
Assignment No. 1: Analysis & Comparison of Direct

Sorting Methods

Allocated time: 2 hours

Implementation

You are required to implement correctly and efficiently 3 direct sorting methods (Bubble Sort,

Insertion Sort – using either linear or binary insertion and Selection Sort)

Input: sequence of numbers >

Output: an ordered permutation of the input sequence < >

You may find any necessary information and pseudo-code in your Seminar no. 1 notes (Insertion

Sort is also presented in the book
1
 – Section 2.1). Make sure that, for each of the required sorting

methods, you select its efficient version (whenever more than one version has been provided to

you).

Evaluation

! Before you start to work on the algorithms evaluation code, make sure you have a correct

algorithm! You will have to prove your algorithm(s) work, so you should also prepare a demo on

a small-sized input (which may be hard-coded in your main function).

1. You are required to compare the three sorting algorithms, in the best, average and worst

cases. Remember that for the average case you have to repeat the measurements m times

(m=5 should suffice) and report their average; also for the average case, make sure you

always use the same input sequence for all three sorting methods – to make the

comparison fair; make sure you know how to generate the best/worst case input

sequences for all three methods.

2. This is how the analysis should be performed for a sorting method, in any of the three

cases (best, average and worst):

- vary the dimension of the input array (n) between [100…10000], with an increment

of maximum 500 (we suggest 100).

- for each dimension, generate the appropriate input sequence for the sorting method;

run the sorting method, counting the operations (i.e. number of assignments, number

of comparisons, and their sum).

! Only the assignments and comparisons which are performed on the input structure

and its corresponding auxiliary variables matter.

1
 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Introduction to Algorithms

3. For each analysis case, generate charts which compare the three methods; use different

charts for the number of comparisons, number of assignments and total number of

operations. If one of the curves cannot be visualized correctly because the others have a

larger growth rate (e.g. a linear function might seem constant when placed on the same

chart with a quadratic function), place that curve on a separate chart as well. Name your

charts and the curves on each chart appropriately.

4. Interpret the charts and write your observations in the header (block comments) section at

the beginning of your main .cpp file.

