
TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

A Payment Service Provider for Mobile

Users

- Diploma Thesis -

ADVISOR GRADUATE

Senior Lecturer Eng. Cosmina IVAN Andrei SZABO

TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

FACULTY DEAN HEAD OF DEPARTMENT

Prof. Dr.Ing. Sergiu NEDEVSCHI Prof.Dr.Ing. Kalman PUSZTAI

A Payment Service Provider for Mobile

Users

Graduate: Andrei SZABO

1. CONTENTS:

A. Written Sections: Introduction, Mobile Technologies, Mobile Payments,

The Specifications and Architecture of the Payment Provider Framework,

Framework Implementation, User Guide, Evaluation and Conclusions,

Bibliography

B. Appendices: Entity Relationship Diagram, UML Sequence Diagrams, CD

containing the application source code plus paper in electronic format

2. DOCUMENTATION PLACE: Technical University of Cluj-Napoca

3. ADVISORS: Senior lecturer Eng. Cosmina IVAN

4. ISSUE DATE: October 2003

5. DUE DATE: June 21st, 2004

ADVISOR GRADUATE

Senior Lecturer Eng. Cosmina IVAN Andrei SZABO

TABLE OF CONTENTS

i

Table of Contents

1. Introduction .. 1

2. Mobile Technologies .. 3

 2.1 Mobile Network Technologies .. 3

 2.1.1 1G Technologies ... 3

 2.1.2 2G Technologies ... 4

 2.1.3 2.5G Technologies .. 5

 2.1.4 3G Technologies ... 6

 2.1.5 The Future of Mobile Technologies: 4G .. 8

 2.2 Mobile Communication Services .. 9

 2.2.1 SMS .. 9

 2.2.2 MMS .. 10

 2.2.3 WAP ...10

 2.3 Mobile Platforms ...11

 2.3.1 Mobile Operating Systems ... 11

 2.3.2 Mobile Programming Platforms .. 12

3. Mobile Payments ... 15

 3.1 Mobile Payment Environment .. 15

 3.2 Mobile Payment Principles ... 15

 3.2.1 The Actors ... 16

 3.2.2 The Characteristics .. 20

 3.2.3 The Scenarios ... 21

 3.2.4 The Lifecycle ... 26

 3.3 Mobile Payment: Mobile Operator Payment .. 29

 3.3.1 Network Operator Payment Systems ... 29

 3.3.2 Mobile Payment Standard .. 30

 3.3.3 Vendor Billing Solution ... 31

 3.4 Mobile Payment: Out-of-Band Payment .. 31

 3.4.1 Financial Institutions .. 31

 3.4.2 Reverse Charge SMS ... 32

 3.4.3 Vodafone m-pay ...32

 3.4.4 MobiPay ... 33

 3.4.5 PayBox ... 34

TABLE OF CONTENTS

ii

 3.5 Mobile Payment: Proximity Payment ... 34

 3.6 Summary ... 35

4. The Specifications and Architecture of the Payment Provider Framework 36

 4.1 Web Services .. 36

 4.1.1 SOAP ... 37

 4.1.2 WSDL .. 38

 4.1.3 UDDI ..38

 4.2 Designing with Patterns .. 38

 4.2.1 Abstract Factory ... 38

 4.2.2 Data Access Object .. 39

 4.2.3 Façade .. 40

 4.3 Mobile Network Payment System .. 41

 4.3.1 Mobile User ... 42

 4.3.2 Content Provider .. 43

 4.3.3 Payment Service Provider .. 43

 4.4 The Components of the Framework ... 45

 4.4.1 The Registration Component ... 45

 4.4.2 The Charging Web Service .. 47

5. Framework Implementation ... 51

 5.1 Implementation Environment and Tools .. 51

 5.1.1 Programming Language: Java .. 51

 5.1.2 Apache Tomcat .. 51

 5.1.3 Apache Axis ... 51

 5.1.4 Now SMS Gateway ..52

 5.1.5 Log4j .. 52

 5.2 Framework Components Implementation Details .. 53

 5.2.1. Registration Component ... 53

 5.2.2 Charging Web Service ... 58

 5.2.3 Content Provider .. 65

 5.2.4 Utility Code .. 66

6. Users Guide .. 68

 6.1 Deploying the System ... 68

 6.1.1 Installing and Setting Up the MySQL Database .. 68

 6.1.2 Installing the Now SMS Gateway ..68

TABLE OF CONTENTS

iii

 6.1.3 Deploying the Payment Service Provider .. 69

 6.1.4 Deploying the Example Content Provider ... 69

 6.1.5 Support for SSL ... 70

 6.2 Configuration Files ... 70

 6.2.1 log4j.properties ... 70

 6.2.2 server.xml ... 71

 6.2.3 web.xml ... 71

7. Evaluation and Conclusions .. 73

 7.1 Evaluation and Future Work ... 73

 7.1.1 Network Failure and Latency ...73

 7.1.2 Security .. 73

 7.1.3 Future Work ... 74

 7.2 Conclusion .. 74

Bibliography ... 76

Appendix ... 78

A. Entity Relationship Diagram of the Database .. 78

B. Charging Sequence Diagrams .. 79

TABLE OF FIGURES

iv

Table of Figures

Figure 1: Typical Credit Card Transaction .. 17

Figure 2: Relationships between the involved actors in a mobile payment. A trusted third party

provides for authorization and authentication ...18

Figure 3: Relationships between the involved actors in a mobile payment. A trusted third party

is no longer present ... 20

Figure 4: Payment System for Point of Sale .. 23

Figure 5: Payment System for Mobile-Accessed Internet Payments 24

Figure 6: Payment System for Mobile-Assisted Internet Payments .. 26

Figure 7: Generic Interactions in a Payment System ... 27

Figure 8: Abstract Factory Design Pattern ...39

Figure 9: Data Access Object (DAO) Design Pattern ... 40

Figure 10: Façade Design Pattern .. 41

Figure 11: Topology of the Implemented Network Payment System 42

Figure 12: Bird-eye view of the Payment Service Provider Framework 45

Figure 13: Architecture of the Registration Component ..46

Figure 14: Static class diagram of the Charging Web Service .. 49

Figure 15: dbaccess Package Class Diagram ... 54

Figure 16: businesslogic Package Class Diagram... 56

Figure 17: ChargingWebService Class Diagram ... 58

Figure 18: dbaccess Package Class Diagram ... 59

Figure 19: Session and Transaction Class Diagrams .. 61

Figure 20: PaymentReceipt and Contract Class Diagrams... 62

Figure 21: UserAuthorization and DAOFacade Class Diagrams 63

Figure 22: Managers Class Diagrams .. 65

INTRODUCTION

1

1. Introduction

Payment has evolved through time from the exchange of physical tokens, such as coins and

notes, to writing checks, to changing payment card details over the phone or over the internet.

This evolution has involved a shift from the exchange of tokens of fixed value to the exchange

of information between the participating parties in the transaction. In the case of payment

cards, the exchange of information is carried out between the consumer and merchant’s banks

and goes on over networks managed either by regional payment providers or by global card

organizations.

The emergence of e-commerce has taken the payment process even further, making it fully

digitized and requiring no physical contact between the involved parties. Virtual payments

brought enormous benefits to sellers and customers but and also placed extra pressures on

payment service providers, including banks, credit card companies and mobile operators;

these pressures are mostly related to robust security and interoperability issues. High-speed

mobile data networks have opened up a new channel for e-commerce, while the advent of

mobile payments added a new layer of complexity by using devices with limited capabilities.

According to [1], a mobile payment is defined as the process of two parties exchanging

financial value using a mobile device in return for goods or services. A mobile device for the

purposes of this paper defines a wireless communication device, including mobile phones,

PDAs, wireless tablets, and mobile computers. The success of mobile payments relies on the

same factors that have fuelled the growth of physical world non-cash payments, namely:

security, interoperability, privacy, global acceptance and ease of use.

Financial institutions, independent vendors and mobile network operators currently provide

mobile payments. Many differences exist between these proprietary implementations.

Although there are a number of organizations that have been set up to develop common

standards for mobile payments, none of the approaches has reached the level of acceptance of

a common standard.

This paper outlines the background research into the field of mobile technologies and the

mobile payment domain, as a prerequisite for the development of a solution for mobile

payments. A technical overview of existing mobile network technologies and mobile

INTRODUCTION

2

communication services is followed by a description of the generic features of a mobile

payment system, including some mobile payment principles and payment types.

Following the research in the mobile payment domain, a solution for a payment service

provider was realized. The distributed nature of Web Services was selected to provide the

extensibility and interoperability requirements of this framework. This solution allows

integration over existing Internet protocols to current mobile payment infrastructures.

This paper than describes the implementation of the Web Services framework for two

different payment approaches, to represent the different payment techniques in the mobile

payment domain. The realization of the framework implementation is illustrated through the

development of a payment system. This system attempts to establish the complex

relationships that exist between the actors in the mobile payment system. It describes the

integration of Web Services into a real mobile network system, using a SMS gateway and an

application server.

The developed payment system provides a web interface that allows the clients to register

with the system and exposes a set of methods as Web Services; these can be called by

registered clients for payment initialization, authorization, charging and finally, payment

settlement purposes. For testing and demonstration purposes, a simple content provider’s web

site was also developed; this site sells digital goods online and uses the developed payment

system for charging purposes.

MOBILE TECHNOLOGIES

3

2. Mobile Technologies

The concept of cellular communications was conceived in Bell Laboratories during the late

1960s. However, the technology necessary for commercial service did not exist at the time.

The first operational cellular networks were installed in the 1980s in Sweden, Denmark,

Norway and Finland. These networks were based on an analogue cellular standard known as

Nordic Mobile Telephone (NMT). Less than two years later, cellular services were launched

in the United States using AMPS (Advanced Mobile Phone System) technology. Today, over

100 member countries of the International Telecommunication Union (ITU) have licensed one

or more cellular operators to provide mobile services. [7]

2.1 Mobile Network Technologies

There have been a number of different technologies developed to provide mobile cellular

service. These can be classified as first generation (1G), second generation (2G), 2.5G and

third-generation (3G) technologies. The following sections describe shortly these technologies

based on the generation they were part of.

2.1.1 1G Technologies

1G mobile phones were based on the analogue system. The introduction of cellular systems in

the late 1970s was a quantum leap in mobile communication, especially in terms of capacity

and mobility. Semiconductor technology and microprocessors made smaller, lighter, and more

sophisticated mobile systems a reality. However, these 1G cellular systems still transmitted

only analogue voice information. The prominent ones among 1G technologies were advanced

mobile phone system (AMPS), Nordic mobile telephone (NMT), and total access

communication system (TACS). With the introduction of 1G phones, the mobile market

showed annual growth rate of 30 to 50 per cent, rising to nearly 20 million subscribers by

1990.

MOBILE TECHNOLOGIES

4

2.1.2 2G Technologies

2G phones using global system for mobile communications (GSM) were first used in the early

1990s in Europe. GSM provides voice and limited data services, and uses digital modulation

for improved audio quality. The development of 2G cellular systems was driven by the need

to improve transmission quality, system capacity, and coverage. Further advances in

semiconductor technology and microwave devices brought digital transmission to mobile

communications. Speech transmission still dominates the airways, but the demand for fax,

short message, and data transmission is growing rapidly. Supplementary services such as

fraud prevention and encryption of user data have become standard features, comparable to

those in fixed networks. 2G cellular systems include GSM, digital AMPS (D-AMPS), code-

division multiple access (CDMA), and personal digital communication (PDC).

GSM is an open, non-proprietary system that is constantly evolving. One of its strengths is its

international roaming capability. Today GSM offers consumers a same-number phone with

seamless access in more than 161 countries. GSM satellite roaming has also extended service

access to where terrestrial coverage is not available. The first GSM networks began operation

in 1991 and continued to expand beyond Europe to become a world standard. In 2001, the

GSM Association represents the interests of more than 600 GSM, satellite and 3rd Generation

networks operators, regulator and administrative bodies and key manufacturers/suppliers to

the GSM industry in 174 countries. There were more than 646 million GSM subscribers at the

end of 2001.

GSM offers users a variety of advanced features and services. These include circuit-switched

voice, fax, and data, as well as voicemail and voicemail notification. Additional services

include wireless application protocol (WAP), high-speed circuit- switched data (HSCSD),

mobile location services (MLS), and cell broadcast. From the outset, GSM has been a system

designed with stringent levels of inbuilt security. With constantly enhanced transmission

protocols and algorithms added to the flexible and 'future proof' platform, GSM remains a

very secure wireless standard.

The work on GSM continues under the aegis of ETSI (European Telecommunications

Standards Institute). Specifications are constantly undergoing review and change to keep up

MOBILE TECHNOLOGIES

5

with demand for additional services. Many telecom analysts consider GSM as the preferred

platform to migrate to third generation communications systems.

HSCSD (High Speed Circuit Switched Data) [7] enables transmission of data over current

circuit-switched GSM links at speeds of up to 57.6kbps. This speed is achieved by

concatenating, i.e. adding together, consecutive GSM timeslots, each of which is capable of

supporting 14.4kb/s. Up to four GSM timeslots are needed for the transmission of HSCSD. A

permanent connection is established between the called and calling parties for the exchange of

data.

As it is circuit switched, HSCSD is more suited to applications such as videoconferencing and

multimedia than bursty type applications such as e-mail, which is suited to packet switched

data.

2.1.3 2.5G Technologies

2.5G networks incorporate 2G technology with GPRS' higher speeds to support data transport.

2.5G is a bridge from the voice-centric 2G networks to the data-centric 3G networks.

GPRS (General Packet Radio Service) is a packet-switched service that allows data

communications to be sent and received over the existing Global System for Mobile (GSM)

communications network. This allows the user of a computing device with a GPRS modem to

connect to the Internet and exchange data with servers and web sites for mobile access to e-

mail, corporate databases, and browsing the web. With GPRS, the user will experience data

rates significantly faster than a GSM circuit switched data connection. GPRS is an

evolutionary step towards 3G technologies, such as EDGE (Enhanced Data GSM

Environment) and UMTS (Universal Mobile Telephone Service).

Some advantages of GPRS, relative to GSM’s HSCSD, are listed in the followings: [8, 9]

 Faster Data Transfer Rates

 Always-On Connection

 Broad Application Support

 Security Support

MOBILE TECHNOLOGIES

6

Of course, as most other technologies out there, GPRS has also its downside. Let us see

shortly some of the GPRS’ drawbacks: [10]

 Limited Cell Capacity

 Speed

 Suboptimal Modulation

 Transit Delay

 No store and forward

2.1.4 3G Technologies

Third generation (3G) is the generic term for the next big step in mobile technology

development. The formal standard for 3G is the IMT-2000 (International Mobile

Telecommunications 2000). This standard is being pushed by different developer

communities such as W-CDMA is backed by Ericsson, Nokia and Japanese handset

manufacturers and CDMA2000 is backed by the US vendors Qualcomm and Lucent.

EDGE (Enhanced Data Rates for Global Evolution) is a 3G radio technology standardized by

ITU and 3GPP, built on the existing GSM/GPRS network with minor additions relating to the

air interface. [11]

EDGE capability can be easily upgraded to existing GSM/GPRS networks using appropriate

software. GPRS on average triples the current GPRS data rates and the capacity of each

hardware and frequency channel, enabling lower usage cost for existing end-user services, as

well as the new advanced services delivery over GSM bands, such as video streaming.

While a number of mobile operators are considering implementing EDGE as an interim data

technology between GPRS and UMTS, the success of EDGE depends very much on the

timely availability of the products and applications.

WCDMA (Wideband Code Division Multiple Access) is by far the most widely adopted 3G

air-interface technology in the new IMT-2000 frequency bands. Standardized by 3GPP and

ITU, WCDMA has gained broad acceptance within the wireless communication industry.

Around 40 operators have announced plans to start commercial operation by end of year 2003.

In 2005, there will be close to 100 WCDMA networks in operation. [11]

MOBILE TECHNOLOGIES

7

From the outset, WCDMA was designed to provide cost-efficient capacity for both modern

mobile multimedia applications and traditional mobile voice services. One of the key benefits

of the technology is efficient, flexible support for radio bearers, in which network capacity

can be freely allocated between voice and data within the same carrier. WCDMA also

supports both multiple simultaneous services and multimedia services comprising multiple

components with different service quality requirements in terms of throughput, transfer delay,

and bit error rate.

In WCDMA, user data is spread over a bandwidth of circa 5 MHz. The wide bandwidth

supports high user data rates and provides performance benefits due to frequency diversity.

The wideband carrier is also cost-effective as more users can be served by means of a single

transceiver. HSDPA will increase WCDMA's peak user data rates from the currently

achievable 384 kbit/s to up to 10 Mbit/s in 2005-2006 (with 3GPP release 5).

CDMA2000 is the 3rd Generation solution based on IS-95. Unlike some 3G standards, It is an

evolution of an existing wireless standard. CDMA2000 supports 3G services as defined by the

International Telecommunications Union (ITU) for IMT-2000. 3G networks will deliver

wireless services with better performance, greater cost-effectiveness and significantly more

content. The goal is access to any service, anywhere, anytime from one terminal - true

converged, mobile services.

The CDMA2000 standard is evolving to continually support new services in a standard 1.25

MHz carrier. The first phase of CDMA2000, or CDMA2000 1X will deliver average data

rates of 144 kbps. Phase two, labeled CDMA2000 1xEV, will provide for data rates greater

than 2Mbps. [12]

Standing for "Universal Mobile Telecommunications System", UMTS represents an evolution

in terms of services and data speeds from today's "second generation" mobile networks. As a

key member of the "global family" of third generation (3G) mobile technologies identified by

the ITU, UMTS is the natural evolutionary choice for operators of GSM networks.

Using fresh radio spectrum to support increased numbers of customers in line with industry

forecasts of demand for data services over the next decade and beyond, "UMTS" is

synonymous with a choice of WCDMA radio access technology that has already been selected

MOBILE TECHNOLOGIES

8

by approaching 120 licensees worldwide. [13]

UMTS is already a reality. Japan launched the world's first commercial WCDMA network in

2001, and WCDMA networks are now operating commercially in Austria, Italy, Sweden and

the UK with more launches anticipated during 2003-2004.

2.1.5 The Future of Mobile Technologies: 4G

Fourth-generation (4G) cellular services, intended to provide mobile data at rates of

100Mbits/sec or more, were originally scheduled for 2010. Some cell phone companies have

moved the target up to 2006, while rival wireless systems could bring similar bandwidth to a

few fortunate networkers a lot sooner. [14]

The enthusiasm for 4G is not due to accelerated progress; it is because third-generation (3G)

services have proven so disappointing. Instead of one standard worldwide, there are three

incompatible systems in the United States alone. Voice is carried over the circuit-switched

infrastructure inherited from second-generation (2G), not the promised IP. The touted

streaming video is just a low-resolution slideshow. Most importantly, the data rates are closer

to dial up than DSL.

This is partially due to the technology's immaturity: 3G systems rolled out so far could be

considered beta versions, with the real thing still in the future. However, 3G will never live up

to its creators' promises. Despite early excitement about data, the main economic incentive for

3G is increased capacity for narrowband voice. Though data rates will increase, there is not

enough bandwidth to transfer large e-mail attachments quickly, let alone stream audio or

video at broadcast quality as the cell phone vendors first claimed.

MOBILE TECHNOLOGIES

9

2.2 Mobile Communication Services

2.2.1 SMS

Short Messaging System (SMS), also known as text messaging or mobile messaging is a

digital cellular network feature. It allows for sending of text and numeric short messages to

and from digital mobile phones. The number of characters that can be sent is dependent on the

language in use; currently language support is limited to European languages, Chinese and

Arabic. This service is widely popular in Europe and Asia while in the US it is practically

non-existent.

SMS, as defined by the GSM standard as several unique features [15]:

 A single short message can be up to 160 characters of text in length. Those 160

characters can comprise of words, numbers, or an alphanumeric combination. Non-text

based short messages (for example, in binary format) are also supported. These are

used for ring tones and logos services for instance.

 The Short Message Service is a store and forward service, in other words, short

messages are not sent directly from sender to recipient, but always via an SMS Center

instead

 The Short Message Service features confirmation of message delivery. This means

that unlike paging, users do not simply send a short message and trust and hope that it

is delivered. Instead, the sender of the short message can receive a return message

back notifying them whether the short message has been delivered or not.

 Short messages can be sent and received simultaneously with GSM voice, Data and

Fax calls. This is possible because whereas voice, Data and Fax calls take over a

dedicated radio channel for the duration of the call, short messages travel over and

above the radio channel using the signaling path. As such, users of SMS rarely if ever

get a busy or engaged signal as they can do during peak network usage times.

 Ways of sending multiple short messages are available. SMS concatenation (stringing

several short messages together) and SMS compression (getting more than 160

characters of information within a single short message) have been defined and

incorporated in the GSM SMS standards.

MOBILE TECHNOLOGIES

10

2.2.2 MMS

Multimedia Messaging System (MMS) is one of the most recent developments in mobile

messaging. Just as the traditional short messaging (SMS), MMS provides automatic and

immediate delivery of personal messages. The difference with MMS comes from the fact that

it allows users to enhance their messages by incorporating sound, images and other rich

content. [16, 17]

MMS offers more than just a broadening of content. With MMS, it is not only possible to send

multimedia messages from one mobile phone to another, but also from phone to an email

address and vice-versa. A big advantage of MMS is that the message is a multimedia

presentation in a single entry, not a text file with attachments, making it much simpler and

user-friendly.

MMS is an open industry standard, and MMS messages can be delivered using existing

networks and protocols. MMS is also bearer-independent, which means it is not limited to

GSM or WCDMA networks. The speed of MMS transmission, although quick, is still

dependent on the message size and on the bearer used. However, since the receiver is not

aware of the ongoing transmission before the message has been delivered, the delay is

imperceptible, making MMS as convenient to use as SMS.

2.2.3 WAP

Wireless Application Protocol or WAP is an accepted, open industry standard, developed by

the WAP Forum, that allows wireless devices to access information and services on the

Internet. Designed for use over mobile digital networks, WAP allows you to deliver Internet

information to mobile phones.

Basically, a handset sends a request, using WAP protocol, to a special WAP gateway server.

Upon interpretation of the address or URL in the request, the content is fetched by the

gateway and transferred via WAP to the handset. The web site’ information should be

described in WML (Wireless Markup Language) format, WML being the mobile equivalent

of HTML for web pages.

MOBILE TECHNOLOGIES

11

WAP certainly does not replace the use of PCs to access the Internet. It simply complements

them with an “anywhere, anytime” access solution. Current WAP devices have limitations

when it comes to speed, graphics and colors; this is changing with the introduction of GPRS.

WAP has been very popular in Asia, except in Japan where I-mode is dominates the market.

WAP is an open standard in contrast to I-mode, which is a proprietary standard. Operators

switching over to I-Mode will have to make changes to their existing infrastructure, which

means high expenses. WAP is being promoted by most of the big mobile phone

manufacturing companies of the world and these form 50% of the global production of mobile

phones. In addition, there are difficulties with the configuration of a WAP phone for new

WAP services. 20 or so different parameters need to be entered to gain access to the WAP

service, which may discourage users.

2.3 Mobile Platforms

2.3.1 Mobile Operating Systems

The operating system for mobile terminals is not standardized and currently there is an

ongoing battle to become the technology standard of the future. Each of the operating systems

is gathering a number of application developers around them, who mostly develop their

products for one OS only. There are three major players, who have each developed their own

operating system.

Symbian [21] is a consortium of leading mobile handset manufacturers Nokia, Psion,

Ericsson, Panasonic, Samsung, Siemens and Sony Ericsson, and was establishes in June 1998.

Symbian develops and supplies the advanced, open, standard operating system – Symbian OS

– for data-enabled mobile phones. The operating system, which is based on Psion’s earlier

software, is especially designed for two types of wireless information devices: smart phones

(mobile phones with add-on applications and PC connectivity) and communicators (handheld

computers with connectivity to or built-in mobile phones).

As at December 2003 18 phones that use Symbian OS from five manufacturers are shipping

worldwide (including the Nokia 6600, Fujitsu F900i, Sony Ericsson P900, Motorola A925)

MOBILE TECHNOLOGIES

12

and a further 26 phones from nine manufacturers are in development. During 2003, 6.7

million phones using Symbian OS shipped worldwide, and more than 1 million phones

shipped in December 2003 alone.

Microsoft is a little late on pounding the opportunity provided by the mobile market. It

entered into the market with its own operating system called Microsoft Smartphone OS. The

new Microsoft Smartphone OS is a compelling and powerful addition to the Microsoft family

of Mobile products like Pocket PC OS and Windows CE. Like Symbian UIQ, it combines the

telephony features with the functionality of a PDA in the shape of a mobile phone. There are

two different versions of the Smartphone OS currently in the market. The first is released in

2002 and called Microsoft Smartphone 2002. The Smartphone 2002 platform is based on the

Microsoft CE 3.0 operating system and contains many of the core applications provided with

the Pocket PC based computing devices, including email, IM and Pocket Internet Explorer.

Motorola released its MPX200 cell phone in the U.S. and Europe market based on the

Microsoft Smartphone 2002 operating system. The Smartphone 2003 is the latest of the two

OS. Orange has already made its SPV 200 based on this platform. In devices with Smartphone

2003 OS, the .NET Compact Framework is in ROM. This Operating System is also built on

the completely new architecture; it runs on Microsoft Windows CE.NET 4.2 enhancing APIs

and overall programmability.

Licensed by industry leaders—including Aceeca, AlphaSmart, Fossil, Foundertech, Garmin,

GSPDA, HuneTec, Kyocera, Lenovo, palmOne, PerComm, Samsung, Sony, Symbol, and

Tapwave—the Palm OS platform is in over 33 million hardware products worldwide [23]. Its

success and popularity has given rise to a huge community of users, enterprises, developers,

manufacturers, wireless operators and infrastructure and middleware providers. The company

behind Palm OS is PalmSource headquartered in Sunnyvale, California, with development

offices in Montpellier, France and sales offices worldwide.

2.3.2 Mobile Programming Platforms

BREW (Binary Runtime Environment for Wireless) is an application execution environment

released by Qualcomm in February 2001. Initially being restricted to work on only CDMA

networks, now it is capable of running on any network and can be ported to any handset. [23]

MOBILE TECHNOLOGIES

13

Like J2ME, BREW is also vendor neutral development platform. It runs right above the

hardware and runs on many different OS such as Palm OS. Regardless of platform, the main

advantage of BREW is its low memory footprint (i.e. only 150K).

There are two essential components to the BREW platform. First is the BREW SDK, which is

used by developers to create applications on it. Natively, it only supports the C and C++

programming languages, which poses a deeper learning curve for new developers. Because of

this pressure, BREW decided to add Java functionality by selecting IBM’s Java virtual

Machine. The JVM runs in a layer top of the BREW platform and provides standardized

J2ME APIs for the application developer.

The second part of the BREW platform is for the end user. It is a piece of software or

firmware required by a handset to run BREW applications on it. This component is available

at no cost and in some case; it is equipped with BREW enabled cell phones.

A key feature of BREW is the BREW Distribution System (BDS). While in other systems, the

developer has to worry about testing, security and billing of the application they make, in

BREW, all these are managed by the BDS, which interfaces with the carrier’s billing system

and permits them to sell them your application.

The J2ME (Java 2 Micro Edition) [24] is currently the most popular platform for developing

applications for Mobile devices. J2ME is a smaller Version of Java 2 Standard Edition

targeted towards consumer end embedded and small devices, which includes Cellular Phones,

PDAs, Blueberry devices, Set-top boxes etc. Companies like Nokia, Sony Ericsson, Motorola,

Sendo, Palm, and RIM have already based their platforms on J2ME specifications. As with

Java, the development of J2ME is also passed through the Java Community Process (JCP),

which is a collection of different companies to work on a platform.

The overall J2ME architecture can be viewed as:

 A Java virtual machine targeted to the consumer end user device. For mobile devices,

the virtual machine is called KVM i.e. K is for Kilo, to demonstrate the small memory

footprint.

MOBILE TECHNOLOGIES

14

 A group of libraries and APIs to use the device’s capabilities and other functionalities.

These libraries and APIs are grouped separately according to devices’ type. They are

known as Profiles and Configurations.

 Several tools to accompany development, deployment and device configuration.

The first two constitutes the runtime that is installed on the end user’s mobile device to

execute J2ME based applications.

The .NET Compact Framework is the latest initiative from Microsoft to compete with Java

and BREW. The compact framework is a limited version of the complete .NET Framework

and provides a runtime, the programming libraries and the development tools to create and

execute applications on Smartphones running the .NET CF.

The most significant benefit is that the programming model for .NET Compact Framework

devices is identical to that used by the developer using .NET to build applications for desktop

PCs and servers. The only problem with .NET CF is the lack of penetration in the market and

subsequently fewer number of devices with pre-installed framework. Microsoft is trying to

cover up this by partnerships with major handset provides such as Motorola and Orange. The

.NET Compact Framework offers a very good level of application portability for developers

across Microsoft Windows server, desktop, and mobile device operating systems, while J2ME

potentially offers a level of portability across any operating system provided support has been

developed for that operating system.

MOBILE PAYMENT

15

3. Mobile Payment

3.1 Mobile Payment Environment

Mobile telecommunications continue to be phenomenally successful with more than 1 billion

people, almost one in six of the world’s population, using mobile phones. This historic

milestone has been reached only 12 years after the launch of the first GSM networks.[2] The

success of NTT DoCoMo’s I-mode service in Japan, which currently has around 41 million

data subscribers [3], illustrates the appetite for compelling mobile data service. In Europe,

meanwhile, the huge uptake of short messaging (SMS) has demonstrated the need for non-

voice services in that market. According to [2], there were over 30 billion SMS messages sent

in 2001.

A new study by Frost & Sullivan, the international marketing consulting company, believes

the foundations of m-commerce are currently being laid and that the market will take-off

within the next few years. The report expects that trade worth USD 25 billion will be

generated through mobile payments in 2006, which equates to around 15 percent of estimated

online e-commerce consumer spending. The new report presents mobile payments as an

opportunity to most parties involved from consumers and operators to merchants and system

and device vendors. Banks and credit companies must get involved to protect their existing

turf from new competition. [5]

As more sophisticated devices are developed, new applications have emerged that take

advantage of color screens, longer battery life and greater storage capacity. These new

applications include enhanced messaging (EMS) and multimedia messaging (MMS) which

enable the downloading of data files, streaming video and images. The American Federal

Communication Commission’s (FCC) directive, mandating the addition of global positioning

(GPS) in mobile phones, will enable location based mobile commerce.

3.2 Mobile Payment Principles

Existing mobile networks (GSM networks) are not designed to support data transport services

beyond SMS therefore providing slow connection speeds and a limitation in the choice of

MOBILE PAYMENT

16

compatible applications. However, the introduction of packet-switched networks (e.g. GPRS),

offering connection speeds similar to that of a fixed network, together with the inherent

advantage of mobility, provides a setting that is ideal to the proliferation of payment services

for the use of content and services.

3.2.1 The Actors

In order to understand the lifecycle of a mobile payment, it us useful to consider the typical

case of a credit card transaction. In any credit card transaction, there are at least four parties

involved: the user (consumer), the merchant (content provider), the issuer and the acquirer. As

the user and the merchant’s roles are clear, let us see shortly what the responsibilities of the

issuer and the acquirer are. The acquirer is defined as a bank that arranges with the merchants

so that the merchant can accept plastic card payments. When the customer makes a purchase

at a merchant’s location and uses a credit card for payment, the money is sent to the acquirer,

which puts it in to the merchant’s bank account and sends the details of sale to the card issuer.

The card issuer records the amount of money paid and what was paid for on the customer’s

monthly bill. The acquirer usually charges the merchant a small fee or a small percentage. The

issuer, as you probably might have guessed, is a financial institution that issues the

identification payment card (e.g. Visa® Card) to the cardholder identified by the primary

account. [4]

Figure 1 shows the relationships that exist between the involved parties. Note that the trusted

third party and the payment service provider from the figure correspond to the issuer and the

acquirer mentioned earlier.

MOBILE PAYMENT

17

Food Mart

Convenience store

Transaction Details

Transaction Credentials

Transaction Credentials Funds

Transaction Credentials

Funds

Bill

Trusted Third Party: Payment Service Provider:

Customer: Merchant:

Figure 1: Typical Credit Card Transaction

This was the case of a regular credit card transaction. Let us see now how the above figure

looks like in the case of mobile payments; Figure 2 pictures the scenario. In this case, the

network is also an integral part of the transaction flow. The transaction dynamics are similar,

although the form factor that contains the transaction credentials is different. In addition, in

the case of remote payments, the transport of payment details will involve a mobile network

operator and use of either a browser-based protocol, such as WAP or HTML, or a messaging

system, such as SMS or USSD. Alternatively, the transport of payment details could be via

Bluetooth, infrared, RFID or contact-less chip in the case of proximity payments.

MOBILE PAYMENT

18

Requests Content

Charging

Authentication

Authorization

Trusted Third Party: Payment Service Provider:

Customer: Content Provider:

Figure 2: Relationships between the involved actors in a mobile payment. A trusted third party

provides for authorization and authentication.

The customer in this case is a person owning a mobile device and willing to use that device

for paying for a service or the supply of content. Throughout the rest of this paper, the

customer will be referred to as the mobile user. The content can be physical goods or

downloadable digital content; the service can also be either physical or digital service. The

mobile user’s roles include registering with the payment service provider (PSP), initializing

the purchase, authenticating and authorizing the payment.

The merchant, or the content provider, is some organization that sells either physical or digital

goods to customers. This actor will be further referred to as the content provider, as most of

the time, the content that is being the subject of the purchase is some digital good. The role of

the content provider can include forwarding authorization requests to customers and delivery

of goods.

MOBILE PAYMENT

19

The payment service provider is the party responsible for the payment process. The customer

may chose to register with a payment service provider to avoid retyping payment details on

the mobile device every time she makes a purchase. The PSP acts as a middle actor that

controls the payment between the consumer and the content provider. A PSP could be a

financial institution, a mobile network operator, a credit card company or an independent

payment provider.

The trusted third party (TTP) is an organization used to authenticate the involved parties and

to authorize the payment settlement. This actor could be a financial institution, a mobile

network operator or a credit card company. A financial institution or bank could take upon the

roles of both the PSP and the TTP. Hence, for the purpose of this paper, the PSP will be

responsible for all the roles of the TTP and there will be no further reference to the TTP.

Therefore, we are left with only three involved actors in the mobile payments; the figure that

represents more accurately the implemented payment provider is the following one:

MOBILE PAYMENT

20

Requests Content

Charging

Authorization and Authentication

Payment Service Provider:

Customer: Content Provider:

Figure 3: Relationships between the involved actors in a mobile payment. A trusted third party

is no longer present.

3.2.2 The Characteristics

Mobile payments may be characterized into several categories depending on different criteria:

transaction type, settlement type, content type and content value. An outline of some of the

various payment types is presented in the followings.

 Transaction Type

o Pay per View – the mobile user pays for each view or increment of the desired

content. For example downloadable music files or video clips.

o Pay per Event – the user pays for an event. This event may be the use of a

service for a particular time interval or value.

o Pay per Unit – the mobile user pays for each unit of content provided by the

content provider. Units can be based on volume or duration of content, such as

per byte or per minute. The amount of units used for each session will be billed

to the user. Such examples could be used in downloadable games or streaming

video services.

MOBILE PAYMENT

21

o Flat Rate – the mobile user pays a periodic amount to access the content on an

unlimited basis during the period; e.g. unlimited access to online newspapers.

 Settlement Type

o Pre-paid – the mobile user pays in advance before obtaining the content with

prepaid accounts that are deducted after each session.

o Post-paid – the mobile users receive and use the content before they are

charged for it. They are billed after the access to the content was obtained, on

their monthly phone bill for example.

 Content Type

o Digital goods – represents downloadable digital content: video or music files

for example.

o Digital services – video streaming services for example.

o Physical goods and services – pay parking for example.

o Ticketing

 Content Value

o Micro-payments – represent purchases of usually less than 10 Euros or USD.

Examples include ring tones and pay parking.

o Macro-payments – represent purchases of more than 10 Euros or USD.

Examples include purchase of plane tickets.

3.2.3 The Scenarios

There are several key user payment scenarios, namely: automated point-of-sale payments

(vending machines, parking meters and ticket machines); attended point-of-sale payments

(shop counters, taxis); mobile-accessed internet payments (merchant WAP sites); mobile-

assisted internet payments (fixed internet sites using phone instead of credit card), and peer-

to-peer payments between individuals. Mobile-accessed Internet and peer-to-peer payments

make up the bulk of payments, accounting for 39 percent and 34 percent of spending

respectively in 2006 according to [5].

MOBILE PAYMENT

22

Point of Sale

In this payment scenario, the two parties are at the same location and the mobile device is

used only as a payment instrument, not to communicate information about the goods or

services being transacted. For example, if someone uses a wireless phone to order and pay for

a traffic report, the payment is considered virtual because the company providing the traffic

report is distant from the person receiving it. On the other hand, if someone uses a wireless

phone to buy a soda from a vending machine that is considered a POS mobile payment

because the vending machine and the consumer are at the same location.

At present, the POS model of mobile payments has not had much success, because it is

essentially a substitute for a credit or debit card; the user does not gain access to any new

services as a result of using it. Mobil Speedpass is the most successful type of POS mobile

payment today, with more than six million users, but acts more as a loyalty device for Mobil

than as a source of new revenue. [6]

The content provider initiates the payment at the point of sale. The user can authorize the

payment either directly, by sending an SMS message to the PSP for example, or indirectly, via

the content provider, such as using an IrDA, Bluetooth or some other wireless link.

This payment scenario is depicted in the following figure:

MOBILE PAYMENT

23

Identification

Charging

Payment Service Provider:

Mobile Device:

Point Of Sale Terminal:

Figure 4: Payment System for Point of Sale

Mobile-Accessed Internet Payments

MOBILE PAYMENT

24

Content Request/Content Download

Charging

Payment Service Provider:

Mobile Device:

Content Provider:

Figure 5: Payment System for Mobile-Accessed Internet Payments

In this payment scenario, the content provider offers digital content to mobile users by the

means of a WAP enabled Internet site. Either a metered or an event-pricing model can

purchase the content.

Metered content can be a streaming service, such as video, a radio channel or an on-demand

gaming service. The payment of the transaction is dependent on a metered quantity of the

provided service, such as the duration of the service, the data volume delivered, and a.s.o.

Event content may involve the full download of the content and the consumer pays a

predefined price per downloaded item. The transaction is dependent on the successful

download of the content, as it is worthless in the case of a failed download.

Once the mobile user makes a request for content to the content provider, the later one

initiates a charging session with the PSP. The PSP will than seek for authorization and

MOBILE PAYMENT

25

authentication from the mobile user and will settle the payment using either a pre-paid or a

post-paid method.

Mobile-Assisted Internet Payment

This scenario is similar to the previous one. The difference is that the content is purchased via

a PC Internet connection and the mobile device is used only for authenticating the content

recipient as the mobile user and authorizing the transaction.

MOBILE PAYMENT

26

Content Request/Content Download

Charging

Payment Service Provider:

Mobile Device:

Content Provider:

`

PC with Internet Connection:

Authorization/Authentication

Figure 6: Payment System for Mobile-Assisted Internet Payments

3.2.4 The Lifecycle

Within any mobile payment system, there are some general interactions between the involved

parties. These interactions vary from one payment scenario to other, but some of them are

present in each scenario. The following generic sequence diagram outlines these generic

interactions:

MOBILE PAYMENT

27

Mobile User Content Provider Payment Service Provider

1. User Registration

2. Content Provider Registration

3. Request Content

4. Start Charging Session

5. Request User Authorization/Authentication

6. User Authenticates and Authorizes Session

7. User Authenticated

8. Provide Content

9. Charge

Figure 7: Generic Interactions in a Payment System

 User Registration - The mobile user needs to register with the payment service

provider before they can avail of services offered by a registered content provider.

The user will submit details of how they wish to pay for the services and they may be

able to personalize the payment to suit their needs. In addition, the user may be

requested to submit a personal identification number (PIN), which will be used during

the user authentication process. A user identification number will be returned to the

user following the completion of registration. This id will uniquely identify the user

during each payment transaction.

 Content Provider Registration - The content provider needs to register with the

payment service provider, to make their service available to mobile users via the

MOBILE PAYMENT

28

payment system. Service details, such as payment type for the service and the financial

information for receipt of payment after use of the service. Following registration, the

content provider will receive a service identification number, for identification in

further operations with the payment service provider.

 Request Content - Once the mobile user has registered with the payment service

provider, they are able to request the use of services provided by a registered content

provider.

 Start Charging Session - On receiving the content request, the content provider will

initiate a charging session request with the payment service provider. Both the user’s

id and the service’s id will be sent to the payment service provider to uniquely create a

charging session, which will be represented by a unique session identification number.

 Request User Authorization/Authentication - Before a charging session can be

started, the mobile user must authorize that they are willing to pay for the content.

An authorization request will be sent from the payment service provider to the user,

usually in the form of a payment contract. This contract will state the terms and

conditions of the payment agreement between the mobile user and the content

provider. The user must reply to the payment service provider with confirmation of

acceptance of the terms in the contract, before the charging session process can

continue.

 User Authenticates and Authorizes Session - This is usually done by submitting

their PIN from the mobile device being used. Authorization and authentication may be

performed within the one request and the authorization confirmation may include the

authentication PIN.

 User Authenticated - The payment service provider will notify the content provider

whether the mobile user has been authenticated successfully. If authorization and

authentication requests return a positive result, then the charging session will be

initiated. The payment service provider will issue a unique session id to the content

provider, signaling the start of a charging session.

 Provide Content - The content provider will now provide the requested content or

service to the user.

 Charge - Depending on the payment scheme related to the requested service, the

content provider would request a charge operation to the payment service provider at

the end of the service or at different intervals during the service. On receipt of the

charge request, the payment service provider will settle the payment transaction

MOBILE PAYMENT

29

between the two parties and notify each party of the result of the transaction. This will

usually be presented to the mobile user as a payment receipt.

3.3 Mobile Payment: Mobile Operator Payment

Mobile payments can be split into three categories: mobile content, out-of-band and proximity

[26]. Network operators are well suited to deliver payment services for mobile content

because of their expertise in the area of billing. This type of payment is sometimes called “in

band” payment because the content and the payment channel are the same. An example could

be chargeable WAP over GPRS. Users would be offered either a subscription or a per usage

payment model.

An example of in band payment: Anne is on holyday and uses her camera phone to take a

picture and send it via MMS to a friend of her. She is charged €1 to her pre pay account. This

would involve MMS and 2.5G technologies using a mediation system integrated with real

time stored value micro payment system.

3.3.1 Network Operator Payment Systems

There are many ways of charging for data services in a packet switched network: per item

billing, data volume and connection speeds.

Managing the charging for all these different possibilities is a complex task. Users might

require separate billing rates for streaming video depending what they are watching and

expect different quality of service. In the same time, a user might be perfectly happy to pay

per MB. However, if the connection fails after downloading 3 MB out of the 4 MB file she

needed, the user might not be willing to pay for the useless downloaded 3 MB.

Operators are not interested in providing a stand-alone payment application. Charging and

payment are at the heart of their wireless data systems and form part of the infrastructure. The

goal is to deliver content to mobile users that is personalized, location and time specific, with

low friction payment that is suited to the service.

MOBILE PAYMENT

30

Operators deploying these systems will take on the role of payment provider, which could be

a double-edged sword. On one hand, they want to control the relationship between the user

and the content providers; on the other, they are faced with investing heavily in payment

systems that can support these complex models. They can choose to outsource transaction

processing to an ASP that is en expert in aggregating micro payments, or they could upgrade

their systems to support data billing services. Serious operators will most likely turn to the

second option.

3.3.2 Mobile Payment Standards

PayCircle [27] is a consortium formed by U.S. and European technology companies

including Hewlett-Packard, Lucent, Oracle, Sun Microsystems and Germany's telecom

equipment maker Siemens. The consortium aims to provide mobile device users worldwide a

standard means of making mobile payments, regardless of the payment systems used by

merchants or service providers. PayCircle intends to define open and uniform interfaces based

on existing standards, without the need to install any new software.

The Parlay Group [28] is an open multi-vendor consortium formed to develop open

technology-independent application programming interfaces (APIs) enabling: technology,

Internet and eBusiness companies, independent software vendors (ISVs), software developers,

network device vendors and providers, service bureaus, application service providers (ASPs),

application suppliers, and large and small enterprises to develop applications and technology

solutions that operate across multiple networking platform environments.

The Parlay APIs allow third-party applications to be hosted within a telecom operator’s own

network and allow applications running on external application servers to offer their services

to the operator’s subscriber base via a secure gateway. In addition to providing secure,

manageable access to capabilities in the service provider’s network, the Parlay gateway also

links third-party applications to the operator’s business environment via the Parley

framework.

In February 2003, Orange, Telefonica Moviles, T-Mobile and Vodafone signed an agreement

to form a new Mobile Payment Services Association aimed at delivering an open,

MOBILE PAYMENT

31

commonly branded solution for payments via mobile phones, designed to work across all

operator networks. The solution will work across country boundaries and will seek to

complement existing industry solutions. In June 2003, the consortium has re-branded itself as

SimPay [29].

3.3.3 Vendor Billing Solutions

Current vendors of mobile billing solutions for GPRS and 3G services include Amdocs,

Cerillion Technologies, Convergys, EHPT, Geneva Technology, Kenan Systems, Portal,

Sema, and TelesensKSCL [30]. The services provided include content billing management

and CRM (Customer Relationship Management) services.

3.4 Mobile Payment: Out-of-Band Payment

Out of band payment [26] refers to the fact that the payment channel is separate to that used

for a shopping. For example, a credit card holder may use their mobile device to authenticate

and pay for a service they consume on the fixed line Internet or interactive TV. In order to

make the wireless device suitable for authenticating payments, financial institutions are

especially interested in wireless PKI, shared secret (or symmetrical key) schemes, or merging

with their chip card programs via dual slot or dual chip devices.

An out of band payment example: Anne is looking to by tickets online for a concert she wants

to go to. She browses to the ticket vendor site, books the tickets and pays with her Visa card.

The payment authentication request is sent to her mobile phone via SMS, she authenticates

using a personal PIN, digitally signing the order. A receipt is sent to her phone.

3.4.1 Financial Institutions

Banks are already exploiting the potential of mobile phones to be used as personal secure

payment terminals. [26] Different payment schemes exist where a bank deducts some amount

of money from a user’s account to pay for services or digital goods. Authentication of the

transaction is done through various methods: using a dual slot phone for credit card payments,

MOBILE PAYMENT

32

PIN authentication via a SIM toolkit application and with the use of a digital signature based

on the PKI mechanism.

At the moment, users are required to be in the possession of a mobile device that has been

registered before with the payment service provider. Authentication and authorization is done

via a PIN; the user selects a PIN upon registering with the payment service provider, and, at

the time of the transaction, the user is required to enter the PIN. This is than compared with

the one with which the user registered in the first place.

3.4.2 Reverse Charge SMS

Reverse Billing SMS [31] is a process whereby small charges are made to a subscriber's

mobile phone in return for a service. Typically, the subscriber sends an SMS message to a

short code number (usually 5 digits), often including a keyword in the message and in return

receives a service or a piece of information for which a charge is made on that subscriber's

mobile phone.

Typical applications include charged voting systems for television and the press, subscription

campaigns for a football team's news service allowing fans to receive video goal flashes at

50p a goal, or prize draw and competition type marketing applications.

3.4.3 Vodafone m-pay

Vodafone m-pay bill lets users make small payments for services on the web and on the

mobile internet by adding the amount to their monthly mobile phone bill or deducting it from

their prepaid airtime credit.

Vodafone m-pay cards lets users register their credit and debit cards for larger online

purchases. It is fast and secure: web payments are controlled by user name, password and

mobile phone, whilst Vodafone live! and mobile internet transactions ask users to enter a PIN

MOBILE PAYMENT

33

code on their mobile phone; there is no need to enter credit card details every time one buys

something.

3.4.4 MobiPay

MobiPay [32] is a Spanish company, which launched a pilot scheme for mobile payments.

Based on a cooperative model between mobile telephone operators and financial institutions,

MobiPay is owned by Banco Bilbao Vizcaya Argentaria and Santander Central Hispano, as

well as all Spanish mobile network operators (which include Vodafone but not O2).

MobiPay operations include pay at a merchant (shoe store, restaurant, etc.), pay on the

internet, pay at a vending machine (drink machines, cigarettes, etc.), send money to another

person, pay an invoice (electricity invoice, etc.).

The MobiPay security system is based on the following elements:

 personal MobiPay number

 warning and blocking system

 encrypted communications via GSM-secure network

 telephone number associated to MobiPay

 PIN number of the telephone associated to MobiPay

The personal MobiPay number guarantees that the operations are carried out by the customer.

This number is only known to them and they are charged with its safekeeping. The system

allows up to three erroneous key-in attempts. If exceeded, the system is blocked. All MobiPay

operations are authorized by the customer. Authorization is performed when the customer

keys in the personal MobiPay number.

This system is very convenient to customers and minimizes the merchants operational process

as the merchant no longer needs to ask for proof of the customer’s identity or validate the

customer’s signature. MOBIPAY registration is associated to the customer’s mobile telephone

number from which the operations are going to be carried out. To make an operation it is

therefore necessary to initially introduce the PIN number of the phone.

MOBILE PAYMENT

34

3.4.5 PayBox

In May 2000 paybox.net AG, provider of a mobile phone based payment system, started

operation in Germany. Deutsche Bank owns 50% of the company and is responsible for

payment clearing and settlement. The system is independent of particular mobile phone

service providers and it does not depend on PKI-structures.

The PayBox approach is straightforward and consists of four steps:

i. the payer communicates his or her mobile phone number to the payee;

ii. the payee forwards this number and price information to paybox.net;

iii. paybox.net checks the identities of payer and payee and checks for any restrictions

before a voice computer calls the payer asking if he or she is willing to pay the amount x to

merchant y, and the payer is requested to confirm this by typing in his or her PIN;

iv. the payer types in the four digit PIN for PayBox (not his or her SIM-card PIN) and

the voice computer thanks for paying. The rest is conventional payment clearing and

settlement.

3.5 Mobile Payment: Proximity Payment

A promising payment application for mobile commerce is proximity transactions - using the

device to pay at a point of sale, vending machine, ticket machine, tolls, parking, etc. By

leveraging parallel technologies, such as Bluetooth and 802.11, mobile devices can be

transformed into sophisticated payment devices that can process both micro and macro

payments.

A proximity payment example: Anne is at a photo and imaging shop; she transfers her holiday

photos from her digital camera to the store computer over a Bluetooth link; the payment

request is sent to her phone, also over Bluetooth, where she accepts it, and her credit card

information is returned to the store point of sale device. This scenario would involve the use

of some kind of wireless technology and a Java applet for example, running on the mobile

device and the point of sale terminal.

MOBILE PAYMENT

35

3.6 Summary

This section has presented the general characteristics of the mobile payment domain. As one

can easily notice, there is a great diversity of developed solutions and implementations.

However, the underlying generic concepts of a mobile payment are the same.

The next section outlines the specifications and architecture of the developed mobile payment

provider. The framework was developed to support the generic interactions involved between

the parties; these were presented in section 3.2.4 The Lifecycle. Following this, a mobile-

assisted internet payment scenario was used as a test bed to evaluate and test the framework

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

36

4. The Specifications and Architecture of the Payment Provider Framework

This chapter describes the design patterns, the architecture and the specifications of the

framework. Because most of the functionality of the framework is exposed throughout web

services, it will start with a brief overview of web services technologies. It will be followed by

a presentation of the most important design patterns employed during the development of the

framework and, finally, the main components of the framework will be presented.

4.1 Web Services

Web services [33] are pieces of business logic available somewhere on the Internet and that

are accessible through standard Internet protocols such as HTTP or SMTP. Using a web

service could be as simple as logging into a site or as complex as facilitating a multi-

organization business negotiation.

A web service has several behavioral characteristics:

 XML-based: by using XML as the data representation layer for all web service

protocols and technologies, these can be interoperable at their core level. XML

provides networking, operating system and platform independence.

 Coarse grained: building an object-oriented program from scratch requires the creation

of several fine-grained methods that are than composed into a coarse-grained service.

An individual method is to fine to provide any use at corporate level; web services on

the other hand, provide a natural way of defining coarse-grained services.

 Synchronous or asynchronous: synchronicity refers to the binding of a client to the

execution of the service while asynchronous operations allow a client to invoke a

service and then execute other functions and retrieve the results at a later stage.

 Supports RPC (Remote Procedure Call): web services allow clients to invoke

procedures, functions and methods on remote objects using an XML-based protocol.

 Supports document exchange: web services support the exchange of documents, either

simple or complex as an entire book, relying on the advantages of XML and its

generic way of representing data.

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

37

Some of the reasons that led to the choice of using web services to build the framework are:

 Web services are language agnostic, i.e. they are not based on a specific programming

language: Java, C, C++, Python, ...

 Web services are not based on a programming data model, i.e. objects vs. non-object

environments.

 Web services are relatively simple: they work over existing internet technologies

(HTTP, SMTP, etc), can be easily integrated in today’s web interface and a small

amount of code is enough to expose a web service.

 Support of software industry leaders (Sun Microsystems, IBM, Microsoft, etc.)

Several technologies have been introduced in the last years. However, three of them have

emerged as worldwide standards that make up the core of today’s web services technology.

Well see them described shortly in the following sections.

4.1.1 SOAP

Simple Object Access Protocol (SOAP) provides a standard packaging structure for

transporting XML documents over a variety of Internet technologies, including SMTP, HTTP

and FTP. It also defines encoding and biding standards for encoding non-XML RPC

invocations in XML for transport.

The message structure defined by SOAP consists of three major parts, the envelope, the

header and the body. All parts are mandatory in a message, except the header element, which

is optional. The envelope is the top-level XML element in a SOAP message. The envelope

contains the header and body, and is the unit of communication. The header is used to extend

the SOAP message with additional features and functionality, such as security, transactions,

and other quality of service attributes associated with the message. The body contains the

payload of the message, i.e. the application-defined XML data being exchanged in the SOAP

message.

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

38

4.1.2 WSDL

Web Service Description Language (WSDL) WSDL is an XML technology that describes the

interface of a web service in a standardized way. WSDL standardizes how a web service

represents the input and output parameters of an invocation externally, the function's structure,

the nature of the invocation (in only, in/out, etc.), and the service's protocol binding. WSDL

allows disparate clients to automatically understand how to interact with a web service.

In a Web Service interaction, the WSDL file is produced and published by the service side

and the WSDL file is used to obtain the necessary information about a service by the client

side. Both parties need copies of the same WSDL file for the interaction to work.

4.1.3 UDDI

Universal Description, Discovery, and Integration (UDDI) provides a worldwide registry of

web services for advertisement, discovery, and integration purposes. Business analysts and

technologists use UDDI to discover available web services by searching for names,

identifiers, categories, or the specifications implemented by the web service. UDDI provides a

structure for representing businesses, business relationships, web services, specification

metadata, and web service access points.

4.2 Designing with Patterns

This section describes the design patterns implemented in the framework.

4.2.1 Abstract Factory

The Abstract Factory pattern [34] provides an interface for creating families of related or

dependent classes without having to specify the actual classes. This design pattern consists of

a parent component, the abstract factory, which declares an interface for operations that create

abstract product objects. These abstract products declare an interface for a type of product

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

39

object. The implementation of this design releases a concrete factory that implements the

operations of the abstract factory to create the concrete product objects. The concrete products

define a product object to be created by the corresponding concrete factory. This product

object implements the abstract product interface. Client objects will only use interfaces

declared by abstract factory and abstract product classes.

The Abstract Factory is used to develop frameworks and systems that can be configured with

one of multiple families of products.

Figure 8: Abstract Factory Design Pattern

4.2.2 Data Access Object (DAO)

The DAO [35] implements the access mechanism required to work with the data source. The

data source could be anything from a persistent store like an RDBMS to a XML file. The

business component that relies on the DAO uses the simpler interface exposed by the DAO

for its clients. The DAO completely hides the data source implementation details from its

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

40

clients. Because the interface exposed by the DAO to clients does not change when the

underlying data source implementation changes, this pattern allows the DAO to adapt to

different storage schemes without affecting its clients or business components. Essentially, the

DAO acts as an adapter between the component and the data source.

Figure 9: Data Access Object (DAO) Design Pattern

The DAO pattern can be made highly flexible by adopting the Abstract Factory design

pattern, as it was the case in our framework. You will see this explained later, in the

implementation section of this paper. This approach has several advantages: transparency,

easier migration to a different data source, reduces code complexity in business objects,

centralizes all data access in a separate layer.

4.2.3 Façade

The Façade design pattern [36] provides a unified interface to a set of interfaces in a

subsystem. It does this by defining a higher-level interface that makes the subsystem easier to

use.

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

41

Figure 10: Façade Design Pattern

4.3 Mobile Network Payment System

The payment framework was developed and deployed using a real mobile network (Orange

GSM). The overall system consists of three distributed components, the mobile device, the

content provider application and the payment service provider framework. The next sections

will present each of these.

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

42

HTTP

Content Provider. In our test case, web application

that sells digital content in the form MP3 files.

Payment Service Provider. Authenticates and gets

authorization from User. It is implemented as a web

service that offers its services for previously

registered users and content providers.

Also has a web interface for allowing clients to register.

SOAP over HTTPS

HTTP

Now SMS Gateway. Used for relaying

the SMS messages to the mobile user

over an actual Orange network

connection.

SMS

`

HTTPS

Figure 11: Topology of the Implemented Network Payment System

4.3.1 Mobile Client

The mobile client requests content via HTTP requests from a PC. The requests are sent to the

content provider. Before beginning to access the content, the user is requested to register with

the payment provider if she has not done so already. Communication with the content

provider is done through HTTP while the communication with the payment provider goes on

over HTTPS. Upon registering with the payment provider, the user is presented with a list of

available payment methods and than required to fill in some personal information and details

pertinent to the chosen payment method. Before validating the registration, a code is sent to

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

43

the user via SMS; the user is required to enter the code in order to validate the registration.

This is done to ensure that users register in fact with mobile devices that they own. Now

registration is complete and the mobile user can request to access a service supported by the

payment method, which they have just previously registered with.

After the charging session is initiated, the user will receive a SMS message. This message will

display the payment contract of the charging session to the user. She will be requested to reply

to this SMS with the PIN chosen upon registration. If this PIN is correct, then she should be

able to access the requested web content via a URL link.

4.3.2 Content Provider

The content provider deploys the web content on a web server, which is accessed by sending

HTTP requests to a Java servlet; in our implementation, Apache Tomcat was used as the

servlet container. All requests that are payment related are invoked as web service client

operations; these result in SOAP requests being sent to the payment provider. The content

provider will have registered each service with each payment implementation of the

framework for which the service has support. Any web service calls, resulting from a mobile

user request, will propagate through the façade web service to the payment implementation of

the mobile user’s registered choice.

4.3.3 Payment Service Provider

The payment web service was deployed on an Apache Tomcat servlet container using Apache

Axis. It has a registration component that allows mobile clients and content providers to

register and a web service component that waits for SOAP requests from the content

providers. All the registration details are stored in a database for persistence.

At the beginning of a charging session request from a content provider, a contract is produced

by the payment provider from the already stored registration details. This contract must be

digitally signed by the mobile user before the charging session is activated. In this

implementation, the framework will call a SMS gateway API that makes a HTTP request to

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

44

the Now SMS gateway server. The information sent to the server includes the mobile user’s

number and a text version of the generated contract. At the SMS gateway, the text message is

set as the payload of the SMS text message and, using the mobile number, the message is sent

to the user’s mobile device. On receipt of the SMS message, the user is required to authorize

the session. If the user agrees to the terms of the contract, she has to replay to the SMS with

her PIN that was set at registration time. When the SMS gateway receives the returning

message containing the PIN, then this, along with the mobile number, will be sent back to the

payment provider via a HTTP request. The web service will process this information by

comparing the user’s entered PIN with the original registered PIN. If they are identical, then

the user is authenticated. The charging session may now be started.

To account for network delays, especially during the SMS communication process, the

payment system was developed to be asynchronous. On completion of the authorization and

authentication stages, the framework implementation will only update the database record of

that charging session. The content provider will not be informed by the payment service

provider when the charging session has been activated. A request will be initiated by the

mobile user after they have authorized the payment agreement. This will involve the user

accessing a URL link presented to them by the content provider prior to the authorization

stage. The URL will have the session id number appended as a parameter, which will be used

by the content provider to reference the particular charging session when forwarding the

charge request to the payment web service. If the charging session is active, then the charge

request will be processed and a payment confirmation object will be returned. Otherwise, the

user will be asked to complete the authorization process or start again. When the charging

session is terminated, a payment confirmation will be sent to the user’s mobile device as a

payment receipt.

Depending on the characteristics of the charging session, the final charge request, which

may be the only charge request, will be accompanied by a release request from the content

provider to the payment web service. Any remaining amounts to be settled will be processed

and a final payment confirmation will be returned. The charging session will be removed for

the active session in the database.

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

45

4.4 The Components of the Framework

The framework consists of two main components: a registration component and a charging

component. These two components implement all the operations supported by the

framework. The next figure depicts the overall architecture of the framework, while the next

sections describe shortly each of the components and their specifications.

Registration Component Charging Web Service

Payment Service Provider

Figure 12: Bird-eye view of the Payment Service Provider Framework

4.4.1 The Registration Component

The registration component is intended to be a web based front end of the framework. Its

function is to allow clients to register with the framework. Hence, the component handles the

registration of both mobile users and content providers. The registration involves sending

client information to the framework, which is extracted and stored in a database for further

reference. After registering, the clients will be able to use the services offered by the payment

provider.

The information requested from each mobile user at registration time is:

 name: represents the full name of the mobile user.

 phone number: this is the mobile phone number of the user; it has to be in international

format and it is used as a means of authenticating the user and authorizing the

transaction; this is done by sending SMS messages to the mobile device.

 mobile operator name: this is the name of the mobile operator with whom the user has

either e pre-paid account or a valid subscription.

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

46

 payment type: this is the payment type that the user wants to use at payment time.

Currently only credit card and operator billed payments are implemented. In the case

of credit card payments, the payment would be billed directly on the user’s credit card.

With operator billing, either the user would be billed by the mobile operator, on her

phone bill at the end of the month, or the payment would be deducted from a pre-paid

account. If the user wants to be able to use several payment types, she will have to

register with each payment type separately.

 pin: the mobile user has to enter a personal identification number. This will be used at

transaction time to authenticate the user.

 credit card details including credit card number, type and expiration date: these are

only requested if the user chooses credit card as its desired payment type.

The information requested from content providers at registration time includes:

 name: name of the company or organization.

 payment type: this is the payment type that the content provider is willing to accept as

a means of payment for its goods. If a content provider supports several payment

types, it has to register with each one of them.

 service URL: this is the URL of the digital content that the content provider offers.

The architecture of the registration component is pictured in the following figure:

dbaccessbusinesslogic

webinterface

name.andreiszabo.paymentserviceprovider.registration

Database
uses

encapsulates

obtains/modifies

creates/uses

Figure 13: Architecture of the Registration Component

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

47

The webinterface package contains a number of JSP pages with some servlets. The

businesslogic package defines all the business objects (Service, Client, etc) while the

dbaccess package implements the access layer to the background database represented by a

MySQL database engine; this is used as the persistence mechanism of the framework. The

component is implemented in the

name.andreiszabo.paymentserviceprovider.regsitration package. For detailed

information about the implementation, see section 5.2.1 The Registration Component.

4.4.2 The Charging Web Service

This component is designed for creating a payment transaction period called a charging

session. The charging session can only take place between a mobile user and a content

provider that have previously registered with the payment provider. The main function of the

payment provider is therefore to transact an agreed amount from the mobile user to the

content provider supplying the goods or services. This process should be transparent, atomic

and secure to both of the involved parties.

A charging session is defined by the time interval starting from when a payment contract is

agreed by all parties until the payment contract is no longer valid. Each charging session has a

mobile user, a content provider and one payment provider. There can be however several

payment transactions during a charging session; this is dependent on the transaction type used

(see section 3.2.2 The Characteristics for a list of mobile payment’s transaction types).

Before a charging session is initiated, several operations have to be performed in the first

place. The purpose of these operations is to ensure that all parties agree with the terms of the

payment and are aware of the consequences of the transaction. A session is initiated at the

request of a content provider as a result of a user’s request to use a content service or good. At

this point, a contract is created using the content provider and user’s details entered during the

registration. This contract outlines the payment agreement between the parties and specifies

the unit value to be paid for a service during a finite interval of time. The contract is presented

to the mobile user who has to sign it to make the charging session active.

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

48

To ensure that the mobile user is the same person from whom the payment will be deducted

from, the mobile user has to authenticate herself. The contract is sent to the mobile user’s

device for authorization. To limit the number of messages sent across the network, the user is

requested to replay to the message with her private PIN; this is the same PIN the user entered

upon registration. When the replay is received and the PIN is checked against the PIN stored

in the database and they match, the mobile user is considered authentified and the transaction

authorized. Thus, the charging session may become active.

The charging component of the web service is designed using the façade and abstract factory

design patterns. The abstract factory creates three abstract products called managers. Each of

these manager’s role is to handle a portion of the charging web service from the point of view

of one of the involved parties. The three managers are the user manager, the charging

manager and the service manager. The next paragraphs will describe shortly each of these

managers while the next picture provides a static class diagram of the charging web service:

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

49

«interface»

UserManager

ChargingWebService

«interface»

ServiceManager

ChargingManger

PaymentManager

OperatorBilledUserManager CreditCardUserManager

OperatorBilledServiceManager

CreditCardServiceManager

OperatorBilledChargingManager

CreditCardChargingManager

OperatorBilledPaymentManager

CreditCardPaymentManager

«extends»

«extends»

«extends»

«extends»

name.andreiszabo.paymentserviceprovider.webservice

Figure 14: Static class diagram of the Charging Web Service

The user manager is in charge of the relationship between the mobile user and the payment

service provider. Its main functions are sending the contract to the user, requesting user

authentication and sending the payment receipt. The user manager acts as an interface to the

communication medium used for the sending the contract and the authorization request and

receiving the authentication attempt. In our case, SMS technology is used as the

communication medium for the requests and responses.

The main task of the service manager is the creation of the charging session contract. Some

of the data to be used in the contract is specified by the content provider when the charging

session is initiated; this allows for a great flexibility in terms of the transaction type, unit value

of the provided service a.s.o. For example, if the content provider would specify information

like the unit value of a service at registration time, it would not be able to change that price

THE SPECIFICATIONS AND ARCHTECTURE OF THE PAYMENT PROVIDER FRAMEWORK

50

without having to re-register or somehow edit the information already stored by the payment

provider. Data that likely will not change, like the name of the content provider, is taken from

the information entered by the content provider upon registration. Another task of the service

manager is the creation of the payment receipt that will be sent to the mobile user when the

transaction is complete; the data that is used for the creation of the payment receipt is taken

from the charging session details (i.e. total amount charged and payment type).

The payment manager interface controls the process of settling payment transactions. This

would involve integration with an existing network operator. The payment manager takes the

details of payment from the charging session, and, based on these, the transaction is settled

and a payment receipt is returned to the mobile user. Once a charging session was settled, it

presents no interest anymore; however, it is still kept in the persistence storage, for potential

statistical data gathering purposes.

The operations provided by the framework need to be flexible and fit a variety of use cases:

 the content provider sells digital goods in the form of MP3 music files. The price of

each downloaded file is €1 or each song can have a different price. At the onset of the

charging session, the content provider would call a startChargingSession to initialize a

charging session. When the download has finished, the content provider would call a

chargeAndRelease operation; this has the effect of settling the charging session.

 the content provider sells digital goods in the form of news video streaming service.

The unit in this case could be 1 minute of watching the service and the unit price could

be €1 for example. The content provider would call a startChargingSession operation at

the beginning. Afterwards, at each 1 minute, the content provider could call a charge

operation with the number of units being one and than call chargeAndRelease when

the user stops watching the service. On the other hand, the content provider could keep

track of the time elapsed since the user started watching the service, and call only

chargeAndRelease at the end with the proper number of units. This would have the

added benefit of minimizing network traffic.

The example content provider developed for the testing the framework, follows closely the

first use case; for implementation details see section 5.2.2 Charging Web Service. Because it

would be unrealistic to gain access to a real mobile network infrastructure for the purposes of

this project, the settling of payments is simulated.

FRAMEWORK IMPLEMENTATION DETAILS

51

5. Framework Implementation Details

This chapter provides some of the implementation details of the framework. It starts with an

overview of the used technologies and continues with detailed implementation information

relating to the components of the framework.

5.1 Implementation Environment and Tools

This section presents the software environments, tools and technologies used to develop and

test the framework.

5.1.1 Programming Language: Java

Java was used as the programming language for the framework; the version used is J2SE

1.4.1. Reasons for which it was chosen include its support for web services through Apache

Axis, its support for server side programming and its platform independence.

5.1.2 Apache Tomcat

The Apache Tomcat [37] servlet container is the official reference implementation for the

Java Servlet and the JavaServer Pages technologies. Apache Tomcat is developed in an open

and participatory environment and released under the terms of the Apache Software License.

It was used to install Apache Axis and deploy the web services on a network. It was also used

to deploy the registration component of the application and the example content provider web

site.

5.1.3 Apache Axis

Apache Axis [xx] is essentially a SOAP engine, a framework for constructing SOAP

processors such as clients, servers and gateways. It is written in Java, but a C++

FRAMEWORK IMPLEMENTATION DETAILS

52

implementation is also under development. Besides being a SOAP engine, Axis also includes

a simple stand-alone server, extensive support for WSDL, tools that generate Java classes

from WSDL files and vice-versa, a tool for monitoring TCP/IP packets a.s.o.

The best part of Axis is that it has support for the deployment of a web service by exposing

Java classes as the service. Hence, all that is required to deploy a web service is to write a

regular Java class and tell Axis, through a descriptor file, which methods of the class to

expose as a web service; Axis takes care of everything else.

5.1.4 Now SMS Gateway

To enable the communication between the framework and the mobile user and to deploy the

payment system in the real mobile domain, a SMS gateway was needed. The one that was

used is Now SMS gateway, which is also a MMS/WAP gateway and has a free 60-day trial

version available online at [xx]. The most important features of the SMS gateway are that it

supports SMS connectivity via one or more GSM modems (or GSM phone connected to an

infrared adapter as in our case) and that 2-way SMS for interactive application development is

supported. These are the main features that it was chosen for, and also the fact that it is easy to

install and configure comparative to one of the most successful open source SMS/WAP

gateways, namely Kannel.

5.1.5 Log4j

Inserting logging statements into code is a low-tech method used for debugging. In some

cases, it may be the only way though as debuggers are not always available or applicable; this

is often the case of distributed applications. Log4j makes it possible to enable logging at

runtime without modifying the application binary. The Log4j package is designed in such a

way that the logging statements can remain in the shipped code without incurring heavy

performance cost. Logging behavior can be controlled by editing a configuration file and

never touching the application binary.

FRAMEWORK IMPLEMENTATION DETAILS

53

One of the features of Log4j is the notion of inheritance among loggers. Using a hierarchy of

loggers, it is possible to control which statements are logged at an arbitrarily fine granularity

but with great ease. The target of the log output can be a file, a remote Log4j server, a remote

Unix Syslog daemon, or even a NT Event logger among many other output targets.

5.2 Framework Components Implementation Details

This section will present implementation details of both the payment framework and the

example content provider developed to test the functionality of the framework. The

framework was implemented to support two payment methods: operator billed and credit card

payments. Both the mobile user and the content provider would have to be registered with the

same payment method in order for the charging session to begin. Hence, a content provider

would have to register with all the payment methods they wish to support for a service.

The overview starts with the registration component, continues with the charging web service

and the content provider and ends by looking at two utility packages; these were developed to

provide utility functions that are used by the components of the framework.

5.2.1 Registration Component

This section will present some implementation details regarding to the development of the

registration component of the framework. The component was developed in three separate

packages, each of them having its own purpose. These are described in the followings.

i. name.andreiszabo.paymentserviceprovider.registration.dbaccess

This package implements the layer that provides access to the underlying database. It is

implemented using the DAO design pattern described in section 4.2.2 Data Access Object

(DAO).

FRAMEWORK IMPLEMENTATION DETAILS

54

Figure 15: dbaccess Package Class Diagram

The DAOFactory class produces the DAOs required to work with the different underlying

databases. This strategy uses the factory method implementation in the factories produced by

the abstract factory. The DAOs produced by the MySqlDAOFactory are

AbstractUserDAO, PaymentTypesDAO, CreditCardTypesDAO and

AbstractServiceDAO. This strategy, of using the abstract DAOFactory class makes it easy

to support different storage mechanisms; different concrete DAO factories that implement

storage-specific access only have to inherit and implement the DAOFactory abstract class.

The package also defines two custom exceptions, DatabaseEntryException and

DatabaseNotAccessibleException. These are used as wrappers around exceptions

FRAMEWORK IMPLEMENTATION DETAILS

55

generated at lower levels. For example, if a SQLException occurs when trying to access the

database, the exception is caught by the database access layer and wrapped around a

DatabaseNotAccessibleException that is thrown to the upper layer. This makes sense

as a client working with the framework does not need to know what is the underlying

persistence mechanism used, nor does it need to know details about how to use it. The

DatabaseEntryException is thrown whenever a client tries to register twice with the

framework using the same information, or whenever a lookup operation is performed in the

database and there are no matching records.

Transfer objects are used as data carriers. DAO objects use these objects to receive and to

return data to clients. In our implementation, the transfer objects are located in the second

package of the registration component.

ii. name.andreiszabo.paymentserviceprovider.registration.businesslogic

The class diagram of the package is depicted in the following figure:

FRAMEWORK IMPLEMENTATION DETAILS

56

Figure 16: businesslogic Package Class Diagram

The clients of the framework can be classified in two categories: mobile users and content

providers. Both mobile users and content providers have a name and a unique id; hence the

AbstractClient abstract class which is inherited by two abstract classes

AbstractService and AbstractUser. Each of these classes add attributes specific to

content providers and mobile users respectively. We have one single concrete service,

modeled by the ConcreteService class that implements the AbstractService class and

two concrete mobile users: CreditCardUser and OperatorBilledUser each of them

implementing the AbstractUser class.

FRAMEWORK IMPLEMENTATION DETAILS

57

The package also uses the abstract factory design pattern throughout the

AbstractClientFactory class. This factory is implemented by two different concrete

factories OperatorBilledClientFactory and CreditCardClientFactory. Each of

these factories knows how to create a new mobile user and content provider corresponding to

their respective payment methods; i.e. the OperatorBilledClientFactory knows how to

produce an OperatorBilledUser and a ConcreteService.

iii. name.andreiszabo.paymentserviceprovider.registration.webinterface

This package contains the beans and servlets that, together with the JSP files and the HTML

files, make up the web interface of the framework. It is made up of two separate packages: the

beans and the servlets packages.

The beans package contains a number of Java bean classes. These are used to validate the

information that the user inputs in the JSP files. Each JSP file has a bean associated with it

and, when the user is finished entering data in the forms of a particular JSP file, the

corresponding bean checks the values of the data. If the data is valid, the user is allowed to go

on, otherwise the page is redisplayed and the user is asked to enter the correct values for the

data. The beans package also contains the PopulateDropDown class; its role is to populate

the drop down boxes from the JSP files with data taken from the database.

The servlets package contains the logic of the web interface. The most important class,

ControllerServlet, as its name suggests, controls the logical flow of the registration

process. Requests are forwarded from each JSP file to the ControllerServlet, and based

on where the requests comes from, the servlet will forward it to the corresponding destination,

that can either be a JSP page or another servlet. The InitServlet takes care of reading the

initialization parameters from the deployment descriptor file of the web application and

making them available to the rest of the framework’s component; the class also initializes the

connection pool that will be used to access the database. The other two classes of the package,

AddUserServlet and AddServiceServlet can only be reached when the

ControllerServlet forwards execution to them. Their role is to add a new user,

respectively a new content provider, to the database, by taking the information forwarded to

them as parameters in the HTTP request.

FRAMEWORK IMPLEMENTATION DETAILS

58

5.2.2 Charging Web Service

This section will describe some of the implementation details of the charging component of

the payment provider framework. The component is developed in two main packages that will

be described in the followings.

The operations that are exposed as web services are defined by the ChargingWebService

class, which acts as a stateless façade to the underlying system.

Figure 17: ChargingWebService Class Diagram

The operations are described in the followings:

 String getUserId(String phone, String pin, String paymentType) –

this is called by the content provider to check if the mobile user wishing to gain access

to the content provider’s services or goods is a registered user with the payment

provider. The id of the user is returned if the user is found to be a registered client, null

otherwise. As one can see, a mobile user is identified by its phone number, pin number

and desired payment type.

 String startChargingSession(String userId, String serviceId,

Integer noOfUnits, Double unitValue) – this is called by the content

provider to start a new charging session. It specifies the parties that take part in the

transaction (identified by their ids) and the number of units with their unit values that

are charged at the onset of the session. A contract specifying the details of the

transaction is sent to the mobile user at this time. A charging session id is returned if

everything goes well, null otherwise.

FRAMEWORK IMPLEMENTATION DETAILS

59

 boolean isSessionAuthorized(String sessionId) – after starting the

charging session, but before allowing access to the service or good that it is selling, the

content provider checks to see if the user has authentified and authorized the session.

If yes, access to the restricted area is allowed, otherwise the user is asked to

authenticate herself and authorize the session.

 void charge(String sessionId, Integer units) – this is used by the

content provider to charge an additional number of units to a charging session that is

already active. This could be the case of an online video streaming service, where the

user is charged some agreed amount for each 1 minute of service for example.

 void chargeAndRelease(String sessionId, Integer units) – this is

called by the content provider to settle a charging session. It allows also the content

provider to charge a number of units to that session and than settle it.

i. name.andreiszabo.paymentserviceprovider.webservice.dbaccess

This package provides the access layer to the persistence mechanism. It is also implemented

using the DAO design pattern. The class diagram of the package is the following one:

Figure 18: dbaccess Package Class Diagram

FRAMEWORK IMPLEMENTATION DETAILS

60

The SessionDAO and TransactionDAO interfaces define all the operations that can be

performed upon Session and Transaction objects respectively. The MySqlSessionDAO

and MySqlTransactionDAO represent concrete implementation of the corresponding

interfaces for the MySql database. They contain the necessary SQL code required to work

with the database and they shield the client from those details.

ii. name.andreiszabo.paymentserviceprovider.webservice.businesslogic

The second package of the component defines all the classes that represent the entities of the

domain model. The Session and Transaction classes are used to create the so-called

transfer objects. A Session object holds all the information about a particular charging

session while a Transaction object holds all the information of a transaction. Whenever a

charging session is finished and it needs to be settled, a transaction is created and the client id

together with the payment type and the total amount spent, are written in a separate table of

the database; the table is called accounting. Because gaining access to a real network

operator’s infrastructure for the purpose of the project was unrealistic, there was no other way

of properly “settling” a charging session. Thus, the above method is used, where the

accounting table holds entries of finished charging sessions in the form of (userId,

totalAmount, paymentType).

FRAMEWORK IMPLEMENTATION DETAILS

61

Figure 19: Session and Transaction Class Diagrams

The PaymentReceipt class contains all the relevant information that will be sent to the

mobile user at the end of the charging session. This information includes the total amount

charged during the session and the payment method. The class implements a toString()

method that generates the text that will make up the payload of the SMS message sent to the

user.

The Contract class, similarly, contains all the relevant information that will be sent to the

user at the beginning of the charging session. This information includes the content provider’s

name, the payment method, the number of units and the unit value. The class also implements

a toString() method that generated the text that will make up the payload of the SMS

message sent to the user.

FRAMEWORK IMPLEMENTATION DETAILS

62

Figure 20: PaymentReceipt and Contract Class Diagrams

The UserAuthorization class implements the interface of the framework with the

name.andreiszabo.smsgatewayaccess package used for communication with the SMS

gateway. It implements two methods for this, one that takes a userId and a Contract object

and sends the text version of the Contract to the mobile user, and the other one that takes a

userId and a PaymentReceipt object and sends the text version of the PaymentReceipt

to the mobile user. The class uses the database access layer of the registration component for

retrieving the phone number of the user whose user id is given as parameter to the methods;

however, the database access layer is not used directly but throughout the DAOFacade class.

The DAOFacade performs database related operations that do not depend on the type of user

or service being accessed. The purpose of the class is to shield the web service operations

from the underlying database implementation and the corresponding DAO objects. Thus, all

calls to the database access layer, both of the registration component and that of the charging

component, go through this class.

FRAMEWORK IMPLEMENTATION DETAILS

63

Figure 21: UserAuthorization and DAOFacade Class Diagrams

The ChargingManager interface is an abstract factory for the implementation, which creates

three abstract products called managers. Each of these managers handles a proportion of the

charging web service, from the perspective of one of the parties involved. The tasks of the

ChargingManager interface are the following:

 creates a new charging session given a userId, serviceId, number of units and unit

value;

 releases a charging session given by its sessionId;

 returns the authorization status of a charging session given by the sessionId;

 charges a session given by its session id with the number of units specified.

The PaymentManager controls the process of settling payment transactions. This would

involve integration with existing mobile payment infrastructures. It uses the session contract

details to determine the attributes of a charging session and following this, the transaction is

completed and a payment receipt is returned to the user. The only operation performed by the

class is settling a charging session. This involves marking the session as being settled,

creating a Transaction object from the charging session details and persisting the attributes

FRAMEWORK IMPLEMENTATION DETAILS

64

of the Transaction object in the accounting table of the database. The Transaction

object is written to the database using the TransactionDAO.

The ServiceManager extracts relevant information from the charging session details and

construct both the payment agreement between the parties and the payment receipt. Both of

these will be sent to the mobile user in the form of SMS messages. Thus, the

ServiceManager knows how to create the Contract and PaymentReceipt objects given

a Session object.

The UserManager represents the interface to the communication medium. Its two main tasks

are that of asking the UserAuthorization class to send the contract and the payment

receipt to the mobile user. It passes on Contract and PaymentReceipt objects to the

UserAuthorization class; the class knows how to get the text version of those objects.

FRAMEWORK IMPLEMENTATION DETAILS

65

Figure 22: Managers Class Diagrams

5.2.3 Content Provider

The content provider was implemented with the intent of testing some of the services of the

payment framework; it was not intended to be a fully-fledged online store or anything similar.

The most important requirements for the content provider were to allow access to the

restricted area only to users that are registered with the payment provider and to make the

FRAMEWORK IMPLEMENTATION DETAILS

66

content available in such a way that user’s cannot access it without having to pay for it. The

intended functionality of the content provider was that of allowing registered users to

download an MP3 file and charge the user accordingly for this.

Each content provider is assigned a unique id upon registering with the payment framework.

The content provider has to register for each payment method it wants to support so it might

end up with several ids. It has to keep track of these ids because when accessing the services

of the framework it must provide one of these ids. In our case, these ids are stored in the

deployment descriptor of the content provider web application; see section 6.2.3 web.xml

for more details on this.

The content provider was implemented as a simple web application consisting of two main

servlets: a ControllerServlet and the SendMp3File servlet. The ControllerServlet

checks to see if the user is registered with the payment provider and, if yes, it starts a charging

session and allows access to the restricted area. If not, it asks the user to register first.

Checking if the user is registered and starting a charging session are done by calling the

corresponding services of the payment provider; see section 4.3.2 The Charging Web Service.

When the user selects a file to download, the SendMp3File servlet checks if the charging

session was authorized by the user. If yes, the servlet sends the selected file to the user and

terminates the charging session by calling chargeAndRelease. Adding support for new

MP3 files is easy. The directory from where the servlet takes the files is specified in the

deployment descriptor file of the application; see section 6.2.3 web.xml. To add a new MP3

file to the list of available songs, one has to modify the JSP file by adding the song name and

place the appropriate file in the specified directory. The servlet will be able to find the file;

there is no need to modify the servlet code at all.

5.2.4 Utility Code

There are two packages developed that provide common functionality used by the other

components of the framework. These are the name.andreiszabo.util and

name.andreiszabo.smsgatewayaccess. In the followings, we are going to take each

FRAMEWORK IMPLEMENTATION DETAILS

67

package and look at its functionality.

The name.andreiszabo.util has only a single class, namely UniqueIdGenerator. Its

purpose is to generate unique ids; these ids are assigned to each mobile user and content

provider that registers with the framework. Charging sessions are also assigned a unique id

generated by this class. The algorithm works as follows: when a new unique id is needed, a

random number is generated using SecureRandom. Next, a MessageDigest of the random

number is created, the byte[] returned by the MessageDigest is encoded into some

acceptable textual form and the result is checked if it is already being used; if it is not already

taken, it is suitable as a unique identifier. The MessageDigest class is suitable for

generating a "one-way hash" of arbitrary data. That hash values never uniquely identify their

source data, since different source data can produce the same hash value. A MessageDigest

takes any input, and produces a String which: is of fixed length, does not allow the original

input to be easily recovered (in fact, this is very hard), does not uniquely identify the input;

however, similar input will produce dissimilar message digests.

The name.andreiszabo.smsgatewayaccess contains all the classes that make up the

interface to the communication medium. It contains the SMS class; this defines a SMS object

as being identified by source and destination phone numbers and a text message. The

SMSSender class takes care of effectively interfacing with the SMS gateway. Its main role is

to take a SMS object instance and, using the HttpClient package from Jakarta, builds the

HTTP requests by which the SMS is handed over to the SMS gateway that will eventually

send it. The identification information for the SMS gateway, like its IP address and user

credentials, has to be specified in the deployment descriptor file of the web application; see

section 6.2.3 web.xml for how to do this.

Another important class of the package is SMSReceiver. This is developed as a servlet; its

main role is to process incoming SMS messages. The SMS gateway has to be set up to

support 2-way SMSs and must be configured so that all incoming SMSs are forwarded via

HTTP requests to the SMSReceiver servlet. For an overview of how to do this, see section

6.1.2 Installing the Now SMS Gateway. The servlet takes the source phone number of the

SMS message and the PIN sent in the body of the message, and, if the PIN is valid, goes to the

database and authorizes all charging sessions of the respective user.

USERS GUIDE

68

6. Users Guide

This section will provide some brief information about how to setup up the payment service

provider and the example content provider. It provides generic information about the steps

required to install all the components used by the system and information about how to deal

with the various configuration files.

6.1 Deploying the System

6.1.1 Installing and Setting Up the MySQL Database

The system was tested on the free MySQL database engine. The versioned that was used is

3.23.58; it can be downloaded free of charge from [38]. For installation notes, see the MySQL

documentation.

The database that is used by the system is available as an SQL script file in the archive file

that contains the application. This makes it easy to deploy the database under MySQL; for the

exact steps required to do this, check the MySQL documentation. After deploying the

database, a user name and a password should be set up and granted with full access right to

the database; a record should be kept of the user name and password as these will be used to

configure the connection pool.

For accessing the database from the Java programming language, a driver is required. The one

that was used in our case is MySQL Connector/J, the official JDBC driver for MySQL. It can

be obtained from [39] free of charge. For information on how to use it, check the

documentation that comes with it.

6.1.2 Installing the Now SMS Gateway

The SMS Gateway used by the framework for sending and receiving messages is Now SMS

Gateway. A trial version of 60 days of it can be downloaded free of charge from [40].

USERS GUIDE

69

A user name and password should also be assigned for accessing the SMS gateway; this can

be done using the graphical interface of the gateway. The user name and password will be

required later to configure the payment provider application. The last step should be

connecting the mobile phone to the computer and making it visible to the gateway. For our

purposes, a Nokia 7110 phone was used, and it was connected to the computer via an infrared

USB adapter. For different phone models and other ways of connecting them to the PC, as

well as for more information on the setup of the gateway, see the documentation that comes

with it.

6.1.3 Deploying the Payment Service Provider

Apache Tomcat was used as the servlet container to perform the test. The payment service

provider comes in the file called psp.war. Deploying war files in Tomcat is easy; one just

has to copy the war file in the webapps directory of Tomcat. This is however not enough to

get the application running, as there are several configuration files that need to be edited; see

the following sections on how to do this.

After deploying the web application, we must somehow export part of our application as web

services. We have done this using Apache Axis [41]. For information on how to do this, [42]

provides an excellent working example and much more.

6.1.4 Deploying the Example Content Provider

The example content provider was developed as a proof of concept. It is not meant to be

neither a production ready example, nor an exhaustive usage example of all the features

provided by the payment service provider; it is only test case of how the functionality exposed

by the framework as web services could be used by a potential content provider looking for a

payment provider.

These being said, the content provider is deployed easily by dropping the

contentprovider.war file into the webapps directory of Tomcat. Further configuration

through properties files is however required; see next sections on how to achieve this.

USERS GUIDE

70

6.1.5 Support for SSL

For security purposes, both the registration of new clients, throughout the web interface of the

payment provider, as well as the web service calls, take place using the Secure Sockets Layer

(SSL) security protocol. SSL is a protocol designed by Netscape Communications to enable

encrypted, authenticated communications across the Internet; it used mostly in

communications between web browsers and web servers. URL's that begin with 'https'

indicate that an SSL connection will be used. SSL provides three important things: privacy,

authentication and message integrity.

The steps required for the exchange of SOAP messages over an HTTPS secure connection

with mutual authentication can be summarized as: create self-signed certificates for both the

client program and the Tomcat server; store the certificates and the corresponding private keys

in respective keystore files; populate the client’s truststore with the server’s. A detailed

example of this process can be found in [43]. For information on how to set up Apache

Tomcat to use SSL, see [44].

6.2 Configuration Files

6.2.1 log4j.properties

Log4J is used for logging purposes. Both the content provider and the payment service

provider use this; hence, there are two log4j.properties files located as follows: one of

them in the webapps/PSP/WEB-INF/classes and the other one in

webapps/ContentProvider/WEB-INF/classes. These directories are located in the

Tomcat home and may have a different name if the web applications were deployed under a

different context path name.

The payment service provider has different loggers for different modules of the framework.

By default, the logging levels of all the loggers are set to info and each logger records its

messages in the specified file. Let us take a sample entry from the file:

USERS GUIDE

71

Database accesses are logged by DBAppender; these are the

#properties for DBAppender.

log4j.logger.name.andreiszabo.paymentserviceprovider.registration.

dbaccess=info, DBAppender

log4j.appender.DBAppender=org.apache.log4j.RollingFileAppender

log4j.appender.DBAppender.File=c:///Program Files/Apache

Group/Tomcat 4.1/webapps/PSP/logs/db.log

log4j.appender.DBAppender.MaxFileSize=100KB

log4j.appender.DBAppender.MaxBackupIndex=1

log4j.appender.DBAppender.layout=org.apache.log4j.PatternLayout

log4j.appender.DBAppender.layout.ConversionPattern=%d{ABSOLUTE} %-

5p %c{2} - %m%n

To change the level that determines the messages that are logged just change for example

info to debug. This will cause all messages generated by the dbaccess package to be

logged to the specified file. For an in depth look at the various configuration options available

with log4j properties files, see [45].

6.2.2 server.xml

This file is located in the conf directory of the Tomcat home. The modifications that are done

in this file, concern two purposes: the SSL configuration and the connection pool

configuration. The SSL configuration is described in detail in [44], while the connection pool

configuration steps are covered in [46].

6.2.3 web.xml

web.xml files are also known as web application deployment descriptor files. Hence, each

web application must have one. The file is located in the WEB-INF directory of both the

content provider application and the payment service provider.

USERS GUIDE

72

The content provider’s file has three configuration parameters:

 mp3-dir: specifies the location from where the mp3 files that are sold by the

content provider are taken and sent to the client.

 operatorBilledId and creditCardId: this is an id assigned to the

content provider upon registration with the payment service provider. When

making calls to the web services of the payment service provider, the content

provider has to send along its id. For each different payment method the

content provider register with, it receives a unique id.

The payment service provider also has a number of configuration parameters:

 serverIP: represents the IP address of the SMS gateway that is used to send

the messages.

 portNumber: represents the port number on which the SMS gateway listens

for connections.

 userName: represents the credentials used to connect to the SMS gateway.

 userPassword: represents the credentials used to connect to the SMS

gateway.

 database: this parameter is used to specify the underlying database engine

used for the database. In the current implementation, only MySQL is supported

as a persistence mechanism. Hence, the only valid value of this parameter is 1.

 sessionTimeout: represents the number of seconds after which an

unauthorized session (i.e. a session that was started and not authorized) is

considered expired and deleted from the database.

 authorizedSessionTimeout: represents the number of seconds after

which an authorized, but not settled session is considered expired and deleted

from the database.

EVALUATION AND CONCLUSIONS

73

7. Evaluation and Conclusions

This section outlines some of the criteria that should be used when evaluating the framework.

It also presents future work that could be done to improve the system and ends with a

paragraph outlining the conclusions of this paper.

7.1 Evaluation and Future Work

7.1.1 Network Failure and Latency

Network latency considerations were not taken into account during the initial design of the

framework. In simulations and theory, latency is not an issue, but with the deployment of the

framework in a real mobile network, it was found necessary to adopt some design features to

offer support for this problem. During the design, the system was modeled to use a

synchronous authorization mechanism of the user. Upon sending the SMS message to the user

requesting for authorization, the implementation would wait for the reply of the user.

However, latency issues involved in sending the reply, caused by both the network and the

inherent difficultness of writing messages on a mobile device, have determined the changing

of the authorization process from a synchronous one to an asynchronous one. Thus, once the

SMS message asking authorization was sent, the process would cease; only when the user

would have replied and requested the service from the content provider, the process would be

started again and completed this time.

7.1.2 Security

Security is a major concern in the world of mobile communications and that of electronic

payments. When the two domains overleap security becomes even more of an issue.

The registration process of the framework encapsulates the sending of sensitive information

(like credit card numbers, expiry dates, a.s.o.) over the network into s single transaction. The

user only has to enter this sensitive data only once, namely at registration time. Afterwards,

payments can be made by only specifying the mobile phone number and the PIN that identify

EVALUATION AND CONCLUSIONS

74

a user; the PIN number must still however be safeguarded. To reduce the chance of

information being stolen while sent through the network, the registration process works using

the SSL protocol for security reasons. This way, the information entered by the user is

encoded, sent over the wire to the server, where it is decoded. The communication between

the content provider and the payment provider, namely the web service calls, also go over

SSL connections. Thus, practically all-sensitive information exchanged between the actors

goes over SSL connections.

7.1.3 Future Work

Further development of the framework could involve the use of Enterprise Java Beans (EJB)

technologies, the inclusion of web services security and integration of other payment methods

in the framework.

The use of EJBs would provide additional support for concurrency, scalability and security

issues while web services security would allow security at application level and not transport

level as SSL provides.

7.2 Conclusion

The goal of this paper was the research of the mobile payments area and the development of a

provider of mobile payment services. At the time of the research, there were many enclosed

proprietary solutions for the problem of mobile payments, but no open, generally accepted

standard. Much effort was invested in the study of these proprietary solutions, but, due to their

enclosed nature, this became soon difficult.

Research of the mobile payment services revealed the existence of three main actors: the

mobile client, the content provider and the payment service provider. There are a set of

common relationships between each actor, which can be expressed as a set of generic

interactions between the actors. Combining web technologies and some well-known design

patterns, a generic payment provider was implemented based on web services. The framework

was designed and implemented to support two different payment methods. To further evaluate

EVALUATION AND CONCLUSIONS

75

the framework, an example content provider was developed and the framework was deployed

using a real mobile network operator.

Among the encountered difficulties, worth mentioning is the absence of an open standard in

the field of mobile payments. This has slowed down the design and implementation of the

framework and made it harder. Another drawback was latency in real mobile networks and the

inability of sending data in the form of cookies or something similar to mobile devices; these

were addressed through design decisions.

The proposed framework for mobile payments does not provide a complete solution for all

mobile payments, but it merely suggests an open and interoperable solution for a generic

mobile payment services provider.

BIBLIOGRAPHY

76

7. Bibliography

[1] Mobile Payment Forum, http://www.mobilepaymentforum.org

[2] GSM Association, http://www.gsmworld.com

[3] NTT DoCoMo Inc, http://www.nttdocomo.com

[4] WR2000 Group LLC, http://123merchantaccount.com/glossary.html

[5] CommerceNet Scandinavia, http://www.mobile.commerce.net

[6] Aaron McPherson, The Evolution of Mobile Payments, Financial Insights Feb 2004

[7] Paul Budde, Wireless Technology - Mobile Communications - Satellite, Data, and Fleet

[8] Mobile Streams Ltd, http://www.mobilegprs.com

[9] Alan Sicher, Randall Heaton, GPRS Technology Overview, Dell White Paper Feb. 2002.

[10] Amit Vyas, Peter O’Grady, A Review of Mobile Commerce Technologies, Department of

Industrial Engineering, University of Iowa, May 2001

[11] Nokia, http://www.nokia.com

[12] Telefonaktiebolaget LM Ericsson, http://www.ericsson.com/cdmasystems

[13] The UMTS Forum, http://www.umts-forum.org

[14] 4Gcouk Limited, http://www.4g.co.uk

[15] Dr. Subrahmanyam Karuturi, What is SMS?, http://www.funsms.net

[16] MMS (Multimedia Messaging Service) Explained, January 2002, http://www.esato.com

[17] Multimedia Messaging, http://www.nokia.com

[18] WAP Explained, http://wapwala.net

[19] NTT DoCoMo http://www.nttdocomo.com

[20] Mobile Streams Ltd, http://www.mobileussd.com

[21] Symbian Ltd, http://www.symbian.com

[22] PalmSource, Inc., http://www.palmsource.com

[23] What’s NEW in BREW Version 2.0, http://www.devx.com/Brew/Article/10187

[24] Java 2 Platform, Micro Edition (J2ME), http://java.sun.com/j2me

[25] Microsoft .NET Compact Framework, http://msdn.microsoft.com/mobility/netcf

[26] Mobile Payments: Preparing for the mCommerce Revolution, Trintech White Paper,

March 2002

[27] PayCircle, http://www.paycircle.org

[28] The Parlay Group, http://www.parlay.org

[29] Simpay Limited, http://www.simpay.com

[30] Charging Mechanisms for Mobile Services, NorthStream White Paper, 2002

http://www.mobilepaymentforum.org/
http://www.gsmworld.com/
http://www.nttdocomo.com/
http://123merchantaccount.com/glossary.html
http://www.mobile.commerce.net/
http://www.mobilegprs.com/
http://www.nokia.com/
http://www.ericsson.com/cdmasystems
http://www.umts-forum.org/
http://www.4g.co.uk/
http://www.funsms.net/
http://www.esato.com/
http://www.nokia.com/
http://wapwala.net/
http://www.nttdocomo.com/
http://www.mobileussd.com/
http://www.symbian.com/
http://www.palmsource.com/
http://www.devx.com/Brew/Article/10187
http://java.sun.com/j2me
http://msdn.microsoft.com/mobility/netcf
http://www.paycircle.org/
http://www.parlay.org/
http://www.simpay.com/

BIBLIOGRAPHY

77

[31] Reverse SMS Billing, http://www.fastsms.co.uk/reverse-billing

[32] Mobipay International, http://www.mobipay.com/en/home.htm

[33] David Chappell, Tyler Jewell, Java Web Services, O’Reilly, March 2002

[34] Abstract Factory, http://www.dofactory.com/Patterns/PatternAbstract.aspx

[35] Core J2EE Patterns - Data Access Object,

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

[36] Façade, http://www.dofactory.com/Patterns/PatternFacade.aspx

[37] The Apache Software Foundation, http://jakarta.apache.org/tomcat/

[38] MySQL AB, Database engine download,

http://dev.mysql.com/downloads/mysql/3.23.html

[39] MySQL AB, Driver download, http://dev.mysql.com/downloads/connector/j/3.0.html

[40] Now Wireless Limited, http://www.nowsms.com/downloads/smsmmsgateway.htm

[41] The Apache Software Foundation, http://ws.apache.org/axis

[42] Erik Hatcher and Steve Loughran, Java Development with Ant, August 2002, Chapter 15

– Working with Web Services

[43] Pankaj Kumar, J2EE Security for Servlets, EJBs and Web Services, Chapter 11 – Web

Service Security

[44] SSL Configuration HOW-TO, http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-

howto.html

[45] Ceki Gülcü, Short introduction to log4j, March 2002,

http://logging.apache.org/log4j/docs/manual.html

[46] JNDI Datasource HOW-TO, http://jakarta.apache.org/tomcat/tomcat-4.1-doc/jndi-

datasource-examples-howto.html

[47] Bruce W. Perry, Java Servlet & JSP Cookbook, O’Reilly, January 2004

[48] Brett McLaughlin, Java and XML, O’Reilly, 2000.

http://www.fastsms.co.uk/reverse-billing
http://www.mobipay.com/en/home.htm
http://www.dofactory.com/Patterns/PatternAbstract.aspx
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://www.dofactory.com/Patterns/PatternFacade.aspx
http://jakarta.apache.org/tomcat/
http://dev.mysql.com/downloads/mysql/3.23.html
http://dev.mysql.com/downloads/connector/j/3.0.html
http://www.nowsms.com/downloads/smsmmsgateway.htm
http://ws.apache.org/axis
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html
http://logging.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/jndi-datasource-examples-howto.html
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/jndi-datasource-examples-howto.html

APPENDIX

78

Appendix

A. Entity Relationship Diagram of the Database

paymenttypes

PK paymentTypeId

 paymentTypeName

services

PK,FK1 serviceId

 serviceURI

sessions

PK sessionId

FK2,I2 clientId

FK3,I3 serviceId

 time

 date

 noOfUnits

 unitValue

 totalValue

 isSettled

 isAuthorized

FK1,I1 paymentType

accounting

PK id

FK2,I2 clientId

 totalAmount

FK1,I1 paymentType

users

PK,FK2 userId

 userPhoneNumber

 userMobileOperatorName

 userPIN

 userCreditCardNumber

FK1,I1 userCreditCardTypeId

 userCreditCardExpMonth

 userCreditCardExpYear

 userHasSubscription

cardtypes

PK cardTypeId

 cardTypeName

clients

PK clientId

 clientName

FK1,I1 clientType

FK2,I2 clientPaymentType

I3 clientUniqueId

clienttypes

PK clientTypeId

 clientTypeName

APPENDIX

79

B. Charging Sequence Diagrams

Mobile User ContentProvider ChargingWebService

click on "request content"

ask for user's phone number, pin and desired payment type

users enters phone number, pin and choses payment type

getUserId(phone, pin, paymentType)

return userId

forward to restricted area; sessionId is sent as a hidden parameter

startChargingSession(userId, serviceId, noOfUnits, unitValue)

return sessionId

donwload content

isSessionAuthorized(sessionId)

return sessionAuthorizationStatus

{if session is authorized}

allow download

chargeAndRelease(sessionId, noOfUnits)

SMS message containing the payment receipt

SMS message containing the contract and requesting authorizationa and authentication

{if userId != null}

APPENDIX

80

Mobile User ContentProvider ChargingWebService

request content

getUserId(phone, pin, paymentType)

ChargingManager UserManager ServiceManager

createUserManager()

new()

getUserId(phone, pin)

return userId

return userId

startChargingSession(userId, serviceId, noOfUnits, unitValue)

getNewSessionId(userId, serviceId, noOfUnits, unitValue)

new()

requestUserAuthorization(session)

new()

createContract(session)

return contract

UserAuthorization

new()

sendContract(userId, contract)

return sessionId

return sessionId

SMS message containing contract and requesting authorization and authentication

APPENDIX

81

Mobile User ContentProvider ChargingWebService ChargingManager

forward to restricted area

download content

isSessionAuthorized(sessionId)

getSessionAuthorizationStatus(sessionId)

return sessionAuthorizationStatus

return sessionAuthorizationStatus

SMSReceiver

SMS return message containing user's PIN

{if sessionAuthorizationStatus = true}

charge(sessionId, noOfUnits)

charge(session, noOfUnits)

content finished

chargeAndRelease(sessionId, noOfUnits)

chargeAndRelease(session, noOfUnits)

charge(session, noOfUnits)

UserManager PaymentManager

new()

sendPaymentReceipt(session)

SMS message containing the payment receipt

settleTransaction(session)

