Assignment No. 8: Disjoint Sets

Allocated time: 2 hours

Implementation

You are required to implement correctly and efficiently the basic operations for disjoint sets: Make-Set(x), Union(x, y) and Find-Set(x) (section 21.1 from Cormen), using trees as underlying structures for each disjoint set (i.e. disjoint set forests - see section 21.3 from Cormen). Also, you should use path compression and union by rank heuristics in your implementations, to improve the running time.
Moreover, you are required to employ these data structures in an algorithm for finding the connected components of a graph (see section 21.1 from Cormen for details and pseudo-code).

Evaluation

! Before you start to work on the algorithms evaluation code, make sure you have a correct algorithm! You will have to prove your algorithm (i.e. the connected components algorithm) works on a small-sized graph (which you may hardcode in your main function).

Once you are sure your program works correctly, set the number of vertices $V=10000$ and vary the number of edges E from 10000 to 60000 ; in each case, generate random graphs, apply the connected components algorithm and count the number of calls to Make-Set (x), Union (x, y) and Find-Set (x) performed in the algorithm. Generate a chart which shows how the number of operations varies with E .

What is the running time of your algorithm?

