Assignment No. 7: Multi-way Trees
 Transformations between different representations

Allocated time: 2 hours

Implementation

You are required to implement correctly and efficiently linear time transformations between three different representations for a multi-way tree:

R1: parent representation: for each key you are given the parent key, in a vector.
R2: multi-way tree representation: for each node you have the key and a vector of children nodes
R3: binary tree representation: for each node, you have the key, and two pointers: one to the first child node, and one to the brother on the right (i.e. the next brother node)

Also, you are required to write a pretty print procedure on R3, which performs a preorder traversal on the binary representation and outputs the tree in a friendly manner (see the image on the next page for an example).

Therefore, you are given as input a multi-way tree in the parent representation (R1). You are required to implement $T 1$, which transforms the tree to a multi-way representation ($R 2$), then $T 2$, which transforms from the multi-way representation to the binary representation (R3). Then, on the binary representation, you are asked to write a pretty print procedure (using a pre-order traversal).

You should be able to design the necessary data structures by yourselves. You may use intermediate structures (i.e. additional memory).

Evaluation

You should run your algorithms on a sample input tree (you may use the one in the example provided on the next page). Output (in a readable manner) the tree in each of the three representations (for R1 simply print the parent vector; for R3 it is enough to call the pretty print procedure).

Explain what data structures you employed for the $R 2$ and $R 3$ representations. You should assess the efficiency of your methods: i.e. do your transformations run in $O(n)$? Also, explain the necessity for any additional memory employed by your algorithms.

