

FACULTATEA DE AUTOMATICĂ ŞI CALCULATOARE

DEPARTAMENTUL CALCULATOARE

CLOUD BASED CROSS PLATFORM MOBILE
APPLICATION FOR ORDERING TAXI

LICENSE THESIS

 Graduate: Razvan POPA

 Supervisor: S. L. Ing. Cosmina IVAN

2012

FACULTATEA DE AUTOMATICĂ ŞI CALCULATOARE

DEPARTAMENTUL CALCULATOARE

 VIZAT,

DEAN, DEPARTMENT HEAD,
Prof. dr. ing. Liviu MICLEA Prof. dr. ing. Rodica POTOLEA

Graduate: Razvan POPA

CLOUD BASED CROSS PLATFORM MOBILE APPLICATION FOR
ORDERING TAXI

1. Project proposal: The application allows ordering a taxi direcly from a mobile
phone and provides an operator the ability to respond to orders through a secure
web interface all supported by a Cloud infrastructure.

2. Project contents: Presentation page, advisor's evaluation, introduction, project
objectives and specification, bibliographic research, analysis and theoretical
foundation, detailed design and implementation, testing and validation, user
manual, conclusions, further development and appendices.

3. Place of documentation: Technical University of Cluj Napoca

4. Consultants:

5. Date of issue of the proposal: November 1, 2011

6. Date of delivery: June 28, 2012

Graduate: _____________________________

Supervisor: _____________________________

1 Table of Contents

1	
 INTRODUCTION	
 ..	
 1	

1.1	
 PROJECT	
 CONTEXT	
 ..	
 1	

1.2	
 TAXI	
 ORDERING	
 APPS	
 FOR	
 MOBILE	
 ..	
 2	

1.3	
 PROJECT	
 CONTENT	
 AND	
 ORGANIZATION	
 ..	
 3	

2	
 PROJECT	
 OBJECTIVES	
 AND	
 SPECIFICATIONS	
 ..	
 4	

2.1	
 PROJECT	
 OBJECTIVES	
 SPECIFICATION	
 ..	
 4	

2.2	
 NON	
 FUNCTIONAL	
 SYSTEM	
 REQUIREMENTS	
 ...	
 5	

2.2.1	
 System-­‐related	
 NFRs	
 ...	
 6	

2.2.2	
 Process	
 and	
 Project-­‐related	
 NFRs	
 ...	
 6	

2.2.3	
 Human-­‐related	
 NFRs	
 ...	
 7	

2.2.4	
 Device-­‐related	
 NFRs	
 ..	
 7	

2.3	
 FUNCTIONAL	
 REQUIREMENTS	
 ..	
 8	

3	
 BIBLIOGRAPHIC	
 RESEARCH	
 ..	
 9	

3.1	
 BIBLIOGRAPHIC	
 RESEARCH	
 FOR	
 TAXI	
 ORDERING	
 APPLICATIONS	
 ..	
 9	

3.2	
 SIMILAR	
 APPLICATIONS	
 ...	
 10	

3.3	
 MOBILE	
 DEVELOPMENT	
 ...	
 13	

3.4	
 SERVICE	
 DEVELOPMENT	
 ..	
 13	

4	
 ANALYSIS	
 AND	
 THEORETICAL	
 FOUNDATION	
 ...	
 15	

4.1	
 THEORETICAL	
 OVERVIEW	
 ..	
 15	

4.1.1	
 Titanium	
 cross	
 platform	
 mobile	
 application	
 development	
 	
 15	

4.1.2	
 WCF	
 ...	
 16	

4.1.3	
 REST	
 ...	
 16	

4.1.4	
 Entity	
 framework	
 ..	
 17	

4.1.5	
 SignalR	
 ..	
 18	

4.1.6	
 Push	
 Notifications	
 ..	
 19	

4.1.7	
 MVC	
 ...	
 21	

4.2	
 USE	
 CASE	
 SPECIFICATION	
 ..	
 22	

4.2.1	
 User	
 actor	
 ...	
 22	

4.2.2	
 Driver	
 actor	
 ...	
 24	

4.2.3	
 Operator	
 actor	
 ...	
 25	

4.2.4	
 Manager	
 actor	
 ...	
 26	

4.2.5	
 Order	
 Taxi	
 use	
 case	
 detailed	
 ..	
 26	

4.3	
 CONCEPTUAL	
 DESIGN	
 ...	
 29	

5	
 DETAILED	
 DESIGN	
 	
 AND	
 IMPLEMENTATION	
 ...	
 33	

5.1	
 SPECIFIC	
 IMPLEMENTATION	
 ...	
 33	

5.1.1	
 General	
 Implementation	
 Architecture	
 ..	
 33	

5.1.2	
 Cross	
 platform	
 mobile	
 application	
 design	
 ...	
 36	

5.1.3	
 GPS	
 component	
 ..	
 37	

5.1.4	
 Server	
 model	
 implementation	
 ...	
 37	

5.1.5	
 Service	
 database	
 ...	
 41	

5.1.6	
 Service	
 REST	
 API	
 ...	
 43	

5.1.7	
 Security	
 ...	
 45	

5.1.8	
 SignalR	
 ..	
 47	

5.1.9	
 Push	
 Notifications	
 ..	
 48	

5.1.10	
 Operator	
 panel	
 ..	
 51	

5.1.11	
 Analytics	
 ...	
 51	

5.1.12	
 Social	
 media	
 integration	
 ...	
 52	

5.1.13	
 Management	
 and	
 configuration	
 ..	
 53	

5.2	
 CONCLUSIONS	
 ..	
 54	

6	
 TESTING	
 AND	
 VALIDATION	
 ..	
 55	

6.1	
 WCF	
 REST	
 SERVICE	
 VALIDATION	
 ...	
 55	

6.2	
 VALIDATION	
 OF	
 THIRD	
 PARTY	
 SERVICES	
 ..	
 56	

6.3	
 MOBILE	
 APPLICATION	
 TESTING	
 ..	
 56	

7	
 USER’S	
 MANUAL	
 ..	
 58	

7.1	
 MOBILE	
 CLIENT	
 APPLICATION	
 ..	
 58	

7.2	
 THE	
 OPERATOR	
 ...	
 61	

8	
 CONCLUSIONS	
 AND	
 FURTHER	
 DEVELOPMENTS	
 ..	
 63	

REFFERENCES	
 ...	
 64	

APPENDIX	
 1	
 LIST	
 OF	
 TABLES	
 AND	
 FIGURES	
 ...	
 66	

APPENDIX	
 2	
 GLOSSARY	
 ...	
 67	

APPENDIX	
 3	
 SENDREQUEST	
 METHOD	
 ..	
 68	

1

1 Introduction

1.1 Project context

 The era of mobile devices is outpacing both the PC revolution of the 1980s and

the Internet Boom of the 1990s in terms of customer adoption. By the end of 2012 it is
estimated that the cumulative number of iOS and Android devices activated will surge
past 1 billion. To put it into perspective over 800 million PCs were sold between 1981
and 2000, making the rate of iOS and Android smart device adoption more than four
times faster than that of personal computers.

The Internet grew to 495 million users by the end of 2001 while beginning its
commercial ramp in 1996. Smartphone devices will see double the number of device
activations during its first five years compared to the number of Internet users reached
during its first five years.

On top of this massively growing smartphone installed base, more than 40 billion
applications have already been downloaded for these devices. More than ever,
consumers are splitting their time accessing services on the Internet from PCs versus
doing so on mobile devices from apps.

As there have been many definitions for mobile devices, we explicitly state what
these terms refer to in this thesis. Modern mobile devices are composed of two large
categories: smartphones and tablets.

A smartphone is a mobile phone with more advanced computing ability and
connectivity. A smartphone combines the functions of mobile phones, personal digital
assistant (PDA), portable media players, compact digital cameras, and GPS navigation
units.

A tablet is similar to a smartphone with the difference that tablets usually do not
have a phone-calling ability. They offer a larger display and are designed for content
consumption such as watching videos, reading newspapers or Internet navigation.

The line of demarcation between modern mobile devices and older devices having
advanced capabilities (also called feature phones) is not an exact one. We will consider a
modern mobile device as being composed of three components: hardware, operating
system and a market for applications.

2

Figure 1.1: The components of a modern mobile device

Figure 1.1 represents the main components of a modern mobile device. The

combination of these three components together with the associated service dedicated to
mobile devices is referred to as the mobile ecosystem. Further we will refer to
smartphones and tablets as mobile devices, unless specifically mentioning that we mean
the largest category including all mobile devices that offer connectivity such as regular
phones or also referred to as feature phones.

1.2 Taxi ordering apps for mobile
With the rising adoption of smartphones by the consumer base, a large variety of

applications meant at simplifying users daily life and enhancing productivity are
appearing. Taxi ordering applications have first become popular in western countries, as
this region offered a higher income level that determined a larger smartphone penetration.

Taxi ordering applications have become popular for two major reasons. The first
is a more mobile-centric usage pattern, where users relate to apps for fulfilling different
needs that they have. In this respect, a taxi ordering application for mobile phones is
perceived as a modern and more interesting way of ordering a taxi.

The second reason has to do with the advantages that this method has over
traditional taxi dispatching systems, such as being able to see the taxi approaching on a
map, being able to rate a taxi and the most important being spurring customer retention.
The taxi business tends to be a medium to lower class fidelity service, where users mostly
consider the closest taxi as opposed to quality, which is regarded as being at a relatively
consistent level among taxi drivers and there is no way for the client to determine the
quality when ordering. The taxi ordering application allows for a more engaged user base
and offers fidelity rewards that are used to enhance the customer retention level. In a
business world which is shifting from a consumer-centric marketing to a human-centric
model, this apps allows taxi businesses to better interact with their clients in a more direct
and responsible manner.

Also this distributed system helps taxi drivers, which can receive orders directly
from their clients and are able to benefit from offering superior services as they can get
higher ratings.

Hardware	
 Operating	
 system	
 Third	
 party	

applications	

3

1.3 Project content and organization

This project is organized according to the following structure:

Chapter 1 contains general information regarding mobile devices and explains
why we developed a mobile taxi ordering application

Chapter 2 details the requirements of the system and the objectives of this
project.

Chapter 3 describes the research we conducted in order to specify the system
requirements, the previous work we are basing our project on and also a
comparison with similar services

Chapter 4 describes the patterns and architecture decisions we have taken and
explains why we have chosen to implement them.

Chapter 5 contains the implementation details for Order Taxi application. We
detail the implementation of the cross platform mobile application, the integration
between the client mobile application and the Cloud services through a REST API
developed using WCF, the integration with external services and also the
frameworks used for signaling and push notifications. It also details the Operator
panel that is used to respond to orders and explains the user interface.

Chapter 6 contains the testing and evaluation of the system, we exemplified how
the system was tested and what results we obtained

Chapter 7 presents the installation manual for the system

Chapter 8 is a short summary of the project and lists future developments

4

2 Project Objectives and Specifications

2.1 Project objectives specification
As mobile devices penetration rate rises quickly having an App that caters for

each user particular need has become the norm.
The specific App that we are developing allows clients (users) to order taxis

directly from their mobile device without having to call trough an operator. Having an
app for this need opens the doors for a wide verity of marketing strategies such as
offering promotions, coupons, paying by credit card, offering taxi subscriptions. This
allows users to have an alternative to the old method of ordering a taxi by calling, based
on the powerful trend of mobile engagement.

The problem of Ordering a taxi by calling is frustrating, uncool, few

options for marketing campaigns, very low business-
customer relationship

affects Users fidelity level with a company, client and taxi
driver see their ride as a one time event, no customer
relationship management available

the impact of which is Taxi companies do not engage with their customers
to retain them, Users find it frustrating to order a taxi

a successful solution would be A taxi ordering application for mobile devices.
Table 2.1 Taxi Ordering application

In order to better understand the taxi ordering application we are developing, we

have created the following product statement which offers a summer but descriptive
image of the system.

For Smartphone users
Who interested in ordering a taxi
The Taxi ordering Application intends to create a customer-company lasting

relationship and a new and cool way of ordering a
taxi

That Opens the doors to marketing practices unavailable in
the current business model

Unlike Calling a taxi operator for ordering a taxi
Our product Is a modern approach that offers value added

capabilities that offers new business practices to the
industry

Table 2.2 Product statement for Taxi Ordering application

5

We have identified the following stakeholders for the Order Taxi applications,
which we present in Table 2.3 together with their respective responsibilities. These
stakeholders will be represented as actors in Chapter 4, where use cases for each of them
will be detailed.

Name Description Responsibilities

Taxi Company Company operating a fleet
of taxis, interested in
obtaining a higher user
fidelity and increase market
share

Accept the implementation of the
system inside the company

Taxi ordering clients Is interested in having an
easy to use product that he
can use to order taxi in a
more engaging and modern
way

Is responsible for inputting orders and
viewing the order status.

Taxi drivers The person who will be
driving the taxi ordered by
the customer.

is responsible with confirming the
order and providing the service

Operator The person managing
clients orders which do not
go directly to the driver

Monitors incoming orders and
responds to orders in a timely manner
by assigning a response containing a
taxi id to each order

Manager The person managing taxi
operators and drivers

Is concerned with updating the
operational area of the company and
creating accounts for drivers and
operators.

Table 2.3 Stakeholders of the project

2.2 Non Functional System requirements
Software is becoming critical in driving the information-based economy. Time-to-

market, robustness, and quality are important factors for measuring the success of
systems in competitive economies and environments. There is also a need to evolve and
adapt rapidly and smoothly in an environment of continuous changes of business
requirements. Therefore, there are stronger needs for standards and formalizations of the
processes by which we specify and capture these requirements. Requirements capture is
one of the initial phases to undertake in the system development process.

Non-functional requirements are properties and qualities the software system must

possess while providing its intended functional requirements or services. These types of
requirements have to be considered while developing the functional counterparts. They

6

greatly affect the design and implementation choices a developer may make. They also
affect the acceptability of the developed software by its intended users.

In the following, we briefly describe the three categories of non-functional
requirements that may be imposed on a software system.

2.2.1 System-related NFRs
These types of requirements impose some criteria related to the internal qualities

of the system under development and the hardware/software context in which this system
will operate.

Operational requirements: The Taxi Ordering Application will be running on
iOS and Android phones, and will be using Cloud services for data synchronization and
storage.

Performance requirements: For our system these requirements are considering
the response time of data synchronization. As the response time to an order is dependent
of the other user inserting the response manually (the operator or the driver being a
human not a system that can respond automatically). Data synchronization must be
assured to take place bellow 2 seconds.

Maintainability requirements: The system must be designed in such a way that
it allows a modifiable, component based system that allows future modifications and
functionality extensions without breaking the present working version. This requirement
is especially valid for our mobile application, as different mobile application versions
installed on smartphone must communicate effectively with the Cloud-based API. In
order to achieve maintainability we relied on API versioning for this specific
requirement.

Portability requirements: The system must work on a variety of mobile OS, of
which iOS and Android are mandatory. A cross platform solution must be implemented
to allow maximum code reuse with little adaptation.

Security requirements: The application must use the .NET security framework
for assuring authentication and authorization security constraints, and must also allow for
SSL communication.

2.2.2 Process and Project-related NFRs

These types of NFRs impose criteria to be followed while developing the project.

Conformance to standards requirements: The standard developing pattern for

Titanium applications is MVC, which should be followed in order to assure maximum
code reusability and maintainability.

Development time and cost requirements: The project needs to be completed

and fully functional by 25 June 2012.

7

Development process requirements: The project needs to be developed in an
iterative method, allowing for partial system components development and testing.

Testing requirements: The API for the Cloud infrastructure needs to be tested

using a unit testing approach, while the mobile taxi application need to be tested using
use-case testing.

Installation and deployment requirements: The mobile applications need to be
deployed to the AppStore and GooglePlay accordingly.

2.2.3 Human-related NFRs

These types of requirements deal with constraints related to the stakeholders and

the social and societal context in which the system is deployed.
Usability requirements: The application needs to be easy to understand and use

by new users. It must also feature a demo the first time the application is launched.
Look and Feel requirements: The mobile application needs to adhere to the

usual UI components and not define custom components that might reduce the
learnability of the system.

Legal requirements: The application should not allow for malicious uses of
personal data required by the application such as mobile phone numbers. This data must
be stored on the Cloud and should be accessible only for specific users, if needed.

2.2.4 Device-related NFRs
GPS: The device must feature GPS capable services for approximate user

position identification.
Internet: The device must allow for Internet connection for sending order,

receiving responses and for the overall interconnection with the Cloud services.
Operating system: The device must work with any iOS or Android version.
Screen resolution: The application must work properly on any screen resolution.

The application must be compatible with both the Retina display and the lower resolution
display screens.

8

2.3 Functional Requirements
The functional requirements have been decomposed into low-level functional

specifications that are depicted in Table. This specifications have been assigned priorities
which are consistent with the iterative approach of development that we are following,
according to the Non functional requirements presented previously.
FR1 Ordering of taxi High
FR1.1 Ordering based on GPS location High
FR1.2 Add precise location High
FR1.3 Remember used locations for suggestions High
FR1.4 Display map with user location High
FR1.5 Allow dragging the position marker on the map Medium
FR1.6 Get GPS location based on wireless High
FR1.7 Handle cases when GPS location cannot be obtained by allowing

only exact address input
High

FR2 Dispatching of taxi High
FR2.1 View active orders High
FR2.2 Respond to active order High
FR2.2.1 Respond with car id and time until it arrives High
FR2.2.2 Mark initial car position on a map Medium
FR2.3 Blink and sound alert on new order High
FR2.4 Call phone for order not processed within 1 minute Low
FR3 Order confirmation High
FR3.1 Display taxi id and time until it arrives High
FR3.2 Allow order canceling High
FR3.3 Allow taxi check-in Medium
FR3.4 Allow push notification if app is closed High
FR4 Authentication High
FR4.1 Allow Facebook authentication High
FR4.2 Allow authentication with username, password and phone

number
High

FR4.3 Verify phone number Low
FR5 App promotion trough social networks High
FR5.1 Allow Facebook sharing of app use High
FR5.2 Allow sharing of taxi check in Low
FR5.3 Prompt for app review after 1 successful ride High
FR6 Feedback High
FR6.1 Allow feedback from button in tab bar High
FR6.2 Allow taxi check-out Low
FR7 User post-ride functionalities High
FR7.1 Allow distance displayed on check out Low
FR7.2 Prompt user for driver rating on check out Low

Table 2.4 Functional Requirements

9

3 Bibliographic research

3.1 Bibliographic research for Taxi ordering applications

Having a device that has permanent Internet access and can be carried around

easily by the population opens the doors to new approaches of solving frustrating
problems. Taxi ordering has been perceived as a frustrating activity especially in big
cities, and at pick hours.

According to [9] ordering a taxi using a smartphone is a better alternative for
major cities such as San Francisco. And even though Taxi applications on the App Store
are a dime a dozen, but for the most part they’re just glorified phone directories that don’t
really make it any easier to call a taxi. These services just displayed a list of phone
numbers from different taxi companies.

One of the first services that offered the ability to order a taxi without calling was
TaxiMagic using which ordering a taxi is fairly simple: after launching Taxi Magic, your
iPhone will use GPS or triangulation to determine your general location, and will present
a list of nearby cab services (some listings are only phone numbers, while others fully
support Taxi Magic’s ordering system). After choosing a supported cab company, the
application will ask for your exact street address and will then take you to a status screen
that will alert you once your ride is dispatched (wait times can vary depending on the
time of day and location). The status screen also allows you to view how far away the cab
is and the driver’s name.

While TaxiMagic operates by simply displacing the telephone as the ordering
channel with an order sent from the smartphone, other services have appeared which
work differently. According to [16] services such as Uber or GetTaxi operate by having
both a driver app and a client app. When the client orders a taxi, the order is submitted to
the closest driver, instead of going through an operator. By having a mobile app, the
driver can be tracked by the client so the client can see when his taxi arrives.

After analyzing the currently available systems and the functionalities they offer,
we started analyzing the infrastructure that should back our system. According to [1] we
needed a Cloud-based service to offer the infrastructure for data synchronization between
the apps and the operator panel. We also learned the best practices of developing mobile
applications by migrating data and processing power inside the Cloud.

Using [18] we have identified the non-functional system requirements which we
have listed in the previous chapter. This requirements serve as the base for the system
architecture we have chosen which we are detailing in Chapter 4.

After learning how we can develop the aspects of a theoretical integration
between the service and the Cloud and the benefits of this approach, we analyzed the
means of implementing web services for fulfilling this goal. Using [4] we developed the
API for our service which would be consumed inside the mobile application. We decided
on using REST web services after reading [14], where it argues that by being lighter,
REST services are preferred when working with mobile applications.

We needed the application to be available on as many mobile phone operating
systems as possible, so we continued by analyzing cross platform mobile development

10

solutions. After reading [3] and comparing Titanium development with other
development frameworks we decided on using this platform because it offered a series of
advantages such as compiling natively and being able to be extended in order to support
more advanced functionality available only for iOS or Android.

One important requirement was that the cross platform development supports

GPS. Using [3] we learned how to implement GPS into our application and how to
determine GPS coordinates with various precisions. Using [17] we learned that we can
still determine the approximate user position when GPS is not available, such as when the
user is located inside a building, which is a very common use case for our system. The
way to identify the position of the user in such condition is by GPS triangulation. Even
without a GPS receiver, the cell phone can provide information about your location. A
computer can determine the location based on measurements of your signal, such as:color

• Its angle of approach to the cell towers
• How long it takes the signal to travel to multiple towers
• The strength of your signal when it reaches the towers

Since obstacles like trees and buildings can affect how long it takes the signal to
travel to a tower, this method is often less accurate than a GPS measurement.

3.2 Similar applications

Other similar services in terms of functionality are already available on the
market. We present here the most important services by functionality and then in Table
3.1 using a comparison matrix. We have inspired form these systems in determining the
specifications of the system we are building.

C
al

l a
 T

ax
i

 G
oo

 T
ax

i

G
o

Ta
xi

H
ai

lo

Ta
xi

 M
ag

ic

U
be

r

C
ab

ify

m
yT

ax
i

M
Y

SY
ST

EM

iOS available
Android available

Get position
using GPS

Show client
position on map

Exact client
location input

Free to use

11

Order without
calling

Show nearby
taxis

Order submitted
directly to taxi
driver

Order submitted
to dispatcher

taxi live GPS
tracking

arrival time
estimation

Taxi rating
SMS alerts
Pay inside
application

Table 3.1 Similar services comparison matrix by functionality

Call a Taxi app shows the nearby taxis and then allows clients to call the closest

taxi company. Is just like a phone directory of taxi companies for each city that uses your
location to show a list of the companies that are present in that area.

Goo Taxi is a Spanish company, product based on idea that the dispatcher

implemented a fleet tracking solution that might allow live tracking of the taxi as it
arrives. Also offers an interesting SMS alert when the taxi arrives.

GetTaxi is set to disrupt public transportation in Europe. It’s already live in UK,

Russia and Israel and rolling out in France, Spain and New York City. Allows paying in
app. Driver has 5 seconds to respond to request or it will go through a dispatcher. It
provides a very clean looking interface from which we have inspired in developing our
Taxi ordering system.

Hailo is an app exclusively for London licensed taxi drivers, but they extended the
functionality to taxi drivers from more cities including Dublin and New York. They have
both a driver and a client app similar to how our system is designed, as can be seen in
table 3.1.

12

Taxi Magic – Using Taxi Magic the booking goes trough dispatcher. Allows

booking from multiple companies by selecting the desired one. Figure 3.1 presents the
application Taxi Magic together with its most important functionalities.

Figure 3.1 Taxi Magic - from left to right: order taxi, choose a taxi, pay using credit card

Uber - Luxury transportation in sleek black car, is based on the business model of

offering private drivers as taxi. It is available in largest US cities and Paris. The app
offers functionalities of ordering a taxi by getting the users GPS positions, it allows
tracking the driver as he approaches and when the ride is over it allows for payment using
credit card. In Figure 3.2 we presented a set of functionalities offered by the Uber system.
In the left is shown the ordering View, displaying the nearby taxis, in the middle is
displayed the tracking system and in right the in app payment functionality.

Figure 3.2 Uber – from left to right: Order a taxi, track the taxi, pay inside app

13

myTaxi is developed by Inteligent Apps, a German company. The software was

launched in Hamburg in late March 2010. So far, about 5000 taxi drivers are already
using myTaxi in Germany and Vienna. They generated over 350.000 downloads for their
app the last time this figure was checked.

As we presented in Table 1, out system is a close competitor in terms of

functionalities with myTaxi, but it offers more advanced functionality by also allowing
responding to orders by an operator, similar to Taxi Magic.

In the following section we are analyzing the previous work in terms of the two
major components of our system: the client mobile application and the service.

3.3 Mobile development
As taxi ordering applications should be available on as many mobile platforms as

possible, we tried to identify a cross platform solution. Analyzing the other services that
are already available on the market lead us to considering Titanium as the cross platform
application development platform.

We observed that some of the existing services are not using a cross platform
approach and have relied on developing a separate application for each mobile OS. Uber
is an example of application that has been designed for different mobile OS, as by the
time the application was developed no mature cross platform approach was available.

HTML5 is regarded as being the future of Internet and also most of the apps,
which are now built natively, are expected to be available as HTML5. However HTML5
specifications, which are developed by World Wide Web Consortium, are not available
yet and the release target for specifications has been delayed until 2014. While there are
already a number of apps available which work based on a subset of HTML5
specifications, the majority of top apps are still native, especially those which require a
high integration with the platform. PhoneGap is a cross platform framework that rivals
Titanium but operates differently. While the result of building an app with PhoneGap is a
native app, this app is basically a wrapper around an HTML5 page, which exposes a
JavaScript interface for interacting with specific device features such as camera. We
recommended using Titanium as a cross platform solution based on the large number of
apps that have been built on the platform (over 40000), the native capabilities which go
deeper than PhoneGap as it doesn’t rely on a WebView and also the possibility to target
both native mobile and HTML5 releases.

We have decided on using Titanium as it offered true native cross platform
development as opposed to hybrid development as in the case of PhoneGap. The decision
was also based on the success stories featured for the Titanium framework.

3.4 Service development
InfoWorld [2] has designated NodeJS as being the Technology of the year 2012.

NodeJS is a software system designed for writing WebServers. The main difference
Node.js brings is that it is event based and not thread-based. NodeJS has been especially
credited for allowing easy communication between the client browser and the server.

14

Socket.IO is a client side JavaScript library that talks to Node.js. Nowjs is a library that
lets you call the client from the server. All these and SignalR are similar and related, but
different perspectives on the same concepts. SignalR is a complete client and server-side
solution with JS (JavaScript) on client and ASP.NET on the back end to create these kinds
of applications. SignalR brings the possibility on developing using C# on the server,
which we considered to be a benefit at the present time as the .NET framework is more
mature in terms of development environment, productivity, security and libraries. NodeJS
has the advantage of flattening the development stack as it uses JavaScript on the server
side, and thus it is possible to develop a full Mobile Cloud Computing system using only
JavaScript.

We have decided on using SignalR as we were able to integrate it with the .NET
which is a more mature framework for implementing the server component.

15

4 Analysis and theoretical foundation

4.1 Theoretical overview

4.1.1 Titanium cross platform mobile application development
In Q1 of 2012, Android had 50.6% market share, while iOS had 23.8% of new

sales. This means that their combined market share is approximately ¾ of all new
smartphone sales.

But even if the two players dominate the market, developing for these two
frameworks is time consuming as very little work can be reused, the programming
language and development environment for Android and iOS being very different. Also if
another OS must be targeted in the future, this would require rewriting the application.

In order to increase productivity a cross platform approach can be used. There is
currently a wide range of cross platform solutions available including Appcelerator
Titanium, RhoMobile and PhoneGap. Appcelerator Titanium is an open source project
and has integrated most common functionalities of iOS and Android. Developing with
Titanium compared to other Cross Platform solutions is that it allows for native
development. For example when using PhoneGap you are actually developing a web app
that run in a WebView UI component and has access to active services provided by the
platform. When using Titanium you are programming in JavaScript and the framework
translates the code into native Java or Objectual-C.

Titanium currently supports two operating systems: Android and iOS. It also
plans on fully supporting BlackBerry, which is currently in Beta. One disadvantage is the
lack of support for Windows Phone at the moment, if this OS needs to be targeted.

The development environment for Titanium is using its own IDE based on
Eclipse, Titanium Studio), and it uses the JavaScript development language. Titanium can
also be extended using module in order to offer complete native functionality, which is
not supported by the Titanium platform.

Using JavaScript as a development language offers the benefit of low entry level
compared to Objectual-C or Java. One difference when developing with JavaScript is
that it requires understanding code organization when tackling large projects in the
context of a language that was previously used for writing small code blocks in browsers.
The recommended way of development in Titanium is using a MVC pattern. Also
applying OOP best practices as encapsulation is the recommended approach (weather
JavaScript is or isn’t object oriented is highly debated).

Leveraging the MVC pattern will help produce cleaner code and promote
reusability. Applying the MVC pattern within Titanium is relatively easy.

16

4.1.2 WCF
Windows Communication Foundation (WCF) is a framework for building service-

oriented applications. Using WCF, applications can send data [13] as asynchronous
messages from one service endpoint to another. An endpoint can be a client of a service
that requests data from a service endpoint. The messages can be as simple as a single
character or word sent as XML, or as complex as a stream of binary data.

In WCF all the communication details are handled by channel, it is a stack of
channel components that all messages pass through during runtime processing. When are
calling WCF service through a proxy class on the client side, it will send message
(request soap message mainly includes some parameter values of method) and first the
message will go through protocol Channels which mainly supports for security,
transactions and reliable messaging, and second the message will go through encoder
which convert messages into an array of bytes for transport, finally, the encoder message
will go through the bottom transport channel which are responsible for transporting raw
message bytes, WCF provides a number of transport protocols, including HTTP, TCP,
MSMQ, peer-to-peer, and named pipes.

While creating such applications was possible prior to the existence of WCF,
WCF makes the development of endpoints easier than ever. In summary, WCF is
designed to offer a manageable approach to creating Web services and Web service
clients.

4.1.3 REST
REST is a term coined by Roy Fielding in his Ph.D. dissertation [1] to describe an

architecture style of networked systems. REST is an acronym standing for
Representational State Transfer.

The Web is comprised of resources. A resource is any item of interest. For
example, the Boeing Aircraft Corp may define a 747 resource. Clients may access that
resource with this URL: http://www.boeing.com/aircraft/747 A representation of the
resource is returned (e.g., Boeing747.html). The representation places the client
application in a state. The result of the client traversing a hyperlink in Boeing747.html is
another resource is accessed. The new representation places the client application into yet
another state. Thus, the client application changes (transfers) state with each resource
representation resulting a Representational State Transfer.

Roy Fielding's explanation [15] of the meaning of Representational State Transfer
is "Representational State Transfer is intended to evoke an image of how a well-designed
Web application behaves: a network of web pages (a virtual state-machine), where the
user progresses through an application by selecting links (state transitions), resulting in
the next page (representing the next state of the application) being transferred to the user
and rendered for their use."

The motivation for REST was to capture the characteristics of the Web which
made the Web successful [5]. Subsequently these characteristics are being used to guide
the evolution of the Web. REST is not a standard. There is no W3C REST specification.
REST is just an architectural style. We can't bottle up that style. We can only understand

17

it, and design your Web services in that style. (Analogous to the client-server
architectural style. There is no client-server standard.)

While REST is not a standard, it does use standards:
• HTTP
• URL
• XML/HTML/GIF/JPEG/etc (Resource Representations)

text/xml, text/html, image/gif, image/jpeg, etc (MIME Types)

The Web is a REST system. Many of those Web services that we have been using

these many years - book-ordering services, search services, online dictionary services -
are REST-based Web services. REST is concerned with the "big picture" of the Web. It
does not deal with implementation details (e.g., using Java servlets or WCF to implement
a Web service).

4.1.4 Entity framework
The Microsoft ADO.NET Entity Framework is an Object/Relational Mapping

(ORM) framework that enables developers to work with relational data as domain-
specific objects, eliminating the need for most of the data access plumbing code that
developers usually need to write. Using the Entity Framework, developers issue queries
using LINQ, then retrieve and manipulate data as strongly typed objects. The Entity
Framework’s ORM implementation provides services like change tracking, identity
resolution, lazy loading, and query translation so that developers can focus on their
application-specific business logic rather than the data access fundamentals

Using the Entity Framework [13] to write data-oriented applications provides the
following benefits:

• Reduced development time: the framework provides the core data access
capabilities so developers can concentrate on application logic.

• Developers can work in terms of a more application-centric object model,
including types with inheritance, complex members, and relationships. In
.NET Framework 4, the Entity Framework also supports Persistence
Ignorance through Plain Old CLR Objects (POCO) entities.

• Applications are freed from hard-coded dependencies on a particular data
engine or storage schema by supporting a conceptual model that is
independent of the physical/storage model.

• Mappings between the object model and the storage-specific schema can
change without changing the application code.

• Language-Integrated Query support (called LINQ to Entities) provides
IntelliSense and compile-time syntax validation for writing queries against
a conceptual model.

18

4.1.5 SignalR
While sending data is fairly easy, listening for incoming information requires new

approaches given that users might be charged additionally by the carrier and to avoid
increased battery drainage.

Traditionally web applications used a polling technique for getting updates. For
example a stock ticker knows that there are updates every 10 seconds, so it makes sense
to implement a timer that gets the updates every 10 seconds from the server.

For the Order Taxi application this is not feasible as the polling interval is
unknown. For example the driver could wait for hours without receiving an order, so he
would poll thousands of times to receive one favorable result. Also the polling interval
would have to be below 2 seconds (to offer a response time as low as possible), which
would mean a high demand on the server and low scalability.

SiganlR is an Asynchronous library for .NET to help build real-time, multi-user
interactive applications and is based on long polling techniques. Long polling is a
variation of the traditional polling technique and allows emulation of an information push
from a server to a client. With long polling, the client requests information from the
server in a similar way to a normal poll. However, if the server does not have any
information available for the client, instead of sending an empty response, the server
holds the request and waits for some information to be available. Figure 4.1 illustrates
this functionality by comparing time based polling and long pooling. Once the
information becomes available (or after a suitable timeout), a complete response is sent to
the client. The client will immediately re-request information from the server, so that the
server will always have an available waiting request that it can use to deliver data in
response to an event.

Long polling is itself not a push code, but can be used under circumstances where

a real push is not possible. Using long polling in the client mobile application gets
notified to update it’s data, and thus to synchronize with the server, exactly as the new
data is available. Using a long polling approach there is a very low demand on the server
which translates into a high scalability, as new users and drivers are added to the
distributed taxi ordering system.

In the .NET framework SignalR represents an implementation of long polling.

However SignalR does not rely only on the long polling technique. SignalR has a concept
of transports, each transport decides how data is sent/recieved and how it connects and
disconnects.

Transports build into SignalR are: WebSockets, Server Sent Events, Forever

Frame, Long polling. SignalR tries to choose the "best" connection supported by server
and client (a desired connection can also be specified implicitly). However WebSockets
and Server Sent Events are still not widely supported at present.

19

Figure 4.1: Long Pooling vs. Time-based polling

The implementation of SignalR in Titanium in Order Taxi app is by using a

WebView, which triggers events once they arrive from the server. SignalR requires
jQuery on the client side. On the server side it uses two concepts: Hubs and persistent
connections. Taxi Ordering App uses Hubs. Extending the Hub class does
implementation of a hub on the server. Each method defined inside this class is mapped
to a JavaScript implementation at compile time. The JavaScript document is saved on the
project root folder and the client must reference it. It is possible to have broadcast events,
which alert all the clients or only one in particular. It is also possible to group client and
inform a whole group at a time.

4.1.6 Push Notifications
Mobile apps are allowed to perform only very specific activities in the

background, so battery life is conserved.
But there is required to be a way to alert the user of interesting things that are

happening even if the user is not currently inside the app.

For example, maybe the user received a new tweet or their favorite team won the

game. Since the app isn’t currently running, it cannot check for these events. Mobile OS
have provided a solution to this. Instead of the app continuously checking for events or
doing work in the background, a server-side component for doing this can be written.

When an event of interest occurs, the server-side component can send the app a

push notification, which is intended for signaling the app that there are event pending on
the server. Push Notifications are not intended for transmitting data to the client app, but

20

are used as a signaling mechanism when the app is not running. Push Notifications for
Android are called C2DM (Cloud to device messaging).

Push Notifications makes no guarantee about delivery or the order of messages.

So, for example, while you might use this feature to alert an instant messaging
application that the user has new messages, you probably would not use it to pass the
actual messages.

Figure 4.2 represents how push notifications work. Apps need to register with the

Notification Service that is APNS (Apple Push Notifications Service) for Apple and
C2DN for Android. This assigns a specific id called device token that the app can send to
the server. If the server needs to perform a push notification, it uses this device token to
specify the app it want to send the notification to. Device tokens change so it is advisable
to perform device token updates on the mobile preferably every time the app is opened.
Users can also opt out of push notifications for the app or delete the app. In this scenario,
push notification will not reach the user. The Notification service offers an API that the
server can poll periodically to determine what device tokens are still active. Because
communication between the server and the notification Service is not trivial, 3rd party
services are available such as Urban Airship. Other operating systems also provide push
notification, such as Windows Phone or Blackberry, the mechanism being the same.

Figure 4. 2 Notifications mechanism

21

4.1.7 MVC
The purpose of many computer systems is to retrieve data from a data store and

display it for the user. After the user changes the data, the system stores the updates in the
data store. Because the key flow of information is between the data store and the user
interface, you might be inclined to tie these two pieces together to reduce the amount of
coding and to improve application performance. However, this seemingly natural
approach has some significant problems. One problem is that the user interface tends to
change much more frequently than the data storage system. Another problem with
coupling the data and user interface pieces is that business applications tend to
incorporate business logic that goes far beyond data transmission.

The Model-View-Controller (MVC) pattern separates the modeling of the domain,
the presentation, and the actions based on user input into three separate classes as
presented in Figure 4.3.

Model. The model manages the behavior and data of the application domain,
responds to requests for information about its state (usually from the view), and responds
to instructions to change state (usually from the controller).

View. The view manages the display of information.
Controller. The controller interprets the mouse and keyboard inputs from the

user, informing the model and/or the view to change as appropriate.
Figure 4.3 depicts the structural relationship between the three objects.

Figure 4.3: MVC class structure

Model-View-Controller is a fundamental design pattern for the separation of user

interface logic from business logic. Unfortunately, the popularity of the pattern has
resulted in a number of faulty descriptions. In particular, the term "controller" has been
used to mean different things in different contexts. Fortunately, the advent of Web
applications has helped resolve some of the ambiguity because the separation between the
view and the controller is so apparent.

22

Advantages
• Allows multiple views to be constructed on the same data model. Because the

view is separated from the model and there is no direct dependency from the
model to the view, the user interface can display multiple views of the same data
at the same time. For example, multiple pages in a Web application may use the
same model objects. Another example is a Web application that allows the user to
change the appearance of the pages. These pages display the same data from the
shared model, but show it in a different way.

• Accommodates change. User interface requirements tend to change more rapidly
than business rules. Users may prefer different colors, fonts, screen layouts, and
levels of support for new devices such as cell phones or PDAs. Because the model
does not depend on the views, adding new types of views to the system generally
does not affect the model. As a result, the scope of change is confined to the view.

Disadvantages

• Complexity. The MVC pattern introduces new levels of indirection and therefore
increases the complexity of the solution slightly. It also increases the event-driven
nature of the user-interface code, which can become more difficult to debug.

• Cost of frequent updates. Decoupling the model from the view does not mean that
developers of the model can ignore the nature of the views. For example, if the
model undergoes frequent changes, it could flood the views with update requests.
Some views, such as graphical displays, may take some time to render. As a
result, the view may fall behind update requests. Therefore, it is important to keep
the view in mind when coding the model. For example, the model could batch
multiple updates into a single notification to the view.

4.2 Use case specification

There are four types of actors that the system supports, each having specific
capabilities. We will analyze each actor together with the associated use cases.

4.2.1 User actor
The client use case diagram is depicted in Figure 4.4. The client actor is the user

that has the Order Taxi application installed on his mobile phone. He uses the application
to order taxis by sending his location to the server that consists of the Cloud. This is the
main functionality of the system, which we will be presenting later on in a more detailed
fashion. We note that this use case is composed of two elements: getting the GPS position
of the user, which is used by the system to identify the address of the user, and it also
offers the possibility of fix tuning this location to specify it more precisely, as this
location will be sent to the operator or the driver.

23

Figure 4.4 Client User

The track taxi functionality allows the user to see the taxi approaching on a map.

In addition to this time estimation will be displayed together with a distance
approximation. In case the response to an order comes from the operator, this
functionality will not be available, as the taxi will not have GPS capabilities that allow
tracking.

The Share on Social networks use case allows the user to share the current ride
with his friends on social media. This is an element that enhances the marketing potential
for the app and a key component in attracting new users. There are two types of services
which users can use with the app: Facebook and Twitter.

One of the main benefits of using this app is the possibility of accumulating
points, as a rewards program envisioned to spur app usage and attract new users. Each
time the user will be making orders using the app, he will accumulate points which can
be converted into free apps.

24

4.2.2 Driver actor
The Driver is responsible for responding to incoming orders. It does this by

accepting or declining an order using a simple two buttons interface. The orders are
assigned to drivers based on the proximity of the client to the driver.

Figure 4.5 Driver Use Case

In addition to these functionalities, the Driver can also call the client in case he

cannot see him at the specified pick up location or if he needs additional information. The
driver cannot see the clients phone number, but only a call button.

The rate client functionality allows the driver to rate the client based on his
behavior. The rating is based on considerations such as: was the client present at the
meeting point, did he leave a tip, was he loudly etc. The rating is based on a 5 star system
subjective to the driver. Future orders placed by the client will show the overall rating
that this client has.

25

4.2.3 Operator actor
The operator is responsible for responding to orders that were not answered by

drivers directly. This allows companies to use the traditional mechanism for finding a taxi
and send a response to the client. Using this mechanism, the client always gets a response
to his order, even if no driver is available in his proximity that is active.

Figure 4.6 Operator Use Case

Responding to a client involves two things. First, an identifier for the taxi must be

specified. This consists of the car number or some other way for the client to identify the
taxi. Also the operator must specify the approximate location where the taxi is at the
moment, by selecting it from a map. This creates a more visual context for the client and
creates a sense of consistency between orders answered by the driver and the operator.

Similar to the driver, the operator can call the client to ask him more details.
Distinctly from the driver, the operator can see the users number.

As we earlier specified, when a response to an order is set, the operator selects a
address from the map which will display the initial taxi position to the client.It is possible
for the operator to cancel an order from the client, in which case e can write a cancelation
message explaining the decision.

26

4.2.4 Manager actor
The Manager actor is responsible with registering taxi companies into the system,

setting the areas in which they operate, adding drivers and creating operator accounts.
The manager is a role comparable with the administrator of the system. It has the power
to change accounts, activate or deactivate them.

Figure 4.7 Manager use cases

4.2.5 Order Taxi use case detailed

We will present the Use Case for Order Taxi, which is the base activity of the system.
Figure 4.8 depicts the flow of activities constituting this use case implementation.
Alternative flows are also described below together with preconditions and post
conditions.

Scalability is mentioned as one of the important requirements of this use case as sending
multiple orders concurrently can affect the server response time, which has to remain
within the bounds specified by the non-functional system requirements in chapter 2.

27

Use case description

Use-Case Start
The User must choose to send a new order to the system

1. The User inputs the address.
2. The App prompts for order confirmation.

3. The App verifies whether the user is registered and has a validated phone
4. The App encrypts the data, and sends it to the server. The user is displayed

with a response pending window
5. The system send a response back to the user with the taxi details which are

displayed on the mobile device.

Figure 4.8: Flow of events for Order Taxi usecase

28

Alternative Flows
• The user is not registered or the phone is not validated

The User didn’t register his phone. Before the user can place his order, he will be
prompted to the phone registration and confirmation window.

1. The user fills his name and phone information

2. The system send the user an SMS with the registration code
3. The user confirms the registration code

• Operator cancels the order. The user is waiting for a response but operator cancels
his order. In this case

1. The App displayed a dialog notifying the user

2. The user gets displayed the order taxi view

• Order not responded .The Operator fails to respond to the user in a specific period
of time

1. The User is displayed a call button for immediately calling the
operator

2. Clicking the button automatically dials the operator phone number

Special Requirements
• Scalability

The scalability is assured by implementing SignalR framework for long polling
mechanism. This allows for persistent connections between the distributed system
components with very low overhead.

Preconditions
• The presented scenario is a result of the User clicking the Order button
• There is a connection between the distributed system components.

Postconditions
• There is a persistent connection between the mobile and the server

29

4.3 Conceptual design

The Client and the Driver apps are applications for mobile devices. These

applications communicate with the Cloud service using an API exposed by the service.
The service is responsible for acting as a data synchronization mechanism, being the
center of the system, similar to a Hub, as can be seen in Figure 4.9

Figure 4.9: The block diagram of the system

 Client and Driver apps and the Operator web interface are the consumers of the

API exposed by the Cloud service. The Cloud Service acts as the intermediary between
all communication that takes place between these components and handles the data
synchronization. The Cloud service relies on its functionality on using a database for
persisting information such as orders, responses, users etc. The Cloud service also
interacts with external services for performing specific tasks. Examples of this include
sending push notifications or reverse geocoding. The client mobile applications can also
access external services. For example the Client app accesses Facebook and analytics
services.

30

Figure 4.10 The Cloud service acting as a hub intermediating all communications

Figure 4.10 shows the Cloud service acting as a hub and intermediating all

communication between the clients. While for a client ordering a taxi seems as a P2P
operation, it actually constitutes a client-server operation[8]. As illustrated, numerous
operators, divers and Clients can connect to the Cloud, new ones can be added, or some
can be removed at any time. For example a taxi driver that terminates his work schedule
for the day, can disconnect from the Cloud service and will not receive any new orders
until he checks in again with the service.

All data is stored into a proprietary database, and specific tasks that have been
delegated to external services are managed by the Cloud service. When a client orders a
taxi, the Cloud service checks trough the fleet of taxis that are available on that area at
that moment and selects one for being dispatched to the client. In case no taxi is received,
the Cloud service sends the order to a specific taxi company in order to be processed.

Not all mobile applications are required to have a server component. One example
is an application that is used to show the battery drain level. Though most applications
have a service backend. If the service backend logic is fairly simple, for example if it is
used solely for storing data, the developer can opt in for a 3rd party backend server such
as Parse.com if the business logic is simple enough to allow this.

However applications that require a higher degree of complexity need to create
their own model and an API for exposing the services.

Mobile Cloud Computing (MCC) [1] refers to an infrastructure where both the
data storage and the data processing happen outside of the mobile device. Mobile Cloud

31

applications move the computing power and data storage away from mobile phones and
into the Cloud, bringing applications and mobile computing to not just smartphone users
but also a much broader range of mobile subscribers.

Cloud computing is known to be a promising solution for mobile computing due
to reasons including mobility, communication, and portability, reliability, security. In the
following, we describe how the Cloud can be used to overcome obstacles in mobile
computing, thereby pointing out advantages of MCC[6].

Extending battery lifetime
Battery is one of the main concerns for mobile devices. Several solutions have

been proposed to enhance the CPU performance, and to manage the disk and screen in an
intelligent manner to reduce power consumption. However, these solutions require
changes in the structure of mobile devices, or they require a new hardware that results in
an increase of cost and may not be feasible for all mobile devices. Computation
offloading technique is proposed with the objective to migrate the large computations and
complex processing from resource-limited devices (i.e., mobile devices) to resourceful
machines (i.e., server in Cloud). This avoids taking a long application execution time on
mobile devices, which results in large amount of power consumption.

Studies evaluating large-scale numerical computations shown that up to 45% of
energy consumption can be reduced for large matrix calculation. As a consequence
computationally intensive tasks should be delegated to the Cloud as CPU intensive work
can drain the battery level significantly.

Improving data storage capacity
Storage capacity is also a constraint for mobile devices. MCC is developed to

enable mobile users to store and access large data in the Cloud. Examples of Cloud
services for doing this are: Azure Storage and Amazon S3. Storing data in the Cloud also
allows for data synchronization along multiple devices. iCloud is a service that allows
work that is began on an iPad to be continued on a Mac for example. Also large database
services are available which offer better scalability. These databases include rational
databases (SQL Azure), highly scalable Table Storage databases and NoSql databases
such as MongoDB.

Improving reliability
Storing data or running applications on Clouds improves reliability since they are

backed up on a number of computers. This reduces the chance of data and application lost
on the mobile devices. CDN can be used to provision data as close to the customer as
possible to improve access time. In addition, MCC [10] can be designed as a
comprehensive data security model for both service providers and users. The Cloud can
be used to protect copyrighted digital from abuse and unauthorized distribution Also, the
Cloud can remotely provide mobile users with security services such as virus scanning,
malicious code detection, and authentication . Also, such Cloud-based security services
can make efficient use of the collected record from different users to improve the
effectiveness of the services.

32

When considering mobile applications, REST services are preferred over SOAP as
they are lighter and easier to implement. Among the REST services, there are two
common types: JSON and XML based. JSON is especially preferred when developed with
Titanium, as JSON objects are pure JavaScript objects. Also JSON representations are
less verbose. JSON REST APIs are offered by services like Google, Facebook, Twitter,
Flickr etc.

We have analyzed the theoretical approaches and the frameworks required for
implementing the proposed application. In the following chapter we are detailing how we
implemented the Taxi Ordering application.

33

5 Detailed Design and Implementation

5.1 Specific implementation
In this chapter we are implementing the described application based on the

theoretical analyses described in the previous chapter.
Figure 5.1 depicts the system general architecture as implemented in the Order

Taxi application. While the functionalities for the building blocks have been described
previously, we now concentrate on more specific implementations of various features.

5.1.1 General Implementation Architecture

Figure 5.1: General Implementation Architecture

There can be identified two types of components. The first type includes the

proprietary components. This need to be developed by the developers, are based on
specific frameworks and include: the components constituting the Cloud service
(designating the service built by the developers), the mobile application, the browser
client and the management interface. The second type of components are represented by
the 3rd party services (distinctly from proprietary services, 3rd party services or external
services are built by other organizations and are made available to the public for use) are
exposed trough certain API. In this example we are using 5 types of external services:

34

The Notification Service – used for sending Push Notifications (a way of alerting a
mobile device), social services that offer integration with Facebook and Twitter,
Analytics services for tracking usage patterns, SMS gateway service for sending the user
an SMS with the activation code (required by the business rules), and a geocoding and
reverse geocoding service for converting GPS position into street address. All of these
components will be explained together with their implementation technologies and
internal working.

For understanding how the whole system works together, let’s examine the most
important functionality of our Order Taxi application: sending an order by the client.

When a user orders a taxi from it’s mobile phone, a request is serialized as JSON,
signed using the user key and sent to the server trough the server API. The server
determines the nearest driver to the user, by interrogating the database based on the
business logic. Once the nearest driver is determined, the Signaling Framework (used to
alert the mobile application) is used to determine the selected driver’s app to download or
update the order sent by the client. After the driver confirms the order, the server uses the
same approach to inform the user that his order was responded.

All requests sent to the proprietary server components need to use SSL for
proving security to the system.

The Order Taxi application exposes JSON REST services using WCF Framework.
Working with JSON in the context of WCF is easy as the framework automatically
serializes JSON request and responses and performs data binding between JavaScript and
CLR objects.

Once the data is received on the server, the server performs some security check
on the request. This usually implies authentication and authorization of the request. As
there is no password required for the Taxi Ordering application, signing the data using a
key, which is known only by the client and the server, and is unique for each client
mobile application, does this.

Figure 5.2 depicts the integration between the client mobile application and the
server. The use case described in the sequence diagram is the one for Send Order
functionality. On The client we have the MVC pattern. The view sends an event to the
controller, which calls the send order operation on the Model. The model component
responsible for sending the request (implemented in Titanium using an HTTP Socket),
serializes the data and sends them to the specified service endpoint exposed by the API.
Once the request arrives on the server, the reverse process occurs as the JS data objects
are translated into CLR objects by the WCF framework. The security component is
responsible for checking the signature of the user in the case of Order Taxi applications.
In other applications a username and password approach can be used for obtaining the
same result. It is essential to observe tat once the request passes the security verification,
it is recorded and the registration key for the order is returned to the client. Further on the
client uses this registration key for referring to his order. At this point there is no
response available for the client yet.

35

Figure 5.2: Integration between the client and the server

The order placed by the user in the system is assigned to the nearest driver. When

the driver confirms the order, a response is sent to the client mobile application. This
response can come after a variable amount of time which can be anywhere between a few
seconds and 3 minutes. In consequence SignalR is used to inform the client when the
response is ready. SignalR is not used to pass the response directly to the user, but rather
the user applications download the response once it receives the update signal.

An important characteristic of the service is that it should offer scalability. All the
components depicted can be hosted in the Cloud. This allows an elastic hosting
environment, which can be used easily. For Order Taxi application, we are using
Windows Azure. Using Windows Azure we can easily deploy the server component as it
was built completely on the .NET framework. Though Windows Azure can also be used
with many other development languages.

36

5.1.2 Cross platform mobile application design
Leveraging the MVC pattern will help produce cleaner code and promote

reusability. Applying the MVC pattern within Titanium is relatively easy.
Considering the Order Taxi App, we will decompose it into its three components:

Model, View, and Controller.
The view is responsible for creating the window and adding the necessary UI

components. Views may optionally specify styling properties (color, font, and
positioning). The recommended practice is to extract all styling properties into external
JSS files, which promotes easy style modifications and customization. Figure 5.3 displays
the view for the taxi ordering application. It is composed of a Window, on which are
added a map, a textbox and a button. When the button is pressed it fires an event, which
is handled by the controller.

Figure 5.3: The view of Taxi Ordering App

The controller is responsible for managing events (button taps) and navigation.

For example when the tap event is registered for the Order button, a notification is sent o
the model together with the data the user inputted in the textbox. Some developers use
event handlers inside the controller to communicate with the server. While this practice is
convenient for simple views, it leads to unorganized code when there are multiple
services to be accessed. In such a scenario it is advisable to move the server interaction
on the model where it can be encapsulated and offer better reusability.

The model is typically a JSON payload retrieved from a Restful service. For
example, the handleResponseEvent will return response information from the server.

The advantages of using MVC in Titanium include better code organization and
readability, promotes reusability and maintainability.

37

5.1.3 GPS component
Titanium offers the possibility of interacting with device capabilities such as using

the GPS. Titanium allows for specific parameter to be set on the GPS such as the
precision of positioning, which must be a balance between time and required accuracy.

When the app starts the coordinates are the ones cached on the device, in other
words the ones detected at the last time you used the geolocation on your device.
Detecting the current position takes time so if you have an app based on geolocation you
might want to take this in account to improve the user experience and avoid to get false
results.

Titanium.Geolocation provides the needed methods to manage geolocation.
In general the most used method is getCurrentPosition that gives the current

position and fires once and the location event that triggers repeatedly on the location
change. To be more clear think you want to log a route the user follow: when the app
starts you get its start position then while walking you can get the points of the route with
a adjustable granularity.

There are some other methods that can be used like reverseGeocoder,
forwardGeocoder, and getCurrentHeading – for compass. Because not all the devices
have the GPS location (like iPod) or the compass and because the user can have the
location services disabled you have to check if it exists, if it’s enabled and then let the
user know about this.

5.1.4 Server model implementation
The server model is responsible for implementing the business logic of the

system. The service model is composed of a set of classes representing the
implementation of the domain model. Figure 5.4 represents the most important objects
that constitute the domain model. Because Entity Framework was used for mapping CLR
objects to database records, these entities have a corresponding implementation in the
SQL server database.

We are outlining the most important entities present in our system:

Order – represents an order placed by the client into the system. The Order has a

set of attributes representing:
• State of the order: IsResolved, IsCanceled, IsPendingResponse. This attributes are

used for identifying the current status of the order.
• Modification time: Each modification of the state of the order also setts a time

stamp on the object, which is used by the system. For example when an order is
created, it is displayed to the operator together with a label showing how much
time has passed since the order was submitted.

• Data associated with an order: represent information such as the rating of the taxi
driver or the feedback of the client following the ride.

• Associated data such as the pick up location or the owner is represented as
references to the specific entities.

38

Figure 5.4 The entities composing the system model

User – represents the client who is placing orders into the system. The user has

the following attributes associated with him:
• Name – represents the name chosen by the person submitting orders.
• Registration date – the date when this user registered by submitting his phone

number and name
• Phone number is used for contacting the person in case he doesn’t show up at the

pick up location

39

• Phone is validated is used to determine whether the specific user was validated by
the validation code sent trough the SMS.

• The user must be marked as active in order to be able to place orders into the
system. A user state can be changed to inactive in case abuse has been observed
for this particular user.

• The confirmation code is the activation code sent to the user trough SMS that is
used to determine if the phone number is valid.

Location: Represents the position where an order is set. It contains the GPS

coordinates for the location together with an optional name for it. There is also a property
used for counting how often that location is used. The more frequent locations will be
displayed first in the location suggestion list.

Operator: This entity represents an operator, which might me understood as a

taxi company or a collection of taxi companies unified as a group. This entity presents the
following properties:

• Activation date and time, when this operator has been registered
• A perimeter that represents the are where the operator is active, represented by a

collection of points.
• Stations represent predefined locations on the map where taxis are expected to be

present.

OperatorEmployee: This class represents the operator that responds to orders.

• The name is the real name of the operator
• IsActive property is set to true for those Operators which are active, meaning

having permission to access the system, permission set b the manager.

OrderResponse: is created by the OperatorEmployee and represents the response

the user receives for his order. It contains the necessary information required by the client
such as the car number, the name of the driver, the expected waiting time for the user. It
also has a IsRead property which is used for determining whether the response has been
read by the user application. If the Response is not read in a certain amount of time, this
means that that the client application is closed and as a consequence the response needs
to be delivered using push notifications.

Point: This class is used for defining perimeters in which an operator activates.

Ay order placed within this perimeter might come to the operator. The number represents
the count for the point, so that given a collection of points and their orders, the system
can check whether a specific point is inside that perimeter or outside of it.

The entities represented in Figure 5.4 are mapped by Entity Framework into the
CLR classes represented in Figure 5.5. These classes are further extended in functionality
by means of partial classes, by adding functionality as for example in the Operator class.

• GetOperator method is an extension to the Operator class which allows for
obtaining a list of operators that are available for a specific GPS position,
which is used when a user places an order. When a user places a new order,

40

this method is called and the order is assigned to one of the operators
returned by this method based on a predefined logic.

• GetCentroid method obtains the center of the polygon which defines the
operating area for the operator

•

Figure 5.5 The class diagram of the system model

41

5.1.5 Service database

The service database is created using Entity Framework and is depicted in Figure

5.6. We can observe that the Entity Framework entities are mapped to these tables,
providing the same properties as columns in the rational database.

Figure 5.6 The database tables corresponding to the system entities

We are describing the most important tables used for persisting the application

data and which have been generated based on the entities described earlier in this chapter.
Table OrderSet contains the columns representing the information described by

the order placed by the client into the system. The state of the order in of type nVarChar
an its value is constrained by the implementation to three valid values: IsResolved,
IsCanceled, IsPendingResponse. These attributes are used for identifying the current
status of the order and is defined not to allow nulls. During each modification of the state

42

of the order also sets a time stamp on the object, which is used by the system. For
example when an order is created, it is displayed to the operator together with a label
showing how much time has passed since the order was submitted. These columns are
defined as DATETIME types.

The UserSet table represents the client who is placing orders into the system. The
most important columns of this table include the name which represents the name chosen
by the person submitting orders, the registration date – the date when this user registered
by submitting his phone number and name. The phone number is used for contacting the
person in case he doesn’t show up at the pick up location, and is represented as a
nvarchar. We used this representation especially because phone number formats are very
different for distinct regions. IsPhoneValidated column is used to determine whether the
specific user was validated by the validation code sent trough SMS. The user must be
marked as active in order to be able to place orders into the system, this column being
represented as a non-nullable Boolean type. A user state can be changed to inactive in
case abuse has been observed for this particular user. the confirmation code is the
activation code sent to the user trough SMS that is used to determine if the phone number
is valid. This column is also represented as an nVarChar.

The table OrderSet has the foreign key represented by User_id that specifies the
User which placed the order inside the system. OrderSet and OrderResponseSet have a
one to one relationship between them. We decided to separate this two tables, even
though there is a synonymy relationship between them as there can be order, which do
not have a response, as for example an order that was canceled.

We can observe that there was no case for splitting entities in our model. In this
mapping scenario, properties from a single entity in the conceptual model are mapped to
columns in two or more underlying tables. In this scenario, the tables must share a
common primary key. In our mapping scenario each entity in the conceptual model is
mapped to a single table in the storage model. This is the default mapping generated by
Entity Data Model tools.

Each operator can define multiple stations which represent positions on the map
which an associated name (records in the LocationsSet Table) that are by the operator to
specify the initial taxi position easily, by clicking the marker on the map associated to
that specific location. The mapping of a list of stations (defined as actually being of type
location) to the OperatorSet is done by EntityFramework by introducing a new table
called OperatorLocation, as can be observed in Figure 5.6.

We are using this database model representing the conceptual model of the system
inside SQL Server 2008. We have decided on implementing our database using Entity
Framework generate Database from Model approach, as it offered a productive
environment where changes in the model could be easily translated into updates of the
database. We also notice that there is a balance between the number of read and write
operations as every record inserted into the database needs to be read usually just one
time, processed and than archived. For example an Order is created, added to the system,
it is answered by the operator, the response is sent back to the client and after this there
response is no longer used actively and constitutes solely a history used for creating
suggestions as for example suggesting pick up locations.

43

5.1.6 Service REST API

The interaction between the client mobile and the server is performed trough the

means of a REST API that has the methods depicted in Figure 5.7. We implemented the
REST API trough WCF.

Figure 5.7 The service API using the interface IApi and

its implementation in the class Api

IApi is the interface which is implemented by the API class. IApi exposes the

following methods: CancelOrder, CreateOrder, GetOrderResponse, SignUpUser,
ValidateUser.

SignUpUser – this method is exposed as a resource using the verb POST and is
available by invoking the service at the location /Api/signupuser. The data passed to the
method are encoded as JSON and consist of the User name and phone number. Once this
data are received on the server the system sends the user an SMS message at the specified

44

phone number. At this moment the user status is set as invalidated. In order to validate
the phone number the user needs to send the confirmation code sent to him trough SMS
by using the next method described, ValidatePhone.

ValidatePhone – this method is used to validate the users phone number by

sending using the POST verb the code sent to him by SMS. This rest resource is available
at /Api/validatephone. The data needs to be submitted in the JSON format, as with all
API calls to our service. When the code reaches the server, it is checked whether the code
matches the one in the system. If the code is correct, the user is allowed to submit the
order.

CreateOrder – this method allows for creating a new order inside the system.

This is performed by sending the information required b the order to the address
/Api/order using the POST verb. Once an order is received on the server, it is recorded
inside the database; it gets displayed on a specific operator panel. Once the operator
responds to the order, an OrderResponse entry is created and an update signal is sen to
the client. Among the attributes in a create order request the most important are:

• The location where the order was sent for. This consists of the GPS
position.

• The user who submitted the request
• The date and time the order was created
• The device information

GetOrderResponse – allows the client to read the response to his order.

Accessible using the GET verb at the address /Api/order. The request contains the
identity of the order. The response is encoded as JSON and contains the information for
the client such as:

• The car number which was assigned for the order
• The information regarding the driver
• The estimated arrival time of the driver

 CancelOrder – allows an order to be canceled by the user. The cancelation is

performed by the client, and is accessible at /Api/cancelorder. The request verb is POST,
as the submitted information contains the identity of the order that should be canceled.
We note that we decided on not implementing the DELETE verb combined with the call
at /api/order as some Api best practices recommend as in our case there is no associated
delete operation on the server. When an order is canceled what happens is that the
IsCanceled property is set for the order, and an update notice is sent to the subscribers,
such as the operator.

We implemented Api versioning in order to manage successive updates to our Api
without affecting previous versions of the application.

45

5.1.7 Security
The security is implemented using ASP.NET membership as described in the

database diagram in Figure 5.8.
By implementing ASP.NET Membership Framework for handling the

authentication and authorization logic of the applications we were able to integrate this
services with our application easily. The benefit from a robust and throughout tested
framework offers much better security than self-implemented frameworks. Figure 5.8
depicts the tables that constitute the implementation of the database behind ASP.NET
Membership. ASP.NET_User table is mapped to the UserSet table inside the system
database trough the use of the Membership attribute. As a consequence, the Security
framework was not extended and was allowed to operate as it is. By not extending or
close integrating any services of the Membership framework with our system, we
decoupled the two subsystems and allowed for further changes.

The configuration for the security framework is done in the Web.config file. The
authentication method chosen is Forms authentication, and requireSSL was set to true in
order to use the self signed certificate which we created.

<authentication mode="Forms">
 <forms loginUrl="Login.aspx"
 protection="All"
 timeout="30"
 name="AppNameCookie"
 path="/FormsAuth"
 requireSSL="true"
 slidingExpiration="true"
 defaultUrl="default.aspx"
 cookieless="UseCookies"
 enableCrossAppRedirects="false"/>
</authentication>
The configurations are explained below:
• loginUrl points to the login page.
• protection is set to "All" to specify privacy and integrity for the forms

authentication ticket.
• timeout is used to specify a limited session lifetime.
• name and path are set to unique values for the current application.
• requireSSL is set to "true". This configuration means that authentication

cookie can not be transmitted over channels that are not SSL-protected
• slidingExpiration is set to "true" to enforce a sliding session lifetime. This

means that the timeout is reset after each request to your application.
• defaultUrl is set to the Default.aspx page for the application.
• cookieless is set to "UseCookies" to specify that the application uses

cookies to send the authentication ticket to the client.
• enableCrossAppRedirects is set to "false" to indicate that the application

cannot redirect requests outside the application scope.

46

Figure 5.8 The implementation of the Membership API in the database

47

5.1.8 SignalR
Using SignalR we were able to implement the client listening to the server by

using a long polling technique.
Initially we implemented this functionality using time-based periodic calls from

the client to the server. However we observed that this approach has a negative impact of
fast battery drainage and increases the volume of data passed over the Internet which is a
major issue when using data services instead of Wi-Fi.

Also for Order Taxi application this is not feasible as the polling interval is
unknown. For example the driver could wait for hours without receiving an order, so he
would poll thousands of times to receive one favorable result. Also the polling interval
would have to be below 2 seconds (to offer a response time as low as possible), which
would mean a high demand on the server and low scalability.

In the .NET framework SignalR represents an implementation of long polling.
However SignalR does not rely only on the long polling technique. SignalR has a concept
of transports, each transport decides how data is sent/received and how it connects and
disconnects.

On the server side SignalR uses two concepts: Hubs and persistent connections.
Taxi Ordering App uses Hubs. Extending the Hub class represents the implementation of
a hub on the server. Each method defined inside this class is mapped to a JavaScript
implementation at compile time. The JavaScript document is saved on the project root
folder and the client must reference it. It is possible to have broadcast events, which alert
all the clients or only one in particular. It is also possible to group client and inform a
whole group at a time.

When the mobile application registers using SignalR, on the server a session ID
called client ID is given to it. We are storing this client ID for each order. When a
response is available and needs to be sent from the server to the client, we are sending an
update request to the mobile app, using the client ID stored earlier.

There are three components of the system that need to be updated from the server.
This are the client app, the driver app and the operator panel. The update scenario for the
driver app is similar to the one for the client app. We note that the client app and the
driver app are components that need to be independently updated, so having groups in
this scenario is unnecessarily. However for the operator panel we need multiple operators
to be able to respond to an incoming order. In this scenario it is more feasible to group
the operators in groups, a group representing one operating company. When a new order
is registered into the system the first operator who sees the new order will be able to
respond to it.

48

5.1.9 Push Notifications

Server push notification means that you can send users push notifications even

when the app is not running on the device.
Although Appcelerator allows server push, many developers find it difficult to set

it up. In order to send push notifications a certificate must be obtained from Apple, which
is used for authentication purposes.

Once the certificate is obtained it must be registered with the push notification
service, and after this the developer will receive access to the push notification services.
We must mention that although it is possible to communicate directly with apple services
in order to send push notifications, this task requires implementing a complex
communication mechanism, so the majority of apps rely on 3rd party services which
encapsulate this complexity. Sending push notifications by using 3rd party services is
much easier as it comes down to accessing the service API.

The flow of events that lead to sending push notification is:
1. You connect to the APNS using your unique SSL certificate
2. Cycle through the messages you want to send (or just send 1 if you only

have 1)
3. Construct the payload for each message
4. Disconnect from APNS

The flow of remote-notification data is one-way. The provider composes a
notification package that includes the device token for a client application and the
payload. The provider sends the notification to APNS that in turn pushes the notification
to the device. This process is presented in Figure 5.9.

Figure 5.9 Push Notifications chain of execution

The implementation of push notifications is done by using the Urban Airship 3rd

party service. Using Urban Airship we can implement a notification service for both
iPhone and Android.

Before being able to send push notifications to iOS devices, we must register our

Push SSL Certificate to communicate with Apple’s push notification servers. The private
key resides securely on Urban Airship servers, and Apple uses the public key to
authenticate Urban Airship on our behalf.

The Push SSL certificate needs to be downloaded from the Apple server. There
are two types of certificates: Development and Production certificate, corresponding to
the stage of the application.

49

Once the certificate is downloaded it has to be uploaded on the Urban Airship
server. After uploading the certificate, the library offered by Urban Airship is used to
register for push notifications.

When the device is opened it registers for push notifications. If the registration
completes successfully, the device receives a registration device token. Device tokens
should be represented as an uppercase string, 64 characters long, without spaces or other
separators and are assigned by the Apple server. The registration lets urban Airship
service know that the device token is active, and should happen every time the
application is opened to ensure that the list of device tokens remains up-to-date. A
successful registration returns HTTP 201 Created for first registrations and 200 OK for
any updates. Urban Airship queries Apple’s feedback service, marking any device tokens
Apple tells are inactive so we don’t accidentally send anything to them in the future. The
registration call tells that the device token is valid as of this time, so if a user turns push
notifications back on for our application they can receive them successfully again.

The system can use this registration token in order to send push notifications to

the device.
When registering for push notifications, the app can optionally, include a JSON

payload to specify an alias, tag, badge value, or quiet time setting for this device token.
Sending a push notification to one or more users is done by calling the REST API

using POST /api/push/ An example of a notification is:

{
 "device_tokens": [
 "some device token",
 "another device token"
],
 "aliases": [
 "user1",
 "user2"
],
 "tags": [
 "tag1",
 "tag2"
],
 "schedule_for": [
 "2010-07-27 22:48:00",
 "2010-07-28 22:48:00"
],
 "aps": {
 "badge": 10,
 "alert": "Hello from Urban Airship!",
 "sound": "cat.caf"
 }
 }

50

With the APS notification payload, you can include the following parameters:
badge, alert, and sound. The payload can only be 256 bytes.

Badge Numbers - The badge is the number within a red circle that appears on an

application’s home screen icon.
Apple requires an integer be sent as the badge value in the APS payload.

However, you can have Urban Airship keep track of what badge value the user should
have. This provides the advantage of being able to use advanced badge values, which
Urban Airship will translate into the proper badge for you. This is called an autobadge.

There are three types of autobadge that Urban Airship supports: auto, increment,
and decrement.

auto we will take the current stored badge value and insert that.
 +1 : we will take the badge value from the database, increment by the number

after the + sign, and also increment our stored badge by that number.
 -1 : we decrement instead of increment.

Quiet times -Time when no push notifications for the app will be delivered to that

device token. If the start time is greater than the end time (e.g., 20:30 and 6:30), then the
quiet time is overnight. This is the most common case, but quiet times during the day
(e.g., 9:00 and 17:00) work as well.

When a push is sent during quiet time, the alert is not re-sent after the quiet time
has elapsed. If a tz value is not included in the JSON data when a quiet time value is
specified, you will get an HTTP 400 error during device registration.

Push notifications containing a badge update will still be sent during quiet time,

but the alert and sound will be removed. By default, push notifications are silent, seen but
not heard. To specify an alert sound to be played when the push notification is received,
add a soundkey to aps.

Custom sound - by default, push notifications are silent, seen but not heard. To

specify an alert sound to be played when the push notification is received, a soundkey
needs to be added to aps. It is also possible to supply custom sounds that can be played
when an app is downloaded. We use custom sounds in with our push notifications in
order to alert both the client and the driver.

As push notifications are sent from the server in our example, we need to send the

registration token to our server together with the identification of the user. If the system
needs to send a push notification to one specific user, it uses the users registration token.

51

5.1.10 Operator panel

The operator panel is constructed as a web interface intended for responding to

orders. The webpage is developed using ASP.NET and is secured using .NET
Membership Framework Forms Authentication. A logged in user will be displayed a
panel consisting of the current orders. Color codes are used for different order statuses.
Brown is used for canceled orders, Green for orders that were responded successfully. No
color is used for orders which have no been responded yet.

The webpage uses AJAX techniques for receiving new orders and sending them
without requiring complete page reloads.

When a new order is inserted into the system, SignalR is used to notify the
browser webpage to reload its orders panel. Partial page reloads are designed using the
ASP.NET UpdatePanel and the AJAX functionality is built on JQuery.

 Using the Operator panel website the operator is able to respond to client orders.
Whenever a new order that is destined for that operator is inserted into the system,
SignalR that the orders grid needs to be updated notifies the webpage. Using an update
panel control, as we specified earlier, does the update.

 We implemented the operator panel in such a way to allow multiple operators to
work on the same set of orders without worrying of responding to the same order.
Whenever an operator views the content of an order, the order is marked as pending.
When this happens a message is sent to the user notifying him that the operator viewed
his order. Also another operator is announced that his colleague is already processing the
specific order. If he tries to process the same order he will get an alert.

5.1.11 Analytics

Analytics provide the means of measuring user experience inside the app and

becomes a key component of the mobile ecosystem. Analytic provide the means of
observing how users are interacting with the app and this provides the information
required for further updates. Traditionally two analytics were used: daily active users and
user session time. However it has been observed that user engagement falls sharply few
days after the app first installation. As a consequence another key metric has become the
user retention level after one day, one week and one month. Unless the app uses analytics
it cannot understand its users base accordingly.

It is possible to devise ones own analytics system. However his is a time
consuming and also challenging activity. For example analytics data need to be stored
and only uploaded to the server when the user has an available Internet connection.
However there are free services that provide analytics available. One of these services is
Flurry, which provides a REST API for interaction. Activation of the API requires
preregistration for their service for obtaining an API key. Titanium provides a free
module, which can be used to encapsulate communication with the Flurry server.

Analytics provide information regarding usage statistics such as new users, active
users (which combines new and returning users into one stat), and sessions (how many
times your app is used over a time period. You can grow this stat several ways such as

52

acquiring new users, getting existing users to use more often or retaining users longer),
session length (Session Length is a key engagement metric. Although different kinds of
apps have different average session lengths, you'd like this stat to improve over time with
each additional update), frequency of use (This stat reveals the intensity with which your
app is used), retention level, and app versions.

It is also possible to track custom events such as the user clicking a menu button
or completing a game level. We are tracking the address textbox editing feature, the map
marker move, the amount the map marker is moved, the amount of time spent editing the
address textbox, the amount of time until the order is placed.

5.1.12 Social media integration
Social networking services are used in mobile applications in two ways. First they

provide a mean of authentication using OAuth. For example if the app requires the users
email address it can prompt the user to authenticate in the app using his Facebook
account. If the user agrees to allow Facebook to share the email address with the app, the
app is authorized to retrieve the users email from the Facebook service using the
Facebook API. OAuth is an open standard for authorization. It allows users to share their
private resources stored on one site with another site without having to hand out their
credentials, typically supplying username and password tokens instead.

The other common use of social services integration is for marketing purposes.

Many apps allow users to post messages to Facebook or to post on the users behalf. The
posted messages should be based on users intention to share them, but they also often
serve as a marketing strategy inside the users social network. Order Taxi application uses
social services for marketing purposes by sharing the users ride information with the
users consent.

In order to use social services, as with most third party APIs an API key must be

obtained by registering on the providers website. For Facebook this is available in the
developers section of their website. Titanium offers modules for integrating Facebook
and Twitter services and encapsulating the communication with the REST API.

In our Taxi Ordering Application, we integrating Facebook in order to allow
people to post messages on their wall to inform their friend they are using Out Taxi
ordering application. They can also invite friends to join the application and earn points.
The points create a gamification strategy meant at spurring app usage by giving users
badges.

Facebook currently provides to APIs, one called Graph API (the one which we are
using), and the old one called REST API. The first step of the integration is authentication
and authorization. This is done by showing official Facebook dialog for logging in the
user and prompting the user to approve your requested permissions. We implemented an
event listener for the login even in order to determine whether the event was successful.

In order to create requests, the method requestWithGraphPath is used. This
method encapsulates the http socket connection with the Facebook server and allows us
to easily communicate with the Graph API. Once we determine that the user logged in
successfully, calls are made to the service with predefined parameters including: the

53

address of the resource (ex 'me/events'), the data serialized as JSON, according to the API
specification, the verb associated with the request (ex: 'POST').

The application uses the GRAPH API for posting messages on users behalf to his
Facebook account and for inviting friends to use the app. In order to be able to complete
these requirements, the app needs to ask the user for these permissions. Asking for
permissions is implemented in Titanium by setting Titanium.Facebook.permissions
property, and this permission will be displayed when the user logs in.

5.1.13 Management and configuration

There are three types of components that need to be managed: The proprietary

server, the mobile client and the 3rd party services. Managing the 3rd party services is
usually done by a management panel on the providers website. A management panel for
changes that have a high occurrence rate manages the proprietary server. For example
new drivers are added manually to the system from this management panel. The hardest
component to be managed is the mobile client application as there is no direct control
over it. If major changes to the system are required for implementing new functionalities
and this requires a change in the API it is important that API versioning is used to secure
reliability for old clients that do not install the last updates. Backward compatibility of
the system must always be respected. If the changes made to the system do not require
any change in the API, but rater a change in the address, this can be resolved if the client
was designed to adapt to such changes. Otherwise an update of the client app is required.

The management panel is depicted in Figure 5.10. On the left side there is a grid

that displays the Taxi companies that are registered into the system. On the right there is
a map on which I defined the perimeter where the taxi company is active. This operator
might process any order that is received inside this perimeter. However if there are
multiple operators available for the same perimeter the order is assigned to one of them,
based on specific business logic inside the model.

54

Figure 5.10 The management panel allows setting the perimeter as shown in the right

5.2 Conclusions
We have implemented the system based on the requirements presented in the

previous chapter and we have identified the most important components of the system
together with how they have been integrated.

 We explained how a cross platform approach can be used to developing mobile
application and we have proved the native capacities of the system by using the GPS API.
We also presented how the mobile application can be integrated with the Cloud and how
the Cloud can act as a data synchronization mechanism between the client mobile
application, the driver application and the operator panel.

 In the next chapter we are presenting the testing phase of the system and the
approaches we have taken to validating that the components work according to the
specifications and that the whole system implements the functional and non functional
requirements.

55

6 Testing and validation

In order to assure that the system works according to the specifications and that

all functional and nonfunctional requirements are met, we have implemented specific
tests in order to validate the implementation.

6.1 WCF REST service validation
The WCF REST service is the entry gate to the Cloud service that glues together

the client mobile application, the driver and the operator panel. The correct working of
the WCF service is also a means of validating the model of the system server component
and the response to various test cases.

The validation of the service was performed by adding a new project to the
solution and creating Unit Test classes. Inside this class specific methods for testing
functionalities have been defined.

As sending JSON requests required a series of step including creating the JSON
request data from the CLR object, sending the request using a selected verb, and handling
the HTTP specific errors, we defined a method called SendRequest. Using this method
we specified the resource we wanted to test, the verb and the data.

The data object was defined as dynamic to allow for easier operation with
encoding and decoding JSON data. We present the SendRequest method in Appendix
together with the JSON data serialization approach.

We designed the system to return specific error codes for specific errors such as
duplicate telephone number. When designing the Unit Test we have tested if this error
codes are returned appropriately. For example when creating a new user we tested
different combinations f telephone and user name.

The tested scenario inside the Unit Test for creating a new user is:
• We created a new user but with no phone number in order to test if the

server returns the predefined error
• We created a new user with a phone number which was already registered
• We created a new user but without a specified name
• We created a set of 3 valid users

Besides checking if custom errors ere returned properly, we also checked if the
system behaves according to expectations for typical usage flows such as:

• We created a valid set of users
• We added orders for this users
• We tested if the orders which were outside of areas where operators are

active were responded using the specific error code
• We tested if the valid orders were registered inside the system

As we added new functionality to the system we expended the test scenarios and
we rerun the test periodically to ensure that the system remains valid after performing
modifications.

56

6.2 Validation of third party services

SMS Gateway
We used the SMS Gateway in order to send SMS messages to the user. This

service was a middleman between the telephone operator and us. The integration of the
SMS Gateway was trough a REST API they provided. The validation was performed by
submitting a number of 10-15 messages that were delivered successfully.

Google reverse geocoding
Google reverse geocoding was used for converting GPS coordinates into street

address data. We have tested the implementation of the service inside the application by
performing a series of manual tests for various locations. We have also tested the
accuracy for different positions and we identified that for Romania only for very few
coordinates we were able to obtain the block number. We decided on displaying the user
the most complete address we could obtain and allow him to complete it if necessary.

 Facebook integration
The Facebook platform was integrated in order to allow users to post messages on

their account by using our application. The system was tested by registering a group of
accounts with the application and posting messages.

6.3 Mobile application testing

Usability testing of software applications developed for mobile devices faces a

variety of challenges due to their unique features, such as limited bandwidth, unreliability
of wireless networks, as well as the changing context. For assuring the system correctness
Use Case Driven Testing of the functionalities of the system must be addressed in various
environmental contexts such as no Internet access, no GPS signal etc.

Order Taxi app was designed with these considerations in mind and the testing
approach was by using Use Case Driven testing in various conditions. The following
issues have been tested:

Mobile context
It can be defined as “any information that characterizes a situation related to the

interaction between users, applications, and the surrounding environment [2].” For our
Order Taxi app we have tested how the app was performing in different times and places,
especially how GPS was acting inside buildings and how well wireless networks aided
the positioning based on the accuracy of position determination. It is very difficult to
select a methodology that can include all possibilities of mobile context in a single
usability test[2]. If the user position cannot be obtained and the GPS was turned off, we
asked the user to turn it on or input the address manually.

57

Connectivity
Lack of connectivity or slow Internet speed is common with mobile applications.

We tested whether the app can identify this situation and alert it to the user, notifying him
that the app can not work properly and he has to either turn on internet (if this is not turn
on already), or just report that the app can not work in the absence of an internet
connection.

Screen size and resolution fragmentation
These concerns affect mobile applications. We tested the applications on multiple

devices and also used UI elements that can adapt proportionally to screen sizes. We have
observed that for some small screens the application was not displayed properly because
we have implemented some minimum size attributes in order to display the text
completely. In order to resolve the issue we added test cases for small screen displays,
and if the screen width was bellow a specific value, we used a smaller font and minimum
width, which solved the problem.

Lack of storage and computing power
These requirements must be tested especially if the work is not mitigated to the

Cloud. For our app this was not a concern as we both outsourced the processing and
storage to the Cloud. The order history and user data are all stored in the Cloud, and is
consumed using the service API.

In conclusion we have tested the various components of the system and we are affirming
that the system is valid and works according to the functional and non-functional
requirements. In the next chapter we are presenting a usage manual for the system.

 58

7 User’s manual

7.1 Mobile client application

Client Application main screen
In this chapter we are presenting instructions on how the system is used and we

are explaining the installation and registration procedures.
 The mobile client application can be installed on iOS and Android Operating

Systems. For iOS devices, the application will be available on the AppStore while for
Android it will be on GooglePlay. After the user installs the app on his device the first
screen he will see consists of a map, an exact address input and a order button. The
screen is displayed in Figure 7.1. The left image displays the alert that informs the user
that the application will need to retrieve his GPS coordinate. If the user does not allow
this, he can still use the app by manually inserting the order address.

Figure 7.1 The first view of the application

The ordering functionality
In Figure 7.2 we represented the ordering functionality of the system. When the

address textbox is clicked, an animation starts which displays the nearby addresses. The
user can select any of these addresses by clicking them, which will automatically move
the marker to that position. The option of selecting other nearby addresses is useful as
GPS coordinates are not accurate enough when the user is located inside building, as the
positioning is based on GSM tower triangulation as explained in Chapter 5.

 59

Figure 7.2 Ordering functionality of the application

Client registration

If the user is not yet registered a registration form will be displayed the first time he
submits an order. The registration form is very simple, just requiring a name and a
telephone number as displayed in Figure 7.3. The code received by SMS must be used to
validate the user registration.

Figure 7.3 The registration form(left) and the SMS validation (right)

 60

Pending response functionalities
After submitting the order, a new view is displayed showing a decreasing counter

and a radar animation. This is presented in figure 7.4. If the user opts to cancel the order,
he can click the cancel button in the top right corner.

Figure 7.4 The view displayed while waiting for response (left) and

 the canceling confirm dialog(right)

 61

7.2 The operator
On the operator side the first step is for the management to create the Taxi Company
account. This is illustrated in Figure 7.5. When creating a new taxi company clicking on
the map in the right sets a perimeter.

Figure 7.5 The management panel

After creating a taxi company operators can be defined which are able to respond to
orders. Creating a new operator is displayed in Figure 7.7. In the left we have displayed
the taxi company information and the perimeter where the taxi is active. In the right we
can see how a new Operator is created. Using the username and the password inserted
here, the Operator will be able to log in and respond to client orders. The orders have a
color symbolism as presented in Figure 7.6. Red is the current order processed by the
operator, green are the orders processed successfully and brown is used for orders which
have been canceled.

Figure 7.6 Color symbolism for orders displayed to the operator

 62

Figure 7.7 Creating an operator account

In this chapter we have presented the most important functionalities of the system and
how they have been implemented. We also presented screenshots taken from the running
system together with information regarding how the system should be used correctly.

 63

8 Conclusions and further developments

We have implemented the system successfully and according to the specifications.
We started by analyzing the requirements for our system by analyzing similar
applications and creating a comparison matrix to help us identify the most important
features. We than stated the functionalities which the system was designed to offer and
we created the use cases for our actors. Before implementing the system we needed to
identify the conceptual model and the suitable technologies necessarily for our
requirements. We identified Titanium as the best solution for developing cross platform
mobile applications.

For integrating the mobile with the service we needed to construct an API. After
considering both REST and SOAP we decided on implementing a REST Api as it lighter
[4]. JSON was chosen as the data encoding representation. Also we tried to externalize
some of the requirements by using 3rd party services such as Analytics. The
implementation of the system was performed using the technologies identified during the
analysis phase, and the most important technical considerations were presented during
this chapter. The implementation was performed in order to demonstrate that the analysis
and design phases were correct. The validation of the system was performed in order to
prove the correctness of the implementation, were we also presented how the mobile
application was tested according to the general testing methodology for mobile devices.

After implementing and validating our system we affirm that the project was
completed successfully and the proposed objectives have been met. However there is no
perfect system so further work is needed in order to develop more advanced
functionalities and to improve the overall system.

 Third party services are appearing every day and their capabilities become even
more impressive. In our example application we can further integrate other 3rd party
services and expand its functionality. It is important to monitor new entrants to the
market in order to offer the user the most complete and updated system in terms of
desired functionality.

In terms of security considering our implementation of the security on the API
layer, we can observe that using a hash function algorithm on a key, which should ideally
be known by only the client app and the server, does the user authorization. However this
key is sent trough SMS which cannot be considered a secure channel. As a solution the
key could be sent encrypted or part of the key could be used using another mechanism
and that combined on the client. Sending the key encrypted trough SMS diminishes the
usability of the system, as a 4-digit code can get very complicated. As a solution the SMS
could be read inside the app where it could be decrypted. SSL should be used for all
communication between the client and the server, using a self-signed certificate.

Refferences

[1] AEPONA Ltd., “Mobile Cloud Computing Solution Brief”, November 2010,
available at: http://www.aepona.com/documents_attached/Solution-Brief-Mobile-
Cloud-Computing.pdf. , last retrieved 26 June 2012

[2] Anind K. Dey and Gregory D. Abowd, “Towards a Better Understanding of
Context and Context-Awareness”, 2001, available at available at:
http://smartech.gatech.edu/jspui/bitstream/1853/3389/1/99-22.pdf, last retrieved 26
June 2012

[3] Appcelerator, “Titanium development platform” available at
http://www.appcelerator.com/platform/titanium-sdk

[4]

C. Pautasso, Olaf Zimmermann, Frank Leymann. “RESTful Web Services vs.
“Big” Web Services: Making the Right Architectural Decision”, 2010. available at:
http://www.jopera.org/files/www2008-restws-pautasso-zimmermann-leymann.pdf,
last retrieved 26 June 2012

[5] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. “Web Services: Concepts,
Architectures, Applications”. Springer, 2004.

[6] H. T. Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. “A Survey of Mobile
Cloud Computing: Architecture, Applications, and Approaches”, Wiley, 2011,
available at: http://www.eecis.udel.edu/~cshen/859/papers/survey_MCC.pdf, last
retrieved 26 June 2012

[7] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn “Virtualized in-Cloud security
services for mobile devices,” in Proceedings of the 1st Workshop on Virtualization
in Mobile Computing (MobiVirt),June 2008, p1-9, last retrieved 26 June 2012

[8] J. Tyree and A. Akerman, “Architecture decisions: Demystifying architecture”.
IEEE Software, 2005, available at: http://www.cin.ufpe.br/~jbfan/arquitetura de
software/aritgo decis%F5es.pdf. , last retrieved 26 June 2012

[9] Jason Kinkaid, “Taxi Magic: Hail A Cab From Your iPhone At The Push Of
A Button”, 2008, available at http://techcrunch.com/2008/12/16/taxi-magic-hail-a-
cab-from-your-iphone-at-the-push-of-a-button/, last retrieved 26 June 2012

[10] L. Bass, P. Clements, and R. Kazman. “Software Architecture in Practice”.
Addison Wesley, 2003.

[11] MarketWatch, "Node.js Selected by InfoWorld for 2012 Technology of the Year
Award", January 11, 2012, available at http://www.marketwatch.com/story/nodejs-
selected-by-infoworld-for-2012-technology-of-the-year-award-2012-01-11
Retrieved January 26, 2012.

[12] Microsoft “ADO.NET Entity Framework At-a-Glance” available at
http://msdn.microsoft.com/en-us/data/aa937709, last retrieved 26 June 2012

[13] Microsoft, “WCF Feature Details” available at http://msdn.microsoft.com/en-
us/library/ms733103.aspx last retrieved 26.06.2012

[14] Roger L. Costello “Building Web Services the REST Way” available at
http://www.xfront.com/REST-Web-Services.html, last retrieved 26 June 2012

[15] Roy Thomas Fielding, “Architectural Styles and the Design of Network-based
Software Architectures”, available at http://www.ics.uci.edu/~fielding/
pubs/dissertation/top.htm, last retrieved 26 June 2012

[16] Sarah Lacy, “Get Taxi Launching in London. This Is Way Beyond Uber”, 2011,

available at http://techcrunch.com/2011/07/19/get-taxi-launching-in-london-this-is-
way-beyond-uber/, last retrieved 26 June 2012

[17] Tracy V. Wilson, “How GPS Phones Work”,2011, available at
http://www.howstuffworks.com/gps-phone.htm, last retrieved 26 June 2012

[18] Zarouni and K. Saleh, “Capturing non-functional user requirements”, available at
http://jucmnav.softwareengineering.ca/ucm/pub/UCM/VirLibIIT04/IIT04.pdf, last
accessed 26.06.0212

Appendix 1 List of Tables and Figures

Table 2.1 Taxi Ordering application ... 4	

Table 2.2 Product statement for Taxi Ordering application .. 4	

Table 2.3 Stakeholders of the project .. 5	

Table 2.4 Functional Requirements ... 8	

Table 3.1 Similar services comparison matrix by functionality .. 11	

Figure 1.1: The components of a modern mobile device .. 2	

Figure 3.1 Taxi Magic - from left to right: order taxi, choose a taxi, pay using credit card

 ... 12	

Figure 3.2 Uber – from left to right: Order a taxi, track the taxi, pay inside app 12	

Figure 4.4.1: Long Pooling vs. Time-based polling .. 19	

Figure 4. 2 Notifications mechanism ... 20	

Figure 5.1: General Implementation Architecture ... 33	

Figure 5.2: Integration between the client and the server .. 35	

Figure 5.3: The view of Taxi Ordering App .. 36	

Figure 5.4 The entities composing the system model ... 38	

Figure 5.5 The class diagram of the system model ... 40	

Figure 5.6 The database tables corresponding to the system entities 41	

Figure 5.7 The service API using the interface IApi and .. 43	

Figure 5.8 The implementation of the Membership API in the database 46	

Figure 5.9 Push Notifications chain of execution ... 48
Figure 5.10 The management panel allows setting the perimeter as shown in the right ... 54	

Figure 7.1 The first view of the application .. 58	

Figure 7.2 Ordering functionality of the application ... 59	

Figure 7.3 The registration form(left) and the SMS validation (right) 59	

Figure 7.4 The view displayed while waiting for response (left) and 60	

Figure 7.5 The management panel .. 61	

Figure 7.6 Color symbolism for orders displayed to the operator 61	

Figure 7.7 Creating an operator account ... 62

Appendix 2 Glossary

API – Application Programmable Interface

CDN – Content Delivery Network

GPS – Global Positioning System

IDE - Integrated Development Environment

IIS – Internet Information Services

JSON – JavaScript Simple Object Notation

MVC – Model View Controller

ORM - Object/Relational Mapping

POCO – Plain Old CLR Objects

POI - Points of Interest

REST - REpresentational State Transfer

SDK - Software Development Kit

SOAP - Simple Object Access Protocol

WCF - Windows Communication Foundation

XML - Extensible Markup Language

Appendix 3 SendRequest method
This method is used for easily testing the JSON API

 public static dynamic SendRequest(string method, string _api, dynamic addRequest)
 {
 var WebServiceUrl = "http://localhost/TaxiDispacher/Api.svc";
 var url = WebServiceUrl + "" + _api;
 var request = (HttpWebRequest)WebRequest.Create(url);
 request.Method = method;
 request.ContentType = "application/json";//; charset=utf-8";
 var jsSerializer = new JavaScriptSerializer();
 var jsonAddRequest = jsSerializer.Serialize(addRequest);
 var writer = new StreamWriter(request.GetRequestStream());

 writer.Write(jsonAddRequest);
 writer.Close();
 var result = new ServiceResponse();

try
{

 var httpResponse = (HttpWebResponse)(request.GetResponse());
 using (Stream data = httpResponse.GetResponseStream())

 {
 string text = new StreamReader(data).ReadToEnd();
 dynamic resp = jsSerializer.Deserialize<dynamic>(text);
 result.response = resp;
 result.code = httpResponse.StatusCode;
 }

}

 catch (WebException e)
 {
 using (WebResponse response = e.Response)
 {

HttpWebResponse httpResponse = (HttpWebResponse)response;
using (Stream data = response.GetResponseStream())
{

string text = new StreamReader(data).ReadToEnd();
dynamic resp = jsSerializer.Deserialize<dynamic>(text);
result.response = resp;
result.code = httpResponse.StatusCode;

}

 }

}

 return result.response;
}

