Assignment No. 4: Merge k Ordered Lists Efficiently

Allocated time: 2 hours

Implementation

You are required to implement correctly and efficiently an O (nlogk) method for merging \mathbf{k} sorted sequences, where n is the total number of elements. (Hint: use a heap, see seminar no. 2 notes).

Implementation requirements:

- Use linked lists to represent the k sorted sequences and the output sequence

Input: k ordered lists of numbers $<a_{1}^{i}, a_{2}^{i}, \ldots, a_{m_{i}}^{i}>, \sum_{i=1}^{k} m_{i}=n$
Output: a permutation of the union of the input sequences: $\left\langle a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}\right\rangle$

Evaluation

! Before you start to work on the algorithm evaluation code, make sure you have a correct algorithm! You will have to show your algorithm works on a small-sized input (e.g. k=4, $n=20$).

We will make the average case analysis of the algorithm. Remember that, in the average case, you have to repeat the measurements several times. Since both \mathbf{k} and \mathbf{n} may vary, we will make each analysis in turn:

1. Choose, in turn, 3 constant values for $\mathrm{k}(\mathrm{k} 1=5, \mathrm{k} 2=10, \mathrm{k} 3=100)$; generate k random sorted lists for each value of k so that the sum of elements in all the lists n varies between 100 and 10000 , with a maximum increment of 400 (we suggest 100); you may split the n elements equally between the k lists; run the algorithm for all values of n (for each value of k); generate a chart that represents the sum of assignments and comparisons done by the merging algorithm for each value of k as a curve (total 3 curves).
2. Set $\mathrm{n}=10.000$; the value of k must vary between 10 and 500 with an increment of 10 ; generate k random sorted lists for each value of k so that the sum of elements in all the lists is 10000 ; you may split the n elements equally between the k lists; test the merging algorithm for each value of k and generate a chart that represents the sum of assignments and comparisons as a curve.
3. Interpret your charts.
