
Assignment No. 6: The Josephus Permutation

Allocated time: 4 hours

Implementation

You are required to implement correctly and efficiently an O(nlgn)-time algorithm which

outputs the (n,m)-Josephus permutation, for when m is not constant (problem 14.2 (b) from the

book
1).

You have to use a balanced, augmented Binary Search Tree. Each node in the tree holds, besides

the necessary information, also the size field (i.e. the size of the sub-tree rooted at the node).

First, you have to build a balanced BST containing the keys 1,2,...n (hint: use a divide and

conquer approach). Then, at each step you have to select and delete the k-th element from the

tree.

The pseudo-code for the algorithm:

JOSEPHUS(n,m)
T = BUILD_TREE(n)
j ←1
for k ←n downto 1 do

j ←((j + m − 2) mod k) + 1
x ←OS-SELECT(root[T], j)
print key[x]
OS-DELETE(T, x)

The pseudo-code for the OS-SELECT procedure can be found in Chapter 14.1 from the book
1
.

For OS-DELETE, you may use the deletion from a BST, without increasing the height of the tree

(why don’t you need to rebalance the tree?). You have to be careful that, at each step, the size

information in each node be correct. There are several alternatives to update the size field

without increasing the complexity of the algorithm (it is up to you to figure this out). For

BUILD_TREE, you have to write a procedure which builds a balanced BST from the keys 1, 2,

…, n. Make sure you initialize the size field in each tree node in the BUILD_TREE procedure.

Evaluation

! Before you start to work on the algorithms evaluation code, make sure you have a correct

algorithm! You will have to prove your algorithm(s) work on a small-sized input: i.e. for

1
 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Introduction to Algorithms

Josephus(7,3), pretty print the augmented BST after each step of your algorithm (i.e. initial tree

build, then after each OS_DELETE).

Once you are sure your program works correctly, vary n from 100 to 10000 with step 100; for

each n, choose the value of m as n/2.

Evaluate the computational effort as the sum of the comparisons and assignments performed by

your algorithm on each size. Is your algorithm running in O(nlgn) ?

