

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

ATHLETES’ HEALTH MONITORING SYSTEM

 LICENSE THESIS

 Graduate: Stefania GLIGA

 Supervisor: Assist. Eng. Cosmina IVAN

2016

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

DEAN, HEAD OF DEPARTMENT,

Prof. dr. eng. Liviu MICLEA Prof. dr. eng. Rodica POTOLEA

Graduate: Stefania GLIGA

ATHLETES’ HEALTH MONITORING SYSTEM

1. Project proposal: The purpose of the project is to define and construct a system

for monitoring the health state of athletes. The system is designed for both athletes

and coaches with the objective of replacing pen and paper analysis of data and

offering the ability of visualizing the results in graphical form. The project’s main

objectives are creating a mobile application as easy to use as possible because of

the nature of an athlete’s schedule and creating a web portal with rich features in

order for the coach and medical staff to monitor the athletes’ health situation.

2. Project contents: Table of contents, Introduction, Project objectives,

Bibliographic research, Analysis and Theoretical Documentation, Detailed Design

and Implementation, Testing and Validation, Users’ manual, Conclusions,

Bibliography, Appendix.

3. Place of documentation: Technical University of Cluj-Napoca, Computer Science

Department

4. Consultants: Assist. Eng. Cosmina IVAN

5. Date of issue of the proposal: November 1st , 2015

6. Date of delivery: June 30th, 2016

Graduate: ____________________________

Supervisor: ____________________________

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

Declaraţie pe proprie răspundere privind

autenticitatea lucrării de licenţă

Subsemnatul(a) Gliga Stefania, legitimat(ă) cu CI seria KX nr. 811028

CNP 2930215125772, autorul lucrării ATHLETES’ HEALTH MONITORING SYSTEM

elaborată în vederea susţinerii examenului de finalizare a studiilor de licență la Facultatea

de Automatică și Calculatoare, Specializarea Calculatoare Engleza din cadrul Universităţii

Tehnice din Cluj-Napoca, sesiunea iulie 2016 a anului universitar 2015-2016, declar pe

proprie răspundere, că această lucrare este rezultatul propriei activităţi intelectuale, pe baza

cercetărilor mele şi pe baza informaţiilor obţinute din surse care au fost citate, în textul

lucrării, şi în bibliografie.

Declar, că această lucrare nu conţine porţiuni plagiate, iar sursele bibliografice au fost

folosite cu respectarea legislaţiei române şi a convenţiilor internaţionale privind drepturile

de autor.

Declar, de asemenea, că această lucrare nu a mai fost prezentată în faţa unei alte

comisii de examen de licenţă.

In cazul constatării ulterioare a unor declaraţii false, voi suporta sancţiunile

administrative, respectiv, anularea examenului de licenţă.

Data

 29.06.2016

 Nume, Prenume

 Gliga Stefania

 Semnătura

Table of Contents

Chapter 1. Introduction ... 1

1.1. Project context ... 1

1.2. Problem domain... 2

1.3. Project structure ... 3

Chapter 2. Project Objectives ... 4

2.1. Primary objective ... 4

2.2. Specific objectives ... 4

Chapter 3. Bibliographic Research ... 7

3.1. Subjective self-reporting vs objective measures ... 7

3.2. Medical background in sport .. 8

3.2.1. Training Load ... 8

3.2.2. Wellness ... 9

3.2.3. Monitoring illness and injury .. 10

3.3. mHealth ... 10

3.4. Similar Systems ... 11

3.4.1. Ohmage .. 11

3.4.2. Player Monitoring System ... 12

3.4.3. Athlete monitoring .. 13

3.4.4. Comparison between Ohmage and Player Monitoring System 13

Chapter 5. Analysis and Theoretical Foundation15

5.1. Conceptual architecture ... 15

5.2. System requirements .. 16

5.2.1. Functional requirements .. 16

5.2.2. Nonfunctional requirements .. 17

5.3. Use case specification .. 18

5.3.1. Actors ... 18

5.3.2. Use cases .. 19

5.4. Technological perspective .. 23

5.4.1. Ruby programming language .. 23

5.4.2. Ruby on Rails (RoR) ... 23

5.4.3. PostgreSQL .. 25

5.4.4. Android .. 25

5.4.5. Bootstrap .. 26

5.4.6. HAML .. 27

5.4.7. Devise... 27

5.4.8. Reform ... 28

5.4.9. Rpush ... 28

5.4.10. Chartkick .. 28

5.4.11. Volley ... 29

5.4.12. jQuery... 29

5.4.13. GCM .. 30

Chapter 6. Detailed Design and Implementation31

6.1. Implementation of the web application .. 31

6.1.1. Architecture .. 31

6.1.2. Authentication .. 35

6.1.3. Implementation details .. 35

6.2. Implementation of the Android application .. 38

6.2.1. Architecture .. 38

6.2.2. Authentication .. 39

6.2.3. Implementation details .. 40

6.3. Database Design .. 42

6.4. Deployment ... 44

6.5. Version control .. 45

6.6. Cloud deployment.. 45

6.6.1. Cloud service models .. 45

6.6.2. Cloud deployment models ... 46

6.6.3. Heroku .. 47

Chapter 7. Testing and Validation ...48

Chapter 8. User’s manual ...51

8.1. Web application ... 51

8.1.1. Installation description .. 51

8.1.2. User manual .. 52

8.2. Mobile application ... 55

8.2.1. Installation description .. 55

Chapter 9. Conclusions ...56

9.1. Main contributions ... 56

9.2. Future work ... 56

9.2.1. Mobile application .. 56

9.2.2. Web application .. 57

Chapter 10. Bibliography ...58

Appendix 1 List of figures ..61

Appendix 2 List of tables ..62

Appendix 3 Glossary ...63

Chapter 1

1

Chapter 1. Introduction

1.1. Project context

In a world dominated by technology, subject of great interest and great importance

in present days, everyone wants to exploit it at full capacity in the areas of interest, making

desired information more accessible and manageable. Lately, the world has seen a number

of advancements that revolutionized the way people work, live and play. Technology is not

only used to increase performance, but also to improve safety, facilitate monitoring and

saves humans from the trouble of doing by hand some demanding and exhausting tasks.

One of the fields in which technology has played a significant part over the years, is the

sports field.

From the beginning of civilization, sports has continuously played an important

role in human life, being one of the most disputed aspects in society. The driving force

behind sport is the athlete, without whom the sport would not exist. [1] The coach is an

important factor in the success and development of athletes, leading them towards their

goal. In modern sport era, training for performance has become a specialized science,

termed sport science. The field of sport science has led to the development of specialized

institutions throughout the world that use scientific methods to enhance sport performance.

Enhancing performance through sport science is accomplished via the combined effort of

a group of professionals, all with higher education in some aspect of sport. [1]

The world of sport has been changing unceasingly over the years and the use of

technology is one of those areas that has made an impact on many sports in the modern

days. Technology came to facilitate the ease of performing several tasks that maybe in the

past were time-consuming and the results less reliable. These improvements brought by the

continuous development of the technology are covering more and more areas of the sports

field, making monitoring easier. Thus, information about trainings and athletes’ state is

more accessible and easier to process for performance improvement purposes. Sports

technology, of course is not limited to enhancing performance; it potentially extends into

rehabilitation and injury prevention. [2] One of the means by which we can obtain the

necessary data for making this possible is monitoring athletes.

Athlete training is a repetitive process which imposes stress on an athlete,

modifying his physical and psychological state. Monitoring this process is essential to

making the training meaningful and keeping it on track. The most effective training

programs rely on a good way of monitoring due to the fact that it increases training

effectiveness. The more consistent the monitoring, the more meaningful the information

will be. Monitoring training gives the opportunity to evaluate the impact that session had

on every athlete present.

One of the simplest means of monitoring training used is keeping a detailed training

log. The log is an athlete’s personal monitoring tool. It represents the athlete’s input about

responses to training. Each log, regardless of the sport or person, contains certain basic

information. The log should monitor factors outside the training: sleep, diet, and other

factors that can have an effect on training. The coach’s training log should be as detailed

as possible and still practical in order to isolate variables to identify possible patterns as

stated in [3].

Chapter 1

2

Nowadays, coaches struggle to find ways to get their athletes to monitor key factors

that influence their performance. Information about training volume, training intensity,

sleep, stress and nutrition parameters is vital for modifying the training plan on a weekly

or daily basis. It is therefore vital that athletes provide this information as it directly

enhances the training environment and ultimately improves athlete performance.

1.2. Problem domain

Performance testing in sport science can be a time consuming and physically

demanding process, and thus is generally assessed at the beginning and end of a

performance enhancement training protocol. Questionnaires are primarily used in the

social sciences but, when developed harmoniously with sport science and monitoring

protocols, could allow sport scientists a fast and easy assessment of a performance

enhancement training protocol and the recovery status of the athletes. The use of

questionnaires in social sciences is a common mode of discerning information about a

given topic. Specifically, questionnaires are a subjective method of discerning opinions,

beliefs and behavior. Additionally, perceptions of an athlete’s abilities can directly impact

field performance. Because of this, the use of questionnaires in sport provides a method of

evaluating the enhancement of sport performance as stated in [1].

The purpose of monitoring a person over time is to obtain information about

behavior and habits, by capturing significant data from the person’s activities. The data can

then be processed and results analyzed and evaluated accordingly. A common approach is

to perform these tasks by hand, on paper or on the computer, but the process still requires

a lot of time and is extremely impractical in the long run. Collecting, processing and

analyzing data implies a time-consuming effort.

By taking advantage of modern technologies and the level of availability of today’s

resources, monitoring becomes a simple and efficient task. In addition, the data collection

process becomes faster and more effective, serving the purpose of monitoring with greater

efficacy.

A system that effectively eases the process of data collection, analysis and

visualization is proposed and aims to make the monitoring task more efficient. The purpose

of this thesis is to create a digital approach to self-reporting and monitoring through

questionnaires. Thus, the main focus will be on collecting subjective data through self-

reporting that will then be analyzed by coaches and medical staff in order to obtain

information about athletes’ health state. A mobile application will be used to collect data

and then send it to a server where it will be processed and stored securely. A web

application will connect to the server and get the stored data in order to present it in charts

and graphs. This will facilitate not only the monitoring process but also the coach’s effort

of having to analyze and evaluate the data. The system provides data in charts that will

allow the coach to directly see the results in a form that makes interpretation easier and

faster.

Therefore, the envisioned solution is addressed to both athletes and coaches in order

to replace the time-consuming operations of monitoring athletes’ health state in relation

with training sessions. The ultimate purpose is to improve performance and prevent

possible injuries.

Chapter 1

3

1.3. Project structure

The following paragraphs will describe the thesis structure, the chapters and their

content.

Chapter 1 – Introduction – This chapter contains a short presentation of the

problem context and the solution envisioned to solve the problem.

Chapter 2 – Project Objectives – This chapter presents the description of the

project main objective but also the secondary objectives proposed to accomplish by the

athlete’s health monitoring system.

Chapter 3 – Bibliographic Research – This chapter encapsulates the description of

concepts approached and their utility within the project context. Algorithms and formulas

used in calculating athlete health parameters will be described and detailed. In addition,

this chapter provides similarities and differences from the system functionalities point of

view, between the proposed system and similar systems available on the market.

Chapter 4 – Analysis and Theoretical Foundation – In this chapter the

technologies used to develop the system are structured. Also, the concepts used to create

the web application as well as those used to create the mobile application are presented and

explained. This chapter displays the functional and non-functional requirements but also

contains an identification of use cases for both applications proposed, and the ones

considered more relevant are presented in a more detailed manner. The conceptual

architecture of the system is represented, showing an overview of the entire system design.

Chapter 5 – Detailed Design and Implementation – The content of this chapter is

represented by presenting the architectures of the two applications and detailed

presentation of every component part. Deployment diagram, class diagram and database

diagram are introduced here. The architectural pattern of each application is detailed and

the communication between the modules is presented. Also the push notification

functionality is described and explained.

Chapter 6 – Testing and Validation – Testing methods of the applications are

present as well as the results of these tests.

Chapter 7 – User manual – This chapter encompasses the minimal physical

hardware resources needed for installing the system. The web application and mobile

application installation manuals are present as well as the manuals that help the user handle

the system.

Chapter 8 – Conclusions – This chapter states the objectives that were

accomplished and possible future work.

Chapter 2

4

Chapter 2. Project Objectives

2.1. Primary objective

The purpose of this thesis is to design and implement a software system that

optimizes the process of data collection, processing, analysis and visual presentation in

order to accomplish the ultimate purpose of an efficient athlete health monitoring.

Therefore, the primary objective is to develop a software solution for both athletes and

their supporting staff to help increase performance by constant monitoring and keeping

track of athletes’ subjective feedback after trainings. Reporting subjective data about

personal heath state and trainings will help the coach make an accurate assessment of the

training sessions and their impact on the athlete.

Relying on the help of the technology, we envision a system that speeds up the

monitoring process and thus, increases the accuracy of detecting possible injuries resulted

after a training session. A possible injury or beginning of an injury identified early can

prevent a health condition that maybe will require time off or will take a long time to heal,

resulting in an unwanted outcome that neither the athlete nor the coach benefits from.

A mobile application is created in order to make the athletes have the most efficient

user experience. Due to the athletes’ lack of technical knowledge, the application has to be

as easy to use as possible and because of the nature of their schedule, the response of the

interactions have to take as little as possible so the focus can be channeled to obtain a

maximum performance during training sessions. This component of the system aims to

meet the athletes’ needs and serve as a user-friendly tool that improves the self-reporting

experience and acts as a motivational factor.

Because the coaches are of equal importance in this monitoring issue, due to the fact

that they use and analyze the data in order to monitor the athletes, a web application will

be created. The users of this application will be able to view the results and interpret them

according to the wanted perspectives. The results will be presented in a way to facilitate

the monitoring of the athletes by the coach and the medical staff, which means that they

will not need to perform further operations on the data to receive the results they want.

Results will be presented in graphical form using charts for better understanding and for

faster discovery of any irregularities.

2.2. Specific objectives

General objectives of the envisioned system:

 The system aims to provide an expressive user interface, making the user

experience more satisfactory and more appealing. Through this, an

application more efficient to use is expected, giving the user the benefit of

accomplishing a particular task in less time. An efficient utilization of an

application begins in the moment the user gets familiarized with it and knows

how to perform desired tasks. An expressive user interface makes this process

faster due to the fact that learning how to interact with the system comes more

naturally and is straightforward.

 The system will be used by various types of users: athletes, coaches,

administrators, medical staff, so it will provide separate functionalities for

Chapter 2

5

each of them. Role management helps the application manage authorization,

which enables the users to have restricted access to the resources based on

their type. So another objective of the system is to have the capacity of

filtering the available resources based on the type of user that requests them.

 The system has to offer the users the possibility of authentication and reset

password. The administrator will manage all accounts in the system, will

create users, teams, and assign users to teams. After that the user will have

the possibility of resetting and recovering the password automatically in case

he forgot it.

An approach to self-reporting

The athlete will use a mobile application in order to register information about his

health condition after trainings, through surveys. The user will be registered by the

administrator and will be assigned to a team. The coach is able to create surveys and make

them available to teams, but the athletes won’t be able to access them if they are not

enabled. The mobile application has to display and submit responses introduced by the

user. It will provide a user friendly interface that will help the athlete easily register the

survey data and submit it. After submitting responses, the athlete will have the ability to

see own results and get a feedback from the system about his condition. The reporting

operation is intended to take as little time as possible in order to not make the user

experience time-consuming for the athlete.

Data processing

The user submits data through the mobile application to the server where the data is

stored securely and is only available to the authorized users. The data processing part will

involve the calculation of some basic parameters in order to analyze athletes’ state. The

system will calculate Rating of Perceived Exertion, wellness and overuse injury from the

stored data and make them available to the users of the web application.

Push Notifications

The athletes will benefit from a push notification feature meant to make possible the

unidirectional communication between the coach and the athletes. Most of the athletes have

a busy schedule and tend to forget to take the surveys in time. Taking surveys at the right

time is important in order to get an accurate view of the athletes’ state after the training

session because the perspective is still fresh. Having a notification system not only solves

this problem but also enables the coach to send messages to the athletes, give feedback or

make announcements. The coach can send notifications to all members of a team or to a

specific athlete. Also notifications can act as reminders and be sent automatically by the

system when it’s time to take the survey.

 Presentation and Visualization

 The way data is presented and visualized is significant for serving best the user’s

requirements. The system provides a way of visualizing the data after it was submitted by

the athlete, stored and processed. The web application designated to the coaching and

medical staff will display the reported data in visual charts in order to make the coach’s

job easier when having to analyze and evaluate it. The system becomes more approachable

Chapter 2

6

by processing data and turning it into something meaningful in terms of graphs and charts.

The idea is to show the user relevant data in a manner that best aids him in his tasks, instead

of overloading him with written information. Two types of graphical visualization are

possible. The coach will be able to view data of a specific athlete or of the whole team. In

addition, the mobile application will provide feedback data after the survey responses are

submitted by the athlete. In this way users can monitor themselves and be aware of their

own progress and are motivated to continue using the system.

Chapter 3

7

Chapter 3. Bibliographic Research

3.1. Subjective self-reporting vs objective measures

Monitoring athlete condition is indispensable to guide the coach into creating

training programs that best help the athletes evolve and to evaluate each training based on

athlete perspective. Monitoring also facilitates the discovery of potential training overload

and the detection of any advance towards negative health outcomes that usually result in

bad performance. This effect does not favor neither the athlete, nor the coach. The available

options to make this monitoring possible are obtained using objective and subjective

means.

A study was performed in paper [4] that compares objective and subjective

measures of athlete state. No consistent association between these measures that were

analyzed, was found. It was discovered that objective measures were not as responsive as

subjective measures in a training related context. This resulted from the subjective

measures’ capacity to detect increase and decrease in training, an undeniable indicator that

the subjective measures are certainly responsive to training load. Although the objective

measures response was limited in comparison with the subjective measures response, they

have a great utility in capturing multiple parameters related with athlete health but the

athlete’s position in relation with the training session in not necessarily reflected. Objective

measures usually consist of physiological and performance computed capacities which can

give information about athlete state to increase health condition awareness. The result

obtained by this study shows that the response of the subjective measures was consistent

with the stress inflicted, fatigue and poor health intensifying proportional with increased

training and reducing with decreased training load. The study encourages coaches and

athletes to employ self-report measures due to the fact that subjective measures have

proven to respond in the athlete health state according to changes induced in trainings.

Athletic training monitoring eases the assessment and adjustment of strategies to

optimize performance results. Coaches are given a higher degree of confidence when

having to adapt the training load of the sessions, aiming at the ultimate goal of improving

performance and in the same time decreasing the risk of illness, injury and overtraining.

Self-reporting methods such as surveys and diaries are cheap and simple means to monitor

athlete’s response to training sessions. Paper [5] states that there is more and more support

for the fact that self-reporting measures may be more precise and solid than objective

performance measures and focuses on the factors influencing the design of effective self-

reporting, minimizing implicit limitations. The study performed recommends a self-

reporting design through which to obtain quality and relevant data from the athlete with

minimum effort. This means that the questions, number of questions and frequency of

completion must be selected carefully along with an efficient employment of technology.

Chapter 3

8

3.2. Medical background in sport

3.2.1. Training Load

As it is stated in paper [6], the ultimate goal of training is to prepare athletes to

perform at their best in important competitions. By monitoring training, athletes will

receive the desired training effect and will be prepared for competition, whilst minimizing

injury and illness. Injury and illness can occur when physical demands outweigh the body’s

ability to fully recover between training sessions and competitions. Coaches and athletes

both benefit from the accurate training load monitoring.

Foster [7] developed the session RPE method of quantifying training load, monotony

and strain.

Rating of perceived exertion (RPE) as defined from Wikipedia “is a frequently used

quantitative measure of perceived exertion during physical activity”1. Sport coaches use

this method to measure the training intensity. The RPE value lies in a category of 1 to 10

and is called “the Borg Scale” (Figure 3.1). This value will be requested in a survey in

order to get the athlete intensity perception of the training session. The coach can get a

glimpse of how the training is perceived by the athlete, which provides a greater awareness

of the athlete’s physical state condition, but also measures the training degree to a certain

extent. The athlete should answer the survey as soon as possible after the training session.

Figure 3.1 Borg RPE Scale2

1 https://en.wikipedia.org/wiki/Rating_of_perceived_exertion
2 http://www.cmsfitnesscourses.co.uk/blog/128/using-the-rpe-scale

Chapter 3

9

3.2.2. Wellness

Wellness data can be captured through five topics[8]:

 Fatigue

 Sleep quality

 Muscle soreness

 Stress level

 Mood

These wellness aspects are evaluated on a scale of 1-5. An example of such a

wellness questionnaire is shown in figure 3.2. The data should be captured once a day and

preferably in the morning, in order to get accurate results. By using wellness results in

combination with other monitored athlete health topics, the coach can get a glimpse of the

athlete overall state and decide what is to be done in order to improve trainings for best

influencing the athletes to improve performance.

 The wellness data can be studied by the medical staff, and can indicate how the

athlete is affected by the training sessions. The questionnaire is a self-evaluation of an

athlete physical and mental health state, from which other aspects about the athlete can be

deduced.

Figure 3.2 Example of Wellness questionnaire3

3 http://www.scienceinsoccer.com/2013/12/creating-wellness-questionnaire-for-ipad.html

Chapter 3

10

3.2.3. Monitoring illness and injury

Gathering data about the potential injuries of an athlete can show how severe the

injury is and alert the coach and the medical stuff into taking some measures to treat, find

the injury cause and monitor the athlete closely untill complete recovery. [8]

Figure 3.3 below shows the questionnaire used by a similar system presented in the

next sections pmSys, in order to capture health problems such as illness and injury for a

player.

Figure 3.3 Example Injury questionnaire [8]

3.3. mHealth

Today’s technology has enabled mobile services to widen the horizon of health

services, resulting in a branch of eHealth, referred to as mHealth. Mobility and decreased

location dependency are interconnected aspects that need to be considered for the

efficiency of delivering correct health data. In the mHealth context, dependency on location

inherently results in mobility limitation but the support of cloud computing and

connectivity make this eHealth branch very promising and reliable due to the evolution of

intelligent sensors. [9] With the ability of individuals to not only consume health services

but also contribute to gathering data, mHealth extends the horizon of how to manage raw

and processed data to obtain relevant results.

Users can utilize mobile devices for gathering health information and monitoring.

Certain applications exist that provide guidance in health issues, diagnosis or simply

monitor user’s health condition. These applications gather data and then process it

according to certain algorithms, being able to diagnose the user and provide him

recommendations for further treatment. All mHealth applications are meant to improve

health care quality and minimize error rate by using good algorithms. The access to health

care is widened, people having the opportunity to get first-hand advice and feedback

regarding their condition when patients would not contact their healthcare providers. This

Chapter 3

11

could also decrease health care costs by lowering hospital bills as a consequence of

reducing needless hospital visits. [10]

Smartphones are omnipresent and in continuous development and with them the

number of mHealth users is in a continuous increase. The availability on Android and iOS

platforms makes mHealth applications more accessible to any type of user, independent of

the smartphone he is using. The motivation of the mHealth field came from the rapid

evolution of mobile phones in developing countries. Even rural territories of a country

gained greater access to mobile phones, thus the potential of making transaction and

information costs smaller in order to offer qualitative health services increased.

3.4. Similar Systems

Given the fact that mobile technology has developed considerably and the eHealth

field constitutes a great interest point nowadays, different systems have been created

recently in order to solve the problem of health monitoring.

3.4.1. Ohmage

Ohmage is an open mobile data collection platform initiated by Deborah Estrin at

Cornell University. It offers support for recording, storing, analyzing and visualizing

data.[11] This data collection system enables users to register data themselves using a

mobile application through self-reporting activities or the application can collect data

automatically in continuous data streams. [12] Passive data, or data collected automatically

and continuously without requiring user interaction is registered through the use of mobile

sensors, while self-reported data consists of user observations or experiences in the form

of questionnaires. Data is collected with mobile devices anytime and anywhere

independent of the network connectivity, therefore the system can work offline.

Figure 3.4 Ohmage software features4

Figure 3.4 shows the Ohmage main software features, displaying the flow of the

data from collection to analysis and offering feedback to the user.

Four main components form the Ohmage architecture [11]:

4 http://www.stat.ucla.edu/~jeroen/med2/#/step-3

Chapter 3

12

 Ohmage backend – acts as a data store and offers interface for accessing

data; also represents the central component of the platform

 Mobile applications – collect data from the users and give feedback

 Web applications – handle the data analysis and visualization

Ohmage provides an architecture rich in features and applications that can be

visualized in Figure 3.5. Other custom systems and applications can be developed

independently, using the Ohmage backend.

Figure 3.5 Ohmage system architecture [11]

3.4.2. Player Monitoring System

Player Monitoring System also known as pmSys is a software system especially

designed for monitoring football players. The system was deployed for the Norwegian

National Team and proved to represent an effective way of athlete monitoring, facilitating

the need of reporting by paper. This system offers users data collection, processing and

visualization in order to make players’ and coach’s lives easier when having to report on

trainings. With the aid of a mobile application the users can self-report at any desired

moment of time from anywhere and as many times as they need. The registered data is

submitted to a server where it is stored and processed. The system organizes data

automatically so the coach only needs to access the web portal in order to obtain the visual

results of the player he wants to know about. The system makes it easier for a team to

monitor wellness, injury and load.

The system consists of 3 main component applications [8]:

 Mobile application – enables self-reporting

 Web portal – designed for data monitoring and analysis

 Backend server – handles and processes reported data

The pmSys system uses the Ohmage backend server because of its functionality of

handling reported surveys and presenting data. Disadvantages were found for using this

backend server as it provides not only unnecessary data but also before data could be

Chapter 3

13

presented and visualized, the application needed to do many unnecessary server requests

to obtain enough data.[12]

3.4.3. Athlete monitoring

Athlete monitoring is another system that provides similar functionalities with

those we want to accomplish through the system proposed in this thesis. Athlete monitoring

is a “complete data management platform to monitor wellness, workloads, risk, fitness,

performance, health & injuries and automatically interpret data using evidence-based

methods and algorithms”.5 This system does not offer any open API thus it can hardly be

extended.

3.4.4. Comparison between Ohmage and Player Monitoring System

PmSys (Player Monitoring System) is composed of 3 modules: a web platform, a

mobile application and a notification system and is built using the Ohmage backend. So all

users, campaigns (groups), classes (roles), surveys are stored there and cannot be

manipulated by the pmSys application. A comparison the web applications’ features is

shown in Table 3.1 below.

Systems User

manipulation

Class

manipulation

Campaign

manipulation

Survey

manipulation

Visualization Push

notifications

Ohmage Yes Yes Yes Yes Yes No

pmSys No No No No Yes Yes

Table 3.1 Comparison between Ohmage and pmSys we application features

So this management part can be accomplished only by Ohmage, but the Ohmage

web portal was created for both coaches and system administrators, while pmSys focuses

on the coaches to be able to perform analytical observations from the results display. This

differentiates the systems that wanted different things to accomplish.

Referring to the visualization module, pmSys has a superior visualization of data,

enabling the users to interact with it, providing content analysis of the survey answers,

while Ohmage only provides statistical analysis. PmSys offers team data visualization

while Ohmage doesn’t have this feature at all. So definitely pmSys provides more useful

feedback for monitoring and analyzing reported data and more specific charts than

Ohmage.

 PmSys mobile application features:

 Presentation of questionnaires

 Optimized and fast reporting

 Supports local notifications

 Feedback in form of visualizations

 Offline reporting

 Cross-platform support

5 http://www.athletemonitoring.com/features/

Chapter 4

14

Functions Answer

survey

Visualization Push

Notification

Reminder Change

password

Glossary Offline

mode

Ohmage Yes No No Yes Yes No Yes

pmSys Yes Yes Yes Yes Yes Yes Yes

Table 3.2 Comparison between Ohmage and pmSys mobile application features

The primary goal of the pmSys mobile application was to improve the existing

Ohmage mobile application, emphasizing the optimization of the most important features

such as visualization and self-reporting.

In conclusion, pmSys system provides a set of rich features that encompasses

almost all features provided by Ohmage. PmSys not only offers more features but also

includes the improved version of most of Ohmage features. It is to mention that this

happens because of the fact that pmSys uses Ohmage backend to create an improved

system that better meets the client’s requirements.

Chapter 5

15

Chapter 5. Analysis and Theoretical Foundation

5.1. Conceptual architecture

The project analysis phase identified three important components, as can be seen in

Figure 4.1, which presents the conceptual architecture of the entire system. The system is

composed of several subsystems that communicate between them and offer users data

management consisting of data collection, processing, analysis, visualization, along with

message notifications. Each of these three components is crucial to the system existence as

each provides specific functionalities for the targeted users.

Figure 5.1 Conceptual architecture of the system

The first component is a web application, designed for the coaches and medical staff

to analyze and interact with all the data the athlete has registered. In order for the coach to

be able to monitor an athlete’s progress, the web application provides team and single

player visualization. In addition, this component also gives the user the ability of sending

push notifications to players of his teams.

The second component is an Android mobile application. This application is used by

the athletes in order to register survey responses. It is designed to be as easy to use as

possible and enables push notifications sent from coaches by connecting to the web

application. Application provides feedback after survey submission and athlete can

visualize own subjective data.

Chapter 5

16

The last component is the database where all the data needed by the system is stored

securely.

5.2. System requirements

A software solution is required in order to easily monitor athletes’ health state. The

system should offer the coach all the necessary functionalities needed to successfully

monitor the players from his team. The admin should be able to create users and teams and

assign coaches to teams. Coaches should be able to create surveys and make them available

to their team. Based on the type of user there are two applications provided: a web

application for the coaches and the medical staff and a mobile application for athletes. The

system should provide a way to capture and submit data through self-reporting, as well as

process and analyze it. Then the system should present the collected data through visual

and user-friendly graphical charts.

5.2.1. Functional requirements

The functional requirements of this system are as follows:

 User authentication

 The system can be used only by authenticated users. The authentication mechanism

requires users to provide a username and password combination, which are stored in the

database. A user that is not registered in the system has no access to any of the

functionalities the system offers. For both the web application and the mobile application

users are first asked for their credentials.

 User management

 Authenticated administrators should be able to create users by specifying some

minimal details about them. They could also perform edit and delete operations on users.

 Team management

 Authenticated administrators should be able to create teams by specifying a team

name. A team cannot be created if the admin doesn’t assign a coach to it. Also admins can

perform edit and delete operations on teams.

 Survey management

 Authenticated coaches should be able to create surveys. After a survey is created,

it can be assigned to a team so that players from that team can have access to it. A survey

is created with state `Disabled` by default. The coach can make the survey accessible at

any time through the `Enable` operation.

 Self-reporting

 Self –reported data will be collected with surveys using the mobile phone. Thus,

the mobile application will have to provide a way to present and submit finished responses.

Chapter 5

17

 Data processing

 Upon survey completion and response submission through the mobile phone

application, the system should be able to store, process and analyze the received data. In

addition, the system must also be able to present data in order to be evaluated by the coach

and the medical staff.

 Visualization and presentation

 The system should provide a way to present the data, after the collection and

processing. Reported data will be presented in visual charts in order to be easier to analyze

and evaluate. The mobile application will also provide feedback based on reported data in

order to increase the motivation factor.

 Push notifications

 The system will offer the ability of unidirectional communication through

notifications. The coach can send notification messages only to the players of his team in

order to communicate important details, make announcements or send reminders to the

players.

5.2.2. Nonfunctional requirements

The nonfunctional requirements of the system are as follows:

 Availability

 The system should be available all the time to the users connected to the internet or

over the mobile phone. Server and users’ location should not be considered an issue for

providing user access and data presentation.

 Security

 The system must prevent unauthorized users from having access to the data stored

in the system. Due to the fact that the system collects personal information from the users,

the system needs to be secure enough to protect the data from being accessed by

unauthorized users.

 Scalability

 The system must be able to scale with its growth due to the fact that it must be able

to store large amount of data such as responses, surveys, user information. The system has

to work fine as the number of users increases and thus multiple concurrent requests are

performed.

 Usability

 Most of the users who are athletes might not have technical background, so the

system must provide high usability through user-friendly design and simple user

interactions. All features and user design must be simple to understand and must not require

any guidance to use.

Chapter 5

18

 Performance

The reporting process must be fast and effective in order for the user to report and

use the system more frequently. Data should be stored and retrieved instantly so the system

in general should be fast and reliable.

5.3. Use case specification

Use cases have the purpose of providing a global perspective upon the functionalities

and behavior of the system. They are used for the system requirements identification,

clarification and organization.

5.3.1. Actors

After a thorough analysis of the system functionalities, several types of users can

be identified and seen in Figure 4.2:

 Admin – handles the user and team management of the system

 Athlete – exclusive user of the mobile application

 Coach – user of the web application, monitors athletes, creates surveys

 Medical staff – user of the web application, monitors athletes

Figure 5.2 Use case diagram

Chapter 5

19

5.3.2. Use cases

UC1: Login

Brief Description:

- The purpose of this use case is to capture the flow of events that an actor must

follow in order to perform the login action in a custom scenario.

Primary actor: Coach

Stakeholders and Interests:

- The coach must be authenticated in order to access the system and perform

operations.

Preconditions:

- The actor must have access to the login page of the system

Postconditions:

- The actor can perform the available actions which can modify the state of the

system

Basic Flow:

Use-Case Start

 This use case starts when the actor needs to login.

1. The actor accesses the login page.

2. The actor introduces the username and password.

3. The system verifies the validity of the credentials and allows the actor to

enter the application.

Use-Case End

The athlete ends the login operation

Alternative Flows:

1. Wrong username/password combination

This flow can occur in one of the following steps: 2

1.1 The appropriate message is shown by the system.

2. The actor doesn’t have an account

This flow can occur in one of the following steps: 2

2.1 The appropriate message is shown by the system.

UC2: Self-reporting

Brief description:

- The purpose of this use case is to capture the flow of events that an actor must

follow in order to manage self-reporting in a custom scenario.

Primary actor: Athlete

Stakeholders and Interests:

- The athlete is interested in having a user-friendly application so he can manage

to complete the required surveys at the required time and send the answers.

- The sports team manager is interested in having a user-friendly mobile

application for the athlete to find it easy to locate surveys and register data. The

user interface must be as simple as possible due to the fact that the athlete may

not have much technical knowledge and experience with such applications.

Also, response time should be short, so the user doesn’t get bored in the process.

Chapter 5

20

In addition, by showing some visual feedback to the athlete after submitting

survey responses, increases the motivational factor to keep reporting.

- The coach is interested in having the most efficient means of monitoring so they

will not have to do everything by hand.

Preconditions:

- The actor is authenticated and authorized for this use case.

- A self-reporting scenario is opened through selecting a Survey from the list.

- The survey’s state must be „Active” in order for the athlete to access it. Athletes

cannot access surveys in state „Disabled”.

Postconditions:

- Survey should remain in a consistent state if the Send operation has ended with

success.

- Survey responses are saved and submitted to server.

- Feedback is generated and displayed.

- Survey should not suffer any changes if the Send operation has not ended with

success.

Basic Flow:

 Use-Case Start

 This use case starts when the actor needs to complete a survey.

1. The actor selects a survey and opens it for completion.

2. The system will display the survey questions and possible choices.

3. The actor selects one choice for each question.

4. The actor submits the answers

Use-Case End

The athlete ends the self-reporting operation.

Alternative Flows:

1. Abort survey completion

This flow can occur in one of the following steps: 3, 5.

1.1 The actor selects the Abort (cancel survey completion) operation

and leaves the survey page.

1.2 The system remains unchanged.

2. Questions are not all completed

This flow can occur in one of the following steps: 4, 6.

 2.1 Actor submits answers.

 2.2 The system sends the actor back to step 3.

4. Operation failed

1.1 The operation failed from different reasons.

1.2 The system displays a user friendly message. No changes are

made in the system

UC3: Create surveys

Brief description:

- The purpose of this use case is to capture the flow of events that an actor must

follow in order to manage creating surveys in a custom scenario.

Primary actor: Coach

Stakeholders and Interests:

Chapter 5

21

- The sports team manager is interested in enabling the coach to perform the

actions that he considers are necessary in order to improve athlete performance

and keep injuries far away.

- The coach is interested in having a means of creating own surveys in order to

capture relevant data that interest him

Preconditions:

- The actor is authenticated and authorized for this use case.

- Access the survey creation page by clicking on “Add survey” on the survey

listing page

Postconditions:

- A new survey instance is created.

- A message is displayed noticing the user that a new survey has been created.

- A message is displayed noticing the user that that the survey did not pass all

validations and required fields are emphasized.

Basic Flow:

 Use-Case Start

 This use case starts when the actor wants to create a survey

1. The actor clicks on „Add survey” button to get to the survey creation page.

2. The system displays the survey creation form.

3. The actor completes the required fields.

4. The actor adds questions to the survey.

5. The actor submits the data.

Use-Case End

The coach ends the create survey operation.

1. Abort message send

This flow can occur in one of the following steps: 2.

1.1 The actor selects the Cancel operation.

1.2 The system remains unchanged.

2. Operation failed

2.1 The operation failed from different reasons.

2.2 The system displays a user friendly message. No changes are

made in the system

The flow diagram of this use case can be seen in Figure 4.3 below.

Chapter 5

22

Figure 5.3 Flow diagram of creating a survey

Chapter 5

23

5.4. Technological perspective

5.4.1. Ruby programming language

Ruby is a dynamic, open source programming language with a focus on simplicity and

productivity6. It has an elegant syntax that is natural to read and easy to write.

 Ruby is pure object-oriented: Programming in Ruby does offer encapsulation of

data, methods within objects, allows inheritance from one class to another and

supports polymorphism of objects. Everything is represented as an object in Ruby,

including primitive data types such as strings and integers. There is no need for

wrapper classes such as Java has.

 Ruby is multi-platform: It runs on Linux and other UNIX variants and also the

various Windows platforms.

 Distributed Ruby: DRb allows Ruby programs to communicate with each other

on the same machine or over a network. It uses remote method invocation to pass

commands and data between processes.

 Ruby is multi-paradigm: It allows procedural programming, with object

orientation or functional programming (anonymous functions). It has support for

introspection, reflection and meta-programming as well as support for interpreter-

based threads.

Ruby is the language used for building the web application. One of the main reasons

for using Ruby is because of the web framework built on it: Rails which is designed

specifically for the development of web applications.

5.4.2. Ruby on Rails (RoR)

Ruby on Rails is a web application framework written in Ruby that facilitates faster

building web applications. Rails was created in 2005 and has become a serious and popular

alternative to traditional web development environments such as Java and .NET. Rails can

be used to create professional applications, providing an open-source web framework with

integrated support for integration testing, unit testing and functional testing. Rails offers

support for using Ajax to make applications highly interactive, also for writing REST based

interfaces so they can interact with other RESTful applications with little to no effort [13].

The Android application designed for the athletes will use exactly this benefit of the Rails

framework because the application will have to communicate with the backend in order to

get the required information for display.

As many other web frameworks, Rails uses the model-view-controller (MVC)

architectural pattern, providing default structures for a database, a web service and web

pages. It encourages and facilitates the use of web standards such as JSON or XML for

data transfer and HTML, CSS and JavaScript for display and user interfacing. [14] The

Rails architecture diagram can be seen in Figure 4.2 below.

6 https://www.ruby-lang.org/en/

Chapter 5

24

In addition to MVC, Rails emphasizes the use of other well-known software

engineering patterns and paradigms, including convention over configuration (CoC), don’t

repeat yourself (DRY), and the active record pattern.

 Convention over Configuration is a software design paradigm which seeks to

decrease the number of decisions that developers need to make, gaining simplicity and not

necessarily losing flexibility. The phrase essentially means that a developer only needs to

specify the unconventional aspects of the application.7

 Don’t repeat yourself is a principle of software development, aimed at reducing

repetition of information of all kinds, especially useful in multi-tier architectures. Every

piece must have a single unambiguous, authoritative representation within a system. When

the DRY principle is applied successfully, a modification of any single element of a system

does not require a change in other logically unrelated elements.8

 Figure 5.4 Generic Rails architecture diagram9

 WEBrick is the default Ruby on Rails server. WEBrick is a HTTP server toolkit

that can be configured as an HTTPS server, a proxy server and a virtual host server. 10

 Rails is separated into various packages, namely ActiveRecord, ActiveResource,

ActionPack, ActiveSupport and ActionMailer. The ActiveRecord library implements

7 https://en.wikipedia.org/wiki/Convention_over_configuration
8 https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
9 http://vertisinfotech.com/ror-expertise
10 http://ruby-doc.org/stdlib-2.0.0/libdoc/webrick/rdoc/WEBrick.html

Chapter 5

25

ORM. It creates a persisting domain model from business objects and database tables,

where logic and data are presented as a unified package. ActiveRecord adds inheritance

and associations and integrates the Single Table Inheritance to the pattern so it increases

the functionality of the active record pattern approach.

5.4.3. PostgreSQL

PostgreSQL is an object-relational database management system with an emphasis

on extensibility and standards-compliance11. PostgreSQL is a database server with the main

goal of secure data store, supporting best practices, allowing data retrieval at the request of

other software applications. It can handle workloads ranging from small single-machine

applications to large Internet-facing applications with many concurrent users.

In article [15] the following aspects about PostgreSQL are presented:

 Compared to other RDBMSs, PostgreSQL differs itself with its support for

highly required and integral object-oriented and relational database

functionality, such as the complete support for reliable transactions.

 Due to the powerful underlying technology, Postgres is extremely capable

of handling many tasks very efficiently. Support for concurrency is

achieved without read locks thanks to the implementation of Multi-version

Concurrency Control (MVCC), which also ensures the ACID (atomicity,

consistency, isolation, durability) compliance.

 PostgreSQL is highly programmable and therefore extendible, with custom

procedures that are called ‘stored procedures’. These functions can be

created to simplify the execution of repeated, complex and often required

database operations.

5.4.4. Android

Android is a mobile operating system currently developed by Google, based on the

Linux kernel and designed primarily for touchscreen mobile devices such as smartphones

and tablets. Android’s user interface is mainly based on direct manipulation, using touch

gestures that loosely correspond to real-world actions. [16]

 Since Android devices are usually battery powered, Android is designed to manage

processes to keep power consumption at a minimum. Android manages the applications

stored in memory automatically: when memory is low, the system will begin invisibly and

automatically closing inactive processes, starting with those that have been inactive for

longest.

 Each Android application run its own Linux process. A new process starts when

any of the application’s code needs to be executed. Each process has its own virtual

machine (VM), so each application code runs independently of the other applications.

11 https://en.wikipedia.org/wiki/PostgreSQL

Chapter 5

26

Figure 4.3 shows major components of the Android OS. On top of the Linux kernel,

there are the middleware, APIs written in C, libraries and application software running on

an application framework which includes Java-compatible libraries.

Figure 5.5 Android architecture12

The mobile application for the athletes is implemented in Android SDK. Android

SDK is a software development kit that enables developers to create applications for the

Android platform.

5.4.5. Bootstrap

Bootstrap is a very popular framework for creating web applications. It is a HTML,

CSS, JavaScript framework used for web pages design, providing only front-end

development support. The main reason for using bootstrap in the Ruby on Rails web

application is because of the fact that it is very simple to use since the framework has

consistent documentation and support. Bootstrap is compatible with the latest browser

versions and supports responsive design, meaning that the pages adjust relative to the

display size of the device used.

12 https://en.wikipedia.org/wiki/Android_(operating_system)

Chapter 5

27

Bootswatch is a collection of open source themes for Bootstrap13. For the web

application we applied the Bootswatch Readable theme, which gives a plain and simple

look to the application, keeping its elements well defined, visible and in harmony. [17]

5.4.6. HAML

Haml is a templating language with an attractive syntax that enables the user to

write code faster and easier. Haml (HTML Abstraction Markup Language) finally gets

transformed into HTML and makes writing it much easier. Haml is designed to strip as

much of the repetitive HTML elements as possible, having no closing tags. Indentation

stays at the core of its structure, providing a direct visualization of the DOM hierarchy.

Haml parser throws explicit exceptions if indentation is not done appropriately so not

closing a tag will never be a reason to worry. Haml is mostly used in Ruby on Rails

applications acting as a replacement for inline page templating systems such as ERB. [18]

ERB (Embedded Ruby) is a templating system that embeds Ruby into a text

document.14 This feature combines plain text with Ruby code and the Ruby standard library

contains it. The main reason for choosing HAML over ERB is because HAML encourages

well-indented code and reflects the underlying structure of the document, making the code

hierarchy visible and easier to read. Also, it provides a faster approach to writing HTML

which constitutes a benefit for the web application development.

5.4.7. Devise

Devise is a flexible authentication solution for Rails applications. It is composed

of 10 modules: [19]

 Database Authenticable: hashes and stores a password in the database to

validate the authenticity of a user while signing in. The authentication can

be done both through POST requests or HTTP Basic Authentication.

 Confirmable: sends emails with confirmation instructions and verifies

whether an account is already confirmed during sign in

 Recoverable: resets the user password and sends reset instructions

 Registerable: handles signing up users through a registration process, also

allowing them to edit and destroy their account.

 Rememberable: manages generating and clearing a token for remembering

the user from a saved cookie

 Trackable: tracks sign in count, timestamps and IP address

 Timeoutable: expires sessions that have not been active in a specified

period of time

 Validatable: provides validations of email and password. It’s optional and

can be customized to include own validations

 Lockable: locks an account after a specified number of failed sign-in

attempts. Can unlock via email or after a specified time period

13 https://github.com/thomaspark/bootswatch
14 https://en.wikipedia.org/wiki/ERuby

Chapter 5

28

 OmniAuthable: adds OmniAuth support

Devise is used in the web application in order to perform the authentication and the

used modules are database authenticable and recoverable. This gem is used in order to

make authentication easier and faster and because it has a wide variety of features available

for usage, as can be seen above.

Many other gems that concern the same subject exist such as: Authlogic15,

Sorcery16, Clearance17, and others but they have a more limited approach.

5.4.8. Reform

Reform provides form objects that maintain validations for one or multiple models,

where a model can be any kind of Ruby object [20]. Reform is used in the web application

in order to act as an intermediate validation layer before writing data to the persistence

layer. While form objects may be used to render graphical web forms, Reform is used in

many pure-API application for deserialization and validation.

5.4.9. Rpush

Rpush is a gem for sending push notification in Ruby. The main benefits of using

rpush are ease of use, reliability and a rich feature set. [21]

Rpush has a set of supported services:

 Apple Push Notification Services

 Google Cloud Messaging

 Amazon Device Messaging

 Windows Phone Push Notification Service

Rpush gem is used for sending push notifications to the Android device from the

Rails web application, using GCM. Another alternative for using rpush is the gcm18 gem.

Gcm gem enables the ruby backend to send notifications to Android and iOS devices via

Google Cloud Messaging. The reason of using Rpush over Gcm is that Rpush provides

numerous advanced features not found in other gems, giving the developer greater control

and insight as the developed project grows. Rpush is run as a daemon or inside an existing

process and the user can choose the number of persistent connections for each application.

5.4.10. Chartkick

Chartkick is a charting library for Ruby on Rails that permits the creation of nice

looking charts for web applications. [22] Chartkick is compatible with major browsers and

can easily be used to give the application some visual effects that enhance the user’s

comprehension of the underlying information. Charts offer a way of presenting data in such

a manner to make the user better visualize it, without the need for further analysis.

15 https://github.com/binarylogic/authlogic
16 https://github.com/NoamB/sorcery
17 https://github.com/thoughtbot/clearance
18 https://github.com/spacialdb/gcm

Chapter 5

29

In the web application charts are used by the coaches and medical staff in order to

visualize the athletes’ responses to the carefully selected questions. Charts must be

displayed as clear as possible in order for the coach to be able to interpret it as fast as

possible. Chartkick provides beautiful and interactive charts with minimal effort in Rails.

An alternative to chartkick would be using lazy_high_charts19 gem but this gem

requires more effort to write the code and also support only Highcharts from ruby code

while chartkick supports Chart.js20 (HTML5 based Javascript charts), Google Charts21

and Highcharts22 (interactive javascript charts).

5.4.11. Volley

Volley is a HTTP library that makes networking for Android applications easier

and faster [23]. Using Volley has a set of advantages:

 Automatic scheduling of network requests

 Multiple concurrent connections

 Support for request prioritization

 Ease of customization

Volley is used in the Android application in order to make possible sending requests

to the Rails backend server in order to get the necessary data needed to be displayed. Volley

library masters at RPC-type operations and it easily integrates with any protocol and

provides support for raw strings, images and JSON. Volley is not suitable for large

streaming operations since it holds all responses in memory during parsing.

One of the main reasons for choosing to use Volley is because it supports JSON

objects, this being the format in which data is provided from the backend server. In addition

it is simple to use and perfect for handling small requests like the ones we need for the

application.

5.4.12. jQuery

jQuery is a fast, small and rich feature JavaScript library. It provides HTML

document traversal and manipulation, event handling and animation.

Using jQuery has a series of benefits [24]:

 Encourages separation of JavaScript and HTML: jQuery offers a simple

syntax for adding event handlers to the DOM using JavaScript, rather than

adding HTML event attributes to call JavaScript functions

 Eliminates cross-browser incompatibilities: jQuery handles browser

inconsistencies and offers an interface that functions across several

browsers.

 Is extensible: new elements, functions can be added easily and then reused

as a plugin

19 https://github.com/michelson/lazy_high_charts
20 http://www.chartjs.org/
21 https://developers.google.com/chart/
22 http://www.highcharts.com/

Chapter 5

30

The main reason for using jQuery in the web application is for being able to create

a dynamic behavior whenever needed like effect and animation or events. JQuery also

enables DOM manipulation based on CSS selectors that uses element names and attributes

as criteria to select nodes in the DOM and multi-browser support.

5.4.13. GCM

Google Cloud Messaging (GCM) is a Google mobile service that provides support

for third-party systems to send messages to devices running on Android Operating System.

Figure 5.6 Google Cloud Messaging23

 Figure 4.4, which can be seen above presents the necessary interactions that need

to be done in order to send messages from a server to an Android device. First the device

needs to register to GCM and give the server the registration id provided. After that the

server can send messages to GCM that will be delivered to the device.

 In our system we want to use GCM in order to enable the coach to send push

notifications to an individual athlete or to a group of athletes. This is useful in order to

remind the athletes to complete a survey at a given time and to notify them of training

schedule changes or other messages the coach might want to send.

23 http://phoneia.com/google-cloud-messaging-open-to-developers/

Chapter 6

31

Chapter 6. Detailed Design and Implementation

This chapter will present the detailed design and implementation of the two

components of the system: the mobile component and the web component. The diagrams

of the two architectures will be described and each module will be detailed. In addition,

other presented concepts are: database design, deployment, scrum methodology,

continuous integration and cloud deployment.

6.1. Implementation of the web application

6.1.1. Architecture

The web component is a Ruby on Rails application, designed for the coaches and

medical staff to monitor the athlete’s responses to different issues considered of importance

in order to improve performance and not threaten the athlete’s health state. The

architecture of the web application is based on the MVC24 pattern due to the nature of the

Rails framework. The application’s MVC modules interaction can be seen in Figure 5.1.

The client interacts through the views with the controller module that handles each user

interaction. The controller applies the logic corresponding to the requested action and

manipulates the model accordingly. Then it displays a message to notice or alert the user

of the state of the request (success or failure), through a flash and shows the modified

model in the corresponding view, giving the user the output of his actions.

The MVC architectural pattern divides the work that has to be done into three

separate but highly cooperative subsystems: Models, Views and Controllers. The Model

deals with the business logic, the View handles the display logic, while the controller

centralizes the application flow. MVC permits a clean separation of the web application

concerns, and keeps each part of the application in its corresponding module for easier

maintenance.

Figure 6.1 Rails MVC application structure25

24 http://www.tutorialspoint.com/ruby-on-rails/rails-framework.htm
25 http://blog.ifuturz.com/ruby-on-rails/ruby-on-rails-mvc-learn-with-fun.html

Chapter 6

32

The web application architecture can be seen in Figure 5.2 and contains the

following components: Models, Views, Controllers, Helpers, Forms, Services, Mailers and

Assets.

Figure 6.2 Web application block diagram

The Models module contains Ruby classes that communicate with the database,

store and validate data, performing the business logic of the system. The structure of the

models module can be seen in Figure 5.3.

The models contain associations between them.

Associations are a set of class methods for tying objects

together through foreign keys. They express relationships

between entities and there are four ways of associating

models: has_one, has_many, belongs_to and

has_and_belongs_to_many. All models in the web

application have associations between them. For example

the survey and team models have a

has_and_belongs_to_many association specifying a many-

to-many relationship. This associates the classes via an

intermediate join table that doesn’t have an associated

model.

Models also contain callbacks which are methods

that get called at certain moments of an object’s life cycle.

In this way it is possible to write code that will run when an

object gets created, saved, updated, validated, deleted, or

loaded from the database. Such a method is implemented on

the user model in order to generate an authentication token before creating a user that will

be used for the authentication on the Android application.

 Figure 5.3 Models Figure 6.3 Models

Chapter 6

33

The Views module represents the user interface of the

application, consisting of HTML HAML files with Ruby code.

The embedded Ruby code is fairly simple and only used to

display the requested data to the user. To be able to present data

in HAML format, the haml gem was added to the project.

HAML provides a simplified syntax of the HTML code, which

makes views faster and easier to write. The views are organized

based on the entity that they display. Figure 5.4 shows the Views

module.

The layouts folder contains the views of the application

that are used on multiple pages. It includes the user layout

consisting of the navigation and flash messages display, and the

application view that contains the layout of the application when

the user is not logged in.

Partial templates are used for breaking the rendering

process into more manageable parts. Code for rendering a

particular piece of the view can be put in its own file and may

be used in multiple views. This simplifies views and makes them

reusable. Views for questions, surveys, teams and users have a

partial named _form.html.haml that is rendered in the new and edit pages because they both

need the same form. However, the action on the form is distinct so it is passed as a

parameter for each view.

The Forms module holds the

form classes that act as an intermediate

validation before data is written to the

persistent layer. The Reform26 gem is

added to the project and is used to create

these form objects that offer validations

and nested setup of models. Forms are

defined in separate classes and these

classes partially map to a model. Figure

5.5 shows the Forms module content.

All these classes inherit from

Reform::Form and contain the mapped

model attributes declared and the

desired validations. Form classes are

instantiated in the controllers where the

desired models are passed in. After

verifying if all validations pass, the

form object is saved and therefore so is

the model object within it. In this

manner, we do not use validations

directly on the model, enabling any type of user manipulation from the rails console.

26 https://github.com/apotonick/reform

Figure 5.5 Forms

 Figure 5.4 Views Figure 6.4 Views

Figure 6.5 Forms

Chapter 6

34

The Controllers module is the logical center of the application, interacting with the

views and the models and handling incoming requests from the browser. The content of

the controllers’ module can be seen in figure 5.6.

All controllers inherit from

ApplicationController, which

contains the user authentication filter

and defines the layout of the

application conditioned by the user

being authenticated or not.

Each action in each

controller has a route defined in the

routes file that sets the type of the

request and the path. Browsers

request pages from Rails by making

a request for a URL using a specific

HTTP method such as GET, POST,

PATCH, PUT and DELETE. Each

method is a request to perform a

specific action on a resource. A

resource route maps a number of

requests to actions in a single

controller, so just by using

resources :users in the routes file,

seven different routes are created in

the application, all mapping to the

Users controller. These routes

correspond to the index (listing),

new, create, edit, update, show and

destroy actions. The root route is

mapped to the HomeController

index method that represents the

application homepage.

Helpers are used in order to extract complicated logic from the view and in order

to avoid code repetition. In the web application we defined a helper that displays a

navigation item and is used for every item in the navigation bar.

The Services module contains three services: the user creation, the reset password

and the change password. These functionalities were decoupled from the controllers

because they were more complex and required various methods in order to accomplish

their task.

The Assets module is called the Rails assets pipeline and is no longer a core feature

of Rails 4 as it has been extracted into the sprockets-rails27 gem, out of the framework. The

pipeline concatenates assets which can diminish the number of requests that a browser

makes to render a page. All JavaScript files are concatenated in a main .js file and all CSS

files are concatenated in a main .css file. In the Assets module we have the stylesheets,

javascripts and images.

27 http://guides.rubyonrails.org/asset_pipeline.html

Figure 5.6 Controllers Figure 6.6 Controllers

Chapter 6

35

The stylesheets of the project are the Bootwatch Readable theme combined with

elements of the Bootstrap Cardio theme. The javascripts folder contains the javascript code

for rendering the dynamic addition of fields and table columns needed in the application.

When a user wants to assign multiple answers to a survey question, the view displays a

table with two columns containing the already existent answers to that question. On the

page there is a button that dynamically adds a new row to the table with two text fields if

the user wants to add a new answer. Similarly when the user wants to add a new member

in a team, a select box needs to appear dynamically so that the user can select the member

to be added from the already existent users in the system. The buttons that make the

additions have attached an onClick() javascript function that gets called in order to insert

the fields. The functions use jQuery to append a new element to the table having the

specified id or to the div having a given class.

The Mailers module contains a user_mailer class that is used to send the email with

the generated password to the user, after it has been created or after the user forgot his

password and chose to reset it. Mailers allow sending emails from the application using the

mailer classes and views. Each of the user_mailer methods has an associated view in which

the html of the mail and content are defined.

6.1.2. Authentication

The web application uses the Devise28 gem, which is a popular authentication

solution for Rails applications that takes care of many different aspects for the developer.

In order to get Devise up and running, a series of simple commands must be issued and it

can be customized easily. In the web application we use Devise to handle login and logout,

but also the reset password and change password mechanisms. This is implemented by

adding in the User model the devise database_authenticable and recoverable modules.

Devise also generates routes for the login and logout pages, so in the routes file a

single line is added: devise_for :users. By adding before_action :authenticate_user! in the

ApplicationController we force the user to redirect to the login page if the user was not

authenticated. Devise also provides a series of useful helpers that we use throughout the

application. The user_signed_in? method verifies if a user is signed in and the

current_user method gets the current signed in user. Both can be used in every controller

and view in the system.

6.1.3. Implementation details

One of the important components of the web application is the Gemfile29. The

Gemfile is a file used for describing gem dependencies for Ruby programs. A gem is a

collection of Ruby code that we can extract into a collection which we can call later. The

Gemfile is located in the root of the project directory where the Bundler30 expects to find

it. The bundler provides a consistent environment for Ruby projects by tracking and

installing the exact gems and versions that are declared in the Gemfile.

28 http://www.rubydoc.info/github/plataformatec/devise/#Warden
29 http://tosbourn.com/what-is-the-gemfile/
30 http://bundler.io/

Chapter 6

36

The web application was created having in mind that it would be used by the

coaches of teams, in order to monitor their athletes’ health state by analyzing the responses

to a series of surveys. They can create any survey and make it available to the athletes to

complete. The results can be seen in visual charts per team or per athlete and in order to

make this possible the chartkick31 gem was used. Chartkick is a javascript library that

works with Google Charts and that creates beautiful and interactive charts. It has many

options for customization and also has many supporting libraries like groupdate32.

Groupdate gem was also used because it provides the simplest way to group models by

day, week, hour of day, month, year and works hand in hand with chartkick.

 When accessing the view results page as coach, every survey available to the team

is shown and each one has a page that displays a column chart for every question in the

survey in order to point out how many users chose a particular answer. In addition at the

top of this page a line chart is added in order to display the number of users that answered

the survey in a particular date. This was done with the help of the above mentioned libraries

directly in the view, as shown below:

%h4.margin
 = 'How many answered this survey?'
- @users = User.where(team_id: @team.id)
= line_chart UserAnswer.where(user: @users,
answer:@answers).group_by_day(:created_at).count

- @questions.each do |question|
 %h4.margin
 = question.text
 - @user_answers = UserAnswer.where(answer_id: @answers, user: @users)
 = column_chart @user_answers.joins(:answer).group('answers.text').count

 Form objects are used using the Reform gem in order to create an intermediate

validation layer of the model before saving it in the database. The form gets instantiated in

the controller where a model is assigned to it. Beside an underlying model, a form contains

other attributes. When creating a survey, we create a form for it and pass it a new survey

instance. After it has been instantiated, we validate the form, passing it the parameters

introduced by the user in the view form. This validation does the mapping of the form

model with the parameters hash received. If the validations pass, the form is saved and the

survey is saved along with it. We can see the create method from the SurveysController

below.

def create
 @form = CreateSurveyForm.new(Survey.new)
 if @form.validate(survey_params)
 @form.save
 redirect_to surveys_url, flash: { notice: 'Survey successfully added' }
 else
 render 'new'
 end
 end

31 http://chartkick.com/
32 https://github.com/ankane/groupdate

Chapter 6

37

 But when we create the survey, we want to be able to also create questions for it

and save them along with the survey association. For that we used nested models in the

form. So besides declaring the survey attributes, we also declared a collection of questions

associated to the survey along with the attributes that we needed to access from them. In

order to do the mapping of the questions parameters sent by the user and the nested

questions model we created a populator. Populating is invoked in the validate method and

will add nested forms depending on the incoming hash. The populator shown in the class

below creates as many questions as you want to introduce and also handles destroying them

if you want to delete a question from a survey.

class CreateSurveyForm < Reform::Form
 property :name
 property :description
 property :status
 collection :questions, populator: :populate_questions do
 property :text
 property :_destroy, virtual: true
 end

 validates :name, :description, :status, presence: true

 def populate_questions(fragment:, **)
 item = questions.find { |question| question.id.to_s == fragment['id'].to_s &&
!question.id.nil? }
 if fragment['_destroy'] == '1'
 questions.delete(item)
 return skip!
 end
 item ? item : questions.append(Question.new)
 end
end

 In order to add questions to a survey, the user interface was designed to provide

a button that dynamically adds fields to a div, along with a delete field button for the case

we decide to delete a question. In order to achieve this functionality, a jQuery function

was created so that each time a button with the add-field class is clicked, it inserts a new

text field and appends it to the div. This function is included in the $(document).ready

so it will run only when the page DOM (Document Object Model) is ready for JavaScript

code to execute. The function is shown below:

$(document).ready(function(){
 $('.multi-field-wrapper').each(function() {
 var $wrapper = $('.multi-fields', this);

 $(".add-field", $(this)).click(function(e) {
 var inputs = $(this).closest('div').find($("input[type='text']"));
 var counter = inputs.length;
 var field = $(this).closest('div').attr('id');
 var multifield = $(document.createElement('div')).attr('class', 'multi-
field', 'id', counter);
 if ($(this).attr("id") == 'questions')
 multifield.after().html('<input type="text" class="form-control"
id="create_survey_' + field + '_attributes_' + counter +

Chapter 6

38

 '_'+ 'text' + '" name="create_survey['+ field + '_attributes][' +
counter + '][text]" value="" style= "width: 450px"><button class="btn btn-danger btn-sm
glyphicon glyphicon-trash" type= "button" onclick="deleteField(this)"></button>');
 multifield.appendTo($wrapper);

 });
 });
})

6.2. Implementation of the Android application

6.2.1. Architecture

The mobile application was designed to run on Android devices and was

implemented in Java programming language, using the Android SDK tools and the Android

emulator. Android SDK contains all the necessary documentation, libraries and tools to

build and debug an application. Android Studio is the official IDE for Android platform

development and was used for writing the application, being very user-friendly. It uses

gradle to automate the application build and to facilitate the addition of libraries to the

project. Android Studio also provides quick fixes and Android specific refactoring which

makes it a powerful tool in the development of the application.

The mobile application was developed just for the athletes, so they can manage to

submit their subjective perspective on the training and their current heath state independent

of the access they have to a computer. So the Android application is meant to facilitate the

accessibility to the application in order to motivate the user to register responses to the

available surveys at the required time.

Figure 5.7 shows the structure of the mobile application. The application is

composed of Activities, Adapters, Layouts and classes that make possible the Push

Notification feature. An Activity is an application component similar to a controller that

renders a view with the same name from the Layouts folder and has methods that

implement the view’s functionality. The mobile application consists of multiple activities

that are connected to each other. MainActivity is the activity presented to the user when

first launching the application and represents the login page.

An Adapter object is an application component that acts as a bridge between an

AdapterView and the underlying data for that view. The adapter is responsible for making

a view for each data item in the array given. We have two adapters, one for creating the

survey list, and one for creating the questions list along with the answers.

The Layouts folder contains all the xml views from the application. A layout

represents the visual structure for a user interface. Layouts are usually associated with

activities and when a new activity is created, a new layout file with the same name is

generated and displayed on create. The mobile application has a layout for each activity,

layouts for two different list items and a footer layout where a button is placed in order to

be displayed at the bottom of the survey question list.

Chapter 6

39

Figure 6.7 Mobile application architecture

The application contains three pages on which the user can navigate. The

MainActivity class represents the login page and is the first page accessed by the user when

running the application, containing the email and password fields that the user will have to

complete in order to authenticate. The introduced fields will be checked on the backend

server and after successful login, the athlete will be redirected to the HomeActivity

consisting of the survey listing page.

The survey list page along with the survey page consists of ListView items.

 A ListView is a group that displays a list of scrollable items. Items are inserted in the list

using an Adapter. So the list and the list item are two separate files in the layouts folder.

For example we take activity_home and list_item from the above diagram.

Activity_home.xml contains only a ListView, while the list_item.xml contains two

TextViews: one for displaying the survey title and one for displaying the survey

description. The SurveyAdapter gets all surveys from the request, converts each item into

a view and places the view in the list.

6.2.2. Authentication

The mobile application uses stateless authentication which means that no session is

persisted on the server side. When the user introduces his credentials correctly, he receives

a token stored in the database and will attach that token in a header in each subsequent

request he makes to the server in order to be identified. This token based authentication

method is commonly used nowadays for those using an API, being a good way of handling

authentication for multiple users.

Chapter 6

40

6.2.3. Implementation details

The authentication token received at login time will get stored in the application.

For that a class named SharedPreference was created in order to keep the token and retrieve

it whenever a request must be done.

For obtaining the necessary data for the mobile application, requests are sent to an

API that runs on the server. This API is consumed by the client and the requested data is

sent in JSON form. A POST request is sent in order to make the authentication and submit

the survey data and GET requests are done in order to get the surveys with questions and

answers. Transmitting network data was implemented using a library named Volley33, that

handles networking for Android using HTTP requests. Volley has support for JSON, which

was the form in which the data was intended to be transmitted from the server, so the library

met the application’s needs.

 For example the following code shows the getSurveys() function, which retrieves

the available surveys, attaching the necessary headers (Authorization, Accept) to the

request:

public void getSurveys() {

 final RequestQueue queue = Volley.newRequestQueue(this);
 String url = "http://192.168.1.5:3000/api/v1/surveys";

 final JsonObjectRequest jsObjRequest = new JsonObjectRequest
 (Request.Method.GET, url, null,getSurveysListener(),
getSurveysErrorListener()) {

 @Override
 public Map<String, String> getHeaders() throws AuthFailureError {
 Map<String, String> params = new HashMap<String, String>();
 params.put("Authorization",
SharedPreference.getValue(HomeActivity.this));
 params.put("Accept", "application/json");
 System.out.println(params);
 return params;
 }

 };

 queue.add(jsObjRequest);.

}

If the requested data can be accessed and we receive a response with success the

following function gets the JSON Array from the request response and displays data in list

format on the screen:

private Response.Listener<JSONObject> getSurveysListener(){
 return new Response.Listener<JSONObject>() {
 @Override
 public void onResponse(JSONObject response) {

33 https://developer.android.com/training/volley/index.html

Chapter 6

41

 try {
 JSONArray surveys = response.getJSONArray("surveys");
 adapter = new SurveyAdapter(HomeActivity.this, surveys);
 listView.setAdapter(adapter);
 } catch (JSONException e) {
 e.printStackTrace();
 }
 }

 };
 }

 In order to display the selected survey and make it available to the athlete, the

application has to retrieve the questions and answers for that specific survey, so it has to

pass the survey between activities. This action was accomplished by attaching extra

information to the specific Intent:

 v.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 try {
 Toast.makeText(context, "You Clicked "+survey.getString("name"),
Toast.LENGTH_LONG).show();
 Intent intent = new Intent(context, SurveyActivity.class);
 intent.putExtra("survey_id", survey.getString("id"));
 context.startActivity(intent);

 } catch (JSONException e) {
 e.printStackTrace();
 }
 }
 });

In order to display the selected survey, questions must be shown in form of a list and

answers must be displayed with radio buttons below each question. For this we created a

ListView containing the text of the question and a radio button group. For displaying each

question with corresponding radio button group an Adapter is used. Below can be seen the

method that does the actual insertion of each item in the ListView of questions.

public View getView(int i, View convertView, ViewGroup viewGroup) {
 final JSONObject question = (JSONObject) getItem(i);
 ViewHolder holder;

 LayoutInflater layoutInflater = LayoutInflater.from(context);

 if (convertView == null) {
 holder = new ViewHolder();
 convertView = layoutInflater.inflate(R.layout.radio_button, viewGroup,
false);
 holder.question = (TextView) convertView.findViewById(R.id.question);
 holder.relativeLayout = (RelativeLayout)
convertView.findViewById(R.id.relative_layout);
 convertView.setTag(holder);
 } else {
 holder = (ViewHolder) convertView.getTag();
 }

Chapter 6

42

 try {
 holder.question.setText(question.getString("text"));
 createRadioButton(holder, convertView, question.getString("id"));
 } catch (JSONException e) {
 e.printStackTrace();
 }
 return convertView;
 }

This function calls the createRadioButton function for each question in the survey

list and inserts the result in the view. The createRadioButton function retrieves the answers

for the question passed as a parameter and creates a radio button for each answer with the

answer text from the JSON. The function can be seen below.

private void createRadioButton(ViewHolder holder, final View view, final String
question_id) throws JSONException {
 final RadioButton[] radioButtons = new RadioButton[20];
 final RadioGroup radioGroup = new RadioGroup(context);
 radioGroup.setOrientation(RadioGroup.VERTICAL);
 int count = 0;
 for (int i = 0; i < answers.length(); i++) {

 if (answers.getJSONObject(i).getString("question_id").equals(question_id))
{
 radioButtons[count] = new RadioButton(context);

radioButtons[count].setId(Integer.parseInt(answers.getJSONObject(i).getString("id")));
 radioGroup.addView(radioButtons[count]);

radioButtons[count].setText(answers.getJSONObject(i).getString("text"));
 count++;
 }
 }

 holder.relativeLayout.addView(radioGroup);

 radioGroup.setOnCheckedChangeListener(new RadioGroup.OnCheckedChangeListener()
{
 @Override
 public void onCheckedChanged(RadioGroup radioGroup, int i) {
 RadioButton rb = (RadioButton) view.findViewById(i);
 listener.handleSelect(question_id, String.valueOf(rb.getId()));

 }
 });
 }

6.3. Database Design

The system uses a PostgreSQL database that contains 8 tables. Each table

corresponds to a model in the application. In order to add tables and fields to the database,

or to perform any type of database changes, rails can generate migrations34. Migrations are

a convenient way to change the database schema over time in a consistent and easy way.

Each migration can be thought of as representing a new version of the database. A schema

34 http://edgeguides.rubyonrails.org/active_record_migrations.html

Chapter 6

43

is initially empty and each migration modifies it to add or remove tables, columns or

entries. When a migration is executed the db/schema.rb file will be also updated to match

the new structure of the database. A migration that adds a surveys table to the database

with the necessary attributes look like this:

class CreateSurveys < ActiveRecord::Migration
 def change
 create_table :surveys do |t|
 t.string :name
 t.string :description
 t.string :status
 end
 end
end

In the next diagram we can see all tables from the database and the relations

between them. The primary key are specifically identified and so are the foreign keys in

each table.

Figure 6.8 Database diagram

 The database tables do not contain duplicate data so there is no redundancy at data

level. Whenever a modification is performed, data is updated in a single table. The tables

contain attributes that concern only a specific entity. Below is an analysis performed in

order to determine the level of normalization of the system database.

First normal form (1NF) states that each table must contain a primary key, not have

repetitive groups and each attribute can receive an atomic value, not a set of values. In

Chapter 6

44

addition each attribute must be dependent on the primary key. The system database meets

these criteria.

Second normal form (2NF) conversion is done by eliminating partial dependencies

(dependencies of an attribute to only a part of the composite primary key). The system

database does not have composite primary keys, the primary key being composed of a

single attribute. This means that the database is already in 2NF so this conversion is not

required.

Third normal form (3NF) conversion is done by eliminating the transitive

dependencies (the dependencies of an attribute that is not part of the primary key to another

attribute that is not part of the primary key either). Generally this dependencies only happen

if one table holds data from different fields, which is not the case of our database. In the

system database all tables’ data concern only a specific model.

Boyce Codd normal form (BCNF) conversion is done by eliminating the functional

dependencies given by the fact that an attribute that is not part of the primary key is a

determinant of another attribute from the primary key. In the system database, each created

table has a primary key that contains a single attribute which is the determinant of all the

other attributes from the table. Therefore our database qualifies for the Boyce Codd normal

form.

6.4. Deployment

The deployment diagram in Figure 5.9 shows what hardware components can be

used and which software components run on each of them. The connections between

components can be also depicted and the communication is done through HTTP requests.

Figure 6.9 Deployment Diagram

The purpose of this diagram is to show the hardware resources necessary in order to

run the system. The server hosts the PostgreSQL database and will be accessed by both

client applications in order to perform the necessary operations.

The mobile application can be accessed from any device running on Android with

version at least 9 and requires access to the internet in order to function properly. In

development environment, for using the Android phone or tablet to test the application, the

localhost on which Rails server starts must allow public connections, so the application

Chapter 6

45

connected to the same network can access it. In order to do this the server was started with

the - -binding 0.0.0.0 option and the requests were made using the computer IP.

The communication between the Android application and the server is done through

HTTP requests to the Rails API that gives back responses in JSON form. The mobile

application then displays the received data to the athlete, in order to enable him to perform

the required operations.

The web application can be accessed from any browser, either on a mobile device or

desktop environment but it is primary conceived for use on a PC.

6.5. Version control

When developing the proposed system, version control was employed by using Git35.

Git is a version control system used for software development in order to back up your

source code. Every time a significant change was done, it was committed, each commit

being a backup of the files at that point in time. Each commit points back to the one that

came before, so version history can be seen from the BitBucket repository. The main

benefits of using version control systems is that you can see anytime how your code looked

like in the past.

Each repository has a master branch and other branches can be created in order to

keep independent versions of the files when you work on separate tasks. This is useful to

avoid the interference of multiple streams of work and then in order to combine everything

back to a single unitary project, a merge request is performed. After reviewing the changes

and solving possible conflicts, merge is applied. However, this is usually used when

multiple people work on the same project, so in the case of the proposed software solution

only the master branch was used, pushing all commits there.

6.6. Cloud deployment

Cloud computing, also known as the cloud, is a synonym of the Internet. Cloud can

serve a wide range of functions over the Internet like storage and virtual servers, therefore

defining itself as a broad collection of services that provide shared processing resources on

demand.

6.6.1. Cloud service models

Cloud computing contains three cloud service models that ca be seen in Figure 5.10

and are explained below.

 Infrastructure as a Service (IaaS) – the most basic cloud-service model

that provides computing infrastructure: virtual machines and other

resources, as a service to subscribers. The consumers can manage the

operating system and their software application and they cannot manage the

cloud underlying infrastructure.[25]

 Platform as a Service (PaaS) – offers a development environment to

application developers including operating system, programming language

35 https://en.wikipedia.org/wiki/Git_(software)

Chapter 6

46

execution environment, database and web server. Developers can run their

software solutions on a cloud platform without the trouble of managing the

underlying hardware and software. So the consumers only have control over

the deployed applications and they also have the ability to create own

configuration settings for the application environment [25].

 Software as a Service (SaaS) – provides access to application software and

databases but consumers cannot manage the infrastructure and platforms

where the application runs [25].

Figure 6.10 Cloud Computing Models36

6.6.2. Cloud deployment models

Cloud computing contains various deployment models [26]:

 Private cloud – the platform for cloud computing is implemented on a

secure environment guarded by a firewall. It only gives access to the

authorized users

 Public cloud – when the services are delivered over a network that is open

for public use. The difference between public and private clouds lies in the

level of security offered for various services given to the public cloud

consumers by the cloud hosting providers.

 Hybrid cloud – a composition of two or more cloud types that stay distinct

entities but are bound together, providing the advantages of multiple

deployment models. Non-critical resources like development and test can

reside in the public cloud while the sensitive data must be stored internally.

36 http://blog.samisa.org/2011/07/cloud-computing-explained.html

Chapter 6

47

 Community cloud – cloud setup is shared between community participant

organizations. Community member share similar privacy, performance and

security aspects.

6.6.3. Heroku

One of the advantages of choosing cloud providers to host the Rails backend server

is that most cloud services are able to offer a close to 100% uptime. In addition, they

provide scalability, meaning that we can scale our system and increase hardware

specifications as much as we need. Most popular cloud platforms that can host Rails

applications are: Amazon AWS37, Digital Ocean38, Engine Yard39 and Heroku.

Heroku was chosen for the deployment from the above list because it provides

support for Ruby applications, it’s free at the beginning and deploys are automated using

git push. So given the fact that git was used for version control, it is really simple and easy

to deploy, once the repository is updated.

 Heroku is a cloud platform service for deploying and running modern applications

including Rails applications. It makes the deployment experience very short and easy. The

applications run in smart containers named dynos with curated, automatically patched

operating system images. Heroku Postgres and Heroku Redis are fully managed data

services operated by Heroku. Heroku runtime provides a set of services that orchestrate

and manage the execution and scale of the application. Users can access the application

from any device using HTTP [27].

In order to run the application on Heroku, no changes needed to be done and as

Rails is an established framework, Heroku can figure out which parts of the application are

runnable. The Heroku platform uses git as the primary means of deploying the application,

so when an application on Heroku was created, the web application’s local repository was

associated to it and deploying the code was basically pushing the master branch into the

new git remote created.

When Heroku receives the application code, it begins a build of the application,

fetching all dependencies included in the Gemfile, as well as generating files based on the

asset pipeline. When deploying an application for the first time, Heroku automatically

boots a dyno, loads it with your slug (generated output of the system build executed in the

last step that is ready for execution) and execute the command associated with the web

process type in the Procfile. Each time a new version of the application is deployed, a new

slug is created and a release is generated.

37 https://aws.amazon.com/
38 https://www.digitalocean.com/
39 https://www.engineyard.com/

Chapter 7

48

Chapter 7. Testing and Validation

This chapter presents the main testing processes that were applied for the whole

system. Testing in general doesn’t guarantee that a system functions correctly and

completely in all situations, but can help identify possible problems that maybe weren’t

expected by the developer and drive him on the correct path of finding solutions for the

problems found. Testing can be defined as a validation process of the fact that the system

was implemented meeting the imposed requirements. System testing is done based on the

functionalities offered by the system, through the user interface, by analyzing use cases’

correctness. The behavior in different situations is analyzed by introducing valid and

invalid data and observe the provided feedback and the update of the stored data.

System testing is very important, sometimes a crucial step of a software product

delivery. In order for a system to behave as expected all modules and the communication

between them must operate correctly. The system’s development process was an iterative

one and as a result each feature implemented was tested after finishing implementing it.

Therefore, each component of the system was manually tested, starting from some simple

success scenarios to scenarios where invalid data was introduced in order to test the

implemented validations and the display of the appropriate messages. This manual testing

model applied at the end of a component’s implementation was used for both the web

application and the mobile application.

 Testing the Rails API for the Android application was done before the Android

application was implemented, so this was possible using Postman. Requests were sent to

the specific URLs with the appropriate Headers and methods and the JSON response was

shown on the screen. So even before the mobile application was developed in order to test

if the backend sent the appropriate response, these functionalities were tested to make sure

that the Rails application was fully functional. Of course they were again tested when the

Android application was ready to make requests and display responses.

 Besides manual testing, the evaluation of the proposed system was done by

comparing it with the pmSys system (Player Monitoring System) developed as a master

thesis project by a team in Norway. They developed a software solution for football players

in order to monitor their wellness, injury risks and RPE. The pmSys application does this

by connecting to an external server named Ohmage.

 PmSys system is composed of 3 modules:

 A mobile component

 A web component

 A push notifications module

 The athletes’ health monitoring system is composed of 2 modules but it

integrates the sending of the push notifications by using GCM:

 A mobile component

 A web component

PmSys mobile application features:

 Cross platform(iOS, Android)

 Notifications

Chapter 7

49

 Reminders

 Change password

 Survey response registration

Function Survey

list

Survey

response

registration

Notifications Reminders Change

password

Cross

platform

pmSys Yes Yes Yes Yes Yes Yes

Athletes’

Health

Monitoring

System

Yes Yes Yes No No No

 Table 7.1 pmSys vs Athletes’ Health Monitoring System mobile application features

Even if the mobile application doesn’t have all the features that pmSys offers, the

main focus of our system was to be able to answer surveys as quick as possible. That’s why

the questions are displayed on the same page in a scrollable list, having a submit button at

the end of the list, instead of having questions appear each on a separate view with a next

button, like pmSys application displays the surveys.

PmSys web portal features:

 Detailed visualization of players’ results

 Sending push notifications

Systems User

management

Team

management

Survey

management

Visualization Notifications

pmSys No No No Yes Yes

Athletes’

Health

Monitoring

System

Yes Yes Yes Yes Yes

 Table 7.2 pmSys vs Athletes’ Health Monitoring System web application features

PmSys uses Ohmage as backend so all the users, the teams, the roles, the surveys

are handled from there with the proper rights. That means that you cannot add or remove

users or manage teams from the pmSys application. It is also not possible to create and

assign surveys to teams. All this data comes from making requests to the Ohmage backend

but it cannot be manipulated by the pmSys administrator user. Our application provides

an accessible way of handling all this management operations by the admin user directly

from the web application. In addition, the application offers the coaches the ability of

Chapter 7

50

creating own surveys with the purpose of gathering subjective data about different fields

that the coach considers of importance, in order to monitor athlete performance and detect

possible injuries.

In conclusion, the proposed system compared to a similar system that is actually

used today by multiple Norwegian football teams, has advantages and disadvantages,

providing some features that the pmSys system does not support but also not providing

others that pmSys offers. However, our system reached the desired requirements and the

results of the testing are the expected ones, stating that the proposed system is valid and

works properly.

Chapter 8

51

Chapter 8. User’s manual

8.1. Web application

The users of the web application don’t need to have specific hardware resources,

only a functional browser in order to be able to access the application. The deployment of

the application can be done in any cloud computing system that support ruby.

The dependencies of the web application:

 Ruby 2.3.0

 Rails 4.2.6

 PostgreSQL 9.5

8.1.1. Installation description

The next steps are conceived to offer the possibility of installing the web application

on a personal computer.

The recommended operating system for installing and running the web application

is Linux because of the fact that many binary gems are difficult or impossible to install on

Windows. Anyhow, installing and running the application on Linux is done very easily

following the next steps:

1. Installing Ruby

We install Ruby using RVM (Ruby Version Manager) so that we can use various

versions of ruby on the same computer if we need or if we want to use a new ruby version

we only need to run a command to change the default ruby version used. We install RVM

by opening a terminal and running:

 \curl –sSL https://get.rvm.io | bash.

To display a list of all known rubies we run:

 rvm list known.

We want to install ruby 2.3.0 and use it so we run the following commands:

rvm install 2.3.0

rvm use 2.3.0

To check if this worked correctly:

ruby –v.

2. Installing Rails

Since Rails has many dependencies, we will need to install a JavaScript runtime

like NodeJS. This allows us to use the Asset Pipeline in Rails which combines and minifies

javascript files to provide a faster production environment. To install NodeJS:

 curl –sL https://deb.nodesource.com/setup_4.x | sudo -
E bash –
 sudo apt-get install –y nodejs
 And now, to install Rails 4.2.6:

 gem install rails –v 4.2.6
 Now that Rails is installed, we check that everything installed correctly:

 rails –v

Chapter 8

52

3. Installing PostgreSQL

 In order to install PostgreSQL we need to add the PostgreSQL repository:

sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt/
`lsb_release -cs`-pgdg main" >> /etc/apt/sources.list.d/pgdg.list'

After this we need to import the GPG key of the repository:

wget –q https://www.postgresql.org/media/keys/ACCC4CF8.asc -O - |
sudo apt-key add –
 Update the package list:

 sudo apt-get update
The next command installs the latest version of PostgreSQL:

 sudo apt-get install postgresql postgresql-contrib
For a better view of the database pgAdmin is also installed:

sudo apt-get install postgresql-9.5 pgadmin3

4. Running the project

The last step before being able to use the application is to start the server and access

the server location from the browser. We start the rails server using the following command

in a terminal:

 rails s
If the server starts successfully, then our project will be available at

http://localhost:3000, the server administration address.

8.1.2. User manual

The first page the user sees is the login page because the system can be accessed

only by authenticated users. In order to authenticate successfully, the users have to

introduce a username and a password in the corresponding fields on the login page.

The login page is shown below:

Figure 8.1 System login page

Chapter 8

53

Once the authentication finalizes successfully, the users will be able to use the

application. The Home page is the first page they see after logging in.

Figure 8.2 System Home page

As it can be seen in the above figure, we have a navigation at the top of the screen

from where we can access other features offered by the application. For example if we click

on Survey management we will see the following page:

 Figure 8.3 Survey view

Chapter 8

54

 On this page if we want to visualize a survey, we only have to push View Survey

in order for the survey page to appear.

Figure 8.4 RPE survey

 For viewing results we can access the View results page from the top navigation.

The page displays all the teams from the system and we can choose any team to view its

results by survey for all team or by individual member in team.

 Figure 8.5 View results page

Chapter 8

55

8.2. Mobile application

The mobile application needs Android OS to run. The application can be used as long

as it is in the same local network with the backend Rails server. This can happen if the

Android devices and the device that hosts the server are connected to the same wireless

network.

8.2.1. Installation description

1. Hardware Requirements

- Mobile device: phone or tablet

- Internet connection

2. Software requirements

- Android OS

- Minimal version for the operating system is 9.0

3. Installing the application

- Android supports sideloading, allowing you to install applications outside

of Google Play. This is disabled by default so we need to go to Settings-> Security

and enable the Unknown sources check box.

- Download the .apk file on a computer

- In case the user does not have a file management application, he can

download one from Google Play

- When the USB connection with the device is done, the .apk file is copied

to the device file system.

- We navigate with the use of the file manager application to the place the

application has be uploaded and we click on it, this action triggering the application

to start installing on the device. We need to give the application access to the

Internet in order to function correctly.

Chapter 9

56

Chapter 9. Conclusions

In this thesis we have proposed and implemented a monitoring system for athletes,

that performs data collection, processing and presentation. The system is an easy approach

toward monitoring athletes by collecting subjective data and presenting it to the coaches

for easier analysis of athlete performance and detection of possible injury factors. The

system realized is a combination of a mobile application used to report data and a web

application to monitor and analyze the data.

9.1. Main contributions

The proposed system managed to achieve its ultimate purpose of being a system that

can be used to monitor athletes through gathering subjective data.

We implemented a method of self-reporting by using surveys to collect data using a

mobile application. The submitted data is sent and stored on the backend server. The web

application retrieves the data from the server and presents it to the coach in different charts.

Therefore, the coach is able to analyze it better and faster in order to detect any potential

injury causing factors and monitor the athlete performance by reviewing training related

answers. Basically, the coach can introduce in a survey, any question that he considers of

importance for the analysis of the athlete state that could impact his further performance.

 Secondary objectives have also been realized: the users are identified by their role,

they can authenticate using username and password, team management, user management,

and survey management are implemented facilitating the addition of any survey from the

user interface by introducing questions and corresponding answers. Also the coach can

visualize from the results section the results of the athletes corresponding to his team in

charts.

 The system compared with similar systems has advantages and disadvantages.

While the proposed system offers direct survey creation from the web application user

interface, pmSys which uses Ohmage as the backend server, needs to upload surveys to the

third party software in a specific format. However, pmSys mobile application supports

offline mode which is an aspect that our mobile application does not treat. In conclusion,

the proposed system can compete with other similar software systems but is not necessarily

better, having pluses as well as minuses. The system was deployed in cloud and is

accessible from any computer with internet connection.

9.2. Future work

Generally, each software solution developed can be extended and improved in order

to better satisfy client needs. Further development of a system can include anything from

implementing new functionalities to improving the ones implemented, in order to achieve

better performance. In the next section possible future work and improvements for the

proposed system are presented.

9.2.1. Mobile application

 Mobile application for general use: The mobile application could be extended in

order to also offer benefits to other types of users such as coaches and medical staff.

Chapter 9

57

Due to mobile applications’ accessibility, they represent the preferred type of

applications nowadays.

 iOS and Windows Phone: Currently, the proposed solution only works on Android

devices, so offering similar mobile applications for iOS and Windows Phone could

be a great future work. Nowadays, Android users are approximately as many as the

iOS users so athletes surely won’t all be using Android, therefore the necessity of

offering an application also for the other platforms is a concern.

 Offline support: Currently the application requires Internet connection in order to

function properly. An offline mode could be developed for the athletes so they

could answer the surveys, save them and submission would be done when Internet

connection will become available.

9.2.2. Web application

 Web application for general use: The web application could be extended to be

used by all actors of the system. This means enabling athletes to also use the web

application in order to respond to the surveys.

 Artificial intelligence: Using artificial intelligence, the application could perform

machine learning on collected data in order to automatically detect injuries and pass

a message to the user recommending him what should do. The system could also

send a message to the coach when an athlete is in danger to be injured.

 Objective monitoring: the system would be more complex if third party

monitoring devices could be integrated. These would collect objective data and

present it, in order to enable the coach to make a comparison between subjective

and objective data.

 Multiple language support: Given the fact that the application could be used in

different countries, maybe English is not spoken by every athlete or some of them

do not understand some words. In order to exclude these scenarios in which the

athletes may give deceptive answers, language translations could be used and each

user could set the language in which the application will be presented. However,

this will also mean a greater trouble for the coach, given the fact that he will have

to insert translations for the introduced surveys.

Chapter 10

58

Chapter 10. Bibliography

[1] J. Reed, "Coach and Athlete Perceptions of an Athlete Monitoring and Strength and

Conditioning Program", East Tennessee State University, 2014.

[2] E. Chi, G. Borriello and N. Davies, "Guest Editors' Introduction: Pervasive Computing

in Sports Technologies", IEEE Pervasive Computing, vol. 4, no. 3, pp. 22-25, 2005

[Online]. Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1495386&tag=1. [Accessed: 02-

Feb- 2016]

[3] V. Gambetta, Athletic Development: The Art & Science of Functional Sports

Conditioning. Human Kinetics Publishers, 2006.

[4] A. Saw, P. Gastin and L. Main, "Monitoring the athlete training response: subjective

self-reported measures trump commonly used objective measures: a systematic review",

British Journal of Sports Medecin, 2015 [Online]. Available:

http://bjsm.bmj.com/content/early/2015/09/09/bjsports-2015-094758. [Accessed: 02- Feb-

2016]

[5] A. Saw, P. Gastin and L. Main, "Monitoring athletes through self-report: Factors

influencing implementation", Journal of sports science & medicine, pp. 137-146, 2015

[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/25729301. [Accessed: 02- Feb-

2016]

[6] B. Piggott, "The relationship between training load and incidence of injury and illness

over a pre-season at an Australian Football League Club", Edith Cowan University, 2008.

[7] C. Foster, "Monitoring training in athletes with reference to overtraining syndrome.",

Medicine and Science in sports and exercise, pp. 1164-1168, 1998 [Online]. Available:

http://www.ncbi.nlm.nih.gov/pubmed/9662690. [Accessed: 03- Feb- 2016]

[8] K. Vuong, "PmSys: a monitoring system for sports athlete load, wellness & injury

monitoring", University of Oslo, 2015.

[9] S. Eriksen, M. Georgsson, M. Hofflander and J. Lundberg, "Health in Hand: Putting

mHealth Design in Context", Usability and Accessibility Focused Requirements

Engineering (UsARE), pp. 36 - 39, 2014 [Online]. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6890999. [Accessed: 10- Mar-

2016]

[10] A. Singh Gagneja and K. Gagneja, "Mobile Health (mHealth) Technologies", 2015

17th International Conference on E-health Networking, Application & Services

(HealthCom), pp. 37 - 43, 2015 [Online]. Available:

Chapter 10

59

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7454470. [Accessed: 10- Mar-

2016]

[11] H. Tangmunarunkit, C. Hsieh, F. Alquaddoomi and N. Ramanathan, "Ohmage: A

General and Extensible End-to-End Participatory Sensing Platform", ACM Transactions

on Intelligent Systems and Technology (TIST), vol. 6, no. 3, 2015 [Online]. Available:

http://dl.acm.org/citation.cfm?id=2717318. [Accessed: 18- Mar- 2016]

[12] T. Hoang, "pmSys Implementation of a digital Player Monitoring System Thuc Tuan",

University of Oslo, 2015.

[13] S. Ruby, D. Thomas and D. Heinemeier Hansson, Agile Web Development with Rails

4. Pragmatic Bookshelf, 2013.

[14] Ruby on Rails. [Online]. Available: https://en.wikipedia.org/wiki/Ruby_on_Rails.

[Accessed: 16- May- 2016]

[15] "SQLite vs MySQL vs PostgreSQL: A Comparison Of Relational Database

Management Systems". [Online]. Available:

https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-

comparison-of-relational-database-management-systems. [Accessed: 13- Jun- 2016]

[16] "Android (operating system)". [Online]. Available:

https://en.wikipedia.org/wiki/Android_(operating_system). [Accessed: 10- Jun- 2016]

[17] Bootstrap [Online]. Available: https://en.wikipedia.org/wiki/Bootstrap_(front-

end_framework). [Accessed: 14- May- 2016]

[18] About HAML. [Online]. Available: http://haml.info/about.html. [Accessed: 06- May-

2016]

[19] Devise. [Online]. Available: https://github.com/plataformatec/devise. [Accessed: 08-

Jun- 2016]

[20] Trailblazer Reform. [Online]. Available: http://trailblazer.to/gems/reform/.

[Accessed: 12- Jun- 2016]

[21] Rpush. [Online]. Available: http://www.rubydoc.info/gems/rpush/1.0.0. [Accessed:

08- Jun- 2016]

[22] Chartkick, 2016. [Online]. Available: http://chartkick.com/. [Accessed: 12- Jun- 2016]

[23] Transmitting Network Data Using Volley. [Online]. Available:

https://developer.android.com/training/volley/index.html. [Accessed: 13- Jun- 2016]

Chapter 10

60

[24] jQuery. [Online]. Available: https://ro.wikipedia.org/wiki/JQuery. [Accessed: 10-

Jun- 2016]

[25] Cloud computing. [Online]. Available:

https://en.wikipedia.org/wiki/Cloud_computing#Service_models. [Accessed: 15- Jun-

2016]

[26] Cloud computing deployment models. [Online]. Available:

https://www.ibm.com/developerworks/community/blogs/722f6200-f4ca-4eb3-9d64-

8d2b58b2d4e8/entry/4_Types_of_Cloud_Computing_Deployment_Model_You_Need_to

_Know1?lang=en. [Accessed: 12- Jun- 2016]

[27] Heroku. [Online]. Available: https://www.heroku.com/platform#platform-diagram-

detail. [Accessed: 14- Jun- 2016]

Appendix 1 List of figures

61

Appendix 1 List of figures

Figure 3.1 Borg RPE Scale .. 8

Figure 3.2 Example of Wellness questionnaire .. 9
Figure 3.3 Example Injury questionnaire [8] .. 10

Figure 3.4 Ohmage software features ... 11
Figure 3.5 Ohmage system architecture [11] .. 12

Figure 4.1 Conceptual architecture of the system ... 15
Figure 4.2 Use case diagram .. 18

Figure 4.3 Flow diagram of creating a survey... 22
Figure 4.4 Generic Rails architecture diagram .. 24

Figure 4.5 Android architecture ... 26
Figure 4.6 Google Cloud Messaging .. 30

Figure 5.1 Rails MVC application structure ... 31
Figure 5.2 Web application block diagram ... 32

Figure 5.3 Models .. 32
Figure 5.4 Views.. 33

Figure 5.5 Forms.. 33
Figure 5.6 Controllers .. 34
Figure 5.7 Mobile application architecture ... 39

Figure 5.8 Database diagram .. 43
Figure 5.9 Deployment Diagram .. 44

Figure 5.10 Cloud Computing Models ... 46
Figure 7.1 System login page ... 52

Figure 7.2 System Home page ... 53
Figure 7.3 Survey view .. 53

Figure 7.4 RPE survey ... 54
Figure 7.5 View results page .. 54

file:///C:/Users/Stefania/Desktop/GligaStefania_LucrareLicentaV7.docx%23_Toc454962970
file:///C:/Users/Stefania/Desktop/GligaStefania_LucrareLicentaV7.docx%23_Toc454962971
file:///C:/Users/Stefania/Desktop/GligaStefania_LucrareLicentaV7.docx%23_Toc454962972
file:///C:/Users/Stefania/Desktop/GligaStefania_LucrareLicentaV7.docx%23_Toc454962973

Appendix 2 List of tables

62

Appendix 2 List of tables

Table 3.1 Comparison between Ohmage and pmSys we application features...... 13
Table 3.2 Comparison between Ohmage and pmSys mobile application features 14

Table 6.1 pmSys vs Athletes’ Health Monitoring System mobile application

features.. 49

Table 6.2 pmSys vs Athletes’ Health Monitoring System web application features

 .. 49

Appendix 3 Glossary

63

Appendix 3 Glossary

RPE Rating of perceived exertion

mHealth Mobile Health

eHealth Electronic Health

pmSys Player Monitoring System

API Application Programming Interface

UC Use Case

DRb Distributed Ruby

RoR Ruby on Rails

REST Representational State Transfer

MVC Model View Controller

JSON JavaScript Object Notation

XML Extensible Markup Language

HTML Hyper Text Markup Language

CSS Cascading Style Sheets

CoC Convention over Configuration

DRY Don’t Repeat Yourself

HTTP Hypertext Transfer Protocol

HTTPS Secure Hypertext Transfer Protocol

ORM Object Relational Mapping

SQL Structured Query Language

RDBMS Relational Database Management System

MVCC Multi-version Concurrency Control

ACID Atomicity, Consistency, Isolation, Durability

VM Virtual Machine

OS Operating System

SDK Software Development Kit

HAML HTML Abstraction Markup Language

DOM Document Object Model

ERB Embedded Ruby

IP Internet Protocol

GCM Google Cloud Messaging

iOS iPhone Operating System

RPC Remote Procedure Calls

URL Uniform Resource Locator

IDE Integrated Development Environment

NF Normal Form

BCNF Boyce Codd Normal Form

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

AWS Amazon Web Services

RVM Ruby Version Manager

