly (fifth group in 3.c), but instead it 

improves Prec (fifth group in 7.16.(d)); (4) the linear combination between recall and 

precision (α =0.7) as fitness score yields the most important improvement in TPrate (last group 

in 7.16.(c)), but it degrades precision (1.16.(d)) – since α=0.7, more importance is given to 

improving recall than to precision; (5) for the SVM, both the TPrate and the precision are 

significantly improved through the ECSB method (7.16.(c) and (d), the top portion of the 

bars); (6) out of the three cost-sensitive strategies evaluated, the most successful is CS (the 

first bar in each group from the second to the last), i.e. predict the class with minimum 

expected misclassification cost, instead of the most likely class. 

Therefore, balanced metrics (except FM) are generally appropriate as fitness measures 

for ECSB in imbalanced problems; when the recall is of utmost importance (e.g. medical 

diagnosis), using the linear combination between recall and precision, with a high value for α, 

is appropriate; this is also suitable when both precision and recall (TPrate) are important (e.g. 

credit risk assessment), but with a lower value for α. Cost-sensitive prediction is the most 

appropriate strategy to employ. 
 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

1 – Base 
2 – Base+SMOTE 
3 – ECSBT 

7 – ECSB(CS, FM) 
8 – ECSB(CSr, FM) 
9 – ECSB(MC, FM) 
 

13 – ECSB(CS, LIN) 
14 – ECSB(CSr, LIN) 
15 – ECSB(MC, LIN) 

4 – ECSB(CS, BAcc) 
5 – ECSB(CSr, BAcc) 
6 – ECSB(MC, BAcc) 

10 – ECSB(CS, GM) 
11 – ECSB(CSr, GM) 
12 – ECSB(MC, GM) 

16 – ECSB(CS, PLIN) 
17 – ECSB(CSr, PLIN) 
18 – ECSB(MC, PLIN) 

Figure 7.16 – F-measure, Balanced accuracy, TPrate and Precision obtained by the various methods on the 

large IR, small IAR data 
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Comparative Analysis with Evolutionary Under-Sampling 

A second analysis was performed on a set of 28 imbalanced benchmark problems 

(Table A.7.3, Appendix A) from [Gar09], in order to compare our results with the 

performance of the Evolutionary Under-Sampling (EUS) strategy presented there. EUS has 

been shown to produce superior results when compared to state-of-the-art under-sampling 

methods, making it a good candidate for imbalanced datasets, especially with a high 

imbalance ratio among the classes. In this set of experiments, we have employed CS as cost-

sensitive strategy and GM as fitness function – because it is the function employed in the 

most successful EUS model. We have also considered in the comparison the classifier with 

default settings (Base), the classifier with SMOTE and default settings (Base+SMOTE) and 

the classifier with tuned parameter values (ECSBT).  

The results of this second analysis are shown in Tables 7.7 and 7.8. It can be observed 

that ECSB significantly boosts the performance of classifiers when compared to their 

behavior on the original problem (except for the AUC for AdaBoost.M1 – Table 7.12); on the 

average, there is ~25% relative improvement on the GM and ~5% on the AUC; the most 

significant improvements have been obtained for the SVM classifier (~ 86% relative 

improvement on GM and 16% on AUC). Also, it yields significant improvements over 

SMOTE and ECSBT (~17% and ~14%, respectively, relative improvement on GM and ~5% 

and ~2%, respectively, on AUC). Slight improvements over the best EUS method have also 

been observed (i.e. the specialization of EUS which achieved the best performance in the 

above cited work): up to 9% relative improvement in AUC. 

Table 7.7 – Average GM (with standard deviations) obtained by the various methods 

GM 
Best EUS 

[Gar09] 
Base 

Base 

+SMOTE 
ECSBT ECSB 

mean stddev mean stddev mean stddev mean stddev mean stddev 
kNN .797 .169 .731 .225 .744 .218 .762 .230 .817 .173 
C4.5 

 

.660 .317 .716 .254 .635 .307 .796 .179 
NB .754 .202 .771 .164 .754 .202 .814 .129 
AB .640 .314 .658 .306 .619 .323 .798 .188 
SVM .431 .401 .558 .358 .750 .213 .803 .184 

Table 7.8 – Average AUC (with standard deviations) obtained by the various methods  

AUC 
Best EUS 

[Gar09] 
Base 

Base 

+SMOTE 
ECSBT ECSB 

mean stddev mean stddev mean stddev mean stddev mean stddev 
kNN .809 .170 .803 .144 .803 .144 .848 .140 .867 .128 
C4.5  .797 .147 .797 .147 .786 .157 .830 .125 
NB .873 .110 .873 .110 .874 .111 .874 .111 
AB .892 .105 .892 .105 .891 .098 .878 .121 
SVM .714 .175 .714 .175 .790 .143 .830 .132 

Comparison with a SVM Ensemble Method 

 To further validate our method, experiments on several datasets reported in [Tia11] 

have been conducted, to compare the ECSB method with the complex SVM ensemble 

method proposed there. Its effectiveness has been shown through comparisons with other 

available solutions: sampling (under- and over-) and ensemble approaches (bagging and 

boosting), under various metrics: precision, recall and f-measure. The reason for performing 

such an analysis can be found in [Lem11b], where it has been discovered that the 

performance of the SVM is significantly reduced in imbalanced domains.  
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Table 7.9 – Recall, precision and f-measure obtained by ECSB, compared to the                                           

SVM ensemble method 

 
ECSB 

SVMEns 

[Tia11] 

mean 
stderr 
(mean) 

mean 
stderr 

(mean) 
Recall 
Breast-cancer .513 .062 .509 .011 
Cars 1.0 .0 .977 .005 
Glass .8 .07 .65 .017 
Balance-scale .92 .042 .879 .022 
Average .808 .044 .753 .01 
Precision 
Breast-cancer .453 .033 .475 .009 
Cars 1.0 .0 .124 .004 
Glass .909 .045 .929 .005 
Balance-scale .082 .277 .140 .015 
Average 0.611 .089 .417 .008 
F-measure 
Breast-cancer .457 .043 .491 .006 
Cars 1.0 .0 .213 .005 
Glass .822 .048 .764 .008 
Balance-scale .486 .027 .241 .011 
Average 0.691 .03 .427 .008 

  

Ten-fold cross-validation was employed in these experiments; for the ECSB method, 

BAcc was used as fitness function and CS as cost-sensitive strategy. Due to time limitations, 

the analysis has been restricted to the first four datasets employed in [Tia11] – Table A.7.4, 

Appendix A. 

The results are presented in Table 7.9. They indicate that the ECSB method achieves 

more significant improvements than the SVM ensemble method in terms of recall, keeping 

precision at approximately the same levels (in three out of the four datasets, the F-measure 

has significantly higher values for ECSB than for SVMEns). On the average, the relative 

improvement on recall is of ~7%, and on FM of ~60%. 

7.4 Conclusions on Imbalanced Classification 

 All traditional algorithms are affected to some extent by the class imbalance problem. 

Also, the correct choice of the metric (or combination of metrics) to assess – and ultimately 

improve, is essential for the success of a data mining effort in such areas, since most of the 

time improving one metric degrades others. 

A series of methods which deal with the class imbalance have been proposed in the 

literature over the last years. Sampling strategies are important because they can be used as 

pre-processing strategies. However, some approaches are difficult to employ by a less 

experienced user – e.g. some require setting the amount of sampling. Most importantly, to 

maximize their effect, they need to be matched to the specific classifier employed. 

Modifications to basic algorithms have also been proposed in the literature, with good 

performance improvements, but each is restricted to a specific class of techniques. 

A first original contribution presented in this chapter is the systematic study which 

assesses the behavior of traditional classification algorithms under imbalanced class 

distributions. A large number of real-world benchmark datasets have been considered, of 

different sizes, IR, IAR and complexities.  Representative algorithms belonging to a wide 
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spectrum of techniques have been included in the study and various performance metrics 

have been measured. 

The results have confirmed that all methods suffer, to different extents, of 

performance degradation in such scenarios, with the MLP being – in general – the most 

robust, and the SVM the most prone to performance degradation. Also, the IAR, which 

encapsulates size and complexity information, provides a better characterization of a dataset 

than the size and complexity measures taken separately. The IAR meta-feature also 

represents an original contribution. Reducing the level of pruning improves the decision 

trees’ capacity to identify minority class instances.  

 To overcome the above mentioned limitations, a new general hybrid strategy for 

improving the performance of classifiers in imbalanced problems has been proposed. The 

method, Evolutionary Cost-Sensitive Balancing (ECSB), is a meta-approach, which can be 

employed with any error-reduction classifier. Two strategies are followed by the method 

simultaneously: tune the base classifier’s parameters and use a cost-sensitive meta-classifier 

to adapt to the imbalance. A great advantage of the method, besides its generality, is that it 

needs little knowledge of the base classifier; instead, it requires specific knowledge of the 

domain to select the appropriate fitness measure. 

 We have performed several evaluations on benchmark data, to validate the method 

and compare it with current state of the art strategies for imbalanced classification. The 

results have demonstrated the following: 

 the ECSB method significantly improves the performance of the base 

classifiers in imbalanced conditions, achieving superior results to sampling 

with SMOTE or adapting the algorithm to the imbalance via evolutionary 

parameter selection; 

 ECSB achieves superior results to current prominent approaches in literature: 

Evolutionary Under-Sampling and a complex SVM ensemble; 

 the most successful cost-sensitive strategy is predicting the class with 

minimum expected misclassification cost, instead of the most likely class 

(CS); 

 balanced metrics are generally appropriate as fitness functions (except for the 

F-measure); for extreme problems – e.g. precision is of utmost importance, or 

recall is the only important measure – imbalanced metrics, such as the 

parameterized linear combination of recall and precision (with the appropriate 

value given to α) are more suitable. 

 Our current focus is on improving the method training time, which is influenced by 

the size of the data and the base classifier employed. At the moment we have experimented 

with a sequential implementation, but the method presents a great parallelization potential 

and we expect that the parallel version will run significantly faster. Also, in the current 

implementations we have experienced with a fixed set of GA parameters, which cannot be 

the best for all problems. Adding an extra layer to the genetic search component, which will 

focus on finding the most suitable GA parameters for the given problem, is also a current 

focus. 

 

 The original ECSB method, the new data meta-feature (IAR) and the associated 

experimental studies presented in this chapter have been disseminated through a research 

paper submitted at the Data Mining and Knowledge Discovery Journal (revision requested): 

1. Potolea R. and Lemnaru C., “Evolutionary Cost-Sensitive Balancing: A Generic 

Method for Imbalanced Classification Problems”, submitted at Data Mining and 

Knowledge Discovery, revision requested 

a research paper in Lecture Notes in Business Intelligence Processing (in publication): 
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1. Lemnaru C. and Potolea R., “Imbalanced Classification Problems: Systematic 

Study, Issues and Best Practices”, to appear in Lecture Notes in Business 

Information Processing, 2012 

and 2 research papers, presented at renowned international conferences: 

1. Potolea, R., Lemnaru, C., “Dealing with Imbalanced Problems: Issues and Best 

Practices”, Proceedings of the 12
th

 International Conference on Enterprise 

Information Systems, Volume 2, AIDSS, June 8 - 12, pp. 443-446, ISBN 978-

989-8425-05-8, 2010 

2. Potolea, R., Lemnaru C., "A Comprehensive Study of the Effect of Class 

Imbalance on the Performance of Classifiers" Proceedings of the 13
th

 

International Conference on Enterprise Information Systems, vol. DISI, pp. 14-

21, 2011 
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8 Case Studies 

This chapter presents a series of case studies, which follow the general DM process in 

the attempt to tackle certain problems which arise in specific application domains, by 

providing “recipes” with a certain level of generality, such that they are not restricted to the 

exact problem constraints they are designed for. All solutions investigate several DM steps 

and some apply methods from the previous chapters. The problems tackled are: automatic 

classifier selection via meta-learning, which resulted in a framework that can be used for 

classifier selection in any problem domain; data partitioning strategies, which have been 

analyzed both generally and in the specific context of digital signature recognition, resulting 

in a hierarchical model for offline signature recognition; speed-up through parallelization, 

which resulted in a parallel implementation of a well-known decision tree classifier and a 

parallel GPGPU-based lightweight genetic framework; specific real-world DM application 

scenarios – community structure detection in social mining, spam prediction in spam 

filtering, user type identification in adaptive e-learning systems and a semi-supervised 

opinion mining technique.       

8.1 Meta-learning: Automated Classifier Selection 

Selecting the appropriate learning algorithm for a new problem, given its specific 

particularities, is a complex task, even for the experienced data analyst, as hidden knowledge 

is present in data. Such knowledge can seldom be surmised by the domain experts, and 

almost never by the data analyst. Therefore, an initial assessment should be performed, in 

order to identify the most promising knowledge extraction methodology for the given 

problem. The process usually involves creating several models with different learning 

algorithms under various settings and evaluating their performance with respect to the 

requirements of the problem. The analyst can then choose the learning algorithm and the 

settings which best fit the context. The time required to build a model increases with the 

complexity of the model and with the size of the input data. Running and evaluating a large 

number of learning algorithms is therefore unfeasible.  

A suitable approach involves comparing the new problem with a set of problems for 

which the learning algorithm performance is already known [Ben00, Vil04]. The analyst must 

identify the problem which most resembles the analyzed data. Consequently, the same 

learning algorithm and settings which obtained the best results on the former problem(s) is 

expected to achieve similar performance on the new problem. To make use of this approach, 

the expert should evaluate with various techniques a large amount of problems. Also, the 

success of the selected learning algorithm on the new problem depends on the expert’s 

strategy for selecting similar problems.   

This section offers an overview on the efforts we have invested into developing a 

semi-automated classifier selection framework which employs meta-learning techniques to 

indicate the most appropriate prediction strategies for a new data mining problem.   

8.1.1 Baseline Performance Assessment 

Classification algorithms are different in their approach, and hence they achieve different 

performance levels for different applications. These particularities have led to an increasing 

interest towards trying to combine the predictions of several algorithms, in order to obtain a 

scheme that performs well in several different areas. Ensemble methods are known to reduce 

the variance of learning algorithms, while the bias remains unchanged, or increases. This 

means that if the base classifier possesses a large bias on a given problem (i.e. the decision 

boundary doesn’t match the form of the separation boundaries the algorithm can learn), the 

ensemble will also possess a large bias, resulting in a low performance. In addition, 

establishing a lower threshold to the accuracy on a certain problem is essential in classifier 
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selection, for establishing the baseline performance. Thus, we have developed a classifier 

fusion system based on the principles of the Dempster-Shafer theory of evidence combination 

[Mol10, Mur10]. The system tackles the advantages of combining different sources of 

information to reduce bias and attain a high degree of stability across different problem 

domains. The uncertainty evaluation provided by the Dempster-Shafer theory also contributes 

to achieving this stability. Comparative evaluations have been performed on benchmark data, 

using representative algorithms from various categories [Mur10]. The results have indicated 

that the best Dempster Shafer combination of classifiers is always superior to the average of 

individual classifiers that it combines. More than that, the combination yields better 

performance than the best individual classifier on four of the eight datasets investigated. The 

second best combination almost always exceeds the average of individual classifiers. Both 

best and second best combinations are constantly (with a single exception) represented by 5-

classifier pair-wise combinations. A combination which repeatedly yields high performance 

values is the ((NB, J4.8), (SVM, MLP), KNN) pair-wise combination. The superiority of 

(DT, BN) pair is expected, since the two classifiers are biased by different types of non-

relevant features. The weakness of one learner (correlated features for NB, irrelevant for DT) 

is the strength of the other one, so they compensate each other. Also, while SVM may be 

seriously affected by the absence of appropriate support vectors (i.e. lack of important 

instances in the training set), MLP may compensate such a deficiency through weights 

adjustments in the training stage, and thus compensates the SVM weakness. The relative 

performance improvement in the best case, compared to the average performance of the 

individual classifiers is of up to 3.69, and 1.38 compared to the individual classifiers involved 

in the combinations. 

Therefore, the evaluations have confirmed the assumptions related to stability and 

thus allowed the formulation of a method for establishing the baseline accuracy for any 

problem domain. The choice of a specific learning scheme for a certain problem is justified 

only if its performance is better than that of the system. 

8.1.2 A Framework for Automated Classifier Selection 

In [Cac09, Cac10, Pot11b], we have designed and evaluated an evolutional meta-

learning framework for automatic classifier selection, which ranks and suggests accurate 

learning algorithms for a new problem submitted to the system (together with specific user 

requirements). The highest ranked algorithm is expected to induce a model which achieves 

the best performance under the given conditions. Several original design elements have been 

introduced into the framework. The user involvement is limited to providing the input 

problem (i.e. a dataset which the user needs to classify) and specifying the requirements (such 

as the interest metric, interpretable vs. non-interpretable model, etc). The result is presented 

as a list of learning algorithms, arranged in decreasing performance order. Recommending 

more than a single learning algorithm is important as it allows users to decide on the specific 

strategy they want to follow (from the trade-off between speed and performance, to the 

availability of tools, or existing knowledge to deal with necessary techniques). The system 

also minimizes the time it takes to provide the results by organizing tests in a queue. The 

queue is ordered according to priority and it pushes slower tests to the end. The system’s 

knowledge about the dataset space continuously improves by storing the results of all the 

tests run on new datasets. As more datasets are stored in the database, new (closer) neighbors 

are introduced, thus increasing the accuracy of the predicted order of tests.  

The conceptual model of the framework is presented in figure 8.1. The process of 

obtaining the predictions is roughly divided into selecting the similar problems and obtaining 

predictions from similar problems.  In order to provide accurate predictions for new datasets 

the system relies on existing problems and the solutions obtained on those problems 

(classifier + performance). It must have the ability to increase its knowledge by adding new 
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problems and the corresponding solutions. The evaluation of the performance of the 

algorithms on existing problems is performed mainly in the initialization phase.   

After a significant number of problems have been collected, the system is expected to 

produce reliable outcomes, in the prediction phase. In this phase, a new problem is submitted 

to the system, along with its requirements. The system must find similar problems in its 

collection. The similarity refers to the resemblance, in terms of meta-features, between the 

problem under evaluation and problems in the collection, and is evaluated by computing a 

distance between the analyzed problem and the stored problems. A subset of the nearest 

stored problems is selected as neighbors of the analyzed problem.  

The results obtained by the learning algorithms for every neighbor problem are known 

(represent background knowledge, stored in the collection, together with the datasets and 

their meta-features). The performance score of each classifier is obtained by inspecting the 

results obtained by that classifier from the perspective of the user requirements. The 

framework then predicts the performance score for the classifier on the analyzed problem as a 

combination of the performance scores obtained by that classifier on the neighboring 

problems. The final list of recommended learning algorithms is ordered by their predicted 

performance scores. An extension of the initialization phase runs during the system idle time, 

when no predictions need to be performed. More specifically, the system extends its 

knowledge by evaluating models on newly added problems and saving the results.  

The meta-features employed for dataset distance computation have been grouped into 

four categories: (1) general attribute-related meta-features (such as number of attributes and 

their types), (2) properties of the nominal and binary attributes (such as the minimum and the 

maximum number of distinct values, the mode and the standard deviation, the mean entropy), 

(3) the properties of the continuous attributes (mean skewness, mean kurtosis) and (4) dataset 

dimensionality (number of instances, imbalance rate). 

Various performance metrics have been introduced within the framework, both 

balanced and imbalanced. For allowing users from different areas of expertise to discover a 

generally good classifier, an original evaluation metric has been proposed, which combines 

the accuracy, the geometric mean and area under the ROC curve: 

 
3
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The classifier prediction process is divided into three phases: distance computation, 

neighbor selection and prediction computation (or voting). For each of these phases we have 

proposed and evaluated several strategies [Pot11b]: 
 

 

Figure 8.1 – Conceptual framework model 
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 Distance computation: Euclidean, Chebyshev, Top 3 Chebyshev,  all 

normalized 

 Neighbor selection: Top 3, Above Middle (compute the mean of the closest 

and furthest neighbors and use it as selection threshold), Above Median, 

Above Mean 

 Voting strategy: Democratic, Weighted 

The prediction process should produce performance estimates which are as close to 

the actual performance achieved by the classifier on the dataset, without surpassing it. Also, 

strategies which minimize the deviation means for all metrics considered should be preferred.  

Experimental evaluations 

The system has been initialized with 19 benchmark datasets that range from very 

small to medium sizes (up to 6000 instances). Also, the following classifiers are available: 

Bayes network, Naive Bayes, decision trees, neural network, support vector machines (using 

their implementations provided by WEKA). Evaluations have been performed using all the 

possible combinations of the implemented strategies for distance computation, neighbor 

selection and performance score prediction. 

To perform a test suite, a performance metric has been selected and the following steps 

have been performed: 

1. select a strategy combination 

a. select a dataset and use it as the analyzed dataset 

i. use the remaining 18 datasets as datasets stored in the system 

ii. use the selected strategy combination to predict performance 

iii. compare the predicted performance with the actual performance obtained in 

the initialization stage on the selected dataset 

b. select next dataset 

2. compute the deviation mean and the absolute deviation mean on all datasets and 

classifiers for this strategy 

3. select next strategy combination 

 

The above strategy has been applied for the following metrics: accuracy, geometric 

mean, generalized geometric mean, area under ROC, general purpose metric. The deviation 

between the predicted and true performance has been computed as the difference between the 

performance prediction and the actual performance. In case the system predicted that a 

classifier achieves a higher performance than it actually obtained, this value is negative. 

Figure 8.2 displays the absolute deviation means obtained by the different selection 

strategies, under different performance metrics. It can be observed that the voting strategies 

do not influence the final predictions very much. Weighted voting (W) obtains better results 

than democratic voting (D), but in most cases the difference is so small that it does not justify 

the additional resources needed to compute the weight of each neighbor. Moreover, the 

distance computation and neighbor selection strategies that obtain the smallest absolute 

deviations are, in order: Top 3 Chebyshev distance with Top 3 neighbor selection (C3-T3), 

Chebyshev distance with Top 3 neighbor selection (C-T3) and Euclidean distance with 

Above Middle neighbor selection (E-MID). 

By analyzing the deviation mean results from figure 8.3, more details on the way each 

strategy combination works can be inferred. Top 3 Chebyshev distance with Top 3 neighbor 

selection (C3-T3) achieved negative deviation means for the accuracy and generalized 

geometric mean metrics. Thus, the strategy combination is overly optimistic on these metrics. 

The Chebyshev distance with Top 3 neighbor selection (C-T3) makes optimistic predictions 

on the exact same metrics. This strategy combination seems to be the best choice when 
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predicting classifier performance evaluated with the general metric, but is not appropriate for 

the other metrics in the system. The strategy combination with the best results on all metrics 

is Euclidean distance with Above Middle neighbor selection and democratic voting (E-MID-

D). This combination obtains positive deviation means for most metrics, having a very small 

negative deviation for the geometric mean. This is the preferred behavior for the system. 

 

Figure 8.2 Absolute deviation means of different prediction strategies, under different metrics 

 

 

Figure 8.3 – Deviation means of different prediction strategies, under different metrics 
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In conclusion, the strategy combination with the best results on all metrics is 

Euclidean distance with Above Middle neighbor selection and Democratic Voting. It obtains 

positive deviation means for most metrics, having a very small negative deviation for the 

geometric mean. The tests also reveal that the voting strategies do not significantly influence 

the final results. 

8.2 Enhancements by Data Partitioning 

Multiple meta-learning methods which employ some kind of data partitioning strategy 

to evolve multiple sub-models, and combine the predictions to achieve increased 

classification performance and/or scalability, have been proposed in the scientific community 

[Bre96, Cha96, Fre97]. This section presents our work on the analysis of such an existing 

technique and several enhancements and proposes new strategies for data partitioning and 

combined prediction. Also, in the context of a specific DM application scenario, two case 

studies are presented, in which hierarchical classification models using data partitioning 

strategies are proposed, for two application scenarios: offline signature recognition and 

network intrusion detection.  

8.2.1 The Arbiter-Combiner 

In [Mer09], we have explored several strategies for improving the classification 

performance, via data partitioning.  Based on the general arbiter method proposed in [Cha96], 

we have developed a new method, which considers several enhancements over the general 

scheme: automatic building of a perfectly balanced n-order tree; building a user specified 

structure of the tree; different learners on each node of a specified tree structure; different 

learners for arbiters and base classifiers with automatic tree building; data partitioning 

according to the tree structure; no union of subsets required. We have performed empirical 

evaluations on the new method, analyzing the impact of different parameters on the 

performance: leaf number, order of the tree (and implicitly the height of the tree and number 

of meta-classifiers), selection rule, and also of using a cost sensitive learning strategy instead 

of the traditional ones. Also, we tried to improve the accuracy for under-represented classes 

by applying random oversampling to the training data. We have also analyzed how the 

predictive performance of classifiers improves along each level of the tree. Training the 

classifiers was done using the same or different learning algorithms. The results indicated that 

arbiter trees have similar or higher predictive performance when compared to the individual 

classifiers, achieving a relative improvement of up to ~7% for the J4.8 classifier and of ~6.5 

for the NB classifier. Binary arbiter trees obtained better results than higher order trees. The 

different-arbiter selection rule performs the best compared to the other selection rules and 

individual learners. Cost-sensitive learning on the leaves boosts the classification and/or 

balances the confusion matrix. Moreover, random oversampling balances the confusion 

matrix too. However, due to randomization, the predictive performance can sometimes 

degrade. 

In the same work, an original classification method using data partitioning has been 

proposed: the arbiter-combiner, which specifies a regression model for each class, in each 

node, except for the leaf nodes [Mer09]. During the evaluations performed on the method, 

different order trees with different number of leaves were induced, in order to study the effect 

of the number of leaves on the predictive performance of the model. During preliminary 

testing, it was observed that too few instances propagate up to the meta-learner. The 

minimum number of meta-instances was restricted to the number of records for a base/leaf 

classifier. Two methods were tested to complete the training set for the meta-learner: include 

instances randomly and weight the meta-instances and add them in increasing order of their 

weight. The results have indicated that both binary and higher order trees yield good results. 

Also, the arbiter-combiner strategy is fitted for imbalanced datasets with multiple class labels. 
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In real-world classification problems (such as medical diagnosis) such a situation often 

occurs, and thus, the arbiter-combiner strategy might provide a more robust solution in these 

cases than the strategies which first binarize the problem and then apply customized methods 

for two-class imbalanced problems (as the ones presented in Chapter 7 of the current thesis). 

8.2.2 A Hierarchical Model for Offline Signature Recognition 

  The handwritten signature is perhaps the most employed authentication mechanism in 

formal agreements, financial systems, various documents and artifacts. Despite several 

known limitations, such as the relatively reduced robustness to forgery or signature style 

variation when compared to more evolved biometrics authentication strategies, signature 

recognition systems are widely employed, especially in authenticating banking documents, 

due to their satisfactory performance per cost ratio. Just like any other DM system, a 

signature recognition system operates in two phases: training and recognition. In offline 

systems, the recognition phase does not occur in real-time, i.e. such systems do not employ 

data on speed of writing, acceleration or number of strokes in writing for each sample. 

However, their reduced cost makes them suitable for interpreting handwritten postal 

addresses on envelopes, sorting mail by postal code, automated reading of checks and tax 

returns or reading courtesy amounts on bank checks. The image processing and feature 

extraction steps are of vital importance in such systems, since they produce the data for the 

recognition process.  

In [Bar09] an offline signature recognition system, which considered a wide collection of 

predictive features, employed separately by different other systems, has been proposed. Also, 

a new taxonomy of the types of features employed by such systems has been established and 

two new distance-based features have been introduced. Several iterations on the data mining 

process have been performed, completing the specific steps that were required by the specific 

problem requirements. Two feature selection strategies have been explored (a wrapper and a 

filter method), together with two classification strategies: Naïve Bayes and the Multilayer 

Perceptron. The Naïve Bayes classifier has been found to obtain the best results under the 

initial classification conditions, when compared to the Multilayer Perceptron – an accuracy of 

~ 85%, compared to ~80%. Feature selection has further improved the recognition 

performance to ~91.4%, for the Naïve Bayes classifier. The analysis on the learning curves of 

the two classifiers indicated that the signature collection process should continue, since 

neither curve seemed to stabilize, when using less than 20 instances per class. With the 

addition of new data, increasing both the number of signatures/individual (i.e. instances/class) 

and the number of individuals (i.e. classes), the model based on a single multi-class 

classification step proved to possess insufficient separation capabilities (under-fitted the 

problem). 

Therefore, in [Bar10, Pot11a], the previously proposed system has been enhanced by 

introducing a new method for hierarchically partitioning the training data using clustering. 

The aim of the method was to improve the recognition rate and the scalability of the system, 

by splitting the training data into smaller datasets, via clustering, and building classification 

sub-models for each split. When a new signature instance is to be classified, the hierarchical 

classifier first clusters it to find the best classification sub-model. It then presents the instance 

to the specific classification sub-model, which assigns the appropriate class label to the 

instance. Experimental evaluations have indicated that, for 76 classes and up to 20 

instances/class, a number of 7-8 clusters generally yields good results. However, the optimal 

value for the number of clusters depends on the number of instances used for training. Also, 

several classifiers have been investigated for the classification step. The Naïve Bayes learner 

was selected as being the most appropriate in the majority of cases, providing accurate sub-

models. Feature selection was again found to further improve the recognition performance, 
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achieving an increase of 1.62% on the accuracy against the initial model on a training set 

having 14 instances/class and 3.23% on a training set with 20 instances/class. 

8.2.3 A Hybrid Approach for Network Intrusion Detection 

A Network Intrusion Detection Systems (NIDS) represents a combination of hardware 

and software resources that are employed together in order to maintain system security by 

examining network traffic and detecting signs of potential violations of security policies in a 

computer network. NIDS’s are divided into two categories: misuse (also known as signature-

based) and anomaly detection systems. The first category encompasses systems which match 

traffic data against a database of known attack signatures, while anomaly detection systems 

employ learning models to separate between normal and anomalous traffic. Misuse systems 

are heavily based on human expert knowledge about real world attack patterns. Anomaly 

detection systems have an advantage over misuse systems because they can detect zero-day 

attacks or new attacks that are not part of an attack signature database. Also, misuse detection 

can impose noticeable overhead on systems when the network behavior matches multiple 

signatures. 

In [Lem12c] a hierarchical model for network intrusion detection has been proposed, 

which combines the predictions of several binary classifiers at the first level and employs an 

additional classifier on the second level, specialized on classifying “difficult” instances – 

such as new types of attacks. The basic flow of the method starts with an initial data 

preparation step, in which several pre-processing operations are performed on the available 

training data, to improve its quality and generate the appropriate training sub-sets for the 

binary classification stage. Each binary classification module is specialized on correctly 

classifying a specific class of interest, and possesses the highest performance for that specific 

class. The predictions obtained from the binary classifiers are processed using a voting model 

which combines the individual predictions and generates the output prediction. In addition to 

existing voting strategies, a new method for prediction combination is proposed, which takes 

into account the data and error cost imbalance ((figure 8.4). More precisely, the predictions of 

the binary modules are initially ranked according to domain knowledge – data distribution 

and the gravity of failing to identify a specific class. Then, the instance to be classified is 

presented, in turn, to each binary model, until one of them produces a positive identification, 

i.e. the probability that the instance belongs to the given class is larger than the identification 

threshold value. The identification threshold values are learned for each individual binary 

model. Instances which cannot be classified via this mechanism (i.e. the voting strategy 

cannot indicate a certain output label) are delivered to the level 2 classification module. The 

conceptual architecture of the system is presented in figure 8.5. 

The experiments were conducted on a dataset derived from the NSL-KDD Dataset 

[Tav09], which is an improved version of the KDD CUP ’99 Dataset, having the following 

classes: normal and anomalous traffic. Redundant or incorrect data, as well as duplicate 

records have been removed from the initial dataset. The KDD CUP ’99 Dataset has been pre-

processed in a similar manner, to obtain a five-class dataset: the 4 classes of attacks 

corresponding to four main attack categories (DoS - Denial of Service, Probe, R2L - Remote 

to Local and U2R - User to Root) and the Normal class for non-attacks. Thus, starting from 

the initial training set, which contains 23 classes (22 types of attacks and normal traffic 

records), and testing dataset, with an addition of 17 new types of attacks, the attacks have 

been grouped into the above mentioned 4 attack categories. This resulted in a KDD+4 

Training and Testing sub-sets, each containing 41 attributes, divided into 3 categories 

[Far09]. The first is represented by the duration, source bytes, destination bytes, service and 

TCP flags; the second category comprises of the features related to packet content and the 

last contains connection-related features, such as the connection time.  
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Figure 8.4 – Hierarchical prediction combination strategy 

 

Figure 8.5 – Classification architecture 

The resulting training and testing sets have been employed throughout the experiments and 

are further referred to as KDD+4 sets. 

The major challenge with the KDD+4 training and testing datasets is that they have 

imbalanced class distributions. The class imbalance problem has been presented in Chapter 7 

of the current thesis. Table 8.1 and Table 8.2 display the number of instances of each class in 

the training and testing datasets. The second row of each table shows the value of the 

imbalance ratio (IR) for each category of attack, relative to the normal traffic instances. It can 

be seen that the R2L class has an IR of 1 attack instance to 67.68 instances of normal traffic, 

but the highest IR appears for U2R, which has 1 attack instance to 1295 normal instances. 

When handling such a dataset, classification algorithms are biased towards the majority class 

due to its over-prevalence [Cha03].  
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Table 8.1 - KDD+4 Training Dataset 

 DoS Probe R2L U2R Normal Total 

No. Inst 45927 11656 995 52 67343 125973 

IR 1.47 5.78 67.68  1295   

 

Table 8.2 - KDD+4 Testing Dataset 

 DoS Probe R2L U2R Normal Total 

No. Inst 7458 2421 2852 67 9746 22544 

IR 1.31 4.03 3.42 145.46   

 

In addition, according to [Ngu08] and preliminary evaluations performed on the 

training set, no single classifier can achieve a high detection rate for all types of attacks. 

Thus, the focus is to obtain a high detection rate for each attack class, with major 

improvements for the two least represented attack classes R2L and U2R – for which similar 

systems in the literature achieved low recognition rates. 

The tuning flow for the multiple classifier system on the first level is presented in 

figure 8.6. Each binary classification sub-model has to be built such as to distinguish, as best 

as possible, between a certain type of attack and normal packets. We have experimented with 

several classifiers and settings for each individual binary problem.  Following a series of 

comparative evaluations, specific choices regarding the classifiers and settings, as well as 

sizing and finding the optimal distribution for each binary problem have been made. They are 

presented in the following. To determine the classifier that has the highest detection rate for a 

certain class, the 5 binary datasets have been generated: the first four containing all instances 

of a given attack type (as the positive class) and a sub-sample of normal instances (as the 

negative class), respectively, and the fifth containing all the instances of the normal (positive) 

class and a sub-sample taken from all attack types (negative class). The tests have been 

performed using 5-fold cross validation and default classifier parameter settings, on nine 

different classifiers belonging to different categories, employed previously by similar 

systems. The top two classifiers which achieved highest TPrates and lowest FPrates for each 

sub-problem are considered for further testing. Thus, the following classifiers have been 

selected for subsequent evaluations: REPTree and RandomForest for the DoS module, 

RandomForest and NBTree for Probe, BayesNet and NaïveBayes for R2L, NaiveBayes and 

BayesNet for U2R, RandomForest and NBTree for Normal. 

Modifying the distribution and volume of the dataset is done by using re-sampling 

techniques. This set of tests has been performed by varying the distribution of the primary 

class from 10% to 90%, with a 10% increment. Two different re-sampling strategies have 

been explored: simple re-sampling and smart re-sampling. Simple re-sampling performs 

random under-sampling on the majority class while oversampling randomly the minority 

class. Smart re-sampling, on the other hand, performs oversampling by artificially generating 

minority class instances using the SMOTE algorithm [Cha02]. The tests have been run on the 

previously selected classifiers configured with the default parameters.  The classifiers were 

trained on 40% of each binary training set and validated on the remaining 60%. In order to 

compare the results the Fβ-measure was employed, with β=2 for the strongly represented 

classes (DoS, Probe, Normal) and β =4 for the weakly represented classes (R2L and U2R). 
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Figure 8.6 – Tuning stages for the multiple classifier system 

We have selected this metric to assess the results since it is easier to compare between 

different performance levels than analyzing the confusion matrix; moreover, by varying β 

different importance levels can be assigned to the different attack classes. The results 

indicated that the best distribution depends heavily on the problem at hand and the employed 

learning method (table 8.3). Only in some of the cases the smart re-sampling produces 

superior performance to the simple re-sampling strategies. If we take into account also the 

speed of each approach, the employment of smart re-sampling techniques over simple 

strategies is not justified. 

For tuning the parameters of the classifiers employed in the binary modules, 5-fold 

cross validation was employed, on the naturally occurring distribution. The best choices for 

each module are: 16 trees and 11 attributes for the RandomForest in the Probe+Normal 

module; for the DoS+Normal module, 4 trees and 22 features for the RandomForest 

classifier; for R2L+Normal and the U2R+Normal module the default BayesNet settings; for 

the Normal+Attack module, 20 trees and 14 features. 

Table 8.3 – The best learning distributions for each module  

 

Simple resampling Smart resampling 

% minority Fβ-measure % minority Fβ-measure 

DoS 
REPTree 50 0.9997 40 0.9996 

Random Forest 80 0.9999 70 0.9999 

Probe 
Random Forest 30 0.9977 40 0.9971 

NBTree 50 0.997 20 0.9962 

R2L 
BayesNet 10 0.9578 10 0.9465 

Naïve Bayes 30 0.7264 30 0.7204 

U2R 
Naïve Bayes 90 0.2382 60 0.3597 

BayesNet 20 0.6607 20 0.6492 

Normal 
Random Forest 70 0.9988 80 0.9989 

NBTree 70 0.9986 80 0.9983 
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Table 8.4 - TP and FN values obtained by the different voting strategies  

 

 

 

 

 

 

 

 

 

 

Several different voting strategies have been considered for combining the individual 

predictions of the binary classification sub-modules: majority voting (Maj), product voting 

(Prod), average voting (Avg), maximum voting (Max), median voting (Med) – all available in 

WEKA and the proposed voting strategy (Hierarchical). 

All the configurations previously identified have been employed to train the overall 

system. The results obtained by evaluating the fully configured system on the test set can be 

seen in the first column of the Table 8.5. The results obtained by our system have been 

compared to other systems evaluated on the KDD’99 datasets. The proposed hybrid system 

yields significant improvements in the detection of minority classes compared to the other 

systems [Gog10, Elk00]: 90% correctly labeled instances for the R2L class and 85% for the 

U2R. These results are achieved with the level 1 multiple classification method alone; the 

level 2 classifier is currently under development. We expect its addition to produce further 

improvement in the recognition of attack instances. 

8.3 Speedup and Scalability through Parallel/Distributed Strategies 

There are situations in which specific problem requirements impose additional 

constraints on the DM process. For example, when dealing with extremely dynamic 

distributions (e.g. spam sdetection, network intrusion detection, etc) periodic re-training and 

model fitting are necessary, making training time also a potential constraint. By exploiting 

the parallelization potential of existing techniques, faster methods can be developed to 

respond to such demands. In this sub-section we present our efforts to achieve speed-up 

through parallelization on two important DM techniques, widely employed in the present 

thesis: decision trees and genetic search. A parallel version of the Evolutionary Cost-

Sensitive Balancing method proposed in Chapter 7 is also presented.    

8.3.1 dECSB – Distributed Evolutionary Cost-sensitive Balancing 

In [Lem12a], an original distributed version of the ECSB method proposed in Chapter 

7 has been developed. The necessity for such an approach has been dictated by the inability 

to produce learning models, via ECSB, for relatively slower algorithms, such as SVM, on 

slightly larger datasets (~5000 instances). This is because fitness evaluation within the GA 

implies training and evaluating a cost-sensitive meta-classifier in a cross-validation loop.  

Table 8.5 - Recognition rates/classes  

Class Our System KDD Winner  Catsub FCM SVM +DGSOT 

DoS 97% 97% 100% 99% 97% 

Probe 100% 83% 37% 93% 91% 

R2L 90% 8% 82% 83% 43% 

U2R 85% 13% 0% 0% 23% 

Normal 89% 99% 82% 96% 95% 
 

 DoS Probe R2L U2R Normal 

TP FN TP FN TP FN TP FN TP FN 

Maj 22587 4969 3814 3179 41 556 1 30 40401 4 

Avg 22709 4847 3793 3200 43 554 1 30 40402 3 

Max 27535 21 6761 232 462 135 5 26 40393 12 

Med 6 0 22 0 25 0 11 0 0 40354 

Prod 26869 20 3720 216 4 134 0 26 40393 11 

Hierarchical   27556 0 6981 12 593 4 28 3 39954 451 
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Therefore, the complexity of the method depends on: the population size (N), the 

number of generations (I) and the complexity of the cost-sensitive classifier, which, in turn, 

depends on the complexity of its base classifier; since the cost-sensitive classifier intervenes 

only at prediction time, by altering the predictions according to the given cost matrix, its time 

complexity is dominated by the complexity of the base classifier employed; thus, the leading 

term for the time complexity of ECSB is: 
 

TECSB(m, n, N, I, k) = N × I × (k × Tbase(m, n))    (8.2) 

where k is the number of folds in the cross-validation loop, m is the number of instances, n is 

the number of attributes in the training set. Tbase can be further divided into training and 

evaluation time complexity – most algorithms are computationally-intensive for the training 

stage; an exception to this is the kNN classifier, or other “lazy” methods (i.e. which don’t 

build a prediction model). 

The distributed algorithm has five key elements: a candidate factory, evolutionary 

operators (crossover and mutation), a fitness evaluator, a selection strategy and a 

termination condition (as depicted in figure 8.6). The candidate factory is responsible for 

generating the population of n candidate individuals. The genotype of an individual consists 

of two chromosomes associated with the misclassification costs and two chromosomes 

representing parameters of the base classifier used; these chromosomes are encoded in Gray; 

their phenotypes are expressed as integers. 

The evolutionary operators – crossover and mutation – are applied at bit level for each 

chromosome. Multiple point crossover and single bit uniform mutation have been considered, 

in the attempt to increase search variability. As different problems may require separate 

evaluation strategies, we have assessed several evaluation metrics as fitness functions, both 

balanced and imbalanced. In Chapter 7, we have concluded that the geometric mean, the 

balanced accuracy and the linear combination between the true positive rate and precision are 

the most appropriate under various settings, for different domains/problems. Fitness 

evaluation is the major point for parallelization in our approach. 

For the selection strategy used to filter the individuals in the current generation for the 

evolution of the future generation, an elitism strategy has been considered. The amount of 

individuals from the old generation which will be kept in the new one can be specified. This 

mechanism has been employed in conjunction with the increased search variability, to 

improve the robustness of the search, by encouraging the exploration of the search space 

rather than favoring early convergence to highly fit individuals. Two parent selection 

methods have been employed: rank selection and roulette wheel selection. Rank selection 

provides an effective mechanism for controlling the selective pressure.  

The end of the evolution cycle is controlled through the termination condition, 

represented by reaching the predefined number of evolution cycles or a certain fitness level. 

In the sequential ECSB, when evolving from one generation to another, fitness 

computation represents the main bottleneck. Two types of “data” are utilized within ECSB: 

(1) the instances in the training set used to build the classification model and (2) the 

individuals in the genetic population (cost matrix and base classifier settings). Accordingly, 

two distribution strategies have been considered. 

The first approach is computation-driven (figure 8.8): the training set is replicated in a 

distributed environment capable of splitting the GA population in multiple subsets of 

individuals and performing parallel fitness evaluation for each subset of individuals (as 

depicted in Fig. 3). 

The time complexity of this approach can be expressed as: 

 

          (8.3) 
overheadT

r

n))(m,T *(k
*I*N= r)k,I,N,n,(m,T Base

dECSB
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Figure 8.7 – Conceptual architecture of the Evolutionary Engine 

where r represents the number of processing nodes, or, otherwise said, the splitting ratio, and 

Toverhead represents the overhead introduced by splitting the problem and combining the 

results. Generally, the first term is significantly larger than the second. This method should 

provide the same quality of solutions as the sequential ECSB. As a possible limitation, since 

the complexity of model generation and evaluation for a particular classifier is strongly 

influenced by the size of the training set, when handling large training-sets this approach it 

might not scale. 

The second approach, which aims to avoid this drawback, is data-driven (figure 8.9): 

the training set is divided into several partitions, keeping the same distribution in each 

partition. The entire population is evaluated in parallel for each partition, and the fitness value 

for an individual is computed as the average of the values evaluated on each partition. The 

time complexity of this second approach can be expressed as: 

 

          (8.4) 
 

where r is the number of computation nodes and T’overhead is the overhead corresponding to 

the distribution via this approach. Again, the leading term is the first one. It is easy to prove 

that the data-driven approach has a lower time complexity than the computational-driven one 

and thus we expect it to be faster and scale better to large datasets. The question with this 

strategy is whether the overall performance of the solution is affected, due to the lack of 

sufficient representative instances in some partitions. Which of the two approaches is better 

depends on the specific problem characteristics. 

The development context for our proposed solution plays an important part in the 

success of the deployment. The major prerequisites are: a background capable of sustaining 

distributed computations on large training sets. Such an infrastructure should expose its 

features to a more abstract layer were the conception of data and computation intensive 

solutions are not dependent on low level infrastructure issues. 
 

 

Figure 8.8 – Computation-driven approach 

 

 

Figure 8.9 – Data-driven approach 

overheadT 'n)) ,
r

m
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On top of these two layers, a framework for developing evolutionary algorithms is 

required. In figure 8.10, the layers discussed above are illustrated, with reference to the 

existing frameworks employed to sustain our approach. 

For the outmost layer Hadoop
3
 has been selected. It provides a distributed file system 

and also a distributed computation engine based on the map/reduce paradigm, for performing 

real time computations in a scalable context. From a practical point of view, we use Hadoop 

map tasks for evaluating an individual or a population of individuals. This is done by writing 

Java-based Hadoop map tasks where WEKA is used for performing the actual evaluation. 

The basic flow covers: deploying the map task to a node where the dataset is present, loading 

the dataset, creating a WEKA evaluator, training the evaluator on the loaded dataset, 

evaluating the created model(s) and expose the evaluation result(s) in the Hadoop context. 

The reduce task implementation depends on the distributed fitness evaluation strategy used. 

On the second layer we need a solution able to distribute our fitness evaluation. The 

Mahout
4
 framework provides a possible solution for this layer, making all configuration and 

implementation details transparent to the developer when writing a scalable machine learning 

application. One feature of Mahout is the possibility of running distributed genetic algorithms 

implemented in the Watchmaker
5
 framework. For the second approach in distributing fitness 

evaluation (data-driven fitness evaluation) we developed our own solution. It is a Java-based 

implementation of Hadoop and Watchmaker interfaces, acting a bridge between Hadoop and 

Watchmaker. 

For the third layer, the Watchmaker framework is used, which supports the 

development of scalable GA’s, by providing a non-invasive API and a reasonable collection 

of specific GA mechanisms. From a structural point of view, our solution is mapped onto the 

Watchmaker architecture, using some components already available within the framework. 

We are currently performing a series of evaluations, comparing dECSB to the 

sequential version of the method and to other techniques for imbalanced classification. 

Preliminary results indicate that dECSB improves the performance of the classifiers, under 

almost all the metrics considered. Also, tuning the GA parameters is likely to produce further 

improvements in performance. Time measurements indicate that the data-driven approach is 

the most appropriate of the two strategies adopted [Lem12a].  
 

 

 

Figure 8.10 – Architectural context 

 

 

                                                 

 
3
 http://hadoop.apache.org/ 

4
 http://lucene.apache.org/mahout/ 

5
 http://watchmaker.uncommons.org/ 
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8.3.2 A Parallel Decision Tree 

A serious limitation of decision trees, rooted in the splitting mechanism, is the 

memory requirement. In order to compute the value of the splitting function for an attribute, 

all training instances need to be processed. As the size of the training set increases, loading 

all instances into the main memory at once becomes impossible. Several solutions address 

this shortcoming, the most prominent being the SPRINT („Serial PaRallizable INduction of 

decision Trees”) algorithm [Agr96] and SLIQ [Meh96]. Starting from the SPRINT decision 

tree, an original parallel version of the algorithm, with several proposed improvements over 

the sequential version has been proposed [Dod11]. The splitting criterion employed is the 

Gini index and pre-pruning was used as control mechanism for the size of the resulting tree. 

The method eliminates the memory issue by using the auxiliary structure proposed in 

SPRINT – the attribute list – and maintaining the data in a relational database. Speed-up is 

achieved by evaluating each possible split point in parallel. 

The experiments performed have shown that the parallel implementation outperforms 

the sequential implementation on each platform considered, achieving significant speed-up 

factors (up to 3 times faster on a quad core). Moreover, the results have indicated that by 

increasing the number of threads which can be generated at a time, the performance of the 

parallel implementation improves significantly (the parallel implementation achieved 4x 

speed-up on a quad core compared to the dual core). 

8.3.3 A Lightweight Parallel Genetic Algorithms Framework 

In [Fei11] a series of genetic mechanisms, which have later been employed in a 

lightweight parallel genetic framework, have been introduced. In the above cited work, the 

developed mechanisms have been presented in the context of providing efficient solutions to 

NP-complete problems. Therefore, a parallel genetic algorithm has been developed, using the 

General-Purpose Computation on Graphics Hardware (GPGPU) paradigm and the available 

NVIDIA CUDA
6
 parallel computing platform and programming model. An island-based 

approach for the genetic search engine has been investigated, to isolate populations within a 

block and minimize inter-block communications. This is desirable for both the algorithm and 

the GPU-based implementation: at algorithm-level, subsets of individuals search for an 

optimum, while at implementation-level no inter-block synchronization is required, each 

island evolving separately in a block. Each population is mapped on a CUDA block, and each 

genotype in the population on a thread. The entire algorithm is run on the GPU to minimize 

the communication between the GPU and CPU. The result is passed to the CPU at the end of 

the execution. During the evolution, each thread generates an offspring from two selected 

parents, using crossover and mutation operators. Parent selection is roulette wheel with 

scaling on the fitness scores. 

Evaluations on several traditional NP-complete problems existing in literature have 

been performed. The results have indicated that the parallel GPU-based GA implementation 

achieves significant speed-ups when compared to a sequential GA implementation, while 

maintaining the solution quality.  

8.4 Domain-specific Data Mining Process Instantiations  

8.4.1 User Type Identification: Static and Dynamic User Profile in Adaptive E-

learning Systems 

Adaptive e-learning systems represent a new paradigm in modern learning 

approaches. In the attempt to preserve the quality of the teaching effort (as in face to face 

                                                 

 
6
 http://www.nvidia.com/object/cuda_home_new.html 

http://www.nvidia.com/object/cuda_home_new.html
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education), current trends in this area focus on improving the user's performance throughout 

the learning process, by stimulating faster learning and helping students develop new, 

desirable learning abilities. This is achieved by continuously monitoring and adapting the 

process to the user’s capabilities, needs and desirable behavior. In [Fir09] we have proposed 

and designed an adaptive e-learning system which ensures content adjustment according to 

the user profile, similarly to face to face education. The system performs user profiling and 

employs concept maps to adapt the content accordingly. The design specifies both static and 

dynamic features for characterizing the student's profile. The strength of the adaptive e-

learning model is based on the intelligent component, which defines rules based on both 

matching and mismatching between teaching strategies and learning styles. It is continuously 

evaluating the user profile, and adapts the content to improve the student's performance. Four 

different types of users were considered, according to the most prominent findings in 

literature [Ver96]: understanding based, memorization-based, concrete and non-directed. 

The intelligent component for the adaptive e-learning system has been developed by 

performing several iterations of the data mining process. Static data has been collected from a 

sample of 304 Romanian students in the engineering field, using a psychological test. The 

answers are partitioned, according to psycho-pedagogical knowledge, to form intermediate 

attributes, which determine an initial classification of the user. A Bayes Network (BN) static 

model of the user was initially assessed. The BN model evaluated the percentage of 

membership of each individual to each of the four learning styles, yielding narrow separation 

boundaries between the four classes. In the attempt to achieve a better separation of the 

typologies, several experiments have been conducted with the k-means clustering technique, 

using three different values for k: 3, 4 and 5 [Tri10]. The results suggested that a 3-type based 

analysis explained the data better than the theoretical 4-type based. The few discrepancies 

observed have been attributed to two sources: (1) the cultural and regional differences 

between the populations evaluated and the ones reported in literature and (2) the non-uniform 

distribution of the population evaluated (all the individuals were from the same study year).  

In [Lem11a], the quality of the static user model has been assessed through various 

unsupervised techniques. The sub-goals were to compare and contrast different models – a 

clustering technique with a Self-Organizing Map (SOM) approach and to analyze the feature 

– user type correlations. Again, a 3-type model has been found to best fit the static user 

profile. Also, a series of attribute-user type correlations have been identified in the data 

sample. A design which integrates the static and the dynamic user profiles into a common 

approach has been proposed (figure 8.11). It consists of two sub-components: a k-means 

clustering component and a SOM. The first it is used for initial user type identification based 

on static attributes. Its results are used for initial SOM training and evaluation. The input of 

the SOM component has two parts: a static part (the static attributes, as recorded by the initial 

psychological test) and a dynamic part (the attributes identified during the user’s interaction 

with the system).  

 

 

Figure 8.11 – User type identification component 
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The values of the dynamic attributes may change over time, as the user learning style 

evolves; however, the static attributes are not re-assessed (the pre-test is presented to the user 

only once, during his/her first interaction with the system). The SOM component training 

process is continuous – the map configuration may adjust as the users interact with the 

system, and the values of their dynamic attributes change. 

The SOM component is initially built using only the static attributes; all the dynamic 

attributes have the value zero. After this initial construction phase, the learning rate and the 

neighborhood radius of the SOM are set to low values in order to ensure that changes due to 

dynamic attributes are made in time, representing a consistent user behavior. This is 

necessary because the user learning style cannot change abruptly and, therefore, a spike in the 

user’s dynamic behavior does not produce major changes to the map topology. However, if 

the same modified behavior persists in time, this means that the user learning style has 

evolved and this will have an effect on the map topology and user classification. This 

desirable behavior is ensured through another mechanism: user history. The values of the 

dynamic attributes represent aggregates of the actual recorded values at different moments. 

More recent interactions weigh more, and the influence of distant interactions is minimal, or 

absent. Otherwise said, a decay function will be employed to aggregate the values of different 

user interactions with the system. In time, due to an increasing number of users being 

clustered based on their dynamic attributes especially – since the static attributes don’t 

change their values, the SOM component evolves and the influence of the dynamic attributes 

in the user type identification increases.  

Thus, the employment of SOMs allows for continuous updating of the user model, 

while k-means clustering provides an initial assessment. An evaluation on artificially 

generated data has been performed, to study how the two components (static and dynamic) 

are integrated in the proposed model. The results have indicated a smooth passage between 

the static and the dynamic components – the SOM built on the static attributes is slowly 

modified by the introduction of the dynamic attributes (i.e. the user starts to interact with the 

system), but the separation between the learning styles remains well defined.  

8.4.2 Handwriting Recognition: Historical Documents Transcription using 

Hierarchical Classification and Dictionary Matching 

Historical documents are difficult to read and require the expertise of trained 

specialists, mainly due to the vast number of sources, quality of the target manuscripts and 

numerous existent scripts [Min01]. In practice, transcriptions are performed by hand, by a 

scholar specialized in the target form of writing (paleographer) and take a considerable 

amount of time and effort; hence the need for a flexible system capable of performing a 

(semi-)automatic transcription of such documents, while taking into problem-specific 

constraints. 

In [Lem12b], a solution which aims to translate documents written in a difficult 

alphabet (the German script Kurrent Schrift) has been proposed. It does not aim to restore 

severely damaged manuscripts. It assumes that the text is visibly separable from the 

background – though most historical documents are expected to present some imperfections 

(paper folding, material aging). 

We have identified three major stages – Document Processing, Word Processing and 

Word Selection, connected in a linear pipeline (as seen in Figure 12). First, the document 

image (i.e. the scanned version of the historical handwritten document) is processed by the 

Document Processor. After separating the text from the background through a two-step 

procedure and removing malignant noisy areas, the document is de-skewed to improve the 

correctness of subsequent processing steps. It is then successively partitioned into lines of 

text and individual words. 



Chapter 8 – Case Studies   

 

103 

 

Document 
Processor

Word 
Processor

Word Selector

Handwritten
Document

[Color Image]

Extracted 
Word Images

[B/W Image 
Array]

Recognized 
Words

[String Array 
per Word]

Document 
Transcription

[Text File]

Letter Frequency 
Analysis 

Dictionary
Matching

Knowledge 
Base

Dictionary
 

 

Figure 8.12 – System conceptual architecture 
 

The Word Processor, the core component of the system, finalizes the preprocessing of 

the input word images, by performing slant correction and character splitting. The shape of 

the binary character objects is then captured using a skeletonization filter, and important 

features that discriminate the characters are extracted. A classifier identifies each character 

and word variants are constructed. 

The words are validated by the Word Selector using a local dictionary database and a 

Knowledge Base, generating transcription variants with attached probability. Inappropriate 

matches are pruned and the words reordered such as to generate the final transcription, the 

output of the system. 

Preliminary experiments with the letter recognition module, within the word 

processor, indicate that the performance of a single-model recognition system is insufficient, 

the accuracy being too small for such an automated translator. Further experiments run over 

the best selected classifiers and analysis of the extracted results revealed that predictable 

confusions are produced amongst certain groups of characters. The groups of confusable 

characters are constructed based on pair-wise confusions between any two characters 

belonging to the same group. For this reason, a character can either be directly identified by 

the classifier, or belong to one or more confusable groups. Therefore, the groups do not form 

a partition of the alphabet, nor are they disjoint. Thus, a composite two-layer model is more 

appropriate for the letter identification step. 

A multi-class single classifier is employed at the first level, responsible for 

discriminating amongst non-confusable characters, as well as propagating instances predicted 

as belonging to confusable sets to the second layer. Level two model comprises of an array of 

individually constructed classifiers, each responsible for discriminating only inside a distinct 

group of confusable letters.  

Significant numerical features are extracted from the character image shape resulted after 

a series of image processing operations have been applied to the document scans [Lem12b]. 

In order to better discriminate among the characters, the following mix of features is 

considered [Vam09]: projections, profiles, transitions and zone densities. Because histogram-

based features are dependent on the character image resolution (width, height), we propose 

histogram-compression based on the Discrete Cosine Transform. This approach captures the 

shape of the histogram. The resulting sequence is then normalized in the [0,1] interval, and 

only the first few coefficients are considered. This ensures both a fixed-dimension feature 

vector and noise reduction (generally located in the higher part of the signal’s spectrum). 
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Parameter tuning is possible by varying the number of considered harmonics (coefficients), 

the optimal truncation index being determined empirically. 

Several experiments have been performed to identify the best level 1 classifier for the 

word processor components. Moreover, parameter tuning has been considered in order to 

obtain more fitted models, for the selected classifier. The extracted letter dataset is a balanced 

dataset (25 classes with approximately 50 instances per class) having 37 features (represented 

by the computation of 4 Discrete Cosine Transform (DCT) components). Stratified 10 fold 

cross-validation has been employed for these tests, with accuracy as performance metric, 

since all classes are of the same interest and equally represented. The best results have been 

obtained by the SVM (82.12%) and the MLP(75.28%) classifiers. J48 (53.18%) and Naïve-

Bayes (66.08%) performed well below the expected accuracy, the latter giving even worse 

results after a boosting mechanism was applied. The components of the system presented in 

this section are currently in different stages of development and evaluation. 

8.4.3 Social Mining: Distributed Community Detection in Social Networks Using 

Genetic Algorithms 

One of the current important research topics in data mining applications, triggered by 

the emergence of the social network phenomenon, is community detection. One interesting 

sub-problem is the identification of the community structure. In [Hal10] a distributed 

community detection approach has been developed, using genetic search mechanisms on top 

of Apache Hadoop. The algorithm uses the genetic representation proposed in [Par98]. An 

analysis of two possible fitness functions is provided, both from the point of view of 

efficiency and adaptability to a distributed context: the community score function proposed in 

[Piz98], and a new fitness function, which switches from the network modularity score to the 

community score measure during the evolution. This new fitness function represents an 

original contribution. The Apache Watchmaker framework has been employed for 

implementing the algorithm, on top of the Mahout Machine Learning library, which provided 

the possibility of running the genetic algorithm implemented in the Watchmaker framework 

in a distributed manner. The fitness evaluators were encapsulated using the infrastructure 

provided by Mahout and distributed on Hadoop nodes.  

During the evaluations performed on well-known real-world networks, the community 

structure obtained by running the algorithm with the two fitness functions has been compared 

with results obtained by similar approaches, reported in literature. Several parameter settings 

for the genetic search algorithm have been investigated. The scalability of the approach has 

also been evaluated. The results have indicated that the proposed fitness measure achieves 

similar results to the community score-based fitness function, but reduces the running time 

significantly. Also, the distribution of the genetic algorithm has proved beneficial, since it has 

made possible to consider larger subsets of the input data and thus discover more complex 

relationships [Hal10]. 

8.4.4 Opinion Mining: Semi supervised opinion mining with lexical knowledge 

Opinion prediction from text, i.e. automatically detecting the positive or negative 

attitude towards a topic of interest has received increasing attention over the last years. The 

proliferation of user-generated content on the internet has triggered the interest towards large 

scale mining of public opinion. To that end, we have examined an approach for building a 

graph-based semi-supervised sentiment polarity classifier, where a knowledge base for 

opinion mining is provided [Bal10]. In the development flow, we have created our own 

dictionary, using SentiWordNet, for tagging the words in the documents with the 

corresponding polarity. Then, we have implemented a semi-supervised classification 

algorithm, using the sentiment dictionary, similarly to the approach available in [Sin08]. To 

assess the flexibility of the resulting classifier, we have performed several evaluations on 
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review datasets from various domains. The results have indicated that unlabeled data can 

improve the classification performance in some cases. Time, processor and memory usage 

have also been considered, since opinion mining is a complex problem in essence, and the 

input data is usually large. The system can be easily integrated with the Rapid Miner tool. 

8.4.5 Spam Detection: A Filter 

In recent years, anti-spam filters have become ubiquitous tools in fighting this new 

but continuously growing phenomenon – spam. Whether we talk about internet service 

providers, or large organizations, e-mail providers or even individuals, everybody is 

interested in keeping the irrelevant, inappropriate and unsolicited emails to a minimum. Thus, 

we have developed a prototype for a new spam detection filter, which employs the kNN 

algorithm for the classification module, on a set of frequency–based features [Fir10].  

Training set re-sampling was employed to determine the most appropriate learning 

distribution. A data update mechanism was considered to enable the system to employ the 

information coming in new emails, and thus continuously improve its performance. User 

feedback, used to correct misclassifications has also been implemented. 

8.5 Conclusions    

Specific domains may impose additional constraints on the general DM flow. Several 

non-functional requirements (such as model generation time, model complexity and 

interpretability) may also be of importance. Also, depending on the problem particularities, 

the general flow of the data mining process may be altered to accommodate for the specific 

domain needs. This chapter investigates several such scenarios, and attempts to provide 

viable solutions, at a level of generality such as not to be restricted to the specific domains 

they have been initially designed for. 

 

The original contributions presented in this chapter include: 

 The proposal and evaluation of a cascaded method for classifier baseline 

performance assessment, using the Dempster-Shafer theory of evidence 

 An original meta-learning framework for automated classifier selection, which 

employs various meta-features and several different prediction strategies, 

while reducing user involvement at a minimum 

 A composite metric for general classifier performance assessment 

 A hierarchical model for classification problems having a large number of 

classes, based on clustering and classification sub-models, with application to 

offline signature recognition 

 A hierarchical model for classification of multi-class imbalanced problems, 

which consists of a multiple classifier on a first level, and a classifier which 

focused on labeling difficult cases on the second level; the system has been 

applied to a network intrusion detection case study 

 A distributed version for the original ECSB method proposed in Chapter 7 

 The proposal and evaluation of an original classification meta-technique, 

based on data partitioning: the arbiter-combiner 

 A model for static and dynamic user-type identification in adaptive e-learning 

systems  

 A model for historical documents transcription based on hierarchical 

classification and dictionary matching 

 An original system for distributed community detection, using genetic 

algorithms  

 A dynamic composite fitness function for the community detection problem 
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 An original parallel version of the SPRINT decision tree classifier 

 A lightweight GPGPU parallel genetic framework 

 An original system for opinion mining, using semi-supervised learning with 

lexical knowledge 

 An original spam detection filter, with learned training distribution 

 

The original user profiling method proposed in section 8.4.1 is the result of research 

supported by PNII grant no.12080/2008: SEArCH – Adaptive E-Learning Systems using 

Concept Maps.  

 

The original methods presented in this chapter have been validated through the 

publication of 3 journal papers: 

1. Potolea, R., Vidrighin B. C., Trif, F., “Intelligent Component for adaptive E-

learning Systems”, The Automation, Computers, Applied Mathematics Journal, 

Vol. 18, pp. 270-275, 2009 

2. Potolea, R., Trif, F., Lemnaru, C., "Enhancements on Adaptive E-learning 

Systems", The Automation, Computers, Applied Mathematics Journal (ACAM), 

Vol. 19, no.3, pp. 475-482, 2010 

3. Potolea, R., Trif, F., Lemnaru, C., “Adaptive E-Learning Systems with Concept 

Maps”, Revista Romana de Informatica si Automatica, vol. 21, no.4/2011, pp. 43-

56, 2011 

 

2 book chapters:  

1. Potolea, R., Barbantan, I., Lemnaru, C.,"A Hierarchical Approach for the Offline 

Handwritten Signature Recognition", Lecture Notes in Business Information 

Processing , 2011, Volume 73, Part 3, 264-279, DOI: 10.1007/978-3-642-19802-1 

2. Potolea, R., Cacoveanu, S., Lemnaru, C., "Meta-learning Framework for 

Prediction Strategy Evaluation", Lecture Notes in Business Information 

Processing , 2011, Volume 73, Part 3, 280-295, DOI: 10.1007/978-3-642-19802-1 

 

and several research papers in the proceedings of well-known international conferences: 

1. T. Moldovan, C. Vidrighin, I. Giurgiu, R. Potolea, "Evidence Combination for 

Baseline Accuracy Determination", Proceedings of the 3
rd

 IEEE  International 

Conference on Intelligent computer Communication and Processing, pp. 41-48, 

2007 

2. Bărbănţan, I., Vidrighin, C., Borca, R., “An Offline System for Handwritten 

Signature Recognition”, Proceedings of Proceedings of the 5
th

  IEEE  

International Conference on Intelligent computer Communication and Processing, 

Cluj-Napoca, Romania, pp. 3-10, 2009 

3. Cacoveanu, S., Vidrighin, B.C., Potolea, R.,”Evolutional meta-learning 

framework for automatic classifier selection”, Proceedings of Proceedings of the 

5
th

  IEEE  International Conference on Intelligent computer Communication and 

Processing, pp. 27-30, 2009 

4. Firte, A.A., Vidrighin, B.C., Cenan, C., “Intelligent component for adaptive E-

learning systems”, Proceedings of Proceedings of the 5
th

  IEEE  International 

Conference on Intelligent computer Communication and Processing, Cluj-

Napoca, Romania, pp. 35-38, 2009 

5. Merk, A.B., Vidrighin, B.C., Potolea, R., ”Meta-learning enhancements by data 

partitioning”, Proceedings of Proceedings of the 5
th

  IEEE  International 
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Conference on Intelligent computer Communication and Processing, Cluj-

Napoca, Romania, pp. 59-62, 2009 

6. Trif, F., Lemnaru, C., Potolea, R., “Identifying the User Typology for Adaptive 

E-learning Systems”, Proceedings of AQTR 2010 - IEEE International 

Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, May 28-

30, 2010, pp. 192-198/Tome III 

7. Balla-Muller, N., Lemnaru, C., Potolea, R., "Semi-supervised learning with 

lexical knowledge for opinion mining," Proceedings of Proceedings of the 6
th

  

IEEE  International Conference on Intelligent computer Communication and 

Processing, Cluj-Napoca, Romania, pp.19-25, 2010 

8. Bărbănţan, I., Lemnaru, C., Potolea, R., “A Hierarchical Handwritten Offline 

Signature Recognition System”, Proceedings of the 12
th

 International Conference 

on Enterprise Information Systems, Funchal, Madeira, Portugal, pp. 139-147, 

2010 

9. Cacoveanu, S., Vidrighin, B. C., Potolea, R., ”Evaluating Prediction Strategies in 

an Enhanced Meta-learning Framework”, Proceedings of the 12
th

 International 

Conference on Enterprise Information Systems, Funchal, Madeira, Portugal, pp. 

148-156, 2010 

10. Firte, L., Lemnaru, C., Potolea, R., "Spam detection filter using KNN algorithm 

and resampling", Proceedings of Proceedings of the 6
th

  IEEE  International 

Conference on Intelligent computer Communication and Processing, Cluj-

Napoca, Romania, pp.27-33, 2010 

11. Halalai, R., Lemnaru, C., Potolea, R., "Distributed community detection in social 

networks with genetic algorithms", Proceedings of Proceedings of the 6
th

  IEEE  

International Conference on Intelligent computer Communication and Processing, 

Cluj-Napoca, Romania, pp.35-41, 2010 

12. R.F. Muresan, C. Lemnaru, R. Potolea, "Evidence Combination for Baseline 

Accuracy Determination", Proceedings of Proceedings of the 6
th

  IEEE  

International Conference on Intelligent computer Communication and Processing, 

Cluj-Napoca, Romania, pp. 11-18, 2010 

13. Dodut, A.A., Lemnaru C. and Potolea R., “The parallel classification of very 

large collections of data on multi-core platforms”, in Proceedings of the 10
th

 

International Symposium in Parallel and Distributed Computing, pp.57-62, 2011 

14. Feier, M., Lemnaru C. and Potolea R., “Solving NP-Complete Problems on the 
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2011 
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of ICCP 2011, pp. 11-18, 2011 
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2012 
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Detection”, accepted at KDIR 2012 
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9 Contributions and Conclusions 

This thesis presents a systematic analysis of several steps involved in a data mining 

process, providing both theoretical and practical contributions. The general context is that of 

labeling a potentially large volume of noisy data, (possibly) containing irrelevant and/or 

redundant pieces of information; in many real-world applications, in the available data the 

distribution of instances belonging to each class is non-uniform, meaning that one class 

contains fewer instances in comparison with the others. However, the correct identification of 

underrepresented classes is generally of increased importance, which results in different 

errors possessing different degrees of gravity. Consequently, the correct choice of the metric 

to assess, and ultimately improve during the data mining process, is difficult – since 

improving one metric generally degrades others. Also, application domains may impose 

specific constraints on the data mining process flow.  

 

The following specific data and goal-related issues have been addressed:  

 Missing data: the available data is generally incomplete. The majority of 

classification techniques have not been designed to deal with missing values, and 

often employ basic and inefficient approaches to deal with such issues. Missing data 

techniques are available in literature, mainly as pre-processing methods; their success 

in a certain scenario depends on several factors. Also, most imputation methods are 

oblivious to the relation between the incomplete attribute(s) and the target attribute. 

This thesis presents a structured analysis of existing methods (with their advantages 

and disadvantages – section 3.2). Also, an original global imputation method, based 

on non-missing data is proposed (section 3.3). The strongest assumptions made by the 

method are related to the existence of correlations between the incomplete and the 

complete attributes (including the class). The particular technique employed for 

learning the model used to impute each incomplete attribute – an artificial neural 

network ensemble – reduces the risk of imputing wrong values. Experimental results 

have indicated a strong correlation between the success of the imputation method on a 

certain attribute and the prediction power of that attribute with respect to the class. 

Consequently, an original joint pre-processing methodology has been introduced 

(section 5.1) which proposes an information exchange between data imputation and 

feature selection: only the attributes which are predictive for the attribute being 

imputed are used to build the imputation model for that attribute, and only the 

attributes which are predictive for the class should be imputed. The method has been 

currently evaluated for MCAR univariate incompleteness patterns, yielding 

significant performance improvements when compared to the un-processed dataset. It 

can be extended to accommodate random multivariate patterns as well, as long as a 

complete data kernel can be extracted from the data. 

 Irrelevant/redundant data: feature extraction is a highly laborious and domain 

dependent task, resulting in situations in which not all attributes recorded are relevant 

for the classification task, while some attributes convey redundant information. 

Irrelevant/redundant attributes have been shown to harm the classification process. 

Various feature selection techniques which tackle this issue exist in literature, with 

wrappers providing the most promising strategy for performance improvement; 

however, there is no method which is guaranteed to always produce the best possible 

feature subset for the given problem and selected classification method. Moreover, 

some method may perform significantly better than others on one particular problem, 

and achieve no/low performance improvement on a different problem. Also, 

according to the present knowledge, although the literature offers several wrapper 
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evaluation studies, they are not focused on comparing the performance of different 

wrapper combinations or analyzing how feature selection affects the choice of 

classification method. This thesis provides such an analysis (section 4.4.1); the results 

have shown that, generally, the ranking of classifiers is not significantly altered by 

feature selection; also, combining different classifiers for wrapper feature selection 

and learning is not beneficial. An original subset combination method for improving 

the stability of feature selection across different problems and providing an 

assessment of the baseline performance of feature selection in a new problem has 

been proposed in section 4.3 and evaluated in section 4.4.2. The method selects the 

most appropriate attributes by applying a global selection strategy on the attribute 

subsets selected individually by the search methods. Its evaluation has confirmed the 

fact that the method achieves better stability than individual feature selection 

performed via different search methods, while reducing the number of attributes 

significantly.   

 Imbalanced data: generally, in a real data mining application setting, interest cases 

are more difficult to collect, resulting in the interest class(es) containing fewer 

instances in comparison with the other classes. Although – theoretically – the class 

imbalance problem should affect learning algorithms, there are few systematic studies 

in literature which study this aspect. The present thesis provides an extensive 

systematic analysis on the effect of the class imbalance problem on the performance 

of different categories of classifiers, proposing a novel dataset characterization 

measure (section 7.1.3). The study revealed that all traditional algorithms are affected 

to some extent by the class imbalance problem, with the Multilayer Perceptron being 

the most robust. As opposed to the results yielded by earlier studies on artificial data, 

imbalance-related factors proved to have a significant impact on the performance of 

the Support Vector Machines. This behavior comes as a side effect appearing in 

imbalanced problems: the appropriate support vectors are not present in the available 

data. The original meta-feature proposed – the IAR, which aggregates dataset size and 

complexity information, has proved to offer, in conjunction with the IR, a correct 

indication on the expected performance of classifiers in an imbalanced problem. The 

present thesis presents also a thorough study on the existing approaches for dealing 

with imbalanced problems (section 7.2). Some methods require significant experience 

to produce improvements, while others are restricted to a specific category of 

classifiers. To address these issues, an original meta-classification strategy, has been 

proposed – Evolutionary Cost-Sensitive Balancing (section 7.3). The method 

performs a genetic search in order to simultaneously tune the base classifier’s 

parameters and identify the most appropriate cost matrix, which is then employed by a 

cost-sensitive meta-learner, in conjunction with the base classifier. An advantage of 

the method, besides its generality, is the fact that the cost matrix is determined 

indirectly. Thus, the difficult problem of setting appropriate error costs is translated 

into selecting the appropriate fitness measure, given the specific problem goals. 

Comparative empirical evaluations on benchmark data have proved that ECSB 

significantly improves the performance of the base classifiers in imbalanced 

conditions, achieving superior results to sampling with SMOTE or adapting the 

algorithm to the imbalance via evolutionary parameter selection; also, ECSB achieves 

superior results to current prominent approaches in literature: Evolutionary Under-

Sampling and a complex Support Vector Machines ensemble; the most successful 

cost-sensitive strategy is predicting the class with minimum expected 

misclassification cost, instead of the most likely class; balanced metrics are generally 

appropriate as fitness functions; for extreme problems, such as those in which 
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precision is of utmost importance, or recall is the only important measure, imbalanced 

metrics – such as parameterized combinations between primary metrics, are more 

suitable.     

 Imbalanced error costs: classification errors may possess different degrees of 

gravity, according to the domain specifics. Such situations are covered by cost-

sensitive learning, with a series of algorithms existing in literature; the present thesis 

presents a structured analysis of prominent cost-sensitive methods (section 6.2). Most 

algorithms focus on a single type of cost, whereas real-world scenarios frequently 

include two types of costs: test and error costs. The best known method which 

considers simultaneously both types of costs is the ICET algorithm. The main 

contributions presented in this area focus on a series of improvements to the original 

ICET algorithm, as well as filling in the gap in the algorithm evaluation part (section 

6.3). Consequently, a new version of the algorithm has been developed, ProICET, 

which follows the basic ICET technique, while improving the robustness of the 

genetic component, by: the employment of a single population technique and elitism, 

with rank-based fitness assignment for parent selection, and increasing search 

variability via the recombination operators. A series of evaluations focused on 

assessing the performance of ProICET under a series of different aspects have been 

performed: a systematic empirical analysis on the effectiveness of stratification in 

reducing cost asymmetries and a comparative empirical study on the misclassification 

and total costs. The results indicate that it provides a robust approach, achieving 

lowest total costs. Also, ProICET has been applied to a real problem related to 

prostate cancer diagnosis and prognosis (within the CEEX 18/2005 IntelPRO research 

grant): predicting the value of post-operative PSA for patients who have undergone 

prostate surgery, from data recorded pre- and immediately after the operation, 

confirming its robustness. 

 Classifier and metric selection: There is no universally best classifier which 

performs better than all the others on every possible problem, given any evaluation 

metric. Moreover, no general rules which indicate the appropriate metric to select in a 

certain context exist, although there are some application domains which benefit from 

specialized metrics. Translating data characteristics and the ultimate goal of the 

classification process into the appropriate performance metric, selecting the most 

appropriate classifier given the data and goal characteristics, finding the best 

parameter settings for the classifier are therefore essential points in achieving a 

successful data mining process. The current thesis presents an analysis of the most 

important performance metrics (section 2.3); also, throughout the thesis – but mainly 

in Chapters 6 and 7 – the suitability of different measures for special classification 

scenarios is analyzed. Section 8.1 presents an original meta-learning framework for 

automated classifier selection, together with a method for baseline performance 

assessment. Several original design elements have been introduced into the 

framework, the most important being a wide selection of dataset meta-features, 

several neighbor selection strategies, a general-purpose aggregate metric and the 

possibility to output a ranking of classifiers, rather than a single candidate. 

Experimental results on benchmark datasets have made possible the identification of a 

best prediction strategy among several investigated. 

 Data mining process instantiations: Application domains may impose specific 

constraints on the data mining process, such as having an interpretable classification 

model, or a reasonable training time, the capacity to perform classification on a large 

number of classes, each having a limited amount of training instances. Several such 
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applicative issues are tackled and original contributions (both theoretical and 

practical) are presented (sections 8.2-8.4). 

 

The main original contributions presented throughout this thesis can be grouped into:  

   

1. General DM contributions - theoretical: 

 a systematic analysis of existing issues and solutions for: handling 

incomplete data, feature selection, imbalanced classification, cost-

sensitive classification, classification algorithms and performance 

assessment strategies and metrics 

 a global imputation method, based on non-missing data 

 a combination method for wrapper search strategies, to improve 

selection stability 

 an original joint pre-processing strategy, which employs feature 

selection information in the data imputation step 

 proposal of a new meta-feature – IAR – for characterizing a dataset 

with respect to the imbalance-related factors; the new meta-feature, in 

conjunction with the IR, has been proven to offer correct indication on 

the expected performance of classifiers in imbalanced problems 

 a general method for imbalanced classification – ECSB – a meta-

classification strategy, which can be applied to any error-reduction 

classifier 

 a cascade combination method for classifier baseline performance 

assessment, with improved stability across different domains 

 a composite metric for general classifier performance assessment 

 

2. General DM contributions – practical: 

 a systematic empirical study on wrapper combinations for feature 

selection, to study possibility of combining different classifiers for the 

steps of feature selection and learning, the effect of pruning on feature 

selection and how feature selection affects, generally, the choice of the 

learning scheme 

 enhancements on the ICET cost-sensitive classifier. The new version 

of the algorithm, ProICET, achieves superior performance to the 

original algorithm and to other known cost-sensitive algorithms in 

literature in terms of total cost and accuracy 

 a systematic analysis on the effect of the class-imbalance problem on 

the performance of different types of classifiers, considering a large 

number of benchmark problems, several imbalance-related factors and 

performance metrics and six different classification techniques 

 a meta-learning framework for automated classifier selection, which 

employs various meta-features and several different prediction 

strategies, while reducing user involvement at a minimum 

 a distributed version for the original ECSB method from Chapter 7 

 a hierarchical classifier for problems having a large number of classes, 

based on clustering and classification sub-models 

 a hierarchical model for classification of multi-class imbalanced 

problems, which consists of a multiple classifier on a first level, and a 

level 2 classifier focused on labeling difficult cases  
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 a classifier based on data partitioning 

 a parallel version for the SPRINT decision tree classifier 

 a lightweight GPGPU parallel genetic framework 

 

3. Domain specific contributions – theoretical:  

 a dynamic composite fitness function for the community detection 

problem 

 a model for static and dynamic user-type identification in adaptive e-

learning systems 

 

4. Domain specific contributions – practical:  

 a system for offline signature recognition 

 a system for network intrusion detection  

 a system for historical documents transcription based on hierarchical 

classification and dictionary matching 

 a system for distributed community detection, using genetic algorithms  

 a system for opinion mining, using semi-supervised learning with 

lexical knowledge 

 a spam detection filter, with learned training distribution 

 

All newly proposed classification methods have been empirically evaluated and 

compared to other prominent approaches in literature. For pre-processing methods, their 

effect on the overall performance of a classification task has been studied.  

 

The results of the research efforts have been partially applied in three research grants, 

between 2007 and 2011. Also, they have been disseminated within the scientific community, 

through the publication of: 

- 4 journal papers – 1 as first author –  out of which 3 published in B+ journals 

- 1 paper submitted at the Journal of Data Mining and Knowledge Discovery (ISI 

indexed) – review requested 

- 4 book chapters – 2 as first author – out of which 3 published in Springer Lecture 

Notes in Business Information Processing series 

- 30 research papers – 12 as first author – in the proceedings of renowned 

international conferences (indexed by IEEEXplore – 19, ISIPro – 14, DBLP – 12 

and CSDL – 7) 

- 8 independent citations – out of which 4 in ISI-indexed journals 

 

The current research efforts focus on adding an extra genetic algorithms tuning level 

to the dECSB method, and validating the strategy for larger datasets as well as for multi-class 

real-world imbalanced problems. In addition, the joint pre-processing methodology has to be 

extended to accommodate successfully any incompleteness mechanism and pattern.  

The original methods presented in this work have been successfully validated on a 

number of benchmark real-world datasets – well known and intensely employed by the 

scientific community, which originate from real-world scenarios. The ProICET enhanced 

cost-sensitive method has also been deployed successfully in a real-world medical diagnosis 

problem. I believe that the original pre-processing methods and the methodology for 

imbalanced classification will improve the quality of the DM classification process in real 

world settings displaying the issues addressed in the current thesis.    
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Appendix A – Description of the Datasets Employed in the Experiments 
 

Datasets from Chapter 3 

Table A.3.1 – Datasets used in the evaluations on data imputation 

Dataset 
No. 

Attributes 
No. 

Instances 
Attributes 

type 
 Pima Indian Diabethes 8+1 768 Num

7 
 Cars 6+1 1729 Nom

8 

 

Datasets from Chapter 4 

Table A.4.1 – Datasets used in the evaluations on wrapper feature selection (section 4.4.1) 

Dataset 
No. 

Attributes 
No. 

Instances 
Attributes 

type 
 Australian 14+1 690 Num, Nom 
 Breast-cancer 9+1 286 Nom 
 Bupa 5+1 345 Num 
 Cleve-detrano 14+1 303 Num, Nom 
 Crx 15+1 690 Num, Nom 
 German 20+1 1000 Num, Nom 
 Heart 13+1 270 Num, Nom 
 Cleveland 13+1 303 Num, Nom 
 Monk3 7+1 432 Nom 
 Pima Diabethes 8+1 768 Num 
 Thyroid 20+1 7200 Num, Nom 
 Tic-tac-toe 9+1 958 Nom 
 Vote 16+1 435 Nom 
 Wisconsin 9+1 699 Num 

Table A.4.2 – Datasets used in the evaluations on the search combination method for wrapper feature 

selection (section 4.4.2) 

Dataset 
No. 
Attributes 

No. 
Instances 

Attributes type 

 Australian 14+1 690 Num, Nom 
 Breast-cancer 9+1 286 Nom 
 Cleve-detrano 14+1 303 Num, Nom 
 Crx 15+1 690 Num, Nom 
 German 20+1 1000 Num, Nom 
 Heart 13+1 270 Num, Nom 
 Hepatitis 19+1 155 Num, Nom 
 Labor 16+1 57 Num, Nom 
 Lymphography 18+1 148 Nom 
 Pima Diabethes 8+1 768 Num 
 Tic-tac-toe 9+1 958 Nom 

 

                                                 

 
7
 Numeric 

8
 Nominal 



Appendix A 

 

131 

Datasets from Chapter 5 

Table A.5.1 – Datasets used in the evaluations on the combined pre-processing strategy  (section 5.2) 

Dataset 
No. 

Attributes 
No. 

Instances 
Attributes 

type 
 Bupa 5+1 345 Num 
 Cleveland Heart Disease 13+1 303 Num, Nom 
 Pima Diabethes 8+1 768 Num 

 

Datasets from Chapter 6 

Table A.6.1 – Datasets employed in the experiments on ProICET (section 6.3.3) 

Dataset No. 

Att. 
Att. Domain No. 

Inst. 
No. 

Classes 
Breast Cancer Wisconsin 10 Nom 699 2 
Bupa Liver Disorder 6 Num 345 2 
Pima Indian Diabethes 9 Num 768 2 
Cleveland Heart Disease 14 Num, Nom 303 5 
Thyroid 21 Num, Nom 7200 3 

 

Table A.6.2 – Attribute information and costs for the Heart Disease Cleveland dataset 

Crt.

No. 
Attribute 

Name 
Attribute Description Attribute Domain Attribute 

Cost 
1 Age Patient age Numeric 1.0 
2 Sex Patient gender Binary: 0/1 1.0 
3 Cp Chest Pain Type Nominal: 

   Value 1: typical angina 
   Value 2: atypical angina 
   Value 3: non-anginal pain 
   Value 4: asymptomatic 

1.0 

4 Trestbps Resting Blood Pressure Numeric 1.0 
5 Chol Serum cholestoral Numeric 7.27 
6 Fbs Fasting Blood Sugar Binary: 0/1 5.20 
7 Restecg Resting EKG results Binary: 

   Value 0: normal elevation      of 

depression of >0.05 mV 
   Value 2: showing probable or definite 

left ventricular hypertrophy by Estes’ 

criteria 

15.50 

8 Thalach Maximum rate achieved Numeric 102.90 
9 Exang Exercise induced angina Binary: 0=no; 1=yes 87.30 
10 Oldpeak ST depression induced by 

exercise relative to rest 
Numeric 87.30 
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Crt.

No. 
Attribute 

Name 
Attribute Description Attribute Domain Attribute 

Cost 
11 Slope The slope of the peak 

exercise ST segment 
Nominal: 
   Value 1: up-sloping 
   Value 2: flat 
   Value 3: down-sloping 

87.30 

12 Ca Number of major vessels Nominal: 0-3 100.90 
13 Thal  Nominal: 

   Value 3: normal 
   Value 6: fixed effect 
   Value 7: reversible effect 

102.90 

14 Class Diagnosis of heart disease Nominal: 
  Value 0: missing 
   Values 1-4: degrees of seriousness of 

heart disease. 

0.0 

Cost matrix: 
                    0       1          2        3        4      classified as 

           
























0.00.500.1000.1500.250

0.100.00.500.1000.150

0.200.100.00.500.100

0.300.200.100.00.50

0.400.300.200.100.0

_ matrixCost

 4

3

2

1

0

              

                                                       classactual  

 

 

Table A.6.3 – Attribute information and costs for the Bupa Liver Disorder dataset 

Crt.No. Attribute 

Name 
Attribute Description Attribute Domain Attribute 

Cost 

1 Mcv Mean corpuscular volume Numeric 7.27 

2 Alkphos Alkaline Phosphotase Numeric 7.27 

3 Sgpt Alamine Aminotransferase Numeric 7.27 

4 Sgot Aspartate Aminotransferase Numeric 7.27 

5 Gammagt Gamma-glutamyl Transpeptidase Numeric 9.86 

6 Drinks Number of half-pint equivalents of 

alcoholic beverages drunk per day 

(class attribute) 

Binary: ‘less than 3’, 

‘more than 3’ 
0.0 

7 Selector Not used - - 

Cost matrix:                                            33     classified as 

                                      










0.00.15

0.50.0
_ matrixCost

 

                                       classactual  
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Table A.6.4– Attribute information and costs for the Thyroid dataset 

Crt.

No. 
Attribute Name Attribute Description Attribute Domain Attrib. 

Cost 

1 Age Age in years Numeric 1.00 

2 Sex Gender Binary: 0/1 1.00 

3 On_Thyroxin Patient on thyroxin Binary: 0/1 1.00 

4 Query_On_Thyroxin Query on thyroxin Binary: 0/1 1.00 

5 On_AntiThyroid_Med On antithyroid medication Binary: 0/1 1.00 

6 Sick Patient reports malaise Binary: 0/1 1.00 

7 Pregnant Patient is pregnant Binary: 0/1 1.00 

8 Thyroid_Surgery Thyroid surgery history Binary: 0/1 1.00 

9 I131_treatment On I131 treatment Binary: 0/1 1.00 

10 Query_Hypothyroid Maybe Hypothyroid Binary: 0/1 1.00 

11 Query_Hyperthyroid Maybe Hyperthyroid Binary: 0/1 1.00 

12 Lithium Patient on lithium Binary: 0/1 1.00 

13 Goitre Patient has goitre Binary: 0/1 1.00 

14 Tumor Patient has tumor Binary: 0/1 1.00 

15 Hypopituitary Patient hypopituitary Binary: 0/1 1.00 

16 Psych Psychological Symptoms Binary: 0/1 1.00 

17 TSH TSH value Numeric 22.78 

18 T3 T3 value Numeric 11.41 

19 TT4 TT4 value Numeric 14:51 

20 T4U T4U value Numeric 11:41 

21 FTI FTI – computed from20 and 

21 
Not used - 

22 Class Diagnostic class Nominal: 
   Value 3: not ill 
   Value 2: hyperthyroid  
   Value 1: hypothyroid 

0.0 

Cost matrix:                       3      2        1 asclassified  

                          


















0.00.120.20

0.50.00.12

0.70.50.0

_ matrixCost

1

2

3

 

                                      classactual  
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Table A.6.5 – Attribute information and costs for the Pima Indian Diabethes dataset 

Crt.

No. 
Attribute Name Description Domain Cost 

1 NbTimesPreg Number of times pregnant Numeric 1.0 
2 GlucTest Plasma glucose concentration a 2 hours 

in an oral glucose tolerance test 
Numeric 17.61 

3 BloodPress Diastolic blood pressure (mm Hg) Numeric 1.0 
4 SkinThickness Triceps skin fold thickness (mm) Numeric 1.0 
5 SerumInsuline 2-Hour serum insulin (mu U/ml) Numeric 22.78 
6 BodyMassIndex Body mass index (weight in kg/(height 

in m)^2) 
Numeric 1.0 

7 PedigreeFct Diabetes pedigree function Numeric 1.0 
8 Age Patient age (years) Numeric 1.0 
9 Class Class attribute Binary: 0-

absence, 1-

presence 

0.0 
 

 

Cost matrix:           0     1   classified as 

  










0.00.20

0.70.0
_ matrixCost

1

0

 

     classactual  
 

Table A.6.6 – Attribute information and costs for the Prostate Cancer dataset 

Crt. 
No. 

Attribute Name and Description Domain 

1 One (TNM) Symbolic (1a, 1b, 1c, 2a, 2b, 3a, 3b ) 

2 Two (Gleason Score) Numeric (2-10) 

3 Three (Presence on Median Intravesical 

Lobe) 

Symbolic (not present in the ultrasound, 

voluminous, intravesical) 

4 Four (Prostate Volume) Numeric 

5 Five (Preoperative PSA) Numeric (ng/ml) 

6 Six (IIEF - International Index of 

Erectile Function) 

Numeric 

7 Seven (Quality of Life) Numeric (0-2) 

8 Eight (Surgery Type) Symbolic (TP, EP) 

9 Nine (Operative Technique) Symbolic (Ante Grade, Retro Grade, Bipolar) 

10 Ten (Nerve Sparing) Symbolic (Non, NS Left, NS Right) 

11 Eleven (Bleeding) Numeric (minutes) 

12 Twelve (Anastomosis) Symbolic (Continuous, Separate, Van Velt) 

13 Thirteen (Operative Time) Numeric (minutes) 

14 Fourteen (Postoperative 

Hospitalization)  

Numeric (days) 

15 Fifteen (Complications) Boolean 

16 Class (Postoperative PSA) Symbolic (low: PSA < 0.1, medium:  

PSA  [0.1, 1], high: PSA > 1) 
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Cost matrices 

                                                    low    med   high  asclassified  

                          


















0.00.30.5

7.00.05.1

0.15.00.0

1_ matrixCost

high

med

low

 

                                          classactual
 

 

                                                    low    med   high  asclassified  
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Number of instances: 389 

Missing values: yes 
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Datasets from Chapter 7 

Table A.7.1: Benchmark datasets employed in the experiments on the effect of class-imbalance on the 

performance of classifiers (section 7.1.3) 

Dataset No. 

Att. 
No. 

Inst. 
IR IAR C  Dataset No. 

Att. 
No. 

Inst. 
IR IAR C 

Bupa 6 345 1 58 3  Ecoli_im_rm 8 336 3 42 2 

Haberman_1 4 367 1 92 3  Glass_NW 11 214 3 19 4 

Cleve 14 303 1 22 5  Vehicle_van 19 846 3 45 4 

Monk3 7 554 1 79 4  Chess_IR5 37 2002 5 54 5 

Monk1 7 556 1 79 5  Segment_1 20 1500 6 75 3 

Australian 15 690 1 46 5  Ecoli_imu 8 336 9 42 4 

Crx 16 690 1 43 5  Segment_1 _IR10 20 1424 10 71 3 

Chess 37 3196 1 86 5  Tic-tac-toe_IR10 10 689 10 69 6 

Mushrooms 23 8124 1 353 4  German_IR10 21 769 10 37 7 

Breast-cancer 10 286 2 29 2  Sick-euthyroid 26 3163 10 122 5 

Glass_BWNFP 11 214 2 19 3  Glass_VWFP 11 214 12 19 3 

Glass_BWFP 11 214 2 19 4  Sick 30 3772 15 126 5 

Vote 17 435 2 26 3  Ecoli_bin 8 336 16 42 3 

Wisconsin 10 699 2 70 4  Caravan 86 5822 16 68 11 

Pima 7 768 2 110 4  Ecoli_im_rm 8 336 3 42 2 

Tic-tac-toe 10 958 2 96 7  Glass_NW 11 214 3 19 4 

German 21 1000 2 48 7  Vehicle_van 19 846 3 45 4 

 

A number of multi-class problems were modified to obtain binary classification 

problems from multi-class data. Also, three of the relatively large datasets were under-

sampled to generate higher IR values (contain _IR in their name). The complexity of each 

dataset was approximated, as suggested in (Jap02), to C = log2L, where L is the number of 

leaves generated by the C4.5 decision tree learner. Also, the values for IR, IAR and C have 

been rounded. 

 

Table A.7.2 – Large IR, small IAR datasets, employed in the experiments on ECSB (section 7.3.2) 

Dataset #Examples #Attributes IR IAR 

Chess_IR5 2002 37 5 54 

Ecoli_om_remainder_binary 336 8 15.8 42 

Ecoli_imu_remainder_binary 336 8 8.6 42 

Glass_VWFP_binary 214 10 11.59 21 

German_IR10 769 21 10.14 37 
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Table A.7.3 – Datasets employed for comparison of ECSB with EUS
 
(section 7.3.2) 

Dataset #Examples #Attrs IR Dataset #Examples #Attrs IR 
GlassBWNFP 214 9 1.82 Optdigits0 5,564 64 9.1 
EcoliCP-IM 220 7 1.86 Satimage4 6,435 36 9.28 
Pima 768 8 1.9 Vowel0 990 13 10.1 
GlassBWFP 214 9 2.06 GlassVWFP 214 9 10.39 
German 1,000 20 2.33 EcoliOM 336 7 13.84 
Haberman 306 3 2.68 GlassContainers 214 9 15.47 
Splice-ie 3,176 60 3.15 Abalone9-18 731 9 16.68 
Splice-ei 3,176 60 3.17 GlassTableware 214 9 22.81 
GlassNW 214 9 3.19 YeastCYT-POX 483 8 23.15 
VehicleVAN 846 18 3.25 YeastME2 1,484 8 28.41 
EcoliIM 336 7 3.36 YeastME1 1,484 8 32.78 
New-thyroid 215 5 4.92 YeastEXC 1,484 8 39.16 
Segment1 2,310 19 6 Car 1,728 6 71.94 
EcoliIMU 336 7 8.19 Abalone19 4,177 9 128.9 

 

Table A.7.4 – Datasets employed for comparison of ECSB with the SVM ensemble (section 7.3.2) 

Dataset #Examples # Attributes IR 
Breast-cancer 286  10 2.36 
Cars 1729 7 25.2 
Glass-headlamps 214 9 6.38 
Balance-scale 625 5 11.76 
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Appendix B – Relevant Research Papers 

 The following pages provide a listing of three relevant research papers for the work 

presented in the current thesis. 

 


