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a b s t r a c t

Anew incremental-iterative procedure based on the arc-length constraint equation is proposed in order to
determine both interaction diagrams and moment capacity contours for composite steel–concrete cross-
sections. This procedure adopts a tangent stiffness strategy for the solution of the nonlinear equilibrium
equations thus resulting in a high rate of convergence. The proposed approach has been found to be very
stable for all cases examined herein even when the section is close to the state of pure compression or
tension or when there are multiple solutions, and it is not sensitive to the initial or starting values, to
how the origin of the reference loading axes is chosen and to the strain softening exhibited by concrete
in compression. Furthermore, the proposed method can be applied to provide directly the ultimate
resistances of the cross-section, in the hypothesis that one or two components of the section forces are
known, without the need of knowing in advance the whole interaction diagram or moment capacity
contour. An object oriented computer program with full graphical interface was developed, aimed at
obtaining the ultimate strength of composite cross-sections under combined biaxial bending and axial
load. In order to illustrate the proposed method and its accuracy and efficiency, this program was used
to study several representative examples, which have been studied previously by other researchers using
independent fiber element solutions. The examples and the comparisons made prove the effectiveness
and time saving of the proposed method of analysis.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The inelastic response of cross-sections under axial load and
biaxial bending moments can be represented by either mo-
ment–curvature diagrams for fixed values of axial force (M–N–φ)
or interaction diagrams that express, at failure, the interaction
between the axial load and bending moments about major and
minor principal axes of the cross-section. Although the mo-
ment–curvature analysis can provide useful information regard-
ing gradual yielding, load-carrying capacity and failure mode of
the cross-sections, in practice, it is sometimes desirable to have
methods for calculating directly the axial force and bending mo-
ments associated with a strain distribution characterizing the fail-
ure of the cross-section. Such interaction diagrams are commonly
used for the design of reinforced-concrete and composite (con-
crete–steel) structures. On the other hand, reliable, robust and fast
inelastic analysis algorithms of the cross-sections are, for instance,
essential in advanced analysis methodologies that involve accu-
rate predictions of inelastic limit states up to or beyond struc-
tural collapse. Such algorithms, as described in the current paper,
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have practical value in the advanced nonlinear inelastic analysis of
frameworks where elasto-plastic behaviour is modelled account-
ing for spread-of-plasticity effects in sections and along the ele-
ment length [1,2].

In recent years, some methods have been presented for the
ultimate strength analysis of various concrete and composite
steel–concrete sections such as rectangular, L and T shapes, polyg-
onal and circular, under biaxial moments and axial loads [3–13].
Among several existing techniques, two are the most common;
the first consists of a direct generation of points of the failure sur-
face by varying the position and inclination of the neutral axis (an-
gle θ in Fig. 1) and imposing a strain distribution corresponding
to a failure condition. This technique generates the failure surface
through three-dimensional curves (Fig. 1), making the application
of this technique rather cumbersome for practical applications. In
practice, if the designer desires to check a given design, only a
single plane interaction curve needs to be determined and plot-
ted, making sure that the point defined by the applied axial load
and the total applied moment falls inside the obtained plane in-
teraction curve. The second approach is based upon the solution
of the nonlinear equilibrium equations according to the classical
Newton’s scheme consisting of an iterative sequence of linear pre-
dictions and nonlinear corrections to obtain either the strain dis-
tribution or the location and inclination of the neutral axis which
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Fig. 1. Failure surface and interaction diagrams.

determines the ultimate load, where one or two components of
the section forces can remain constant. In general, these methods
generate plane interaction curves and give fast solutions but are
sensitive to the origin of the loading axes and some problems in
convergencemay arise, particularlywhen the initial or starting val-
ues of the variables are not selected properly and under large axial
forces [7]. Thesemethods can be further distinguished by how they
plot the interaction curves.

These curves may be computed, indirectly, by explicit compu-
tation of the moment–curvature response, and the failure of the
cross-section corresponds to the peak of the moment–curvature
diagram when any of the materials reaches its predefined maxi-
mum allowable compressive or tensile strain [8,13]. This method
can be used under any loading mode, but is rather time consum-
ing and the basic equations of equilibrium are not always satis-
fied [8]. On the other hand, to determine directly the interaction
diagrams or load contours, the exact location of the neutral axis
may be determined by solving three coupled nonlinear systems
of equations by an iterative approach [5,7]. These algorithms are
not straightforward to implement, starting or initial values (i.e. the
location and inclination of the neutral axis) are not always sim-
ple to choose making the application of these techniques rather
cumbersome for an inexperienceduser. For these algorithms, prob-
lems of convergence may arise especially when strain softening
of concrete in compression is taken into account, and they may
become unstable near the state of pure compression or tension.
There exist three different methods to generate plane interaction
curves for cross-sections under biaxial bending: (1) interaction
curves for a given bendingmoment ratioN–M–M , [5], (2) load con-
tours for a given axial load (M–M) [7] and (3) generate triplets
of stress resultants on the failure surface by extending an arbi-
trary oriented straight line [4,10,11]. The plane interaction curves
generated by these methods are depicted in Fig. 1. However it
is important to note that, although claimed, not all the methods
found in the literature generate genuinely plane curves. For in-
stance the method proposed in [7] fails in some circumstances to
draw themoment capacity contour, under a fixed axial load, and in
order to overcome somedivergences, the axial load value is slightly
adjusted.

In either technique, the elasto-plastic properties of the cross-
section are modelled by explicit integration of stresses and
strains over the cross-section area. Thus, a further complication
is represented by the nonlinear constitutive law that is usually

assumed for concrete in compression. Some existing methods
for the analysis of cross-sections under axial load and biaxial
bending rely on the numerical integration of stress resultants
using the well known ‘‘fiber decomposition method’’ where
the cross-section is decomposed into filaments and the section
response is computed by composing the uniaxial behaviour of
each filament [9]. These techniques are not numerically efficient,
due to the large amount of information needed to characterize
the section and the high number of operations required by stress
integration with an allowable error level [9], but, on the other
hand, they can employ various strain distributions, or stress–strain
diagrams that can be used for cyclic loading. Rodriguez and
Ochoa [5] presented a method to determine the biaxial interaction
diagrams for any orientation of the neutral axis of RC short columns
with any geometry, obtaining analytical closed form integral
expressions of the internal forces. Sfakianakis [8] developed an
alternative method, based on the fiber decomposition approach
that employs computer graphics as a computational tool for
the integration of normal stresses over the section area. Based
on Green’s theorem Rotter [3] and then Fafitis [6] developed
numerical procedures for numerical integration of concrete in
compression, but these formulations are limited to fully confined
concrete (i.e. the descending curve of the concrete is not included)
and to polygonal cross-sections only. Based on the secant [4,11]
and tangent [10] stiffness strategy for the solution of nonlinear
equilibrium equations, Rosati and co-workers developed several
algorithms and boundary integration formulas for evaluating
the ultimate strength capacity of polygonal and circular RC
cross-sections. These algorithms are limited to fully confined
concrete.

The main objective of this paper is to present a new
formulation by which the biaxial interaction diagrams and
moment capacity contours of a composite steel–concrete cross-
section can be determined, which make use of an incremental-
iterative procedure based on arc-length constraint equations.

The proposed procedure adopts a tangent stiffness strategy for
the solution of the nonlinear equilibrium equations thus resulting
in a high rate of convergence. Based on Green’s theorem, the
domain integrals appearing in the definition of stress resultants
and tangent stiffnesses are evaluated in terms of boundary
integrals when the section boundary is rectilinear or circular.

Considering the solution of nonlinear equilibrium equations,
the proposed incremental-iterative method is advantageous with
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Fig. 2. Model of arbitrary composite cross-section.

respect to the existing ones [5,7,13], in that the solution is
obtained by solving just two coupled nonlinear equations and the
convergence stability is not sensitive to the initial/starting values
of the basic variables (i.e. the ultimate curvatures about global axes
φx and φy), involved in the iterative process. For all cases examined
herein it has been found that starting the iterative process with the
initial curvatures φx = 0 and φy = 0 the convergence is achieved
in a low number of iterations.

Most of the existing methods that use iterative procedures
[5,7] are not general, they can compute either interaction curves for
a given bendingmoment ratio [5] or load contours for a given axial
load [7]. As will be presented in the next sections, the proposed
approach can handle both types of interaction curves. Besides,
the proposed method can provide directly the ultimate resistance
of the cross-section, supposing that one or two components of
the section forces are known. This is a particularly important
feature that can be used efficiently in the nonlinear structural
analysis program, to detect directly whether the representative
point of the cross-section lies on the yielding surfaces, without
the need of knowing in advance the whole interaction diagram
or moment capacity contour. For instance, for given bending
moments (Mx,My) we can determine directly the axial force
resistance N and also for given bending moment’s ratio and axial
force N , the ultimate values of the bending moments can be
directly evaluated. However, when the axial force N and one of
the bending moments, for instance Mx are given, the associated
ultimate value of the bending moment My is not unique (see
Fig. 5c), because at least two strain distributions fulfill this load
constraint (see Eq. (6)). In this case the search direction to one of
the possible solutions cannot be controlled. The linear constraint
given by Eq. (6) is used, in the current paper, only for drawing the
moment capacity contours.

Moreover using the proposed method we have found that
near the axial load capacity under pure compression, when
the strain softening of the concrete is taken into account, the
solution is not unique which implies non-convexity of the failure
surface in these situations. Therefore, the proposed approach based
on the arc-length constraint strategy is essential to assure the
convergence of the entire process and to determine all possible
solutions.

2. Mathematical formulation

2.1. Assumptions and problem definition

Consider the cross-section subjected to the action of the
external bending moments about both global axes and axial force
as shown in Fig. 2. The cross-section may assume any shape with
multiple polygonal or circular openings. However, the approach
presented in this paper can handle only composite steel–concrete
sections where the steel part is completely surrounded by
concrete. It is assumed that the plane section remains plane
after deformation. This implies a perfect bond between the steel
and concrete components of a composite concrete–steel cross-
section. Shear and torsional interaction and shrinkage effects are
not accounted for in the concrete constitutive model. Thus the
resultant strain distribution corresponding to the curvatures about
global axes 8 = {φx, φy} and the axial compressive strain ε0 can
be expressed at a generic point (x, y) in a linear form as:

ε = ε0 + φxy + φyx. (1)

The constitutive relation for concrete under compression is
represented by a combination of a second-degree parabola and a
straight line, Eq. (2), as depicted in Fig. 3:

fc =


f ′′

c


2
ε

εc0
−
ε2

ε2c0


, ε ≤ ε0

f ′′

c


1 − γ


ε − εc0

εcu − εc0


, ε > ε0

(2)

where γ represents the degree of confinement in the concrete and
allows for the modelling of creep and confinement in concrete
by simply varying the crushing strain εc0 and γ , respectively. The
tensile strength of concrete is neglected. Elastic–perfectly plastic
stress–strain relationship, both in tension and in compression, is
assumed for the structural steel and the steel reinforcing bars
(Fig. 4). The strain hardening of steel is neglected.

The cross-section reaches its failure limit state when the strain
in the extreme compression fiber of the concrete, or in the extreme
tensioned steel fiber, attains the ultimate value. Consequently, at
ultimate strength capacity the equilibrium is satisfied when the
external forces are equal to the internal ones and in the most
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Fig. 3. Stress–strain relationships for concrete in compression.

Stress

Strain

Fig. 4. Stress–strain relationships for steel.

compressed or tensioned point the ultimate strain is attained.
These conditions can be represented mathematically in terms of
the following nonlinear system of equations as:

∫
A
σ(ε(ε0, φx, φy))dA − N = 0∫

A
σ(ε(ε0, φx, φy))ydA − Mx = 0∫

A
σ(ε(ε0, φx, φy))xdA − My = 0

ε0 + φxyc(φx, φy)+ φyxc(φx, φy)− εu = 0

(3)

in which N, Mx, My, ε0, φx, φy represent the unknowns. In
Eqs. (3) the first three relations represent the basic equations of
equilibrium for the axial load N and the biaxial bending moments
Mx,, My, respectively, given in terms of the stress resultants. The
last equation represents the ultimate strength capacity condition,
that is, in the most compressed or the most tensioned point
the ultimate strain is attained; in this equation xc(φx, φy) and
yc(φx, φy) represent the coordinates of the point in which this
condition is imposed. The coordinates of the ‘‘constrained’’ point
can be always determined for each inclination of the neutral
axis defined by the parameters φx and φy, and εu represents
the ultimate strain either in the most compressed concrete
point or in the most tensioned reinforcement steel fiber. The
stresses in Eqs. (3) are calculated using the fiber strains and the
constitutive relations. Obviously the system given by Eqs. (3) is
an undetermined nonlinear system of equations (i.e. it has
more unknowns than equations) and it has, in general, infinite
many solutions. However the system has the ‘‘forces’’ unknowns
decoupled and using strain distributions corresponding to a failure
condition it is possible to calculate, point by point, the entire failure

surface, by varying the position and the inclination of the neutral
axis through the parameters ε0, φx, φyand computing the ultimate
resistances N, Mx, My of the cross-section through Eq. (3).
Although in this way we can compute the failure surface,
the resulting interaction diagrams, being three dimensional, are
difficult to plot and have limited practical applicability. In practice,
instead, it is often desirable to have plane interaction diagrams that
are easier to use and interpret.

Under the above assumptions, the problem of the ultimate
strength analysis of composite (concrete–steel) cross-sections can
be formulated as:

Given a strain distribution corresponding to a failure condition
(i.e. maximum strains attained either at the outer compressed point of
the concrete or in the most tensioned reinforcement steel fiber), find
the ultimate resistances N,Mx,My so as to fulfill the basic equations
of equilibrium and one of the following linear constraints:
L1(N,Mx,My) ≡ Mx − Mx0 = 0
L2(N,Mx,My) ≡ My − My0 = 0 (4)
L1(N,Mx,My) ≡ N − N0 = 0
L2(N,Mx,My) ≡ My − tan(α)Mx = 0 (5)
L1(N,Mx,My) ≡ N − N0 = 0
L2(N,Mx,My) ≡ Mx − Mx0 = 0 (6)

where N0,Mx0,My0 represent the given axial force and bending
moments, respectively, and α represents the angle formed by the
bending moments Mx and My measured form the positive direction
of the x axis.

A solution of theproblemstated above is searched for iteratively
as will be presented in the next sections of the paper. As can
be seen in Fig. 5, at least two strain distributions fulfill the
load constraints (4) and (6). As will be detailed in the next
sections, when constraints (4) are considered, the search direction
can be controlled by starting the iterative process either with a
strain distribution associated with failure of the cross-section in
compression (i.e. solution 1 in Fig. 5a) or with a strain distribution
associated with failure of the cross-section in tension (i.e solution
2 in Fig. 5a). When the constraints (6) are considered the search
direction cannot be controlled. However, using the constraints
(5) for a given value of the angle α, measured from the positive
direction of the x axis, the solutions can be detected, solution 1 for
angle (α) and solution 2 for angle (α + π), respectively (Fig. 5b).

The general solution procedure is based on the solution of
nonlinear system (3) for one of the three linear constraints defined
by Eqs. (4)–(6). Corresponding to each linear constraints we can
define a point on the failure surface as: (I) when constraints
(4) are injected in nonlinear system (3), a point on the failure
surface is defined by computing the axial resistance N associated
with a failure criterion and for a fixed value of bending moments
(Mx, My); (II) when constraints (5) are used, the point on the
failure surface is defined for a fixed axial load (N) and a given
bending moment’s ratio; (III) when constraints (6) are used, the
point is associated with a fixed axial load (N) and a given bending
moment Mx about x axis. This is then used as the basis for one
of the two analysis options: (1) a plot of the vertical sections of
the failure surface that are typically called interaction diagrams,
(2) a plot of the horizontal sections of the failure surface that are
typically called moment capacity contours or loading contours.
These diagrams are obtained by incrementally varying the fixed
generalized force values and solving for corresponding variable
force and ultimate curvatures. All these situations are graphically
illustrated in Fig. 5. It is important to note that, although the
paper mainly concerns the drawing of the yielding diagrams, the
proposed method, can be applied to provide directly the ultimate
resistances of the cross-section, in the hypothesis that one or two
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a b

c

Fig. 5. Solution procedures. (a) Interaction diagrams for given bending moments; (b) Interaction diagrams for given axial load and bending moment’s ratio; (c) Moment
capacity contours for given axial force and bending momentMx .

components of the section forces are known. This is a particularly
important feature of the proposed method that can be used
efficiently in the nonlinear structural analysis program, to detect
whether a load value lies or not on the yielding surface, without
the need of knowing in advance the whole interaction diagram or
moment capacity contour. This feature will be illustrated in the
Computational examples section.

2.2. Method of solution

An incremental-iterative procedure based on arc-length con-
straint equation is proposed in order to determine the biaxial
strength of an arbitrary composite steel–concrete cross-section ac-
cording to the already described situations. The failure diagrams
correspond either to maximum strains attained at the outer com-
pressed point of the concrete section (i.e. εu equal to the compres-
sive strain at failure) or to maximum strains attained in the most
tensioned reinforcement steel fiber (i.e. εu equal to the tensile steel
strain at failure). Consider an irregular composite section as shown
in Fig. 2. The global x, y axes of the cross-section could have their
origin either in the elastic or plastic centroid of the cross-section.
For each inclination of the neutral axis defined by the parameters
φx and φy the farthest point on the compression side (or the most
tensioned steel bar position) is determined (i.e. the point with co-
ordinates xc, yc).We assume that at this point the failure condition
is met:
ε0 + φxyc + φyxc = εu. (7)

Hence, the axial strain ε0 can be expressed as:

ε0 = εu − (φxyc + φyxc). (8)

Taking into account equation (1), the resulting strain distribution
corresponding to the curvatures φx and φy can be expressed in
linear form as:

ε(φx, φy) = εu + φx(y − yc)+ φy(x − xc). (9)

In this way, substituting the strain distribution given by Eq. (9) in
the basic equations of equilibrium, the unknown ε0 together with
the failure constraint equation can be eliminated from nonlinear
system (3). Thus, the basic equations of equilibrium together
with the linear constraints equations (4)–(6) form a determined
nonlinear system of equations (i.e. 5 equations and 5 unknowns):

∫
A
σ(ε(φx, φy))dA − N = 0∫

A
σ(ε(φx, φy))ydA − Mx = 0∫

A
σ(ε(φx, φy))xdA − My = 0

L1(N,Mx,My) = 0
L2(N,Mx,My) = 0

(10)

and the solutions can be obtained iteratively following an approach
outlined in the next sections. It is important to note that the
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curvatures φx and φy, solutions of the above system of equations,
are associated with a failure criterion and represent the ultimate
sectional curvatures.

2.2.1. Interaction diagrams for given bending moments
In this case introducing constraints (4) in system (10) the

problem of the ultimate strength analysis of cross-section can be
expressed as:

∫
A
σ(ε(φx, φy))dA − N = 0∫

A
σ(ε(φx, φy))ydA − Mx0 = 0∫

A
σ(ε(φx, φy))xdA − My0 = 0

(11)

in which axial load N and curvatures φx and φy represent the
unknowns. If we regard the curvatures φx and φy as independent
variables in the axial force equation, then

N =

∫
A
σ(ε(φx, φy))dA (12)

and the curvatures φx and φy are obtained by solving the following
nonlinear system of equations:

∫
A
σ(ε(φx, φy))ydA − Mx0 = 0∫

A
σ(ε(φx, φy))xdA − My0 = 0.

(13)

The above system can be solved numerically using, for instance,
the load-controlled Newton method and taking into account the
fact that the stresses are implicit functions of curvatures through
the resultant strain distribution given by Eq. (9). In this way, for
given bending moments we can obtain directly the axial force
resistance N and a point on the failure surface associated with
the known bending moments. As already mentioned, at least two
strain distributions fulfill Eq. (13) (see Fig. 5a). However, the search
direction can be controlled so as to enforce the iterative process to
converge to one of them. For instance, starting the iterative process
enforcing the failure of the cross-section in compression (i.e. in
Eq. (9) εu represents the compressive strain at failure and xc and
yc represent the coordinates of the most compressed point) the
solution 1 will be obtained (Fig. 5a). On the other hand, enforcing
the failure of the cross-section in tension, the solution 2 (Fig. 5a)
will be attained.

The iterative procedure starts specifying the bending moments
Mx0 and My0. At the very first iteration, starting with the initial
curvatures φx = 0 and φy = 0 the tangent stiffness matrix KT
(see Eq. (20)) could become singular, because in this case the strain
profile over the cross-section is uniform with maximum ultimate
strain in compression or tension, which implies zero tangent
modulus of elasticity. In this case one can simply start the iteration
process with the secant modulus of elasticity in the evaluation of
the tangent stiffness coefficients of the cross-section. For the next
iterations an adaptive-descent algorithm [14] is applied in order to
avoid the convergence difficulties related to the negative definition
of the tangent stiffness matrix that can occur during the iterative
process. Adaptive descent is a techniquewhich switches to a secant
matrix if convergence difficulties are encountered, and switches
back to the full tangent as the solution convergences, resulting in
the desired rapid convergence rate. If the bending moments Mx0
andMy0 are outside the moment capacity contour, this means that
for any axial load the applied load combination (Mx0, My0) exceeds
the ultimate state condition of the cross-section and divergence of
the iterative process will be signalled.

This formulation can be generalized for the construction of
the entire interaction diagram at given bending moments. In
this respect, the bending moments can be parametrized by a
single variable λ, the load parameter, defining the intensity of the
bending moments, and system (13) can be rewritten as:

∫
A
σ(ε(φx, φy))ydA − λMx0 = 0∫

A
σ(ε(φx, φy))xdA − λMy0 = 0

(14)

where the curvatures φx and φy and the load amplifier factor λ
represent the unknowns.

This can be rewritten in terms of nonlinear system of equations
in the following general form:

F(λ,8) = fint − λfext = 0 (15)

where fext =

Mx0 My0

T is the reference load vector (reference
bending moments),

fint =

[
M int

x =

∫
A
σ(ε(φx, φy))ydA M int

y =

∫
A
σ(ε(φx, φy))xdA

]T

is the internal bending moments vector, computed as functions
of the curvatures 8 = [φx φy]

T . To obtain the equilibrium path,
a proper parametrization is needed. A common setting of a
continuation process is to augment the equilibrium equations
(15) with a constraint [15]. In this case the curvature–moment
constraint can be defined in the following form:

H(λ,8) =


fint − λfext = 0
g(λ,8) = 0 (16)

where g(λ,8) is a constraint equation [15].
In this procedure, commonly called arc-length method, these

equations are solved in a series of steps or increments, usually
starting from the unloaded state (λ = 0), and the solution of
Eq. (16), referred to as equilibrium path, is obtained by solving di-
rectly the equilibrium equations together with the auxiliary con-
straint equation, making a total of three simultaneous equations.
Alternatively, instead of solving Eq. (16) directly, an indirect so-
lution scheme for the constraint equation may be introduced for
solving Eq. (16) [15]. The load increment is governed by the fol-
lowing constraint equation having the general form:

∆8T∆8 +∆λ2Ψ 2fextT fext −∆l2 = 0 (17)

where 18 is the vector of curvatures, ∆λ is the incremental load
factor, ∆l is the specified arc length for the current increment
and Ψ is the scaling parameter for loading and curvature terms.
According to the indirect arc-length technique, the iterative
changes of curvature vector δ8 for the new unknown load level
∆λk+1 = ∆λk + δλ, is written as:

δ8 = −K−1
T F + δλK−1

T fext = δF + δλδ8T (18)

where F represents the out-of-balance force vector (Eq. (15)) and
KT represents the tangent stiffness matrix of the cross-section:

KT =


∂F
∂8


=


∂M int

x

∂φx

∂M int
x

∂φy
∂M int

y

∂φx

∂M int
y

∂φx

 (19)

in which the partial derivatives are expressed with respect to the
strains and stresses evaluated at current iteration k. Assuming the
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Fig. 6. Geometrical representation of the proposed method.

strain distribution given by Eq. (9), the coefficients of the stiffness
matrix can be symbolically evaluated as:

k11 =
∂M int

x

∂φx
=

∂

∂φx

∫
A
σ(ε(φx, φy))ydA

=

∫
A

∂σ

∂ε

∂ε

∂φx
ydA =

∫
A
ETy(y − yc)dA

k12 =
∂M int

x

∂φy
=

∂

∂φy

∫
A
σ(ε(φx, φy))ydA

=

∫
A

∂σ

∂ε

∂ε

∂φy
ydA =

∫
A
ETy(x − xc)dA

k21 =
∂M int

y

∂φx
=

∂

∂φx

∫
A
σ(ε(φx, φy))xdA

=

∫
A

∂σ

∂ε

∂ε

∂φx
xdA =

∫
A
ET x(y − yc)dA

k22 =
∂M int

y

∂φy
=

∂

∂φy

∫
A
σ(ε(φx, φy))xdA

=

∫
A

∂σ

∂ε

∂ε

∂φy
xdA =

∫
A
ET x(x − xc)dA

(20)

where the coefficients kij are expressed in terms of the tangent
modulus of elasticity Et and the coordinates xc, yc of the
‘‘constrained’’ point. As can be seen in Eq. (9) the strain
distribution is explicitly determined by the coordinates xc, yc
of the ‘‘constrained’’ point. During the iterative process, these
coordinates are assumed to be known from the previous iteration
(i.e. from the previous values of curvatures φx and φy) and,
consequently, can be assumed as constants in the evaluation of
the above stiffness matrix coefficients. Hence, at current iteration,
the partial derivatives of the coordinates xc and yc upon φx and φy,
being zero, are not included in the expression of kij in Eqs. (20).
Thus the incremental curvatures for the next iteration can be
written as:

∆8k+1 = ∆8k + δ8. (21)

Substituting the incremental curvatures in the constraint equation
(17) yields the expression for the required correction of the
incremental load factor:

a1δλ2 + a2δλ+ a3 = 0 (22)

where

a1 = δ8T
T δ8T + ψ2fextT fext

a2 = 2δ8T (∆8 + δF)+ 2∆λψ2fextT fext

a3 = (∆8 + δF)T (∆8 + δF)−∆l2 +∆λ2ψ2fextT fext.

(23)

These coefficients can be computed from the results of the kth
iteration, so that the quadratic equation can be solved and a root
can be chosen for δλ. Then Eq. (18) is used to compute the next
trial curvature increments ∆8k+1. This procedure is iterated until
convergence with respect to a suitable norm is attained. Assuming
that a point (τ8, τλ) of the equilibrium path has been reached,
the next point (τ+∆τ8, τ+∆τλ) of the equilibrium path is then
computed by updating the loading factor and curvatures as:
τ+∆τλ=

τ λ+∆λk+1
τ+∆τ8 =

τ 8 +∆8k+1.
(24)

In this way, with curvatures and loading factor known, the axial
force resistance N is computed on the basis of the resultant strain
distribution corresponding to the curvatures φx and φy through
Eq. (12), and the ultimate bending moments, Mx and My, are
obtained by scaling the reference external moments Mx0 and My0
through the current loading factor λ given by Eqs. (24). The scaling
parameterΨ has a little influence in the results and has been taken
as zero in the current approach. As a result, constraint (17) should
be considered ‘‘cylindrical’’ rather than ‘‘spherical’’ [15].

In this way, adopting an automatic step length adaptation
scheme for the loading factor, the entire interaction diagram of
the cross-section can be constructed at given bending moments.
Graphical representation of the present method according to
Eq. (16) is depicted in Fig. 6. It is important to note that the
stiffnessmatrix of cross-sectionKT , given by Eq. (20), could become
negative definite during the iterative process (see Fig. 6), and
therefore the above procedure based on the arc-length constraint
equation is essential to overcome these difficulties. When the
tangent stiffness matrix of the section is singular (i.e. at the very
first iteration of the algorithm), secant stiffness matrix is adopted.

Fig. 7 shows a simplified flowchart of this analysis algorithm,
whereas some computational aspects are briefly described next.

The incremental-iterative procedure starts specifying the fixed
bending moments Mx0 and My0, the initial load increment ∆λ0
and initial arc-length increment ∆l0. Small bending moments (i.e
near zero) and small initial increment (∆λ0 = 0.01) represent
suitable starting values. However, the user will have little idea
of an appropriate magnitude for a starting length increment ∆l0.
Two solutions have been implemented. The first is to apply a
preliminary load-controlled step, as described previously (see
Eq. (13)), and, from the output, a suitable starting value can be
estimated. Alternatively, the user may start by specifying a load
increment ∆λ0. The incremental curvature vector, ∆8, can then
be computed from:

∆8 = ∆λ0KT
−1fext (25)

and, a starting length increment,∆l0, can be obtained as:

∆l0 = ∆λ0


∆8T∆8. (26)
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Fig. 7. Interaction diagrams for given bending moments. Analysis flowchart.
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Fig. 8. Strain profiles at failure and the associated interaction diagram.

The incremental-iterative procedure is completely adaptive: it
starts with the initial load factor and the step size is scaled by
the convergence speed, relating the number of iterations used
in the previous step to a desired value. The adjustment used by
Ramm[16] is adopted. This technique leads to the provision of suit-
able magnitude of increments, as a function of the degree of non-
linearity: small increments when the response is most ‘‘nonlinear’’
and large increments when the response is most ‘‘linear’’.

The convergence criterion is expressed as a ratio of the norm
of the out-of-balance force vector to the norm of the total applied
load in each incrementation. So the solution is assumed to have
converged if:

√
FTF

τ+∆τλ
√
fextT fext

≤ TOL (27)

where τ+∆τλ represents the current load factor and TOL is the
specified computational tolerance, usually taken as 1E−5.

As was stated previously, the failure of the cross-section can
be controlled either by the most compressed concrete point with
εu = εc or the most tensioned steel reinforcement bar with
εu = εs. Starting the iterative process with control in compression,
the interaction diagram will be evaluated from the compression
side towards tension side, whereas enforcing the failure of the
cross-section in tension, at the very first iteration, the interaction
diagram is evaluated from the tension to compression side. During
the iterative process these controlled points are automatically
interchanged. For instance, assuming that the current iterations
are conducted with the most compressed point (Fig. 8) the strain
profiles are defined by the same ultimate compressive strain and
by different strains at the level of the most tensioned point. After
the strains in the most tensioned point equal or exceed the tensile
steel strain at failure, the control point becomes themost tensioned
point, and the process continues similarly, butwith the coordinates
of this point and associated ultimate steel strain. Fig. 8 presents
different types of strain profiles during this process, defined by
either the ultimate compressive strain (1, 2, . . .) or by the ultimate
steel strain (1′, 2′, . . .).

When solving quadratic equation (22), to avoid the complex
roots that sometimes may occur, the procedure proposed in [17]
is used. Another issue concerning the applicability of the arc-
length technique consists in the correct choice of the root during
the iterative process, preventing divergence or the equilibrium
path from doubling back on itself. Multiple rules can be found
in the literature concerning root selection [18]. Minimum angle
criterion or minimum residual norm proposed in [15] can be used
at regular points of the solution path, but in some cases, for a very

sharp ‘‘snap-back’’ both methods fail to assure convergence. On
the other hand, the following simple criterion, that maximizes the
incremental loading factor as a function of the sign of the tangent
stiffness matrix determinant, has been found to be very efficient
for all cases examined herein. Hence, the root in Eq. (22) is selected
according to:

δλ =


δλ1, tδλ1 > tδλ2
δλ2, tδλ1 ≤ tδλ2

(28)

in which t represents the sign of the stiffness matrix determinant:

t = sign(detKT ). (29)

This criterion is very simple to be implemented, prevents the
numerical difficulties associated with divergence and avoids the
possibility that the equilibrium path doubles back on itself.

2.2.2. Interaction diagrams for given axial load N and bending
moment’s ratio

With linear constraints (5), nonlinear system (10) becomes:

∫
A
σ(ε(φx, φy))dA − N0 = 0∫

A
σ(ε(φx, φy))xdA − tanα

∫
A
σ(ε(φx, φy))ydA = 0∫

A
σ(ε(φx, φy))ydA − Mx = 0

(30)

in which the bending moment Mx and curvatures φx and φy
represent the unknowns. Regarding the curvatures φx and φy as
independent variables in the bending moment equation,

Mx =

∫
A
σ(ε(φx, φy))ydA (31)

and the curvatures φx and φy are determined by solving the
following nonlinear system of equations:

f1(φx, φy) =

∫
A
σ(ε(φx, φy))dA − N0 = 0

f2(φx, φy) =

∫
A
σ(ε(φx, φy))xdA

− tanα
∫
A
σ(ε(φx, φy))ydA = 0.

(32)

Hence, for a given value of axial force N0 and a given bending
moment ratio tan (α) = My/Mx, one may solve for φx and φy
nonlinear system (30) and then determine the bending moment
Mx using Eq. (31) and My = tan(α)Mx. The iterative procedure
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starts with curvatures φx = 0 and φy = 0, specifying the axial
force N0 and the angle α, formed by the bending moments Mx and
My measured from the positive direction of the x axis (see Fig. 5b).
For the next iterations an adaptive-descent algorithm is applied. In
this way, for a given value of axial force N0 and a given bending
moment ratio tan(α) = My/Mx the ultimate strength capacity of
the cross-section can be directly determined.

As in the previous case, described in Section 2.2.1, parametriz-
ing the external axial force N0 in Eq. (32) through a load parameter
λ, system (32) can be rewritten in terms of nonlinear system of
equations in the following general form

F(λ,8) = fint − λfext = 0 (33)

where

fext =

N0 0

T (34)

fint =


∫
A
σ(ε(φx, φy))dA

∫
A
σ(ε(φx, φy))xdA

− tanα
∫
A
σ(ε(φx, φy))ydA


T

.

(35)

Following the arc-length technique, the interaction diagram
can be determined, but in this case the iteration procedure is
conducted with the tangent stiffness matrix computed as

KT =


∂ f1
∂φx

∂ f1
∂φy

∂ f2
∂φx

∂ f2
∂φx

 =

[
k11 k12
k21 k22

]
(36)

where the stiffness matrix coefficients are:

k11 =
∂ f1
∂φx

=
∂

∂φx

∫
A
σ(ε(φx, φy))dA

=

∫
A

∂σ

∂ε

∂ε

∂φx
dA =

∫
A
ET (y − yc)dA

k12 =
∂ f1
∂φy

=
∂

∂φy

∫
A
σ(ε(φx, φy))dA

=

∫
A

∂σ

∂ε

∂ε

∂φy
dA =

∫
A
ET (x − xc)dA

k21 =
∂ f2
∂φx

=
∂

∂φx

[∫
A
σ(ε(φx, φy))xdA

− tanα
∫
A
σ(ε(φx, φy))ydA

]
=

∫
A

∂σ

∂ε

∂ε

∂φx
xdA − tan(α)

∫
A

∂σ

∂ε

∂ε

∂φx
ydA

=

∫
A
ET (y − yc)xdA − tan(α)

∫
A
ET (y − yc)ydA

k22 =
∂ f2
∂φy

=
∂

∂φy

[∫
A
σ(ε(φx, φy))xdA

− tanα
∫
A
σ(ε(φx, φy))ydA

]
=

∫
A

∂σ

∂ε

∂ε

∂φy
xdA − tan(α)

∫
A

∂σ

∂ε

∂ε

∂φy
ydA

=

∫
A
ET (x − xc)xdA − tan(α)

∫
A
ET (x − xc)ydA. (37)

In this way, scaling the axial force through the load factor λ
that is continuously adjusted, we can draw the completeN–Mx–My
interaction diagram for a given bending moment’s ratio. For a
compression axial force, the iterative process is started with
control in compression, whereas for a tension axial force the

interaction diagrams are evaluated starting the iterative process
imposing the failure of the cross-section in tension. Fig. 9 shows
a simplified flowchart of this analysis algorithm. The algorithm is
similar to that depicted in Fig. 7, but the initial values consist in the
initial axial forceN0 and the angleα. The incrementation also starts
with the curvatures φx = 0 and φy = 0.

It is important to note that, although this algorithm has been
formulated for evaluating the interaction diagrams (N–Mx–My),
by scaling the axial force through the load factor λ, the proposed
algorithm can be easily modified in order to be applied to provide
the moment capacity contour of the cross-sections (Mx vs. My).
In this respect, the moment capacity contour can be evaluated by
simply varying the angle α from 0 to 360° and solving system (32)
for a given value of axial force N0.

2.2.3. Moment capacity contour for given axial force N and bending
moment Mx

In this case, injecting linear constraints (6) in nonlinear system
(10), and arranging the system in accordance with the decoupled
unknowns, we obtain:

∫
A
σ(ε(φx, φy))dA − N0 = 0∫

A
σ(ε(φx, φy))ydA − Mx0 = 0∫

A
σ(ε(φx, φy))xdA − My = 0

(38)

in which the bending moment My and the curvatures φx and
φy represent the unknowns. Following a similar approach as
presented above, the curvatures are obtained by solving the first
two equations and then with this strain distribution the bending
moment resistance about the y axis is computed with the last
equation of the system.

Regarding the automatic drawing of the moment capacity
contour, the strategy is as follows. Parametrizing the bending
moment about x axis through the load factor λ and keeping the
axial force constant N = N0 and following a similar arc-length
strategy as described in the case of interaction diagrams above,
the complete moment capacity contour can be obtained, under
constant axial force. Some particularities of implementation in
this case have to be addressed. The solution procedures for the
interaction diagrams have been based on the basic equations of
equilibrium which implies a single loading vector proportionally
scaled via load factor λ. In this case, maintaining the axial force
N constant and scaling just the bending moment, we are in the
situation of thenon-proportionally applied loading,which involves
two loading vectors, one that will be scaled and one fixed. The
external loading can then be represented by:

fext =

[
N0
0

]
+ λ

[
0
Mx0

]
= fextfixed + λfextscaled (39)

so that the out-of-balance force vector becomes

F(λ,8) = fint − fextfixed − λfextscaled (40)

and Eq. (18) then becomes

δ8 = −K−1
T F + δλK−1

T fextscaled. (41)

With these relations the basic structure of the previous algo-
rithms can be maintained. The iteration procedure is conducted
with the tangent stiffness matrix computed as:

KT =


∂F
∂8


=


∂ f1
∂φx

∂ f1
∂φy

∂ f2
∂φx

∂ f2
∂φx

 =

[
k11 k12
k21 k22

]
(42)
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Fig. 9. Interaction diagrams for given bending moment’s ratio and axial force. Analysis flowchart.
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k11 =
∂ f1
∂φx

=
∂

∂φx

∫
A
σ(ε(φx, φy))dA

=

∫
A

∂σ

∂ε

∂ε

∂φx
dA =

∫
A
ET (y − yc)dA

k12 =
∂ f1
∂φy

=
∂

∂φy

∫
A
σ(ε(φx, φy))dA

=

∫
A

∂σ

∂ε

∂ε

∂φy
dA =

∫
A
ET (x − xc)dA

k21 =
∂ f2
∂φx

=
∂

∂φx

∫
A
σ(ε(φx, φy))ydA

=

∫
A

∂σ

∂ε

∂ε

∂φx
ydA =

∫
A
ETy(y − yc)dA

k22 =
∂ f2
∂φy

=
∂

∂φy

∫
A
σ(ε(φx, φy))ydA

=

∫
A

∂σ

∂ε

∂ε

∂φy
ydA =

∫
A
ETy(x − xc)dA (43)

∫
A
σ(ε(φx, φy))dA − N0 = 0∫

A
σ(ε(φx, φy))ydA − λMx0 = 0.

(44)

The incremental-iterative procedure starts specifying the fixed
bending moment Mx0, the fixed axial force N0, the initial load
increment ∆λ0 and initial arc-length increment ∆l0. However,
the user will have little idea of an appropriate magnitude of
the reference bending moment Mx0 and the initial load factor.
If the initial value of the bending moment is outside the
moment capacity contour, this means that when the applied load
combination (N0, Mx0) exceeds the ultimate state condition of the
cross-section, divergence of the iterative process will be signalled
in this case. As in the previous procedures, the user may start
by specifying a load increment ∆λ0 and then, the incremental
curvature vector and the initial arc-length increment, can be
determined by using Eqs. (25) and (26). Alternatively, a starting
solution can be obtained as follows. Setting to zero one of the
curvatures, for instance φy = 0

ε(φx) = εu + φx(y − yc) (45)
and solving iteratively using the Newton scheme, for φx the first
equation in system (44) we obtain

F(φx) =

∫
A
σ(ε(φx))dA − N0 = 0 (46)

φk+1
x = φk

x −
F(φk

x )

F ′(φk
x )

(47)

φk+1
x = φk

x −


A σ(ε(φ

k
x ))dA − N0

A ET (y − yc)dA
, φ0

x = 0, k ≥ 0 (48)

and then substituting this value in the second equation of system
(44) we can compute the bending momentMx as

Mx0 =

∫
A
σ(ε(φx))ydA. (49)

This value can be used as initial or starting value, which can be
scaled with the loading parameter λ and the general arc-length
procedure can be applied. Fig. 10 shows a simplified flowchart of
this analysis algorithm.

2.3. Evaluation of tangent stiffness and stress resultant

Based onGreen’s theorem, the integration of the stress resultant
and stiffness coefficients given by Eqs. (20), (37) and (43), over
the cross-section will be transformed into line integrals along the
perimeter of the cross-section. For this purpose, it is necessary to
transform the variables first, so that the stress field is uniform in a

particular direction, given by the current position of the neutral
axis [19]. This is achieved by rotating the reference axes x, y to
ξ, η oriented parallel to and perpendicular to the neutral axis,
respectively (Fig. 2) such that:
x = ξ cos θ + η sin θ
y = −ξ sin θ + η cos θ (50)

where tan θ = φy/φx. Thus, the stress field is uniform in a
direction parallel to the neutral axis, and strains, stresses and
tangent modulus of elasticity can be expressed as a function of the
single coordinate (η) as:

ε(ξ, η) = ε(η) = ε0 + φη (51)
σ(ε(ξ, η)) = σ(ε(η)) (52)
ET (ξ , η) = ET (η) (53)

where φ represents the total curvature φ =


φ2
x + φ2

y . This
transformation is valid for a generic point of the cross-section.
Therefore the stresses are calculated using the fiber strains, given
by Eq. (9), and the assumed constitutive relations.

Based on this transformation, the internal forces carried by the
compressive concrete and structural steel can be obtained by the
following expressions:

Nint =

∫ ∫
σ(x, y)dxdy =

∫ ∫
σ(η)dξdη

Mx,int =

∫ ∫
σ(x, y)ydxdy

=

∫ ∫
σ(η)(−ξ sin θ + η cos θ)dξdη

= Mξ,int cos θ − Mη,int sin θ

My,int =

∫ ∫
σ(x, y)xdxdy

=

∫ ∫
σ(η)(ξ cos θ + η sin θ)dξdη

= Mξ,int sin θ − Mη,int cos θ

(54)

where Nint, Mξ,int and Mη,int are the internal axial force and
bending moments about the ξ and η axis, respectively and can be
obtained by the following expressions:

Mξ,int =

∫ ∫
σ(η)ηdξdη =


σ(η)ξηdη

Mη,int =

∫ ∫
σ(η)ξdξdη =

1
2


σ(η)ξ 2dη

Nint =

∫ ∫
σ(η)dξdη =


σ(η)ξdξdη.

(55)

The tangent stiffness matrix coefficients are computed in the
same way. For instance the coefficients given by Eq. (20) are
evaluated based on the same transformation. Using the following
notations:

s1 =

∫ ∫
A
ET (η)η2dξdη =


L
ET (η)η2ξdη

s2 =

∫ ∫
A
ET (η)ξ 2dξdη =

1
3


L
ET (η)ξ 3dη

s3 =

∫ ∫
A
ET (η)ξηdξdη =

1
2


L
ET (η)ξ 2ηdη

s4 =

∫ ∫
A
ET (η)ηdξdη =


L
ET (η)ξηdη

s5 =

∫ ∫
A
ET (η)ξdξdη =

1
2


L
ET (η)ξ 2dη

(56)
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Fig. 10. Moment capacity contours for given axial force and bending momentMx . Analysis flowchart.
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the elements of the tangent stiffness matrix of the cross-section
can be obtained as:

k11 = S1 − ycS4
k12 = S3 − xcS4
k21 = S3 − ycS5
k22 = S2 − xcS5

(57)


S1
S2
S3
S4
S5

 =


c −s
s c

−2sc c2 s2

c2 − s2 sc −sc
2sc s2 c2



s1
s2
s3
s4
s5

 (58)

where c = cos θ, s = sin θ and A is the compressed region of the
concrete or structural steel area, L is the perimeter of this region,
σ(η) and ET (η) are the stress and tangent elasticity modulus of
deformation of the fiber η, respectively. In the same way the
tangent stiffness matrix coefficients (given by Eqs. (37) and (43),
respectively) can be obtained.

As the integration area contour is approximated by a polygon,
the integral over the perimeter L, can be obtained by decomposing
this integral side by side along the perimeter:

L
h(η)ξ pdη =

nL−
i=1

∫ ηi+1

ηi

h(η)ξ pdη (59)

where nL is the number of sides that forms the integration area. The
sides are defined by the ξη coordinates of the endpoints as shown
in Fig. 2. When the integration area is a circle with radius R, the
integral over the perimeter L can be obtained by decomposing this
integral as [19]:

L
h(η)ξ pdη =

∫ R

−R
h(η)(R2

− η2)p/2dη + (−1)p

×

∫
−R

R
h(η)(R2

− η2)p/2dη. (60)

This leads to a significant saving in imputing the data to describe
the circular shapes, without the need to decompose the circular
shapes as a series of straight lines and approximate the correct
solution when circular boundaries are involved.

In order to perform the integral on a determined side
of the contour (Li), polygonal or circular, of the integration
area, the interpolatory Gauss–Lobatto method is used. Though
this rule has lower order of accuracy than the customary
Gauss–Legendre rule, it has integration points at each end of
the interval, and hence performs better in detecting yielding.
When there is no transition point of piecewise stress–strain
diagrams, n integration points integrate exactly a polynomial of
order (2n − 3). For a second-degree parabola, as commonly
used for the stress–strain curve of concrete in compression,
three Gauss–Lobatto integration points are necessary. However,
because the stress field is defined by a piecewise function (i.e.
a second-degree parabola, for ascending part, and a straight line
for descending part) and there is no continuity in the derivative,
the polynomial interpolation can produce important integration
errors [9]. Although the integration methods proposed in [13,20]
are ‘‘exact’’ even in the presence of transition points, these
methods require a significant computational cost. In the proposed
approach, an adaptive quadrature strategy is used. This procedure
combined with the Gauss–Lobatto integration rule can be applied
successfully as follows: Start by dividing the interval into two,
and use the quadrature rule in each subinterval. Then compare
the results with the same quadrature rule applied to the whole
interval under consideration. If the difference is smaller than a

given tolerance, there is no need to refine. Otherwise, repeat this
procedure, recursively, with each individual interval. In this paper,
the tolerance adopted to stop the refinement of the interval has
been taken as 1E−5 in all computational examples. In this context
of adaptivity quadratures, the Lobatto integration scheme has
another advantage over the Legendre integration scheme, given by
the fact that the point corresponding to the left end in one interval
is the same as the point corresponding to right end in the next. So,
assuming that we keep the values of the integrand at the interval
endpoints after we have evaluated them and reuse them where
appropriate, the cost of evaluating a Lobatto rule is reduced by
about one integrand evaluation compared with Legendre rule.

The contribution of the steel reinforcement bars does not
present computational difficulties. The steel bars are assumed to
be discrete points with area Asj, coordinates xsj, ysj and stress fsj.
The total steel axial force and bending moment resultants are:

Ns =

Nb−
i=1

Asjfsj, Mxs =

Nb−
i=1

ysjAsjfsj,

Mys =

Nb−
i=1

xsjAsjfsj

(61)

and to avoid double counting of the concrete area that is
displaced by the steel bars, the force Asjfcj is subtracted from
the reinforcement bar force Asjfsj, where Asjfcj is the concrete
compressive stress at the centroid of the reinforcement bar.

Furthermore, in order to identify the various regions in a
complex cross-sectionwith differentmaterial properties (confined
or unconfined concrete, structural steel) each regionwith assigned
material properties is treated separately. Two material properties
are defined [13]: the ‘‘foreground’’ material and the ‘‘background’’
material. The ‘‘foreground’’ material is taken into account with
a positive sign, whereas the ‘‘background’’ material is taken into
account with a negative sign, and then each region is treated as
separate cyclic summations. In this way, any composite cross-
section with different material properties can be integrated
without difficulties.

3. Computational examples

Based on the analysis algorithm just described, a computer
program ASEP has been developed to study the biaxial strength
behaviour of arbitrary concrete–steel cross-sections. It combines
the analysis routine with a graphic routine to display the final
results (Fig. 11). The computational engine was written using
Compaq Visual Fortran. The graphical interface was created using
Microsoft Visual Basic 6. Dynamic Link Libraries (DLL) are used
to communicate between the interface and engine. The many
options included make it a user friendly computer program. The
graphical interface allows for easy generation of cross-sectional
shapes and reinforcement bars, graphical representation of the
data, and plotting of the complete stress field over the cross-
section, instantaneous position of neutral axis, interaction and
moment capacity contour diagrams, etc.

The accuracy and computational advantages of the numerical
procedure developed here has been evaluated by using two
selected benchmark problems analysed previously by other
researchers by using different numerical or experimentalmethods.
In all computational examples, the equilibrium tolerance has been
taken as 1E−7 and the stress–strain curve of concrete under
compression is represented by a combination of a second-degree
parabola (for ascending part) and a straight line (for descending
part). The concrete tensile strength is neglected. A bilinear elasto-
plastic stress–strain relationship for the reinforcement bars and
structural steel, both in tension and in compression, is assumed.
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Fig. 11. ASEP screen-shots.

Fig. 12. Example 1. Rectangular cross-sections with asymmetrically placed structural steel.

3.1. Example 1: rectangular cross-section with asymmetrical struc-
tural steel

In order to evaluate the validity, accuracy and convergence
of the proposed procedure, the interaction diagrams and mo-
ment capacity contours of two rectangular cross-sections with
asymmetrically placed structural steel under biaxial loading
are determined and compared with the available experimental

tests [21] and with the numerical procedure developed in [7]. The
cross-sections consist of a concrete core and two asymmetrically
placed I shaped or T shaped structural steel (Fig. 12). The cross-
sections have been experimentally tested under uniaxial loading
by Roik and Bergman [21], and further studied analytically by Chen
et al. [7]. Characteristic strength for concrete in compression is
fc = 31.79 MPa and the stress–strain curve which consists of
a parabolic and a linear part was used in the calculation, with
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Fig. 13. Moment capacity contours of section V2 with compressive axial load N = 3000 kN.

crushing strain ε0 = 0.002 and ultimate strain εcu = 0.0035. In
the work of Chen et al. [7] the strain softening of concrete in com-
pressionhas been ignored, but in the currentwork this effect can be
taken into account through the parameter γ (see Eq. (2)). Young’s
modulus for all steel sections was 200 GPa while the maximum
strain was assumed to be εsu = ±1%. The yield strength of the
steel reinforcing bars is fy = 420 MPa, whereas for the structural
steel the following values have been considered. For specimen V1
(Fig. 12) the yield strength of the flange is fy,flange = 206 MPa and
that of the web steel is fy,web = 220 MPa; for specimen V2 the
yield strength of the flange is fy,flange = 255 MPa and that of the
web steel is fy,web = 239 MPa.

These examples canbe considered as ‘‘convergence patch tests’’.
For the majority of the numerical algorithms, the convergence of
the iterative process cannot be guaranteed when the magnitude
of the axial load approaches the axial load capacity and when the
geometric centroid of the cross-section is chosen as the origin of
the reference axis [7]. For these situations Chen [7] suggested that
the plastic centroid [21] of the cross-section has to be chosen as the
origin of the reference axes. In order to verify the robustness of the
algorithms developed in the current paper, the cross-section V2
has been analysed, drawing the interaction diagrams and moment
capacity contours for axial loads near the pure compression state
(for γ = 0, Ncomp = 3699.2 kN) or pure tension state (Ntension =

−1367.6 kN), considering both geometric and plastic centroids of
the cross-section. Convergence problems have been experienced
by Chen [7] in this portion of the moment capacity contour when
the geometrical centroid of the cross-section has been taken as the
origin of the reference loading axes.

Fig. 13 presents the moment capacity contours, obtained by the
algorithm proposed in Section 2.3, and those obtained by Chen [7],
for the cross-section V2 for the compressive axial load N =

3000 kN, considering as reference loading axes, geometric centroid
(GC) and plastic centroid (PC), respectively [7]. No convergence
problems have been experienced by the proposed approach, even
when the geometric centroid has been chosen as reference axes or
the strain softening of the concrete in compression has been taken

into account (γ = 0.15), a maximum of three iterations have been
required to complete the entire interaction diagram.

As can be seen, the results obtained in the current paper
and those reported in [7] agree closely in both cases. However
it is important to note that, the method proposed by Chen
does not generate genuinely plane moment capacity curves. The
method proposed in [7] fails in some circumstances to draw
the moment capacity contour, under a fixed axial load, and in
order to overcome some divergences, the axial load value is
slightly adjusted. Furthermore, based on the proposed approach,
the moment capacity contour of the cross-section has been
determined, without any convergence difficulties, even for axial
loads approaching the axial load capacity under pure compression.

Fig. 14 presents the moment capacity contours, obtained by
the proposed algorithm, ignoring the strain softening effect of the
concrete in compression, for different magnitudes of axial loads.
As noted by Chen [7] if the geometric centroidal axes are taken as
the reference loading axes, the origin of the axes falls outside the
moment capacity contour. This effect is more accentuated as axial
load approaches axial load capacity under pure compression and
can be clearly observed in Fig. 14.

Fig. 15 presents the moment capacity contours for the case
when the strain softening effect of the concrete is modelled;
a maximum of five iterations have been required to complete
the entire interaction diagram for a compressive axial load of
3500 kN. For these cases, Ref. [7] does not present comparative
results.

Fig. 16 shows the complete interaction diagrams under uniaxial
bending moment about x axis with and without the effect of the
strain softening of concrete. As can be seen, near the compressive
axial load capacitymultiple solutions exist in theN–M space when
the strain softening is modelled. For these points the strain field
fulfils the ultimate value for concrete in compression. The lack of
uniqueness of the solution, when the strain softening is taken into
account, can be also observed on the moment–ultimate curvature
diagrams (Fig. 17), when multiple ‘‘snap-through’’ phenomena
occur in these situations. Therefore, the proposed approach
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Fig. 14. Moment capacity contour of section V2 for different values of compressive axial load. Strain softening ignored.

Fig. 15. Moment capacity contour of section V2 for different values of compressive axial load. Strain softening included.

based on arc-length constraint strategy is essential to assure the
convergence of the entire process and to determine all possible
solutions; a maximum of three iterations have been required to
complete the entire interaction diagram.When the strain softening
is ignored (γ = 0), the moment–ultimate curvature curve is flat

in that region (Fig. 17) and this explains the uniqueness of the
solution in the N–M space in this case Fig. 16. Furthermore,
the effects of confinement in the concrete were investigated for
different values of degree of confinement. As can be seen in Fig. 18,
by reducing the confinement in the concrete the interaction curves
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Fig. 16. Interaction diagrams under uniaxial bending moment about x axis.

Fig. 17. Bending moment–ultimate curvature variation for V2 cross-section.

indicate lower capacities and the non-convexity of the diagrams is
more pronounced.

Fig. 19 presents themoment capacity contours, obtained by the
proposed algorithm, when the section is subjected to tensile axial
forces near the ultimate limit. These diagrams are computed about

the geometric centroidal axes of the cross-section. No convergence
problems have been experienced, but in these cases a higher
number of iterations have been required to complete the diagrams.
For instance, for a tensile axial force ofN = −1250 kN, amaximum
of 18 iterations have been required to establish the equilibrium.
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Fig. 18. Interaction diagram N–Mx for different values of degree of confinement.

Fig. 19. Moment capacity contour of section V2 for different values of tensile axial load.

The effects of confinement in the concrete are shown by the
moment capacity diagrams of Fig. 20. These diagrams are evaluated
for a compressive axial load of N = 3000 kN and different values
of degree of confinement γ . As can be seen, by reducing the
confinement in concrete (i.e. by increasing the value of γ ) the
interaction curves indicate lower capacities and the non-convexity
of the diagrams is more pronounced. No convergence problems
have been encountered even for γ = 0.4, a maximum of seven
iterations have been required to complete the interaction diagram
in this case.

Fig. 21 shows the comparative interaction diagrams forα = 15°
and 30°, respectively. The bending moments are computed about

axes x–y, which pass through the geometric centroid of the cross-
section.

In order to prove the ability of the proposed approach to
compute directly the ultimate resistance of the cross-section,
when one of the components of the section forces is known,
and to compare the present results with the experimental
tests, the results reported in [21] are compared with those
obtained by the present approach and those reported in [7].
The load-carrying capacities of the cross-sections under different
eccentricities reported in [21] are compared with those computed
by the present approach, assuming that the axial forces are
determined experimentally in [21] as ultimate resistances for
different eccentricities. These values have been considered as
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Fig. 20. Moment capacity contours of section V2 with compressive axial load N = 3000 kN for different values of the degree of confinement γ .

Fig. 21. Biaxial interaction diagrams for V2 cross-section.

Table 1
Example 1: load-carrying capacities and comparison with test results.

Specimen Chen. et al. [7] Experimental test [21] Present paper
N (kN) Mx (kN m) N (kN) Mx (kN m) N (kN) Mx (kN m)

V1
ey = 0 3608 0 3617 0 3617 0.54
ey = −40 2654 −106.16 2825 −113 2825 −109.25
ey = 100 1937 193.7 1800 180 1800 190.2

V2
ey = 0 2880 0 2654 0 2654 0.33
ey = −40 2107 −84.28 1998 −79.92 1998 −82.53
ey = 100 2036 203.6 1706 170.6 1706 178.25

initial values in the algorithm described in Section 2.2.2 and
the associated bending moments have been computed. Table 1
gives the computed load-carrying capacities of the six specimens

and the comparison with the test results and those reported
in [7]. As can be seen the present values agree closely with test
results.
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Table 2
Example 2: failure surface points computed for given bending moments.

Mx (kN m) My (kN m) N (kN) Number of iterations Failure mode at first iteration (compression or tension)

10 2.68 9997.27 6 Compression
10 −2.68 9970.53 6 Compression
800 373 1558.23 5 Compression
600 −280 8162.18 3 Compression
600 280 10407.45 4 Compression
600 280 −670.37 5 Tension
800 214.35 530.53 3 Tension
−86 −23 −3863.11 6 Tension
−541 −145 −4261.17 7 Tension
−600 −280 −4159.35 4 Tension

3.2. Example 2: composite steel–concrete cross-section with arbitrary
shape

The composite steel–concrete cross-section depicted in Fig. 22,
consists of the concretematrix, fifteen reinforcement bars of diam-
eter 18mm, a structural steel element and a circular opening. Char-
acteristic strengths for concrete, structural steel and reinforcement
bars are fc = 30 MPa, fst = 355 MPa and fs = 460 MPa, re-
spectively. These characteristic strengths are reduced by dividing
them with the corresponding safety factors γc = 1.50, γst = 1.10
and γs = 1.15. The stress–strain curve for concrete which con-
sists of a parabolic and linear-horizontal part was used in the cal-
culation, with the crushing strain ε0 = 0.002 and ultimate strain
εcu = 0.0035. Young’s modulus for all steel sections was 200 GPa
while the maximum strain was εu = ±1%. The strain soften-
ing effect for the concrete in compression is taken into account,
in the present approach, through the parameter γ . This is an ex-
ample proposed and analysed by Chen et al. [7] and later studied
by Charalampakis and Koumousis [13], Rosati et al. [11] and oth-
ers. Themoment capacity contours (Mx–My interaction curve) have
been determined under a given axial load N = 4120 kN using the
approach described in Section 2.3 and compared with the results
reported in [7], Fig. 23. As can be seen the results are in close agree-
ment when the bending moments are computed about the plastic
centroidal axes of the cross-section. However, as was mentioned
previously, the method proposed by Chen [7] does not generate
genuinely plane moment capacity curves, because of convergence
problems caused by the fixed axial force. On the contrary, with the
proposed approach, the interaction curve can be computed with-
out any convergence difficulties; a maximum of three iterations
are necessary to establish the equilibrium, even when the geomet-
ric centroid has been chosen as the origin of the reference axes or
the strain softening of the concrete in compression is taken into
account (γ = 0.15). The moment capacity curves for these situa-
tions are also depicted in Fig. 23. For these cases, Ref. [7] does not
present comparative results.

Charalampakis and Koumousis [13] also analysed this section
using a method based on isogonic curves. Running the present
computer program on a laptop computer with 2 GHz processor,
the entire moment capacity diagram has been determined in
about 4 s, which is almost 1.5 times shorter than the time
taken to complete the same analysis with the computer program
of Charalampakis and Koumousis [13]. Moreover the moment
capacity curve determined in the current approach contains 533
points whereas the interaction curve in [13] has been determined
with 10° angle step requiring 36 points in total to complete the
same interaction curve. This demonstrates the time saving of the
proposed numerical method. In order to verify the stability of the
proposed method a series of analyses have been conducted to
determine the interaction curves for different values of bending
moment’s ratio My/Mx = tan(α). The bending moments are
computed about the geometric centroidal axes of the cross-section
and the strain softening of the concrete in compression has been

Fig. 22. Example 2. Composite steel–concrete cross-section.

modelled (γ = 0.15). Figs. 24 and 25 shows the interaction
diagrams for α = 0°, 30°, 60°, 90°. No convergence problems
have been encountered using the proposed approach; a maximum
of three iterations have been required to complete the entire
interaction diagram in each case.

In the analyses conducted by Rosati et al. [11] the ultimate load
capacity of this cross-section has been evaluated using a method
which solves the equilibrium equations and impose the ultimate
limit at the same time. The interaction curves in [11] have been
determined by considering twelve pairs (Mx, My) for each value of
the axial force. The strain softening of concrete in compression has
been ignored. Using the proposed approach the moment capacity
contours have been determined for different values of axial loads
approaching the axial load capacity under pure compression and
tension. Fig. 26 presents the moment capacity contours, obtained
by the algorithm proposed in Section 2.2.3, and those reported
by Rosati et al. [11]. As can be seen the results are in close
agreement. No convergence problems have been encountered
using the proposed approach; under the equilibrium tolerance
of 1E−7 a maximum of four iterations have been required to
complete the entire moment capacity diagrams for each case of
compression whereas a maximum of six iterations have been
required to establish the equilibrium for each case of tension. This
comparison illustrates the accuracy of the proposed approach and
convergence stability.

In order to prove the ability of the proposed approach to
compute directly the ultimate resistances of the cross-section and
to evaluate the convergence behaviour, Tables 2 and 3 report
several points of the failure surface determined by the algorithms
described in Sections 2.2.1 and 2.2.2, respectively. Table 2 presents
the computed axial force resistances for given bending moments,
whereas Table 3 reports the computed bending moments for a
given bending moment’s ratio and axial force. The strain softening
effect for the concrete in compression is not taken into account.
The load-controlled method enhanced with an adaptive-descent
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Fig. 23. Moment capacity contour with axial load N = 4120 kN.

Fig. 24. Biaxial interaction diagrams. Bending moments about x axis.

strategy, as described herein, has been applied. As can be seen,
a low number of iterations have been required to establish the
equilibrium, despite the fact that, in all cases, the iterative process
has been started with curvatures φx = 0 and φy = 0, and a
very restrictive equilibrium tolerance (i.e tol = 1E−7), has been
considered.

4. Conclusions

A new computer method based on incremental-iterative arc-
length technique has been presented for the ultimate strength
analysis of composite steel–concrete cross-sections subjected
to axial force and biaxial bending. Comparing the algorithm



Author's personal copy

3756 C.G. Chiorean / Engineering Structures 32 (2010) 3734–3757

Fig. 25. Biaxial interaction diagrams. Bending moments about y axis.

Fig. 26. Moment capacity contours for different values of axial load.

presented in the current paper with the existing methods, it can
be concluded that the proposed approach is general, can determine
both interaction diagrams and moment capacity contours, and, of
great importance, it is fast, the diagrams are directly calculated
by solving, at a step, just two coupled nonlinear equations.
Convergence is assured for any load case, even near the state
of pure compression or tension and is not sensitive to the

initial/starting values, to how the origin of the reference loading
axes is chosen or to the strain softening effect for concrete in
compression. Furthermore, the proposed method can be applied
to provide directly the ultimate resistance of the cross-section,
in the hypothesis that one or two components of the section
forces are known, without the need of knowing in advance the
whole interaction diagram or moment capacity contour. An object
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Table 3
Example 2: failure surface points computed for given bending moment’s ratio and
axial force.

N (kN) α (deg) Mx (kN m) My (kN m) Number of iterations

5940 30 906.91 523.60 4
5940 15 1054.21 282.47 5
7920 45 685.35 685.35 6
7920 225 −258.98 −258.98 6
4950 195 −740.22 −198.34 3
3960 210 −744.43 −429.79 5
−4257 205 −216.50 −100.95 7
−2970 15 181.36 48.6 5
−495 15 657.76 176.24 5

oriented computer program with full graphical interface was
developed to obtain the interaction diagrams andmoment capacity
contours of composite cross-sections under combined biaxial
bending and axial load. Themethodhas been verified by comparing
the predicted results with the established results available from
the literature. It can be concluded that the proposed numerical
method proves to be reliable and accurate for practical applications
in the design of composite steel–concrete beam–columns and can
be implemented in the advanced analysis techniques of three-
dimensional composite frame structures. Future work is envisaged
to investigate various effects such as concrete tensile strength
and residual stresses of structural steels on the ultimate strength
behaviour of composite steel–concrete cross-sections or arbitrary
shape.
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