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Abstract This paper addresses learning in complex scenar-
ios involving imbalance and overlap. We propose a novel
measure, the Augmented R-value, for estimating the level
of overlap in the data. It improves an existing model-based
measure, by including the data imbalance in the estimation
process. We provide both a theoretical demonstration as well
as empirical validations of the new metric’s efficacy in esti-
mating the overlap level. Another contribution of the present
paper is to propose a collection of meta-features to be used
in conjunction with a meta-learning strategy for predicting
the most suitable classifier for a given problem. The evalu-
ations performed on a well-known collection of benchmark
problems have shown that the meta-learning approach achieves
superior results to the manual classifier selection process
normally carried out by data scientists. The analysis of the
results obtained by the meta-feature selection step has con-
firmed the power of the Augmented R-value in predicting
the expected performance of classifiers in such complex clas-
sification scenarios. Also, we found that the overlap is a
more serious factor affecting the performance of classifiers
than imbalance.
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1 Introduction

One of the current important challenges in data mining
research is classification under an imbalanced data distri-
bution. This issue appears when a classifier has to identify
a rare, but important case. Domains in which class imbal-
ance is prevalent include fraud or intrusion detection, med-
ical diagnosis, risk management, text classification and in-
formation retrieval [9]. In such domains, all traditional clas-
sifiers fail to achieve a satisfactory performance level, due
to several causes, such as the use of an inappropriate opti-
mization criterion, which favors the identification of the ma-
jority cases, or the co-occurrence of other data-related fac-
tors/phenomena, which in conjunction with the data imbal-
ance accelerate the performance drop beyond levels which
could be reached by their combination, were these phenom-
ena independent. One such data-related factor is the over-
lap of the class boundaries. Recent studies [11, 13] attempt
to characterize the joint expected effect of data imbalance
and overlap. Their findings suggest that, in isolation, overlap
degrades performance more severely than imbalance. How-
ever, when the two co-occur, their joint impact on perfor-
mance is more serious than expected. If the imbalance prob-
lem has been extensively studied within the scientific com-
munity, the overlap problem has received comparatively less
attention.

This paper focuses on providing a meta-learning based
solution to the challenging classification scenario involv-
ing imbalance and overlap. We propose a minimal set of
meta-features which capture important dataset characteris-
tics, such as imbalance, overlap and complexity, and en-
hance the correct choice of the best classifier for the spe-
cific problem. We propose a novel overlap metric, which
adapts a previous general metric to imbalanced scenarios.
We show that the newly proposed metric captures the sever-
ity of the problem better than the initial formulation. We per-
form an extensive experimental evaluation of the proposed
meta-learning approach, both with and without a prominent
preprocessing strategy for imbalanced learning problems -
SMOTE [9]. Our results indicate that the meta-learner is
able to correctly identify the most appropriate classifier. Also,
we attempt to validate the proposed feature set empirically,
and find that the overlap and the complexity-related mea-
sures are the most important, while the imbalance ratio is
the least significant.

The rest of the paper is organized as follows: the next
section briefly presents the problem we address in the paper:
the joint occurrence of the data imbalance and overlap. Sec-
tion 3 introduces a new metric for estimating data overlap in
imbalanced problems, which extends and improves an ex-
isting overlap measure. Section 4 presents a meta-learning
based strategy we consider for handling complex real sce-
narios involving data imbalance and overlap. Section 5 de-

scribes the experimental evaluations performed on the new
overlap metric and the meta-learning strategy and discusses
the results obtained. Section 6 presents several important as-
pects related to imbalanced classification and briefly presents
the meta-learning-driven classifier selection problem; it is
intended as an overview of the domain for readers less ac-
quainted with it. Section 7 presents the concluding remarks.

2 Imbalance and Overlap

A classification problem is imbalanced if, in the avail-
able data, a certain class is represented by a very small num-
ber of instances compared to the other classes [18]. In prac-
tice, the problem is generally addressed with two-class prob-
lems, multi-class problems being transformed into binary.
As the minority instances are of greater interest, they are re-
ferred to as positive instances (positive class); the majority
class is referred to as the negative class. Imbalanced prob-
lems constitute a challenge due to the fact that most tradi-
tional classifiers are affected by the class imbalance problem
to some extent [18, 34]. Moreover, since classifiers possess
separate biases, they respond differently to different data
imbalance-related factors.

Initial efforts to study the loss of performance in imbal-
ance scenarios focused on characterizing the skewed data
distribution, via the imbalance ratio (IR), defined as the ra-
tio between the number of cases of the majority and the mi-
nority of cases. Also, the role of training set size and con-
cept complexity in imbalance scenarios has been relatively
early acknowledged [19], and a meta-feature which attempts
to estimate their joint occurrence has been proposed in [20].
More recently, the focus has started to shift towards the anal-
ysis of several data intrinsic characteristics, which although
do not form a canonical set of data-related issues, have been
shown to bear an important role in the level of performance
which can be achieved by the classifiers [24].

Overlapping of the class separation boundaries is such
a data characteristic. It appears when regions of the data
contain similar quantities of training data from every class.
Consequently, classifiers have difficulties distinguishing be-
tween the two classes in such areas. Experiments performed
on artificial datasets have indicated that the imbalance ra-
tio in the overlapping area has a greater influence on per-
formance than the size of the overlapping area [13]. Also,
in [11] the authors analyze the SVM behavior in scenarios
considering imbalance, small sample size and overlap. Their
results reveal that overlap is a more serious problem than the
imbalance. However, when the two co-occur, the SVM per-
formance degrades significantly (more than the accumulated
effect of the individual factors).

We believe the co-occurrence of imbalance and overlap
to be an important problem for several reasons: first, most
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real world problems possess a certain level of class bound-
ary overlap and imbalance; secondly, their co-occurrence se-
riously affects classification performance, as revealed by nu-
merous research papers; third, we believe this phenomenon
can be characterized quantitatively, and thus the behavior
of classifiers can be improved in such scenarios. A broader
discussion on the imbalance problem and other intrinsic data
characteristics is presented in section 6.

3 Augmented R-value

One of the important results of the current research is
the proposal of an overlap measure which characterizes the
level of overlap present in an imbalanced problem. Our pro-
posed measure - the Augmented R-value - adapts the existing
R-value overlap measure, introduced in [26]. We present a
formal proof, as well as an intuitive motivation of its effi-
cacy. The experiments performed in Section 5 on both artifi-
cially generated and benchmark datasets further support the
validity of the metric.

The original R-value is based on the intuition that :

Definition 1. An instance from class c belongs to an over-
lapping region if out of its k nearest neighbors, at least θ+1

belong to a class other than c.

The R-value of a class is estimated as the portion of its
instances belonging to overlapping regions, an example of
which is represented in Figure 1 by the gray band. The eval-
uations performed in [26] indicate that the R-value corre-
lates quite well with classifier accuracy.

Fig. 1 Non-overlapping and overlapping areas, together with
decision boundaries of a DTREE

In order to introduce the formal definitions for R-value
and the Augmented R-value, we introduce the following no-
tations:

– n - the number of classes
– Ci - the set of instances belonging to class i
– U - the set of all instances, U = C1 ∪ C2 ∪ . . . ∪ Cn
– Pi,m - the m-th instance of class i

– λ(x) =

{
1, if x > 0

0, otherwise
– kNN(P, S) - the subset of k nearest neighbors of in-

stance P that belong to the set of instances S
– θ - threshold value on the number of different class neigh-

bors for considering an instance as belonging to an over-
lap region

The R-value of a class i is defined in Eq. 1 and can be
interpreted as the portion of instances belonging to class i
which fulfill the condition in 1.

R(Ci) =
1

|Ci|

|Ci|∑
m=1

λ (|kNN(Pi,m, U − Ci)| − θ) (1)

The R-value of a dataset f is defined in Eq. 2 and captures
the portion of instances belonging to all classes, which fulfill
the condition presented in 1.

R(f) =
1

|U |

n∑
i=1

|Ci|∑
m=1

λ(|kNN(Pi,m, U − Ci)|−θ) (2)

It follows that, for estimating the level of overlap us-
ing the R-value, two main parameters have to be set: k, the
number of the nearest neighbors to consider and θ, defined
above. The authors of [26] recommend to set the value for θ
within the range [0, k/2]. According to [26], in all our fur-
ther experiments, we employ k = 7 and θ = 3, i.e. an in-
stance be considered to belong to an overlap region if at least
4 out of its 7 nearest neighbors belong to another class.

We have calculated the R-value for several imbalanced
binary classification problems from the KEEL repository
[2]. Table 1 presents the values obtained for four datasets.
We have also recorded the AUC value of a decision tree
classifier and the imbalance ratio of the dataset. One can ob-
serve that 1−R(f) is almost constant for these imbalanced
datasets, whereas the performance drops as the IR increases.

Table 1 AUC, Imbalance Ratio, 1-R for 4 imbalanced
datasets

AUC IR 1-R

ecoli1 0.860 3.363 0.913
ecoli3 0.727 8.6 0.931
glass4 0.792 15.461 0.953
yeast4 0.595 28.098 0.964

We assert that the imbalance should also be considered
when estimating the degree of overlap. Thus, if we con-
sider that the positive class is the minority class and U =

Cneg ∪Cpos and Cneg ∩Cpos = ∅, the R-value of a dataset
becomes:
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(3)

R(f) =
1

|Cneg|+ |Cpos|
·|Cpos|∑

m=1

λ(|kNN(Ppos,m, Cneg)|−θ)

+

|Cneg|∑
m=1

λ(|kNN(Pneg,m, Cpos)|−θ)


which is equivalent to:

R(f) =
1

|Cneg|+ |Cpos|
(|Cneg|R(Cneg) + |Cpos|R(Cpos))

(4)

Provided that |Cpos| 6= 0, we can simplify the equation
by |Cpos| and use the definition of the imbalance ratio, IR =
|Cneg|
|Cpos| :

R(f) =
1

IR+ 1
(IR ·R(Cneg) +R(Cpos)) (5)

As the imbalance increases, the R-value of the major-
ity class possesses an increasingly larger weight than the
R-value of the minority class (Equation 5). Thus, for large
imbalance ratios, the R-value of a dataset remains almost
constant, since the few minority cases contribute very little
to its value:

lim
IR→∞

R(f) = R(Cneg) (6)

This phenomenon is captured in the results presented
in Table 1: as IR increases, the R-value changes very little,
whereas the performance drops significantly. Intuitively, for
binary classification, the contribution of the majority class
overlap to the overall overlap should not be directly propor-
tional to the number of negative instances, since the ma-
jority of its instances are not located in the overlap region
with a high probability. An analogous reasoning can be ap-
plied to the contribution of the minority class overlap. Con-
sequently, we introduce the Augmented R-value of a dataset,
by weighting the R-value of a class by |U − Ci| instead of
|Ci|:

(7)Raug(f) =
1

|Cneg|+ |Cpos|
·

(|Cpos|R(Cneg) + |Cneg|R(Cpos))

which simplified by |Cpos| results in:

Raug(f) =
1

IR+ 1
(R(Cneg) + IR ·R(Cpos)) (8)

For IR = 1, the Augmented R-value is equal to the R-
value of a dataset. For large imbalance datasets, the Aug-
mented R-value gets close to the R value of the positive
class:

lim
IR→∞

Raug(f) = R(Cpos) (9)

In Figure 2 several artificially generated datasets have
been plotted together with their R-value, Augmented R-value
and Imbalance Ratio. The datasets on the first row try to
capture the behavior for changing values of IR, whereas the
datasets on the second row have the same IR and varying
levels of overlap.

In the generation process of the datasets, only two nu-
merical features were considered: X (horizontal axis) and Y
(vertical axis). For generating the datasets on the first row, X
and Y were randomly drawn from a uniform distribution of
[0, 10) and the imbalance ratio was gradually reduced from
10 to 1. For the datasets on the second row, the imbalance
ratio was kept constant at 6. Let N (µ, σ2) be the normal
distribution with mean µ and scale σ. The feature values
of the majority class were drawn from N (5, 4). The X val-
ues of the minority class were drawn from N (µ, 1), with µ
gradually increasing, while the values of Y were drawn from
N (5, 1).

If we look at the scatter plots in Figure 2 we can observe
that the R-value exhibits little variation to the different gen-
eration scenarios, whereas the Augmented R-value changes
appropriately, according to the “intuitive” degree of over-
lap. It can also be observed that for higher imbalance values
the Augmented R-value places a larger weight on false nega-
tive errors, but also takes into consideration the false positive
rate.

Since it is based on kNN, the Augmented R-value of a
dataset is directly proportional to the portion of the minor-
ity instances that would be incorrectly classified by the kNN
classifier. Thus, it is expected that 1−Raug(f) has a strong
positive correlation with the performance of the kNN classi-
fier.

4 Proposed Meta-learning Approach

Considering that there is no best-suited preprocessing
strategy or best imbalance-specific classifier, which achieves
good performance on any imbalanced problem, we believe
that extracting a relevant set of meta-features and employ-
ing them within a meta-learning framework could provide
a more valuable solution to issues arising from the imbal-
ance and other data related factors. Consequently, this sec-
tion presents the meta-features we propose, which focus specif-
ically on capturing the imbalance, the overlap and the com-
plexity of the problem and we briefly describe the overall
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Fig. 2 Plots of datasets with R, Raug and IR

meta-learning approach. Last, we present the feature selec-
tion strategy we employed in the next section to validate
our feature set empirically. However, we begin with a brief
overview of the selected base classifiers, since several meta-
features are based them.

4.1 Base classifiers

1. Support Vector Machine [10] with a polynomial kernel
of degree 1, hereafter referred to as SVM1.

2. Support Vector Machine with a polynomial kernel of
degree 3, hereafter referred to as SVM3.

3. C4.5 Decision tree [29] pruned, with a confidence level
of 0.25, hereafter referred to as DTREE.

The choice of SVM1 and DTREE can be motivated by
the fact that they represent two of the most utilized tradi-
tional classification methods, their behavior being extensively
studied in imbalance scenarios as well. The SVM3 classifier
earned its place among the selected classifiers, because it
can identify more complex decision surfaces than SVM1.

4.2 Meta-features

This section describes the pool of proposed meta-features.
They can be divided in three classes, each focusing on a spe-
cific problem characteristic:

– imbalance: Imbalance Ratio

– overlap: Augmented R-value, Fisher’s Maximum Dis-
criminant Ratio

– complexity: Instances per Attributes Ratio, Number of
Support Vectors generated by SVM1, Number of Sup-
port Vectors generated by SVM3, Number of Leaves of
DTREE

The Imbalance Ratio (IR) is defined as the ratio between
the number of instances of the majority class and the number
of instances of the minority class. If the positive class is the
minority class, then:

IR =
|Cneg|
|Cpos|

(10)

Even if previous studies suggest that there is little corre-
lation between the imbalance ratio and the expected classi-
fier performance [24, 25], we have included it in the meta-
features pool, as the representative metric for quantifying
the level of imbalance in a dataset.

Fisher’s Discriminant Ratio [25] for feature i is defined
as:

fi =
(µi,1 − µi,2)2

σ2
i,1 + σ2

i,2

(11)

where µi,1, µi,2, σi,1, σi,2 are the means and variances of
feature i belonging to class 1 and 2, respectively.
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The authors in [25] justify that it is enough to consider
Fisher’s Maximum Discriminant Ratio:

F1 = max(f1, f2, . . . , fk) (12)

where k is the number of features, since in multiple dimen-
sions one discriminating feature is enough to increase the
separability of classes.

The Instances per Attributes Ratio (IAR) is defined as
the ratio between the number of instances (N ) and the num-
ber of features (|A|) [20]:

IAR =
N

|A|
(13)

It tries to provide a simple, straightforward measure for the
complexity of a dataset. The evaluations performed in [20]
indicate that classifier performance improves at larger IAR
values.

The number of support vectors is another estimate we
consider for the complexity of the dataset. Intuitively, if their
number is high, i.e. we have many data points close the the
decision surface, the classes are hard to separate. We com-
pute this feature for both SVM1 and SVM3.

A third measure for the complexity of a dataset is the
number of leaves of a decision tree model. This meta-feature
is frequently employed in literature, as a model-based meta-
feature [30]. In [18] the authors estimate dataset complexity
as logL, where L is the number of leaves generated by an
unpruned decision tree. In order to keep the magnitude of
this feature comparable to the number of support vectors and
since the decision tree algorithm we used performs pruning
(as default setting), we used the actual number of leaves as
meta-feature.

4.3 Meta-learning strategy

The objective of the meta-classification strategy is twofold:

– to demonstrate that it is possible to select best classifiers
based on meta-features for datasets and the average per-
formance competes with the usual strategy of classifier
selection based on cross-validation

– to prove the efficacy of the Augmented R-value as a
meta-feature

Arguably, the goal of a meta-learning strategy is gen-
erally to indicate the most appropriate classifier for a new
problem without having to run computationally intensive
cross-validation experiments. Although this objective is re-
alistic, our primary goal is to increase classification perfor-
mance on any given problem which exhibits both imbalance
and overlap. We employ several meta-features which imply

training the classifiers on the datasets, such as the number
of support vectors and number of nodes in the decision tree,
and the two metrics for estimating overlap - the R-value and
the Augmented R-value.

The different phases of the process are presented in Fig-
ure 3. In the meta-training set generation phase, the col-
lection of available training datasets is evaluated. For each
dataset, the meta-features and the classifier achieving the
highest AUC score among the classifiers presented in Sec-
tion 4.1 is retained. The collected meta-features together
with the best classifier as the nominal class label form the
training set for the meta-classifier. The meta-classifier is a
Logistic Regression Classifier model. The motivation be-
hind selecting this classifier is that it is simple and robust
against overfitting.

During the meta-model building phase, we introduced a
feature selection step. We employed Classifier Subset Evalu-
ation [17], which evaluates the feature subset on the training
data and utilizes Logistic Regression to estimate the merit of
a feature subset in conjunction with Linear Forward Selec-
tion search method [16]. This process is repeated, varying
the threshold for the maximal number of selected features
between 2 and 7. During each iteration, the merit of a fea-
ture subset is estimated as the average AUC value obtained
via 10-fold cross validation. The threshold value achieving
the highest AUC is then used for training the final classifier.
The feature selection process is illustrated in listing 1.

Listing 1 Feature Selection
classifier = AttributeSelectedClassifier(

classifier=LogisticRegression(),
evaluator=ClassifierSubsetEval(),
searcher=LinearForwardSearch())

for i in 2..7:
classifier.searcher.max_features = i
score[i] = crossValidate(classifier,

data, folds=10).AUC

classifier.searcher.max_features = argmax(score)
classifier.fit(data)

Even though this attribute selection method is slow in
general, we employ a maximum of 7 meta-features; the meta-
classification strategy achieves good performance even with
a small number of meta-features. Also, it can be reasonably
assumed that the number of meta-instances is small. There-
fore, the running time of the meta-classifier is dominated by
training the Logistic Regression on small dataset multiple
times. The training time of Logistic Regression is actually
independent of the sample sizes of the original datasets.

5 Experimental Evaluation

The experimental evaluation considers two different ob-
jectives. The first one is to study comparatively the R-value
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Fig. 3 The phases of Meta-classifier

and the Augmented R-value metrics, on both benchmark
and artificially generated data. We take this opportunity to
study also the influence of IR on the performance of classi-
fiers. The second objective is to evaluate the performance of
the meta-learning strategy for recommending the most ap-
propriate classifier, given the proposed collection of meta-
features. This evaluation is conducted on benchmark data.
We also perform an analysis of the importance of each meta-
feature as resulted from the feature selection step applied in
the meta-learning strategy. The results indicate the impor-
tance of the Augmented R-value in the performance of the
meta-learning strategy.

Throughout our evaluation, we use the Area Under the
ROC Curve [5] for measuring classifier performance. Be-
sides the motivation presented in Section 5 for the appropri-
ateness of AUC for imbalanced classification, by measuring
classifier performance with AUC we obtain results that are
comparable to the findings presented in [24], where the same
metric is used. The benchmark data consists of a relatively
well known collection of 66 datasets for imbalanced classi-
fication, obtained from the KEEL repository. This collection

has been more recently employed in [24], and we wish to be
able to compare our results with the results presented there.
Each dataset is prepared for 5-fold cross-validation - 5 train
and test pairs - maintaining the original class distribution.
The datasets are presented in Table2.

5.1 Evaluation of the Augmented R-value

The first experiment was conducted to evaluate compar-
atively the Raug, R and IR metrics in a controlled manner,
using artificially generated datasets with various levels of
imbalance and overlap. The datasets represent binary prob-
lems having two numeric attributes each (X and Y ). In the
Y dimension, the values for both classes are sampled uni-
formly from [0, 1). In the X dimension, the values for neg-
ative class instances are sampled from [0, 0.5), whereas the
values for the positive class are sampled from [0.5−x, 1−x),
both uniformly. This generation process allows us to define
an absolute overlap measure, which is exactly 200x, since x
controls the overlap percentage of the two bands along the
X direction.
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Table 2 Datasets from the KEEL repository

Name #Inst. #Attrs IR Name #Inst. #Atts. IR

Glass1 214 9 1.82 Glass04vs5 92 9 9.22
Ecoli0vs1 220 7 1.86 Ecoli0346vs5 205 7 9.25
Wisconsin 683 9 1.86 Ecoli0347vs56 257 7 9.28
Pima 768 8 1.9 Yeast05679vs4 528 8 9.35
Iris0 150 4 2 Ecoli067vs5 220 6 10
Glass0 214 9 2.06 Vowel0 988 13 10.1
Yeast1 1484 8 2.46 Glass016vs2 192 9 10.29
Vehicle1 846 18 2.52 Glass2 214 9 10.39
Vehicle2 846 18 2.52 Ecoli0147vs2356 336 7 10.59
Vehicle3 846 18 2.52 Led7digit02456789vs1 443 7 10.97
Haberman 306 3 2.68 Glass06vs5 108 9 11
Glass0123vs456 214 9 3.19 Ecoli01vs5 240 6 11
Vehicle0 846 18 3.23 Glass0146vs2 205 9 11.06
Ecoli1 336 7 3.36 Ecoli0147vs56 332 6 12.28
New-thyroid2 215 5 4.92 Cleveland0vs4 177 13 12.62
New-thyroid1 215 5 5.14 Ecoli0146vs5 280 6 13
Ecoli2 336 7 5.46 Ecoli4 336 7 13.84
Segment0 2308 19 6.01 Yeast1vs7 459 8 13.87
Glass6 214 9 6.38 Shuttle0vs4 1829 9 13.87
Yeast3 1484 8 8.11 Glass4 214 9 15.47
Ecoli3 336 7 8.19 Page-blocks13vs2 472 10 15.85
Page-blocks0 5472 10 8.77 Abalone9vs18 731 8 16.68
Ecoli034vs5 200 7 9 Glass016vs5 184 9 19.44
Yeast2vs4 514 8 9.08 Shuttle2vs4 129 9 20.5
Ecoli067vs35 222 7 9.09 Yeast1458vs7 693 8 22.1
Ecoli0234vs5 202 7 9.1 Glass5 214 9 22.81
Glass015vs2 172 9 9.12 Yeast2vs8 482 8 23.1
Yeast0359vs78 506 8 9.12 Yeast4 1484 8 28.41
Yeast02579vs368 1004 8 9.14 Yeast1289vs7 947 8 30.56
Yeast0256vs3789 1004 8 9.14 Yeast5 1484 8 32.78
Ecoli046vs5 203 6 9.15 Ecoli0137vs26 281 7 39.15
Ecoli01vs235 244 7 9.17 Yeast6 1484 8 39.15
Ecoli0267vs35 224 7 9.18 Abalone19 4174 8 128.87

The set of artificial datasets was obtained by varying
both the overlap and imbalance. The overlap percentage gen-
erator function is fO(n) = 2n for n = 0, 1, ..., 49, whereas
the imbalance ratio generator function is fIR(n) = n3/2 for
n = 1, 2, ..., 20. During the generation process the number
of instances was kept constant. Thus 1000 datasets were ob-
tained, three of them being illustrated in Figure 4. As evalu-
ation metric we have employed the Pearson correlation co-
efficient between the values of each of these metrics and the
performance of the classifiers measured with AUC.

The results of this first experiment can be found in Table
3. We included the absolute overlap metric also as a col-
umn, to conclude that Raug has a stronger correlation with
the absolute overlap than R, but even so, the correlation
moderate. This actually expected, since both R and Raug are
model based metrics, not data based. However, we expected
that the Raug possesses strong correlation with performance
classifier, better than R, which is confirmed by the results.
Even more, Raug is better correlated with the performance of
the SVM classifiers than the absolute overlap value; for the
DTREE classifier the situation is the opposite. The motiva-
tion for this behavior could be found in the data generation
process, which varies the overlap level, while keeping other
factors which might affect classifier learning constant (e.g.
data distribution).

Table 3 The correlations between overlap, IR, R measures
and classifier AUC on synthetic data

Abs. Overlap SVM1 SVM3 DTREE

Abs. Overlap -0.490 -0.752 -0.870
IR -0.489 -0.321 -0.166
R 0.27 0.149 0.019 -0.138

Raug 0.462 -0.903 -0.782 -0.527

We have also performed an analysis on the efficacy of
the Augmented R-value in comparison with R-value and the
other meta-features on the 66 KEEL benchmark datasets.
We employed the same evaluation strategy as before. The
results are presented in Table 4. Raug possesses the highest
correlation out of the three meta-features for all three clas-
sifiers considered. Its absolute value indicates a moderate to
strong negative correlation with the performance of classi-
fiers. The correlation of IR with classifier performance can
be labeled as weak negative, confirming that the imbalance
is not necessarily the only factor affecting performance We
believe the results validate that Raug is more appropriate as
overlap metric in imbalanced scenarios than R.
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Fig. 4 Plots of synthetic datasets with various degree of overlap and imbalance

Table 4 The correlations between metrics and AUCs on
benchmark data

SVM1 SVM3 DTREE

IR -0.259 -0.338 -0.3133
R -0.360 -0.330 -0.289

Raug -0.663 -0.697 -0.540

5.2 Evaluation of the Meta-classification Strategy

The second set of experiments focuses on assessing the
performance of the meta-classification strategy and provides
an analysis of the efficacy of the proposed meta-features,
highlighting the importance of the Augmented R-value. The
evaluation of the meta-classifier was performed in two-steps.
First, we assessed the performance of the meta-classifier in
predicting the best base classifier (i.e. SVM1, SVM3 or DTREE).
We included SMOTE in these evaluations as well, to inves-
tigate whether the meta-learning strategy is affected by the
application of preprocessing methods. Therefore we gener-
ated balanced distribution versions for all the datasets. Thus,
we ended up with a collection of 132 datasets, each hav-
ing 5 train-test cross-validation pairs. Each dataset was then
represented by the meta-features as an instance in the meta-
classifier’s training set having the best performing classifier
as class label.

We performed a 11-fold cross validation on this set and
we also reported the performance on the training set, to check
for potential overfitting behavior. Table 5 presents the results
obtained for this evaluation. The results indicate there seems
to be no overfitting, and the meta-classifier achieves a 0.765
average AUC value on the three-class problem of predicting
the best classifier.

Table 5 Weighted AUC, Precision and Recall for the 3-class
meta-classification problem

AUC Precision Recall

Train 0.850 0.721 0.719
11-fold CV 0.765 0.634 0.636

However, in practical situations, the goal is to have a
good performance on a given dataset, and reduce the risk
of selecting an inappropriate classifier for the new problem.
Therefore, in the second step, we evaluated the actual aver-
age performance achieved by the base classifiers predicted
by the meta-classifier and reported the average of their AUC
score. To perform a fair evaluation at this step, we defined
11 dataset folds. When predicting for a dataset in fold ftest,
the meta-classifier was trained on training data formed by
all meta-instances of the datasets belonging to other folds
than ftest. We have compared this performance to the aver-
age performance of the base classifiers, the baseline perfor-
mance and the maximum achievable performance. The max-
imum achievable performance is the average of the AUC
scores of the best classifiers for each dataset, which is equiv-
alent to the predictions of a perfect meta-classifier. The base-
line performance is obtained by selecting the classifier which
achieves the highest average AUC score in the 5-fold cross
validation process performed on the training sets.

The performance of the meta-classifier should be better
than the one achieved by the baseline recommender. This
would validate the idea that making an informed decision
on which classifier to use for a new dataset, by inspecting
the dataset characteristics, is better than selecting the best
average performer indicated by a cross validation process
performed on the dataset.

Upon collecting the predictions for each dataset, we eval-
uated the classifiers indicated by the predictions and mea-
sured their average AUC. We have done this both on the
"raw" datasets and their modified versions obtained by ap-
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plying the SMOTE oversampling method. Table 6 presents
these results. The average AUC values achieved by SVM1
and DTREE are comparable with the values reported in [24].
These results indicate that the meta-classification method is
indeed successful at predicting the most appropriate classi-
fier for a specific problem; it achieves superior performance
to all the individual classifiers it considers and to the base-
line meta-classifier - both on non-processed datasets and
when SMOTE is applied.

We have also analyzed the suitability of the meta-features
considered, by looking at the subsets generated in the fea-
ture selection step. For each feature, we computed a score
based on the number of times it was selected as being part of
the best resulting subset during the experiments. The max-
imum achievable score is 132, i.e. 11 runs, 6 test datasets
in each run, with 2 versions of dataset - without preprocess-
ing and oversampled with SMOTE. The Augmented R-value
is the only feature to reach the maximal value. The second
most selected feature was F1 (score=124) and the third was
the number of support vectors for SVM3 (score=122). IR
achieved the lowest score value (44). This confirms yet again
the superiority of the Augmented R-value over R-value in
capturing the overlap level in imbalanced scenarios, and the
fact that the imbalance is actually a poor indicator of ex-
pected classifier performance.

Table 6 Average AUC values obtained via the different clas-
sification and meta-classification schemes

SVM1 SVM3 C4.5 Max Baseline Meta

No Preproc. 0.689 0.759 0.788 0.820 0.790 0.796
SMOTE 0.850 0.866 0.835 0.878 0.854 0.868

We repeat the latter experiment with three base meta-
feature sets. The first feature set consists of all the features
defined in 4.2, except for the Augmented R-value; we de-
note this set by S1. In the second set we add the original
R-value to the base set, and in the third, the Augmented
R-value, respectively. Thus S2 = S1 ∪ {Rval} and S3 =

S1 ∪ {AugRval}. The results are shown in Table 7; they
indicate that the addition of the Augmented R-value to the
base feature set produces a performance boost, significantly
higher than that produced by the R-value. These results in
conjunction with Table 6 also show that the Augmented R-
value produces significant performance improvements to the
meta-learning strategy.

Table 7 Average AUC values for meta-classification using
different meta-feature sets

Meta S1 Meta S2 Meta S3

No Preproc. 0.791 0.758 0.796
SMOTE 0.843 0.865 0.868

Since the meta-classifier uses logistic regression, it is
possible to rank the classifiers based on posterior class dis-
tributions. The ideal ranking consists of ranking the classi-
fiers based on their best AUC scores, as defined in the previ-
ous section. The Normalized Discounted Cumulative Gain
(NDCG) metric is the ratio between the ranking generated
by a classifier (DCG) to the ideal ranking (IDCG):

DCG =

k∑
i=1

2reli − 1

log2(i+ 1)
(14)

NDCG =
DCG

IDCG
(15)

where reli is the relevance measure value for classifier at
position i. In our case k = 3, since we recommend three
classifiers and the relevance measure is the AUC score. If we
calculate this measure for each dataset and take the average,
we get an empirical estimate of the ranking performance of
our proposed method. Table 8 presents the NDCG values
achieved by the previously defined feature sets S1, S2 and
S3. The results indicate once again that the Augmented R-
value contributes to achieving an almost perfect ranking.

Table 8 NDCG values for the meta-classifier using different
base feature sets

Meta S1 Meta S2 Meta S3

No Preproc. 0.990 0.971 0.991
SMOTE 0.989 0.996 0.996

6 Current state in imbalanced classification

This section reviews the most relevant aspects related to
the class imbalance problem - classifier evaluation, strate-
gies for alleviating the imbalance and other data characteris-
tics which affect classifier performance in conjunction with
the imbalance. Also, the last sub-section briefly presents the
main idea behind meta-learning.

6.1 Evaluating performance

Establishing how to assess performance of classifiers is
a sensitive task in imbalanced problems. The selection of
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an inappropriate evaluation measure may lead to unexpected
predictions, which are not in agreement with the actual prob-
lem goals. Consider, for example a classifier constructed on
a training set consisting of a positive example and 99 nega-
tive examples. If it classifies all examples as negative, it will
have an accuracy of 99% on that set, however, such a model
is actually useless. Even if they do not explicitly consider
accuracy as optimization criterion, most classifiers employ
loss functions which generalize relatively well to accuracy.

Moreover, data imbalance problems usually come with
an associated requirement: the recognition of minority cases
is more important than that of majority cases. For example,
in cancer diagnostic problems, positive cases are relatively
less common than negative cases. As a consequence, in the
available data, the number of patients diagnosed with cancer
is smaller than negative diagnosis cases. However, failing
to identify a positive case is significantly more serious than
misdiagnosing a negative as positive (arguably, both errors
are serious, but the former possesses more severe implica-
tions on human life).

Table 9 depicts the confusion matrix for a two-class prob-
lem. The accuracy is defined as:

Accuracy =
TP + TN

TP + FP + FN + TN
(16)

It is widely acknowledged within the scientific commu-
nity that it is an improper metric for imbalanced problems,
since it considers the total number of correctly classified in-
stances and it is less sensitive to the recognition errors of the
minority class [24? ].

Table 9 Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive True Positives (TP) False Negative (FN)
Actual Negative False Positives (FP) True Negatives (TN)

A widely accepted metric for imbalanced scenarios is
the Area Under the ROC Curve [5], which captures the trade-
off between the True Positive Rate and the False Positive
Rate (17) into one single measure. ROC curves are gener-
ated by varying the score threshold for the classifiers’ pre-
diction probability and obtaining pairs of (FPrate, TPrate)
points. An ideal classifier would haveFPrate = 0, TPrate =
1 thus AUC = 1, whereas AUC = 0.5 is the expected
value of a random classifier. Since it is insensitive to the ra-
tio between positive and negative instances, the AUC is not
affected by the class skew, and therefore it is an objective
performance criterion for imbalanced problems.

TPrate =
TP

TP + FN
; FPrate =

FP

FP + TN
(17)
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Fig. 5 ROC Curves

The first bisector in Figure 5 represents the ROC curve
of the random classifier, whereas the other two dashed and
solid curves represent the ROC Curves of SVM classifiers,
with polynomial kernel of degree 1 and 2, respectively. The
area under the solid ROC curve is larger, which indicates
that the latter classifier has a better performance.

The scientific community has also suggested other com-
posite metrics, also derived from the confusion matrix, for
evaluating the performance in imbalanced problems: the ge-
ometric mean (GM) [4], the balanced accuracy (BAcc) [6],
the F-measure [15, 7] and its generalization – the Fβ-measure
– which provides a trade-off between the correct identifi-
cation of the positive class and the cost of false alarms (in
number of false positive errors).

6.2 Factors affecting the performance of classifiers

Another category of factors affecting the performance
of classifiers in imbalanced problems encompass a series
of data related characteristics co-occurring with the imbal-
ance, or as independent phenomena, but which in conjunc-
tion with the data imbalance produce a significantly larger
drop in performance than taken individually. Besides the
overlapping of the class boundaries, which was discussed
in section 2, the authors of [24] identify the following data
intrinsic characteristics as being relevant to the expected per-
formance of classifiers in imbalanced scenarios:

– The lack of density, or the small sample size issue, is
related to the insufficient data quantity to allow learning
algorithms to generalize separation boundaries correctly.
It is known that as the number of features increases,
the number of training samples needed to achieve the
same performance grows exponentially. When the train-
ing data is also imbalanced, classifier overfitting becomes
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even more severe [24]. In high dimensional feature spaces
feature selection has been shown to alleviate this effect
[35].

– The small disjuncts problem occurs when sub-concepts
are represented in small clusters in the training data, which
makes it difficult for a classifier to separate between ac-
tual information and noise. This issue may appear as a
consequence of the lack of density problem, but it may
also arise independently. [36] proposes several strategies
to deal with the small disjuncts problem. An important
conclusion of the study is related to the fact that there
exists a best marginal distribution for learning, which is
not necessarily the balanced or the naturally occurring
distribution (even though the two achieve reasonable re-
sults on average).

– Dataset shift refers to the difference between train and
test distributions. Classifiers are generally able to handle
mild distribution shifts, which is inherent in most real-
world applications. In imbalanced classification scenar-
ios, this issue becomes accentuated due to the increased
importance of the poorly represented minority instances
[24].

– The existence of noise in the available training data pos-
sesses a stronger effect on learning performance than
the imbalance [31]. However, as the imbalance becomes
more severe, it plays an increasingly significant role in
classifier performance. Naïve Bayes and Support Vector
Machines seem to be the most robust to noise, while the
performance of the C4.5 classifier degrades more rapidly
with increasing noise levels.

6.3 Strategies for alleviating the effect of the imbalance on
classifier performance

Several different strategies for improving the behavior of
classifiers in imbalanced domains have been reported in the
scientific community. Broadly, the approaches for dealing
with imbalanced problems can be split into data-centered,
algorithm-centered and hybrid solutions.

– Data-centered techniques focus on altering the distri-
bution of the training data: either randomly, or by mak-
ing an informed decision on which instances to elimi-
nate or add (by multiplying existing ones, or artificially
generating new cases). Under this category we find ran-
dom over- and under-sampling, or more elaborated ap-
proaches, the prominent approach in this category being
Synthetic Minority Over-sampling Technique [9]. SMOTE
performs oversampling on the minority class, by ran-
domly generating synthetic new instances on the vec-
tors connecting two original instances lying in the kNN
neighborhood of each other. The process of generating
synthetic samples is briefly described below:

– let P be an instance from the minority class and P

its feature vector
– letQ be another instance from the minority class, be-

ing in the kNN neighborhood of P , and Q its feature
vector

– the new synthetic instance is M described by its fea-
ture vector M = P+k(Q−P), where k is a random
number, k ∈ (0, 1)

According to the results presented in [24], SMOTE is
the de facto method to apply in imbalanced scenarios,
due to its inherent simplicity and efficiency in reducing
the effect of the imbalance.
Sampling methods can be employed as preprocessing
techniques. This may come as an advantage, since the
computational effort to prepare the data is needed only
once. However, most methods require the analyst to set
the amount of re-sampling needed, and this is not always
easy to establish.

– Algorithm-centered techniques, also known as inter-
nal approaches, refer to strategies which adapt the induc-
tive bias of classifiers, or specific strategies to adapt the
general methodology for tackling the imbalance. Such
strategies have been devised for decision trees [28, 39],
classification rule learners [14, 22], instance-based learn-
ers [23], logistic regression [37] or SVMs [21, 38]. Their
main disadvantage is the fact that they are restricted to
the specific learning algorithm.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

Q

M

Fig. 6 Synthetic instance generation in SMOTE

– Hybrid approaches combine data- and algorithm-centered
strategies. A number of approaches in this category con-
sist of ensembles built via boosting, which also employ
replication on minority class instances to second the weight
update mechanism, in the attempt to focus on the hard
examples. Also, the base classifiers may be modified to
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tackle imbalanced data. Such approaches include SMOTE-
Boost [8], DataBoost-IM [15], and a complex SVM en-
semble [33]. Another hybrid strategy which may prove
beneficial in imbalanced problems is the one employed
in cost-sensitive problems, to bias the learning process
according to the different costs of the errors involved
[12, 40, 32].

Since classifiers have different biases due to their di-
verse learning strategies, they are affected differently by the
imbalance and the associated characteristics of the train-
ing data. Preprocessing strategies have been shown to gen-
erally alleviate the performance drop related to the pres-
ence of several data-related factors within the context of
imbalanced problems, with SMOTE being seemingly the
best solution on average. However, to maximize their effect
in a specific imbalanced problem, sampling methods need
to be paired with the most appropriate learning algorithm
– activity which requires time and an experienced analyst.
Algorithm-based strategies on the other hand are restricted
to a specific algorithm category. If the learning bias of the
algorithm does not match the problem characteristics, it will
not provide the best solution for the specific imbalanced
problem. Hybrid techniques are more general, but they come
with additional complexity issues (e.g. time, model inter-
pretability, setting the cost matrix).

Thus, when faced with a new imbalanced problem, with
different specific characteristics (e.g. overlap level, complex-
ity or sample size) one cannot establish which learning strat-
egy will prove to be the most robust. Consequently, provided
that the analyst possesses an appropriate set of meta-features
which can capture the different data-related aspects, a meta-
learning approach could solve the difficult task of achieving
a good performance level for any imbalanced problem.

6.4 Meta-learning

Automatic selection of a suitable classifier for a given
problem has been investigated for some time now, early ap-
proaches focusing on deriving interpretable selection rules
[1, 3]:

if std <= 9970.047 then
best := NNClassifier;

[25] presents a thorough analysis of data complexity mea-
sures and their effect on classification, providing also a set of
empirically determined rules for classifier behavior. Instead
of generating empirical rules, the best classifier for a prob-
lem can also be determined by relying on a set of data char-
acteristics, or meta-features. [30] presents such a method
and proposes various types of meta-features, including sim-
ple, statistical, information-theoretic, model-based and land-
marking ones. A collection of problems is established, the

meta-features are calculated and the classifiers are evaluated
on each of these datasets. Feature selection is performed to
reduce the number of meta-features. In the prediction step,
the meta-features are computed for the new problem, and
based on their values the meta-classifier recommends the
most suitable base classifier for the new problem. The au-
thors of [27] propose an instance based meta-learning strat-
egy for generating ranked classifier predictions. They rely
on data based meta-characteristics and explore several al-
ternatives for distance computation, neighbor selection and
prediction combination.

7 Conclusions

This paper presented a meta-learning based approach
for dealing with complex scenarios involving imbalance and
overlap. We proposed a new overlap metric, the Augmented
R-value, by extending an existing measure, R-value. We pro-
vide a theoretical proof as well as qualitative and quantita-
tive evaluations to demonstrate the superiority of the new
metric over the initial R-value. Also, confirming previous
results, we found that the influence of imbalance alone on
the performance of classifiers is limited. However, the level
of overlap influences the performance of all classifiers con-
sidered and the newly proposed Augmented R-value mea-
sure presents a stronger correlation with the performance of
classifiers than the original R-value.

Another contribution of the current work is that it pro-
poses a collection of model based meta-features which cap-
ture several data characteristics and to provide a meta-learning
strategy for predicting the most suitable classifier for a given
dataset. The approach was evaluated on a well known collec-
tion of benchmark datasets for imbalanced problems, yield-
ing superior results to all the base classifiers considered and
to the baseline performance, which reflects the "manual"
classifier selection process normally performed by data sci-
entists. The analysis performed on the results of the feature
selection process considered in the meta-training flow sug-
gests that overlap measures are the best indicators for ex-
pected classifier performance, followed by complexity mea-
sures, while the imbalance is the weakest predictor meta-
feature.
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