Assignment	Grade: 5	Grade: 7	Grade: 9	Grade: 10	
	Implement 1 direct sorting method, exemplify	Compare 2 direct sorting methods (best, average and	Compare 3 direct sorting methods (best, average and		
	correctness and evaluate it (at least in the average	worst case), i.e. implementation, exemplify correctness	worst case), i.e. implementation, exemplify correctness	Discussion, interpretations, efficiency, compare,	
A1 - Direct Sorting Methods	case) - at least 1 chart	and analysis (charts)	and analysis (charts)	stability	
	Implement and exemplify correctness of bottom-up	Implement and exemplify correctness of top-down build	Comparative analysis of the two build heap methods, in	Interpretations, advantages/disadvantages of each	
A2 - Build Heap TD vs BU	build heap procedure	heap procedure	the average case	approach	
	HeapSort: implementation, exemplify correctness and	QuickSort: implementation, exemplify correctness and	Comparative analysis of the two methods in the	Generate and evaluate best and worst case for	
A3 - HeapSort vs QuickSort	evaluation in the average case	evaluation in the average case	average case	QuickSort; interpretations, efficiency	
	Generate k random sorted lists, having n elements in	Adapt heap operations to work on new structure	Correct and complete algorithm implementation, with		
A4 - Merge k ordered lists	total (n and k given as parameters); merge 2 lists	(list_index, key); use min-HEAP	demo on a small-sized input	Evaluation, interpretations, discussion	
	Implement insert and search operations in a hash	Evaluation of search operation in hash for	Correct and complete algorithm implementation and		
A5 - Hash Tables	table; demo on a small-sized input (FillFactor=95%)	FillFactor=95%	evaluation	Interpretations	
			Correct and efficient implementation of the complete		
	BUILD_TREE - correct and efficient implementation;	OS_SELECT SI OS_DELETE - correct and efficient	algorithm; demo with pretty print after each step of the		
A6 - Josephus Permutation	demo for n=11, evaluation (n->10.000)	implementation, demo	algorithm	Evaluation, interpretations, discussion	
	Insert operation on a binary tree; build a tree by				
	repeated insert operations; pretty print the resulting		Correct and efficient implementation of T1, T2 and		
A7 - MWay trees	structure	Correct implementation of T1, exemplify on an input	pretty print operations; demo	Evaluation of the running time, interpretations]
more to come					