
8 Trees. Operations on trees 

In this lesson you will explore operations on trees. Two types of trees will 
be addressed: binary search trees and ternary trees, with corresponding 
operations. In Prolog, trees are modeled as recursive structures. The empty tree 
is denoted through a constant, which is typically the symbol nil. 
 
8.1 Binary Search Trees 
 
 Binary search trees can be represented in Prolog by using a recursive 
structure with three arguments: the key of the root, the left sub-tree and the right 
sub-tree – which are structures of the same type. The empty (null) tree is usually 
represented as the constant nil. 
 
Example 8.1: The binary search tree below can be specified in Prolog using the 
following structure: 
 t(6, t(4, t(2, nil, nil), t(5, nil, nil)), t(9, t(7, nil, nil), nil)). 

 
Hint: In order to avoid writing each time you want to make a query such a long 
construction for the input tree, you may choose to “save” a few “test” instances as 
predicate facts in the source file (and the predicate base), e.g.:  

tree1(t(6, t(4, t(2, nil, nil), t(5, nil, nil)), t(9, t(7, nil, nil), nil))). 
tree2(t(8, t(5, nil, t(7, nil, nil)), t(9, nil, t(11, nil, nil)))). 
… 

and instantiate a variable in the query: 
 ?- tree1(T), some_useful_predicate(T, …). 

 
8.1.1 Tree traversal – preorder, inorder, postorder  
 

Perhaps the simplest operations on trees are the traversal operations. As 
you already know, there are three possible modes of traversing trees: inorder, 
preorder and postorder, depending on the order in which the nodes are 
processed. 

The inorder traversal processes the left sub-tree first, then the root node, 
then the right sub-tree. The predicate is presented below: 
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inorder(t(K,L,R), List):-inorder(L,LL), inorder(R, LR),  
append(LL, [K|LR],List). 

inorder(nil, []). 
 
You may observe that, even though the recursive call for the right sub-tree 

is performed before processing the root node, the correct order of the nodes is 
maintained when constructing the output list, in the call to append. So, the nodes 
on the left sub-tree appear first in the list, then the root node, then the keys in the 
right sub-tree. 

The same observation applies for the preorder and postorder traversals, 
presented below: 

preorder(t(K,L,R), List):-preorder(L,LL), preorder(R, LR),  
append([K|LL], LR, List). 

preorder(nil, []). 
postorder(t(K,L,R), List):-postorder(L,LL), postorder(R, LR),  

append(LL, LR,R1), append(R1, [K], List). 
postorder(nil, []). 

 
Exercise 8.1: Study (by tracing) the execution of the following queries: 

1. ?- tree1(T), inorder(T, L). 
2. ?- tree1(T), preorder(T, L). 
3. ?- tree1(T), postorder(T, L). 

 
 
8.1.2 Pretty print 
 

Pretty printing trees in Prolog is very useful for visualizing the correctness 
of the other predicates on trees. The simplest strategy for pretty printing is to 
perform an inorder traversal of the tree, and print each node at a number of tabs 
equal to the depth at which the node appears in the tree. Also, each node is 
printed on a separate line. The root of the tree is considered to be at depth 0. 

A pretty printing of the tree in example 8.1 is presented below: 
 

     2 
        4 
                5 
6 
                7 
        9 
 

 
If we study the listing above more closely we observe that the keys on the 

left are printed first, then the root, then the keys on the right. This suggests that 
an inorder traversal is suited for obtaining such a pretty print. Therefore, the 
predicate(s) which output the pretty printing above are: 



% inorder traversal 
 pretty_print(nil, _). 

pretty_print(t(K,L,R), D):-D1 is D+1, pretty_print(L, D1), print_key(K, D),  
        pretty_print(R, D1).  

 
% predicate which prints key K at D tabs from the screen left margin and then           
% proceeds to a new line 
print_key(K, D):-D>0, !, D1 is D-1, write('\t'), print_key(K, D1). 
print_key(K, _):-write(K), nl. 
 

Hint: nl sends a newline to the standard output stream; equivalent to write(‘\n’).   
 

Exercise 8.2: Study the execution of the following query: 
 ?- tree2(T), pretty_print(T, 0). 

 
8.1.3 Searching for a key 
 

Because of the ordering of the keys in a binary search tree, searching for 
a given key is very efficient. The algorithm is sketched below: 

if currentNode = null then return -1; //not found 

if searchKey = currentNode.key then return 0; //found 

else if searchKey < currentNode.key  

then search(searchKey, currentNode.left); //search left subtree 

 else 

search(searchKey, currentNode.right); //search right subtree 

 
It is very straightforward to transform the pseudo code above in Prolog 

specifications. Since we want our predicate to fail in case the key is not found, 
we can either specify this fact explicitly, by using an explicit fail for when a nil is 
reached, or implicitly, by not covering the case of reaching a nil. The search_key 
predicate is presented below: 

search_key(Key, t(Key, _, _)):-!. 

search_key(Key, t(K, L, _)):-Key<K, !, search_key(Key, L). 

search_key(Key, t(_, _, R)):-search_key(Key, R). 

 
Exercise 8.3: Study the execution of the following queries: 

1. ?- tree1(T), search_key(5, T). 
2. ?- tree1(T), search_key(8, T). 

 
 
 



8.1.4 Inserting a key 
 

Each new key is inserted as a leaf node in a binary search tree. Before 
performing the actual insert, we must search for the appropriate position of the 
new key. If the key is found during the search process, no insertion occurs. When 
reaching a nil in the search process, we create the new node.  

The insert_key predicate is presented below: 
insert_key(Key, nil, t(Key, nil, nil)):-write('Inserted '), write(Key), nl. 

insert_key(Key, t(Key, L, R), t(Key, L, R)):-!, write('Key already in tree\n'). 

insert_key(Key, t(K, L, R), t(K, NL, R)):-Key<K, !, insert_key(Key, L, NL). 

insert_key(Key, t(K, L, R), t(K, L, NR)):- insert_key(Key, R, NR). 

 
Exercise 8.4: Study the execution of the following queries: 

1. ?- tree1(T), pretty_print(T, 0), insert_key(8, T, T1), pretty_print(T1, 0). 
2. ?- tree1(T), pretty_print(T, 0), insert_key(5, T, T1), pretty_print(T1, 0). 
3. ?- insert_key(7, nil, T1), insert_key(12, T1, T2), insert_key(6, T2, T3), 

insert_key(9, T3, T4), insert_key(3, T4, T5), insert_key(8, T5, T6), 
insert_key(3, T6, T7), pretty_print(T7, 0). 

 
8.1.5 Deleting a key 
 
 The deletion of a key in a binary search tree also requires that the key be 
initially searched in the tree. Once found, we distinguish among three situations:  

• We have to delete a leaf node 
• We have to delete a node with one child 
• We have to delete a node with both children 
 
The first two cases are rather simple. For the third case we have two 

alternatives: either replace the node to delete with its predecessor (or successor) 
– by reestablishing the links correctly, or to “hang” the left sub-tree in the left part 
of the right sub-tree (or vice-versa). 

We have implemented the first alternative in the delete_key predicate, 
below: 

delete_key(Key, nil, nil):-write(Key), write(' not in tree\n'). 

delete_key(Key, t(Key, L, nil), L):-!. % this clause covers also case for leaf  

      (L=nil) 

delete_key(Key, t(Key, nil, R), R):-!. 

delete_key(Key, t(Key, L, R), t(Pred, NL, R)):-!, get_pred(L, Pred, NL). 

delete_key(Key, t(K, L, R), t(K, NL, R)):-Key<K, !, delete_key(Key, L, NL). 

delete_key(Key, t(K, L, R), t(K, L, NR)):- delete_key(Key, R, NR). 



get_pred(t(Pred, L, nil), Pred, L):-!. 

get_pred(t(Key, L, R), Pred, t(Key, L, NR)):-get_pred(R, Pred, NR). 

   
Exercise 8.5: Study the execution of the following queries: 

1. ?- tree1(T), pretty_print(T, 0), delete_key(5, T, T1), pretty_print(T1, 0). 
2. ?- tree1(T), pretty_print(T, 0), delete_key(9, T, T1), pretty_print(T1, 0). 
3. ?- tree1(T), pretty_print(T, 0), delete_key(6, T, T1), pretty_print(T1, 0). 
4. ?- tree1(T), pretty_print(T, 0), insert_key(8, T, T1), pretty_print(T1, 0), 

delete_key(6, T1, T2), pretty_print(T2, 0), insert_key(6, T2, T3), 
pretty_print(T3, 0). 

 
8.1.6 Height of a binary tree 
 

The height of a binary tree can be computed using the following idea: 
• the height of a nil node is 0 

• the height of a node other than nil is the maximum between the 
height of the left sub-tree and the height of the right sub-tree, plus 1  
(max{hLeft, hRight} + 1) 

  
Therefore, the predicate which computes the height of a binary tree can 

be specified in Prolog as: 
 % predicate which computes the maximum between 2 numbers 

max(A, B, A):-A>B, !. 
 max(_, B, B). 
 

% predicate which computes the height of a binary  tree 

height(nil, 0). 

height(t(_, L, R), H):-height(L, H1), height(R, H2), max(H1, H2, H3),  

H is H3+1. 

 
Exercise 8.6: Study the execution of the following queries: 

1. ?- tree1(T), pretty_print(T, 0), height(T, H). 
2. ?- tree1(T), height(T, H), pretty_print(T, 0), insert_key(8, T, T1), height(T1, 

H1), pretty_print(T1, 0). 
 

8.2 Ternary Trees 
 

In a ternary tree, each node can have up to three children. Although it is 
not as easy as for binary trees, ordering relations can be established for ternary 
trees as well. For the sake of simplicity, we will not impose any ordering relation 
for the keys in a ternary tree. Below you have an example of a ternary tree: 



 
We shall study a few operations for ternary trees. In Prolog, they are 

represented in the same manner as binary trees – through recursive structures. 
 
8.2.1 Pretty print 
 

Since a node in a ternary tree can have up to three children, we need a 
different strategy for pretty printing such structures than the one employed for 
binary trees. A solution would be to print each node at depth tabs from the left 
screen margin (as before); moreover a node’s sub-trees should appear bellow 
the node (should be printed after the node is printed), but above the next node at 
the same depth: 
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Such a pattern could be achieved through a pre-order traversal of the tree 

(Root, Left, Middle, Right), and printing each key on a line, at depth tabs from the 
left margin.  

 
Exercise 8.7: Implement pretty printing for a ternary tree. Study the execution of 
one or two queries for your predicate. 

 
8.2.2 Tree traversal 
 
 Tree traversal operations can be performed on ternary trees as well. The 
order of visiting the nodes in each of the tree walks is the following: 

• inorder: Left->Root->Middle->Right 
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• preorder: Root->Left->Middle->Right 
• postorder: Left->Middle->Right->Root   

 
Exercise 8.8: Implement the tree traversal operations for a ternary tree. Study the 
execution of different queries for the resulting predicates. 
 
8.2.3 Tree height 
 

The height of a ternary tree can be computed using the same idea from 
binary trees; the only difference is that you have to consider three branches, 
instead of two. 

 
Exercise 8.9: Write a predicate which computes the height of a ternary tree. 
Study the execution of different queries for your predicate. 



8.4 Quiz exercises 
 

q8-1. Alter the predicate for the inorder traversal of a binary search tree such 
that the keys are printed on the screen instead of collecting them in a list.  

 
q8-2. Alter the delete_key predicate for deleting a key from a binary search 

tree, such that when the key is in a node with two children you apply the 
second solution: “hang” the left sub-tree to the right sub-tree, or vice-
versa. 

 
q8-3. Write a predicate which collects, in a list, all the keys found in leaf 

nodes of a binary search tree. 

 
8.5 Problems 

 
p8-1. Write a predicate which computes the diameter of a binary tree 

(diam(Root) = max{diam(Left), diam(Right), height(Left)+height(Right)+1}). 
?- tree1(T), diameter(T, D). 

D =  4 , 

T = (6, t(4, t(2, nil, nil), t(5, nil, nil)), t(9, t(7, nil, nil), nil)) ? ; 

no 

 
p8-2. (**) Write a predicate which collects, in a list, all the nodes at the same 

depth in a ternary tree. 
 

p8-3. (**) Let us call a binary tree symmetric if you can draw a vertical line 
through the root node and then the right sub-tree is the mirror image of the 
left sub-tree. Write a predicate symmetric(T) to check whether a given 
binary tree T is symmetric. We are only interested in the structure, not in 
the contents of the nodes. 
Hint: Write a predicate mirror(T1, T2) first to check whether one tree is the mirror 
image of another.  

?- tree1(T), symmetric(T). 

  no 

 

?- tree1(T), delete_key(2, T, T1), symmetric(T1). 

  T = t(6,t(4,t(2,nil,nil),t(5,nil,nil)),t(9,t(7,nil,nil),nil)), 

  T1 = t(6,t(4,nil,t(5,nil,nil)),t(9,t(7,nil,nil),nil)) ? ; 

  no 


