

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

V-CONNECT ˗ VOLUNTEER RECRUITMENT AND

MANAGEMENT SYSTEM

 LICENSE THESIS

 Graduate: Dariana LUPEA

 Supervisor: Assist. Eng. Cosmina IVAN

2018

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

DEAN, HEAD OF DEPARTMENT,

Prof. dr. eng. Liviu MICLEA Prof. dr. eng. Rodica POTOLEA

Graduate: Dariana LUPEA

V-CONNECT ˗ VOLUNTEER RECRUITMENT AND MANAGEMENT SYSTEM

1. Project proposal: The purpose of this project is to design and implement a web

information system that provides support for volunteer recruitment and

management processes. Instant messaging and notification mechanisms will be

implemented, in order to facilitate the communication between volunteers and

organizations.

2. Project contents: Table of contents, Introduction, Project Objectives,

Bibliographic Research, Analysis and Theoretical Foundation, Detailed design

and implementation, Testing and Validation, User's manual, Conclusions,

Bibliography, Appendices.

3. Place of documentation: Technical University of Cluj-Napoca, Computer

Science Department

4. Consultants:

5. Date of issue of the proposal: November 1, 2017

6. Date of delivery: July 9, 2018

Graduate: Dariana LUPEA

Supervisor: Assist. Eng. Cosmina IVAN

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

Declaraţie pe proprie răspundere privind

autenticitatea lucrării de licenţă

Subsemnatul(a)___

___,

legitimat(ă) cu _______________ seria _______ nr. ___________________________

CNP ___, autorul lucrării

__

__

__elaborată în vederea susţinerii

examenului de finalizare a studiilor de licență la Facultatea de Automatică și

Calculatoare, Specializarea __ din cadrul

Universităţii Tehnice din Cluj-Napoca, sesiunea _________________ a anului universitar

__________, declar pe proprie răspundere, că această lucrare este rezultatul propriei

activităţi intelectuale, pe baza cercetărilor mele şi pe baza informaţiilor obţinute din surse

care au fost citate, în textul lucrării, şi în bibliografie.

Declar, că această lucrare nu conţine porţiuni plagiate, iar sursele bibliografice au

fost folosite cu respectarea legislaţiei române şi a convenţiilor internaţionale privind

drepturile de autor.

Declar, de asemenea, că această lucrare nu a mai fost prezentată în faţa unei alte

comisii de examen de licenţă.

In cazul constatării ulterioare a unor declaraţii false, voi suporta sancţiunile

administrative, respectiv, anularea examenului de licenţă.

Data

 Nume, Prenume

 Semnătura

1

Table of Contents

Chapter 1. Introduction ... 3

1.1. General context ... 4

1.2. Project context ... 5

1.3. Project content ... 5

Chapter 2. Project Objectives .. 7

2.1. Main objective ... 7

2.2. Specific objectives... 7

2.3. General objectives ... 8

Chapter 3. Bibliographic Research ... 9

3.1 Short history of volunteering ... 9

3.2. Volunteer management models ... 9

3.3. Volunteer management systems .. 10

3.3.1. Challenges in developing a VMS .. 10

3.3.2. A reference model for VMS .. 11

3.4. Similar systems ... 13

3.4.1. Classification of VMS ... 13

3.4.2. Analysis of similar system ... 14

3.4.3 Comparative analysis of studied systems ... 16

Chapter 4. Analysis and Theoretical Foundation .. 18

4.1. Requirements ... 18

4.1.1. Functional requirements .. 18

4.1.2. Non-functional requirements ... 19

4.2. Use cases ... 20

4.2.1. Actors .. 21

4.2.2. Use case model .. 21

4.3. Conceptual architecture of the system .. 28

4.4. Technological perspective ... 29

4.4.1. Spring framework .. 29

4.4.2. Other Spring Projects .. 31

4.4.3. Apache Maven ... 32

4.4.4. JPA (Java Persistence API) ... 33

4.4.5. JSON Web Token (JWT) .. 33

4.4.6. RESTful Web Services .. 34

2

4.4.7. MySQL .. 34

4.4.8. HTML, CSS and Sass .. 35

4.4.9. Bootstrap .. 36

4.4.10. AngularJS .. 36

4.4.11. Node package manager (npm), Bower and Grunt 38

4.4.12. WebSockets ... 39

4.4.13. Google Geocoding API ... 40

4.4.14. Git, Bitbucket and SourceTree .. 40

Chapter 5. Detailed Design and Implementation ... 42

5.1. Web application architecture ... 42

5.1.1. General description .. 42

5.1.2. Components description .. 42

5.2. Backend Architecture .. 46

5.2.1. General description .. 46

5.2.2. Components description .. 47

Chapter 6. Testing and Validation .. 58

6.1. Manual testing ... 58

6.1.1. Test case 1: Organization creates an event .. 58

6.1.2. Test case 2: Volunteer applies to event ... 59

6.2. Automation testing .. 59

Chapter 7. User’s manual .. 62

7.1. System requirements ... 62

7.2. Installation and running ... 62

7.3. Utilization instructions .. 64

7.3.1. Sitemap .. 64

7.3.2. Application navigation .. 65

Chapter 8. Conclusions ... 72

8.1. Achievements .. 72

8.2. Further development ... 73

Appendix 1: List of figures ... 77

Appendix 2: List of tables .. 79

Appendix 3: Glossary ... 80

Appendix 4: UML Class diagram .. 81

Chapter 1

3

Chapter 1. Introduction

Wherever you turn, you can find someone who needs you. Even if it is a little thing,

do something for which there is no pay but the privilege of doing it. Remember, you don’t

live in the world all of your own. ~ Albert Schweitzer

 He has a right to criticize, who has a heart to help. ~ Abraham Lincoln

Volunteering is the ultimate exercise in democracy. You vote in elections once a

year, but when you volunteer, you vote every day about the kind of community you want

to live in.

~ Author Unknown

Volunteers don't get paid, not because they're worthless, but because they're

priceless.

 ~ Sherry Anderson

Volunteering represents an opportunity of contributing to community. As expressed

by the quotes presented above, helping the ones in need denotes an act of kindness and

altruism, which is invaluable. Starting with the 21th century, volunteer work became

more popular and many organizations were born in order to address problems raised by

human needs.

Nowadays, volunteering is of indisputable importance in terms of social progress,

therefore an increasing number of organizations and volunteers are collaborating towards

achieving meaningful results. As expected, the development of this activity started to

generate management issues, since the organizations had to manage lots of people.

Moreover, finding volunteers to match specific requirements (skills, experience and

competences) was not an easy task.

Together with the Information Technology (IT) evolution in the last few decades,

application software development increased, impacting in a positive way different

industries such as computer industry, financial services, telecommunications, education,

health care, aerospace industry, etc. Organizations began to use different application

software in order to improve and efficientize their internal processes.

Volunteer management software such as eCoordinator
1
, VolunteerKinetic

2
,

VolunteerHub
3
, CERVIS

4
 provide features and functions for solving the most common

issues identified in the recruitment, management and measurement processes conducted

by organizations.

The proposed project is a web application aiming to provide an interactive and

user-friendly solution to the addressed challenges in volunteering, trying to cover two

perspectives: volunteer and organization.

1
 https://samaritan.com/

2
 https://teamkinetic.co.uk/

3
 https://www.volunteerhub.com/

4
 https://www.cervistech.com/

https://www.goodreads.com/author/show/229.Abraham_Lincoln

Chapter 1

4

1.1. General context

As mentioned in the introduction, volunteer related tasks such as recruitment and

management are of high importance, since they compose the mandatory mechanism to

accomplish the projects initiated by different organizations.

Many types of volunteering activities may be distinguished worldwide, based on

their context
5
:

 Skills-based volunteering: Nonprofit organizations choose their volunteers based

on skills, competences and talents in order to achieve their missions.

 Volunteering in developing countries: This type of volunteering is of high interest

among young people, who are travelling to communities from developing world to

work on different projects, such as: English teaching, medical work, assisting non-

governmental organizations.

 Virtual volunteering: Also called online volunteering or e-volunteering, it is done

remotely using the Internet and a computer to complete tasks.

 Micro-volunteering: Is performed via an internet-connected device.

 Environmental volunteering: It refers to the volunteer activities which are oriented

towards environmental management or conservation.

 Volunteering in an emergency: Emergencies such as natural disasters (tsunamis,

floods, droughts, hurricanes, etc.) require a large number of volunteers, who play a

pivotal role in the recovery process.

 Community volunteer work: Denotes the volunteering which has as purpose the

improval of local communities, through nonprofit organizations, churches or local

governments.

In general, despite the place where they are based in, organizations encounter

similar challenges in their day-to-day activities, therefore we will focus on the analysis of

the results of a Romanian study [1], which measures the impact of volunteering in

Romania.

In Romania, based on the above-mentioned study, carried out by VOLUM
6
(the

Federation of Organizations which Support Volunteering in Romania), over 20 000

volunteers are annually engaged in different projects and during the last 5 years an

increasing number of people got involved. In 2014, the first Romanian online platform

for matching volunteers and opportunities was developed

(http://www.hartavoluntariatului.ro) and also the first volunteer management software

application from Romania and Europe was released (http://www.volunteer360.org).

The statistics from that study show that the greatest difficulties encountered by the

organizations in monitoring and evaluating the volunteers‟ engagement are:

➢ 68% - not sufficient human resources to completely and correctly evaluate those

processes

➢ 41.5% - the pieces of information are collected through monitoring and

assessment tools, but the organization members don‟t have time to actually

process and analyze them

5
 https://en.wikipedia.org/wiki/Volunteering

6
 http://federatiavolum.ro/

Chapter 1

5

➢ 32% - not enough knowledge and competences for performing the evaluation

Moreover, the first two reasons why the organization does not evaluate the work of

its members are the lack of time and people and because the final results of a project are

actually analyzed, not the individual contribution of volunteers.

Another factor of influence is represented by the monitoring tools, which are used

by the majority of the organizations (76.2%):

➢ 53.1% electronic format

➢ 37.5% paper & electronic format

➢ 9.4% paper format

In 59.5% of the cases, the volunteer coordinator or manager has also other

responsibilities within the organization and just in 33.3% situations there is a nominated

person for this role.

1.2. Project context

Following my personal volunteering experience in organizations and at different

types of events, I have encountered situations which could have been managed in more

efficient ways.

The causes behind the inefficiency may be added to the ones extracted from the

statistics presented above:

● lack of time for monitoring and evaluating volunteers‟ work

● volunteer managers have also other responsibilities within the organization

● insufficient competences for measuring volunteers‟ engagement

● the use of monitoring strategies (such as handwritten questionnaires or

handwritten feedback surveys) which are hard to centralize afterwards

It can be deduced that a good software solution to the stated problems should

efficientize and fully support the work of a volunteer manager, starting from volunteer

selection phase to results assessment phase, which is performed after each project/event

completion.

On the other hand, another aspect of equal importance is the difficulty of finding

volunteer opportunities. Even if the organizations present the projects on their websites,

the volunteers still have to somehow land on them or to find other ways to discover

activities, projects or organizations matching their preferences. Facebook, which does not

need any introduction, is also used by the organizations for posting events, but

unfortunately, same as for websites, volunteering opportunities from other organizers

cannot be found in the same place.

This means that other discovered issues are the reduced visibility and missing

centralization of volunteering projects in the online environment.

Therefore, a web application for managing all volunteer related processes and also

offering a common space for visualizing projects coming from several organizations may

be considered a suitable approach to cope with the identified issues.

1.3. Project content

Chapter 1 - Introduction - presents the general context of the chosen project

theme, as well as an analysis of the results provided by a relevant case study. Moreover,

Chapter 1

6

the challenges encountered in volunteering activities and how they are influenced by

technological advance are emphasized.

Chapter 2 - Project Objectives - offers an overview of the main objective of the

proposed project and indicates the specific goals through which it will be achieved. Some

general objectives which need to be considered when designing, implementing and

testing the application are also presented.

Chapter 3 - Bibliographic Research - represents a summary of the information

consulted during the research phase of the project. First, a short history of volunteering

and two volunteer management models are presented. Then, general challenges

encountered in the development of projects which are similar to the proposed one are

described, together with a framework which serves as a reference model. Next, a

classification of the studied similar systems is done and their comparative analysis is

highlighted into a table.

Chapter 4 - Analysis and Theoretical Foundation - introduces the functional and

non-functional requirements of the proposed system, the use case model, as well as the

technologies, frameworks, tools and APIs used for transforming them into a final product.

The motivation behind the technological choices with their advantages and disadvantages

compared to alternatives is emphasized. An overview of the system is offered by the

conceptual architecture diagram.

Chapter 5 - Detailed Design and Implementation - shows step by step the

decisions made on the project development process, concerning the algorithms and the

general data flow. The front-end and back-end system architectures are presented,

together with their main components. The database diagram and the database model are

also detailed.

Chapter 6 - Testing and Validation - is a summary of the methods used for

testing and validating the developed application. Manual testing techniques, as well as

automation testing methods are presented. Data validation mechanisms represent another

aspect discussed here.

Chapter 7 - User’s manual - presents the software and hardware resources

required in order to configure the developed system. Installation and setup steps for

running the application are provided. The user guide containing informative images can

also be found in this chapter.

Chapter 8 - Conclusions - represents a summary of our achievements, by

analyzing the obtained results, related to the objectives of this project. In addition, ideas

for further development will be presented, together with possible solutions for

implementing them.

Chapter 2

7

Chapter 2. Project Objectives

This chapter examines the main objective of the proposed project, as well as other

specific objectives, which need to be accomplished as parts of the main objective. Some

general aspects, having as target the project‟s quality, will also be emphasized.

2.1. Main objective

The main objective of this project is to design and implement a web information

system as an interactive and powerful tool for improving the volunteers selection and

management processes, as well as facilitating the communication between organizations

and associated volunteers.

2.2. Specific objectives

The main project objective is actually composed of several smaller objectives of

equal importance, whose accomplishment leads to obtaining the final product. These

specific objectives are the following:

➔ Registration of new users: any user will have the possibility to access the

application as a guest in order to use the basic provided features, but registration

is required for gaining full access. The registration will be differentiated based on

user type (volunteer, organization).

➔ Authentication: registered users will be able to sign in and personalize their

profiles, as well as to interact with other authenticated users and access all

available functionalities provided by the system.

➔ Event posting: this scenario allows organization users to create volunteering

events, to which interested volunteers may apply. Events can be filtered by

category, date or searched by title. A detailed event page can also be consulted by

all users.

➔ Participation to events: represents a direct way used by volunteers to get

involved in the volunteering projects. The organizations accept or reject them,

based on the information collected from their personal profile pages.

➔ Stories section: volunteer users will be able to add “stories” to their profiles. A

story is a short description of their volunteering experience to a certain event and

it will be public (visible to all authenticated users).

➔ Event management and evaluation: volunteer management per event is one of

the main purposes of the proposed application. Both management and evaluation

actions will be done by the organization user, through tasks creation and their

assignation to accepted volunteers, monitoring volunteers‟ progress and

assessment of their work, expressed through feedback.

➔ Personal space management: each authenticated user will have the possibility of

managing its personal space, through the profile editing functionality. Moreover,

the organizations will present events on their profiles, while volunteers will have

their stories displayed.

Chapter 2

8

➔ Comments section: each page presenting the event details will have a comments

section, where users can discuss about the event. The admin user is responsible

with comments section management.

➔ Communication and interaction: authenticated users will communicate by

exchanging messages on the platform (volunteer-volunteer/volunteer-organization

/organization-organization users). Emailing is another feature used for notifying

users of different important events such as successful registration.

➔ Notifications: volunteers will be notified with regards to their position within the

events they applied to (when they were either accepted or rejected) and also about

the assigned task.

➔ Reporting tools: the reports play an important role in assessing the results after

each event completion. Therefore, the organizations will have the option of

generating charts and reports in different formats.

➔ User accounts management: the administrator user is resposible with locking the

accounts of the users who add inappropriate data to their profiles or leave

comments which are evaluated as improper.

2.3. General objectives

In order to fulfill the requirements of each specific objective, the choices related to

project development phases need to meet high quality standards. Therefore, the main

aspects that will be considered are the usability enhancement through an intuitive user

interface, the application‟s responsiveness to user requests, as well as the security of

user data and of resources which can be accessed by unauthenticated users.

Chapter 3

9

 Chapter 3. Bibliographic Research

This chapter provides an overview of this project‟s context, starting with a short

paragraph about how volunteer work became popular, which were the first organizations

and continuing with the volunteer manager‟s role and the responsibilities it involves.

Another important aspect outlined in the current chapter is represented by the

challenges met when developing a volunteer management system (VMS). A reference

model, which could be used as a framework for building up a VMS, will also be

described.

Moreover, a personal classification of the systems which have similar

functionalities to the proposed system is indicated, together with a comparative analysis,

based on their features and functions. The comparison emphasizes the difference that our

project aims to make.

3.1 Short history of volunteering

Volunteering is generally considered an altruistic activity where an individual or

group provides services for no financial or social gain "to benefit another person, group

or organization” as described in the paper [2]. From a historical perspective, the term was

first recorded in 1755, but used since c. 1600, when the noun volunteer denoted “one who

offers himself for military service”.

During the 19th century, younger American people started helping the needy in

their communities. In 1881 the American Red Cross was founded and began mobilizing

volunteers for disaster relief operations. In the first few decades of the 20th century,

several volunteer organizations were founded, including the Rotary International,

Kiwanis International, Association of Junior Leagues International, and Lions Clubs

International
7
.

After World War II, people started to be interested in volunteering overseas, using

World Wide Web
8
 for finding new opportunities.

3.2. Volunteer management models

Volunteer management became an occupation during the late 1960s and adopted

practices such as job descriptions and interviews in order to find suitable volunteers for

the organization‟s needs. Nowadays the role of volunteer manager ranges from defining

volunteer job roles and recruiting volunteers to organizing, supervising and motivating

them, as emphasized in the article [6].

As presented in the article Models of Volunteer Management: Professional

Volunteer Program Management in Social Work [3], there are some universal volunteer

management models. Next, we will shortly present two of those models, which are

relevant in this context: the universalistic volunteer management model and the

conditional volunteer management model.

7
 https://en.wikipedia.org/wiki/Volunteering

8
 https://en.wikipedia.org/wiki/World_Wide_Web

Chapter 3

10

A. Universalistic Volunteer Management

This model highlights the need of nine functions for developing successful

volunteer programs: planning and administration, volunteer work design,

recruitment, interviewing and screening, orientation and training, supervision and

liaison support, ongoing motivation and recognition, impact evaluation,

recordkeeping and reporting. Practitioners with universalistic perspective adopt a

conception known as “one size fits all” of volunteer management.

B. Conditional Volunteer Management

In contradiction to the model presented above, the current model states that

effective volunteer management is influenced by aspects such as the involvement of

paid staff in the organization, grassroot membership and organizational size.

There are two types of factors in the conditional volunteer management:

volunteer focused and program/organization-focused. Four models of involvement

proposed for the first type of volunteer management model may be distinguished:

service delivery, support role, member/activist, and co-worker. The second model is

centered on the volunteer program type and it assumes that volunteer management

is influenced by the organization‟s culture and worldview.

The volunteering management models described above are relevant in the context of

the proposed project, since they offer an overview of the most important aspects taken

into account by volunteer managers in their activities. The factors indicated by each

model influence the management process, therefore they will be considered when

developing the proposed system, by mapping them to several features and functions.

3.3. Volunteer management systems

According to the paper A survey on Volunteer Management Systems [4],

information and communication technology (ICT) represents a major enabler of

volunteering process. Volunteer management systems (VMS) are useful tools as they

facilitate volunteer matching with volunteering opportunities, tasks scheduling and

allocation, communication and coordination mechanisms, therefore improving the work

of Volunteer Involving Organizations (VIO). There are several VMS, but they may be

differentiated by their purpose and the specific functionalities for supporting the

volunteering process.

3.3.1. Challenges in developing a VMS

The major challenges of the VMS with regards to the volunteering process, as

extracted from the paper [4] and [7], will be presented next.

● Inhomogeneous Conglomerate of Resources and Tasks

A major challenge is taking into account diverse skills, competences, interests and

personalities of volunteers for appropriate task allocation, which in the end influences

their motivation and satisfaction. Also, the work should be splitted into tasks of

appropriate granularity, which requires sophisticated workflow execution mechanisms at

Chapter 3

11

runtime. Another challenge is introduced by the unexpected tasks, because the workflow

should be adapted at runtime to introduce ad-hoc tasks and add new users.

● Flexible Allocation Allowing Brokerage and Negotiation
Volunteer work is unpaid, so keeping volunteers engaged represents the key. The

VSM should enable a kind of brokerage between tasks and volunteers (to find the best

match between them) and support different matching strategies. This means that tasks

should not be assigned just by the VIO, but volunteers may choose tasks from the

available ones and also propose tasks to other volunteers. The volunteer makes the final

decision of undertaking certain tasks and this might require negotiations with the VIO.

● Adaptation- and Motivation-Oriented Assessment

The expected outcome of a task is not always clear in advance, so the use of

assessment mechanisms is crucial in order to improve the process and to find good

motivation strategies. The most important aspects to be assessed are represented by:

volunteer engagement, tasks, task allocation and satisfaction/gain of expertise.

● Continuous Evolution

Volunteering process follows a “learning by doing” approach, being continuously

improved. Task‟s creation and allocation are targeted as key points in the progress of an

organization, but also the awards, ranking and other motivation strategies are considered.

Our system aims at offering a viable solution to the above-mentioned challenges,

by taking into account the task creation and allocation processes, as well as the

assessment of volunteers‟ work and their motivation.

3.3.2. A reference model for VMS

Based on the challenges highlighted in the previous section, we will analyze a

reference model (RM) extracted from the article [4]. This RM serves as a framework,

which describes the core artifacts of a VMS. The framework‟s structure consists of key

packages, defined by VMS’ structural components, its process and VMS‟ evolution.

A. VMS Components

This package presents the main components which a VMS should have and it can

be decomposed into several sub-packages: Resources, Tasks, Profiles and Relationships.

The resources may be classified as humans (cf. Human Resource) and non-humans (cf.

NonHuman Resource). Further on, Human Resources could be Volunteers or

NonVolunteers and NonHuman Resources may be distinguished into PhysicalResources

and VirtualResources. The tasks may be splitted by „humanity‟ criteria into HumanTasks

and NonHumanTasks, by „virtuality‟ into PhysicalTasks and VirtualTasks, by

„commonality‟ into CollaborativeTasks and CooperativeTasks, by „predictability‟ into

PlannedTasks and AdHocTasks and by „locality‟ into RemoteTasks and OnSiteTasks. The

Profiles package represents the connection between Tasks and Resources, being

composed of Features.

The figure 3.1 presents in details the components of Profile and Task packages and

how are they connected.

Chapter 3

12

Figure 3.1 Profile and Task packages

B. VMS Process

A VMS system should support the following activities: Allocation, Execution and

Assessment. Within allocation and execution phases, tasks should be assigned to

volunteers who will execute them.

The assignments may be done manually or automatically by the system and might

be Rejected by volunteers or Delegated to others. The execution progress of a task is

marked by its state: In Progress, Suspended, Adapted, Finished or Canceled. Depending

on the organization‟s needs, different Assessment Methods might be required.

Moreover, Self assessment (when volunteers assess themselves) and External assessment

(done by others) may be distinguished, based on the assessee's role.

C. Evolution

The Evolution package from the

figure 3.2 contains the activities

required for continuously improving the

volunteering work. Therefore, methods

of adaptation and motivation are

included in this package. Appraisal,

Awarding, Ranking, IncentiveGranting,

Challenging and Recruiting are

motivational aspects mentioned in the

current framework. Concerning

adaptation, the competence profile of a

volunteer should be adaptable, after the

completion of a task.

Figure 3.2 Evolution Package

Chapter 3

13

3.4. Similar systems

This subchapter presents a personal classification of the software systems which

are used for volunteer recruitment and/or management, based on information acquired

during the research phase of the project. Several systems which have similar

functionalities will be outlined, as well as a qualitative comparative analysis of those

systems, including the proposed one.

3.4.1. Classification of VMS

By studying different systems used in the volunteering field (for recruitment and/or

management), we discovered that two classifications may be distinguished. The first one

is based on the main objective of each system, whereas the second classification

highlights the support level they have for gathering multiple organizations.

 It should be mentioned that some software systems described in the section 3.4.2.

do not belong to any of the below categories. This can be justified by the fact that they

are not oriented towards volunteer management, but they present features and functions

which are relevant and useful to the development of this project, due to several aspects

which will be discussed next.

A) Based on the main objective of VMS, three categories were discovered:

➢ Presentation of opportunities and volunteer recruitment

 Organizations‟ websites, where registration forms have to be filled by volunteers are

part of this category. Volunteers may also be recruited through social media

application software such as Facebook
9
, where events presented by an organization

can be posted, offering details to those interested. Another way of presenting

opportunities are websites where projects from different organizations are presented.

Centrul de voluntariat
10

 is a web application which can be placed into this category.

➢ Managing volunteer related data

Systems having this main purpose just store volunteers‟ data. Therefore, the

volunteer manager is able to fulfill its main responsibilities: assign tasks, send e-

mails, manage volunteers‟ schedule, give feedback, etc. The volunteers do not have

direct access to the system. An example of such application is Volunteer360
11

.

➢ Volunteers recruitment and management

The majority of the analyzed systems are part of this category. They cumulate the

functionalities of the systems from the first and second category, offering a variety of

useful features to both volunteer and organization users. A good example from this

category is the studied system TeamKinetic.

9
 https://www.facebook.com

10
 http://centruldevoluntariat.ro

11
 http://www.volunteer360.org

Chapter 3

14

B) By multiple organization support level criteria, two types of volunteer recruitment

and/or management may be distinguised:

➢ Single organization support

 Such volunteer management systems can be used by a single organization, which

manages its members. The organization either uses a standalone application or

consolidates its own platform (website).

➢ Multiple organization support

Some systems represent a common space for several organizations, which present

their projects to all users; therefore the volunteers are able to choose from a wide

range of opportunities, depending on their preferences. An example of this type of

system is HartaVoluntariatului
12

.

3.4.2. Analysis of similar system

Systems belonging to categories presented before will be analyzed, based on the

features and functions identified in the articles [5] and [10]: volunteer profile, activity

tracking, scheduling, online features, email, reporting and exporting, customization,

ease of use. Moreover, two applications which are not used in the volunteering context

(Meetup and Google+), but present useful features for our project, will also be studied.

 eRecruiter
13

/ eCoordinator
14

 are two complementary volunteer management

systems developed by Samaritan Technologies
15

. The first one provides an interface

which can be used by volunteers in order to: register, authorize a background check, edit

their personal profiles using the provided tools, search for volunteering opportunities and

apply to them. An advantage would be the fact that it can be easily integrated into another

website. The second web system is oriented towards the organizations‟ needs by offering

the possibility to handle the volunteer profiles, manage their schedules, run different

types of reports (PDF or .txt). The email functionality and social media integration

(Facebook, MySpace, Twitter) represent a plus. A disadvantage would be the fact that the

volunteers are able to find opportunities from only one organization.

 Volgistics
16

 web system has several strong points such as printed communication,

volunteer scheduling functionality and integrated broadcast options. In order to allow the

volunteers access their profiles (previously created by an organization representative) and

schedule for available opportunities, an additional module called VicNet
17

 must be used.

The volunteers can clock-in and clock-out, check the schedule and fill in time slots only

if another module - VicTouch
18

 - is implemented. Several reporting features are

12

 https://hartavoluntariatului.ro/
13

 https://support.samaritan.com/hc/en-us/articles/206590816-eRecruiter
14

 https://www.capterra.com/p/79211/eCoordinator/
15

 https://samaritan.com
16

 https://www.volgistics.com
17

 https://www.volgistics.com/vicnet.htm
18

 https://www.volgistics.com/victouch.htm

Chapter 3

15

implemented: schedule reports to run automatically (PDF or Excel), awards, batch

reports, Excel spreadsheet, etc.

The users of this application can consult the video tutorials from their website,

which explain how to make the best of the provided features.

 TeamKinetic
19

 is an application which supports volunteering, clubs, events and

local activities. Volunteers are able to register, join opportunities, log hours, share

activities on social media and also receive feedback and awards. The volunteer manager

can monitor the applicants, send emails and text messages through the platform and track

volunteers on the map. Real time reports can be generated and they can be customized

based on the needed data.

 Volunteer360
20

 platform is based on Dynamics CRM technology powered by

Microsoft and allows organizations to manage documents and volunteer related data. The

admin user can generate useful charts by filtering volunteers by age groups, joining year,

projects, geographical area, etc. Other features: edit the volunteers‟ profiles, schedule

their time slots, give feedback and generate reports. This system can be used only by the

organization‟s representative (admin) which means that the volunteers do not have direct

access to it.

 Harta Voluntariatului
21

 is a web application which presents functionalities similar

to the ones proposed by our system. It allows the registration of two types of users:

volunteer and organization. The volunteer user has a detailed profile and he can search

projects, filter them by using different criteria, apply to projects or save them. The

organization user can edit its profile, add new projects, manage the volunteers per project,

check the history of the proposed projects. The communication is done through online

messaging and notifications.

 Meetup
22

 represents a web application which can be used in order to create meetups,

attend meetings, see the other participants. It is not related to volunteering idea, but it

presents some user interface aspects which could be useful to our system design. The

events are presented in a user-friendly manner, describing all the necessary details and

offering users the possibility to join the event, leave comments, check related topics, filter

events through picking the date from a calendar etc.

 Google+
23

 is a platform used for social networking which is owned and operated by

Google. Some features and functions are: user profile, circles, stream, identity service,

community, location, Google local, photography, collections. The news can be filtered by

category and the users can share images and videos from other social media

environments.

19

 https://teamkinetic.co.uk
20

 http://www.volunteer360.org
21

 https://hartavoluntariatului.ro
22

 https://www.meetup.com
23

 https://plus.google.com/u/0/

Chapter 3

16

3.4.3 Comparative analysis of studied systems

In the table 3.1, a comparative analysis of a part of the above described systems

will be presented. The analysis is done based on the features and functions that our

system aims to implement (on the first column), with focus on their presence in the

studied application software (YES - if they are present, NO - if they are missing, DK –

do not know). On the last column, it can be noticed that each position is marked with

YES, meaning that the proposed system aims at prototyping each of those functionalities.

Table 3.1 Comparative analysis of the similar systems

eRecruiter/

eCoordinator
Volgistics

Volunteer

Kinetic

Volunteer

360

Harta

Voluntariatului

Proposed

system

Direct

interaction of

volunteers with

the system

YES

Only if

VicNet

module is

integrated

YES NO YES YES

Volunteer

management per

project/event

YES YES YES YES YES YES

Generation of

reports/charts
YES YES YES YES NO YES

Online feedback

and/or awards
 DK DK YES NO NO

YES

Visualization of

projects from

multiple

organizations

NO NO NO NO YES YES

Scheduling done

by volunteers
YES

Only if

VicTouch

module is

integrated

NO NO NO YES

Broadcast events

through online

messaging and

notifications

NO YES YES NO YES YES

Email YES YES YES NO YES YES

Documents

management
NO NO NO NO YES YES

Social media

integration
 YES NO YES NO YES YES

Chapter 3

17

One of the main objectives of our project, from a functional perspective, is to allow

volunteers to directly interact with the system. This means that they will be able to

register, access their profiles and edit them, as well as to express their desire to join a

certain project/event in a simple way. From the above presented systems, only

Volunteer360 does not offer this capability, since only the volunteer manager has access

to the application.

The only feature which is exposed by all systems is the management of volunteers

per event/project. This behavior is expected, since the main purpose of a volunteer

management system is to provide efficient mechanisms of organizing the people involved

in volunteering activities.

Visualizing projects from multiple organizations on the same platform

represents a feature which is not usually encountered in VMS. Since the organizations are

using different tools for managing their own members, the focus is on their needs, not on

the volunteers‟ interests and expectations. Therefore, through the proposed system, the

volunteers‟ side will also be considered, thus offering them the possibility to find, in the

same place, projects from several organizations. HartaVoluntariatului is the only

analyzed system which presents this feature.

The opportunity to choose from a list of tasks the one that best suits volunteers‟s

kills, interests and capabilities, offers them enough confidence to accomplish tasks and

also the motivation to do their best. Therefore, scheduling done by volunteers represents

an advantage for both volunteers, who are free to choose their tasks, and organizations,

which will have many successfully completed projects, as a consequence. E-Recruiter

and Volgistics allow their volunteer users to perform this kind of operation.

Three of the five analyzed systems (Volgistics, VolunteerKinetic,

HartaVoluntariatului) have communication mechanisms such as online messages and

notifications. This way, the users will efficiently share information and receive updates.

For example, the system notifies the assignation of a task. Another way of transmitting

news is sending emails.

As presented in the subchapter 3.3.1, a major challenge in VMS‟s development is

the Adaptation- and Motivation-Oriented Assessment, so keeping individuals motivated

and engaged is not easy. Online feedback would be the first step to overcome this type

of challenge, but not all systems use this approach.

Social media integration (Facebook, Twitter, Gmail) offers a greater visibility of

the organization‟s events, representing a way of promoting them, therefore engaging

more people in the volunteering activities. The majority of the presented systems

(eRecruiter/eCoordinator, Volgistics, HartaVoluntariatului) are connected to one or

several social media environments.

Other auxiliary features, which have the role of improving the recruitment and

management processes, are documents management and generation of reports and

charts. The first feature is rarely used, but the second one can be found in the majority of

the systems.

As a conclusion, our aim is to build a system which supports both volunteer

recruitment and management, by offering support to multiple organizations. In order to

accomplish this, the ideas extracted from the analyzed features and functions will be the

used as a base for specifying the requirements of the proposed system.

Chapter 4

18

Chapter 4. Analysis and Theoretical Foundation

This chapter introduces the functional and non-functional requirements of the

developed system, as well as the use case model. A detailed description of one

representative use case for each actor will be presented. Our proposal for the conceptual

architecture is highlighted, as well as the technologies used and the motivation behind

choosing them.

4.1. Requirements

4.1.1. Functional requirements

Functional requirements (FR) present a complete description of how the system

will function from the user's perspective. Behavioral requirements describing all the cases

where the system uses the functional requirements are captured in use cases. The table

4.1 contains the functional requirements of the proposed system, together with the

associated users.

Table 4.1 Functional requirements

ID Functional Requirement Statement User

FR01 Registration G

FR02 Authentication V, O, A

FR03 Event details visualization G, V, O, A

FR04 Events filtering by date and category G, V, O, A

FR05 Search for events by name or city G, V, O, A

FR06 Visualization of user profiles V, O, A

FR07 Personal profile management V, O

FR08 Creation of events O

FR09 Participation to events V

FR10 Volunteer management per event O

FR11 Creation of stories V

FR12 Instant event feedback V, O

Chapter 4

19

FR13 Communication through messages V, O

FR14 Notifications O

FR15 Sharing events on social media V, O

FR16 Reports and charts generation O

FR17 Documents management O

FR18 User accounts management A

FR19 Administration of comments section A

FR20 Logout V, O, A

Note: G=Guest, V=Volunteer, O=Organization, A=Administrator

4.1.2. Non-functional requirements

In contrast to the functional requirements, non-functional requirements (NFR)

dictate properties and impose constraints on the system. They specify „quality

characteristics‟ or „quality attributes‟, rather than what the system will do. Next, several

non-functional requirements identified for the current system will be presented.

NFR1. Usability. Part of the broader term user experience and refers to the ease of

learning and using a system. The user interface of the developed application should be

intuitive and focused on continuously offering feedback to users, such that their

experience will be a pleasant one, not a burden. UI responsiveness will be also

considered, since users might access the web application from different devices (laptops,

tablets, mobile phones).

 NFR2. Security. Refers to the ability to prevent and/or forbid the access of

unauthorized parties. Since our system stores user related data, it should assure

confidentiality, by restricting the access to some pages based on the user‟s

authorization level. Another important aspect is the protection of data exchanged

through exposed web services.

NFR3. Performance. The most widely used metric for performance is the

response time (how long it takes to the system to respond to a request). The value of

response time should not exceed 2s for the most computationally expensive requests and

should be under 1s for all the others.

NFR4. Availability. Represents an indispensable metric because both response

time and throughput are zero when the system is unavailable. It is expressed as a

percentage of the application's run time minus the time the application can‟t be accessed

by users. A desired rate of availability for our system would be over 90%, obtainable

through covering possible failure scenarios from the beginning.

Chapter 4

20

NFR5. Scalability. The ability to overcome performance limits by adding

resources. When the system performance is decreasing, additional hardware could solve

the problem. Thus, a scalable system is one that allows us to add hardware and get a

commensurate performance improvement. Vertical scalability, or scaling up, means

adding more power to a single server, such as more memory. Horizontal scalability, or

scaling out, means adding more servers.

NFR6. Portability. The developed system is a web application, so the portability

requirement should be satisfied, because cross browser compatibility is far easily

achievable than operating systems compatibility (web application vs. desktop

application). This means that the proposed system should run on various browsers

(Chrome, Firefox, Safari, Internet Explorer), irrespective of the used operating system.

4.2. Use cases

This subchapter represents an overview of the system‟s actors and their

responsibilities, captured in detailed use case diagrams. For each actor, a representative

use case will be described, comprising the name of the use case, primary actor,

preconditions and postconditions, the basic flow (“happy” flow) and also alternative

flows.

Table 4.2 Actors and responsibilities description

Name Description Main Responsibilities

Guest Non-authenticated user, having

only view access rights

Navigation between unrestricted

pages of the application and access

to several services, for visualizing

and filtering of events, registration.

Volunteer Authenticated user, representing

the volunteer entity

Profile management, participation

to events, communication through

messages, profiles visualization *

Organization Authenticated user, representing

the organization entity

Profile management, creation of

events, volunteers‟ recruitment and

management per event, profiles

visualization, messaging and

documents management *

Administrator Authenticated user User accounts management and

monitoring of comments area on

the event page

 * The guest user responsibilities are included

Chapter 4

21

4.2.1. Actors

The proposed system supports four types of actors: guest, volunteer, organization

and administrator. A short presentation of each actor can be found in the table 4.2,

including a description and their main responsibilities.

4.2.2. Use case model

Use cases represent a type of textual requirements specification, describing the step

by step process a user needs to follow in order to achieve a goal, using the software

system. Use cases capture all the possible ways the user and the system can interact,

together with the aspects that could go wrong along the way, preventing the user from

achieving the initial goal.

4.2.2.1. Use case diagrams

The figures 4.1, 4.2, 4.3 and 4.4 represent the use case diagrams for the Guest,

Volunteer, Organization and Admin actors, respectively.

Figure 4.1 Guest Use Case UML Diagram

Chapter 4

22

Figure 4.2 Volunteer Use Case UML Diagram

Chapter 4

23

Figure 4.3 Organization Use Case UML Diagram

Chapter 4

24

Figure 4.4 Administrator Use Case UML Diagram

4.2.2.2. Use case description

Use case I

Name: Register

Primary actor: Guest

Description: The users which do not have an account are able to perform basic

operations such as visualize events, search and filter events and check the details of

an event. In order to have access to more complex functions such as profile

management, they have to sign up (register).

Preconditions:

1. An account with the same email and/or username is not registered yet

Postconditions:

1. The account is created

2. The information provided by the actor at registration is saved

3. A confirmation of successful registration is sent to the email address

provided by the actor

Basic Flow:

1. The actor chooses the register option

2. The actor selects the corresponding type of user: volunteer or

organization

3. The system displays a modal presenting the required data: email,

username, password, confirmation of password and other personal

information, depending on the selected user type

4. The actor fills in the required data

5. The actor finished the registration

6. A success message is displayed

Chapter 4

25

Alternative Flows:

5. The actor does not provide all required data or incorrect input is given

a. an error message is displayed and the actor is not able to finish the

register operation

b. the actor goes to step 4. or abandons the operation

Use case II

Name: Add story about event

Primary actor: Volunteer

Description: After participating at an event, the volunteer user has the possibility

to add a story, which appears on his/her profile. A story represents a short

description of the volunteering experience and it is public (visible to all

authenticated users).

Preconditions:

1. The actor is authenticated

2. The actor is located on the right page

 Postconditions:

1. The story is visible on the actor‟s personal profile

2. Other authenticated users can visualize the story details

Basic Flow:

1. The user selects the add new story operation

2. The system displays the story attributes: title, description

3. The actor fills in the required data presented above

4. The actor selects the event to which the story is related

5. The story is successfully created by the actor

6. The story is displayed on the actor‟s profile

Alternative Flow

 4. There is no event to be selected

a. The actor goes to step 5 or abandones the operation

5. The actor‟s input is invalid (empty fields or no event is selected), therefore

the story

cannot be created

a. The system will signal the error through a corresponding message

b. The actor will be asked to enter the story information

 c. The actor returns to step 3. or abandones the operation

Use case III

Name: Create task for event

Primary actor: Organization

Chapter 4

26

Description: For each event, the organization user creates one or several tasks to

which volunteers are assigned. The task is created with “To do” status and the

selected volunteers are notified.

Preconditions:

1. The actor is authenticated

2. The actor is located on the right page

3. The event for which the task will be created exists

Postconditions:

1. The task is created

2. The volunteers to which the task was assigned are notified by the system

3. The task can be viewed by involved volunteers and the organization

Basic Flow:

1. The actor selects the event for which the task will be created

2. The actor goes to the task creation section

3. The system displays the task attributes: title, description, location, date,

start hour, end hour, volunteers

4. The actor fills in the required data about the task

5. The actor selects one or more volunteers for this task

6. The task is created by the actor

Alternative Flows:

5. There are no volunteers available or less volunteers than needed

a. The actor does not select any volunteer or selects just the available

volunteers and goes to step 6.

b. The actor abandons the task creation operation

6. The input provided by the actor at step 3. is invalid (empty fields) and the

task cannot be created

a. The system will signal the error through a corresponding message

b. The actor goes to step 4 or abandons the current operation

c.

Use case IV

Name: Manage comments section

Primary actor: Admin

Description: The administrator user is responsible with the management of the

comments section, which is present on the page which displays the details of an

event.

Preconditions:

1. The actor is authenticated

Chapter 4

27

2. The actor is located on the page presenting event details, including the

comments section

3. At least one comment is displayed

 Postconditions:

1. The system updates the actor‟s changes to comments

Basic Flow:

1. The actor selects the comment from comments section

2. The actor removes the comment

3. The changes are saved by the actor

4. The system displays the updated comments section

Alternative Flows:

At any step, the system can encounter an unexpected error

a. The actor will be noticed through an explicit error message

The basic flow of events for the third use case - Create task for event – is presented in the

figure 4.5.

Figure 4.5 Create task use case flow diagram

Chapter 4

28

4.3. Conceptual architecture of the system

In the figure 4.5 an overview of the system architecture is presented. It can be

noticed that the client-server architecture is used, therefore the application has a

distributed structure, composed of:

● Front-end server (Client)

● Back-end server (Server)

● Database

The first component represents the front-end part of the system and it contains

static files (html markup files, css styling files, javascript client-side scripts), used for

creating the user interface. The user will directly interact with this part of the application,

through a web or mobile browser. This client and the server communicate through HTTP

requests and HTTP responses, in order to exhange data.

The second component, which is responsible with processing client requests, is the

back-end server. It uses the business logic in order to access and modify the data stored in

the database, responding to user requests.

As part of the back-end application, the database is located at the lowest layer, being

accessed by the server which establishes a JDBC connection.

Figure 4.6 System architecture

Chapter 4

29

4.4. Technological perspective

This subchapter presents the technologies, tools and frameworks used for

implementing the previously described project components. The value added to our

application by each technological choice will be motivated. The main technologies from

our project are also emphasized in the figure 4.5. First, we will discuss the choices made

on the back-end side of the project (sections 4.2.1 - 4.2.6) and then the front-end

component‟s technologies will be described.

4.4.1. Spring framework

Spring
24

 is the most popular application development framework for enterprise Java

projects. Millions of developers are using it in order to create high performing, easily

testable, and reusable code. Spring framework is an open source Java platform.

Some benefits of using this framework are
25

:

● Development of enterprise class applications using POJOs, which offers the

option of using a single robust servlet container (e.g. Tomcat), instead of an EJB

container product such as an application server

● Project organization in modular packages, from which the developer is able to

choose only the necessary ones

● Reuse of other technologies such as ORM frameworks, logging frameworks, JEE,

Quartz and JDK timers, all in one framework

● Well-designed web MVC framework, which provides a great alternative to web

frameworks such as Struts or other over-engineered or less popular web

frameworks

● Translation of technology-specific exceptions (thrown by JDBC, Hibernate, etc.)

into consistent, unchecked exceptions, using a convenient API

● Consistent transaction management that can scale down to a local transaction

(using a single database) and scale up to global transactions

As presented above, there are several advantages of using the Spring Framework

for the our application‟s development, since it allows us to focus on the business logic

part of the system, rather than on the configuration and integration of other technologies

and frameworks.

 Spring modules
The Spring Framework includes several modules, which provide a range of

services, as presented in the figure 4.6. Some of these modules are: Spring Core

Container, Aspect-oriented programming, Inversion of control, Authentication and

Authorization, Model-View-Controller, Testing, Data access, Transaction management.

24

 https://projects.spring.io/spring-framework
25

 https://www.tutorialspoint.com/spring/spring_overview.htm

Chapter 4

30

Figure 4.7 Spring Framework overview

The modules which will be used for developing the proposed web application are:

● Spring Core Container: It is the base module of Spring and provides spring

containers (BeanFactory and ApplicationContext). We used it in our project

because of its Dependency Injection
26

 features, through which the RESTful

controllers and services layer on the back-end server side can be connected.

● Data access: Spring's data access framework addresses common difficulties faced

by developers when working with databases in applications. It provides support

for several popular data access frameworks in Java, such as JDBC, Hibernate,

Java Data Objects (JDO) and even Java Persistence API (JPA), which will be

used in order to efficiently manage the database access.

● Web: The web layer consists of the Web, Web-Servlet, WebSocket and Web-

Portlet modules. The two way communication between client and server in our

web application is implemented using the WebSocket module, on the back-end

server side. This technology is important since it provides a communication

mechanism between client and server components.

● Test: This module supports the testing of Spring components with JUnit or

TestNG. The behavior of the proposed system will be tested using JUnit.

26

 http://www.baeldung.com/inversion-control-and-dependency-injection-in-spring

Chapter 4

31

4.4.2. Other Spring Projects

Besides Spring Framework, there are other Spring projects (Spring Boot, Spring

Data, Spring Cloud, Spring Security, Spring Web Services and others), which can be

integrated into the project, depending on its infrastructural requirements. Next, we will

present only the projects which will be included in the web application:

 Spring Boot

Spring Boot makes it easy to create stand-alone, production-grade Spring based

applications that you can “just run”. Most Spring Boot applications need very little

Spring configuration.
27

It is a useful technology for us since it simplifies the configuration and initialization

steps of the project. One of its main features is the embedding of Tomcat server,

which excludes the need of deploying WAR files.

 Spring Web MVC

Web MVC Framework from Spring is designed around a DispatcherServlet that

dispatches requests to handlers. The default handler is based on the @Controller

and @RequestMapping annotations, offering a wide range of flexible handling

methods.

In our project, this module will be used as an “entry point” to the implementation of

HTTP methods on the back-end server side. As presented in the figure 4.8, data

can be directly returned to clients using @ResponseBody annotation.

Figure 4.8 RESTful communication in Spring MVC

27

 https://projects.spring.io/spring-boot/

https://projects.spring.io/spring-boot/

Chapter 4

32

4.4.3. Apache Maven

Apache Maven is a software project management and comprehension tool. Based

on the concept of a project object model (POM), Maven can manage a project's build,

reporting and documentation from a central piece of information.
28

POM is represented through a pom.xml file, where the project's name, its owner and

its dependencies are specified. When a Maven project is created, Maven builds a default

project structure, as shown in the figure 4.9. Individual phases of the build process are

configurable as plugins. The build lifecycle is defined by several phases and the standard

(default) lifecycle is presented in the figure 4.10.

Figure 4.9 Maven project structure

Figure 4.10 Maven‟s default lifecycle

phases

When executing the command mvn test for example, Maven runs all goals

associated with each of the phases up to and including the “test” phase. Another useful

command to new users of a maven project is mvn install, which offers the possibility to

accurately build, test and install every project.

Several IDEs (including IntelliJ IDEA which we will use) provide integration of

Maven, which means that Maven is able to compile projects from within the IDE.

Moreover, the add-ons through which Maven is integrated into the IDEs, provide the

ability to edit the POM or use the POM to determine a project's complete set of

dependencies, directly within the IDE.

Maven is a suitable tool for structuring and managing the back-end part of our

project since it automatically adds dependencies in the project, without the need of

manually specifying them in the classpath. Another advantage is the easiness it provides

in the build management part (life cycle) of the project.

28

 https://maven.apache.org/

https://maven.apache.org/

Chapter 4

33

4.4.4. JPA (Java Persistence API)

A persistence entity is a lightweight Java class whose state is typically persisted to a

table in a relational database. Instances of such an entity correspond to individual rows in

the table.

The Java Persistence API (JPA) is a Java based application programming interface

that describes the management of relational data in applications, using Java Platform. In

the developed project, JPA will implemented through several annotations: @Entity on

Java class (for representing the persisted entity), @Id on just one field of the entity

(marking the field as primary key) and other annotations on fields such as @OneToMany,

@ManyToOne, @ManyToMany for defining the relationships between entities.

Since JPA automatically enables the mapping of entities to database tables,

providing “ready to use” implementation of CRUD operations (Create, Read, Update,

Delete), it is a choice that simplifies the application‟s access to the database.

4.4.5. JSON Web Token (JWT)

JWT is an open standard that defines a compact and self-contained way for securely

transmitting information between parties using the JSON format. This information can be

verified and trusted because it is digitally signed by using a secret (with the HMAC

algorithm) or a public/private key pair using RSA.
29

 JSON Web Token is used for securing the application‟s authentication mechanism

and protecting the information exchanged through HTTP requests and responses:

● Authentication: After user login, each subsequent request will include the JWT,

allowing the user to access only the routes, services and resources that are

permitted with that token.

● Information exchange: the information is securely transmitted between parties

(client-server) using JWT, since the tokens are signed with public/private key

pairs and the signature can be calculated from the header and the payload, in order

to verify the content‟s consistency.

An efficient authentication mechanism using JWT
30

 is described in the figure 4.11.

29

 https://jwt.io/
30

 https://www.toptal.com/java/rest-security-with-jwt-spring-security-and-java

https://en.wikipedia.org/wiki/Java_class
https://en.wikipedia.org/wiki/Table_(database)
https://en.wikipedia.org/wiki/Row_(database)
https://jwt.io/

Chapter 4

34

Figure 4.11 JWT security flow

4.4.6. RESTful Web Services

REST (REpresentational state transfer) has become one of the most important

technologies for Web applications. REST is an architectural style, primarily used for

building Web services that are lightweight, maintainable, and scalable. The main purpose

of a web service is to provide access to resources and to allow the client-server

communication.

RESTful API is stateless, meaning that each request from client to server must

contain all the necessary information to be understood by the server, since storing session

state on the server is not allowed. This architectural style is not dependent on any

protocol, but almost every RESTful service uses HTTP (Hypertext Transfer Protocol)
31

as its underlying protocol.

In our project, this type of services will be used for the communication between the

frontend component of the application (client) and the backend component (server), using

a format recognized by both parties - JSON.

4.4.7. MySQL

MySQL is the most popular open source relational database management system

(RDBMS), based on Structured Query Language
32

 (SQL). All the data manipulated by

the application will be stored in a MySQL database. Some of the reasons behind choosing

this type of database are: the fact that it is designed and optimized for web applications

and its performance, scalability, reliability, and ease of use are continuously being

improved.

31

 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
32

 https://en.wikipedia.org/wiki/SQL

Chapter 4

35

Cross-platform availability of MySQL represents also a plus. Together with this

DBMS, another tool used is MySQL Workbench
33

, which represents a visual tool for

designing, modeling, generating and managing databases.

4.4.8. HTML, CSS and Sass

Hypertext Markup Language (HTML) is the standard markup language for

creating web pages and web applications. With Cascading Style Sheets (CSS) and

JavaScript, it forms a triad of cornerstone technologies for the World Wide Web.
34

 HTML pages are composed of HTML elements, which make possible the

embedding of images and other objects into the rendered page. The pages are rendered

after the web browser receives the HTML documents from a local storage or from the

web server. The behavior and content of web pages can be controlled by a scripting

language such as JavaScript.

Choosing HTML for building the presentation part of the application was a

straightforward decision, because every browser supports this language, it is easy to learn

and one can rapidly find solutions to different possible issues.

CSS (Cascading Style Sheets) is a style sheet language used for styling and

presenting the documents written in a markup language like HTML. Whereas the HTML

is the meaning or content, the style sheet is the presentation of that document. CSS

provides the fonts, colors and layout of the text, images, links, tables and many other

elements from the HTML pages of the application.

The separation of presentation and content can improve data accessibility and

provide more flexibility and control in the specification of presentation characteristics.

By specifying the relevant CSS in a separate .css file, multiple web pages are enabled to

share formatting, which will reduce the complexity and repetition in the structural

content.

Some major benefits offered by this language
35

 are:

● Separation of style and structure: without all the extra HTML for

styling the documents‟ structure, separating the styling into another file

makes the code more readable and easier to update, without breaking the

document.

● Faster web page download time: the use of CSS leads to less code

behind the web pages, which means faster download times. CSS code is

cached in the browser after the initial request, if it is separated from

HTML code.

● Greater control of presentation: CSS has more formatting options over

HTML such as options to control the spacing and leading of text. One of

the most common use of CSS is to present the same page differently to

different media.

33

 https://www.mysql.com/products/workbench/
34

 https://en.wikipedia.org/wiki/HTML
35

 https://vanseodesign.com/css/benefits-of-cascading-style-sheets/

Chapter 4

36

A CSS extension language named Sass (Syntactically Awesome StyleSheets) was

used, because it adds power and elegance to the basic language, therefore enhancing the

application‟s UI. Other important features of Sass are its full compatibility with CSS, the

integration of many functions for manipulating colors and other values and generation of

well-formatted, customizable output.

4.4.9. Bootstrap

Initially built by a designer and developer from Twitter, Bootstrap has turned out to

be one of the trendiest front-end frameworks in the whole world.

Bootstrap is created for developing responsive projects with HTML, CSS, and JS.

Bootstrap 3 supports the latest versions of Google Chrome, Firefox, Internet Explorer,

Opera, and Safari (except on Windows) browsers, which makes it even more reliable.

Some of its advantages are the following:

● It is easy to use, since integrating it into a project is a simple and fast procedure

● The responsiveness of a website has become compulsory, so Bootstrap comes

with ready-made classes which allow the components arrangement in the grid

system, based on columns

● One of the main benefits is the speed of development. Instead of coding from

scrape, you can use the existing coding-blocks to assist in setting up. This code

can be combined with CSS-Less functionality.

● The packaged JavaScript components include functionalities for operating in

simple manner tooltips, modal windows, alerts, etc.

● Bootstrap can be simply integrated along with other distinct platforms and

frameworks, on existing sites and new ones too. One can also use particular

elements of Bootstrap along with his/her current CSS.

4.4.10. AngularJS

AngularJS is an open source front-end framework which is based on JavaScript

language, being developed and maintained by Google. Its main goals are code

simplification and structuring in web applications.

AngularJS is built on the belief that declarative programming should be used to

create user interfaces and connect software components, while imperative programming

is better suited to defining an application's business logic
36

.

The main goals of AngularJS are:

● to decouple DOM (Document Object Model) from application logic (the code

structure is an important aspect here)

● to decouple the client side of the application from the server side; this allows the

development work to be done in parallel, providing reusable components

● offer a structured process of building an application, from designing the UI,

through writing the business logic, to testing

36

 https://en.wikipedia.org/wiki/AngularJS

https://en.wikipedia.org/wiki/User_interface

Chapter 4

37

The main AngularJS concepts are:

● Directives to extend HTML attributes

At a high level, directives are markers on a DOM element (such as an attribute, element

name, comment or CSS class) that tell AngularJS's html compiler to attach a specified

behavior to that DOM element (e.g. via event listeners), or even to transform the DOM

element and its children.
37

 Such directives are ngBind, ngModel, ngClass.

● Expressions to bind data to HTML

 Expressions are code snippets used to bind application data to html. They are written

inside double braces like {{ expression}}. Their behavior is similar to ngBind directives

and they can be also associated with filters.For example, the line of code from figure 4.12

will display the word “Hello” followed by student‟s first name and last name.

Figure 4.12 Example of expression in AngularJS

● Scope to control variables

The scope is the “glue” between the HTML (view) and the JavaScript (controller), being

available to both. It is an object that refers to the application model and acts like a context

for evaluating Angular expressions.

● Two-way data binding

Data binding represents the synchronization between the model and the view. It is two-

way because when the model changes, the view reflects the change, and vice-versa.This

happens immediately and automatically, making sure that the model and the view is

updated at all times. The figure 4.13, which is present in the online documentation of

AngularJS
38

, reflects this relationship.

Figure 4.13 Data binding in AngularJS templates

37

 https://docs.angularjs.org/guide/directive
38

 https://angularjs.org/

Chapter 4

38

● Event-handling

 AngularJS has its own HTML directives. They allow running AngularJS functions at

certain user events. Some of these directives are: ng-change, ng-click, ng-copy, ng-

keypress, ng-mouseenter, ng-mouseleave, ng-paste.

● Controllers

AngularJS controllers are defined through ng-controller directive and have the role of

controlling the data of AngularJS applications. They are used for setting the initial state

of the $scope object and adding behavior to it.

● Services
 In AngularJS, a service is a function, which is used for organizing and sharing code

across the application. AngularJS services are substitutable objects that are wired together

using dependency injection (DI). As main characteristics, they are: lazy instantiated (only

when an application component depends on them) and singletons (a unique instance is

generated by the service factory function). Services can have their own dependencies, as

well as controller do.

 There are several advantages of using this framework in our project: it is an open-

source platform and it offers flexibility to the developer, making the application easier to

customize. Through dependency injection, integrating modules into the project is

simplified and two-way data binding facilitates the use of HTML templates.

4.4.11. Node package manager (npm), Bower and Grunt

Npm
39

 is the package manager for JavaScript, used for installing, sharing and

distributing code. Npm is entirely written in JavaScript and its purpose is to manage the

dependencies within projects. When used as a dependency manager for a local project, it

installs all required dependencies through the package.json file.

Bower
40

 is used for managing components that contain HTML, CSS, JavaScript,

fonts or even image files. It installs the right versions of the packages one needs and also

their dependencies. A manifest file called bower.json keeps track of installed packages. It

is also optimized for front-end, making sure that all packages are up to date.

Npm and Bower are both dependency management tools, but the main difference

between them is that npm is used for installing Node.js modules, while Bower manages

only the front-end components enumerated before.

Grunt
41

 is a JavaScript task runner, which is used for performing frequent tasks in

a web application, such as minification (the process of removing unnecessary characters

from source code without affecting its functionality), compilation and unit testing. All

task runners provide consistency, effectiveness, efficiency and repeatability, but Grunt

39

 https://www.npmjs.com/
40

 https://bower.io/
41

 https://gruntjs.com/

Chapter 4

39

offers access to many predefined plugins that can be used to work with JavaScript tasks

and on static content.

We will use these tools in frontend development because they are really helpful for

specifying the project dependencies such that whenever the project needs to be ran on a

different computer, with the command npm install, all dependencies are immediately in

place, as they were previously saved into the package.json and bower.json files.

4.4.12. WebSockets

WebSockets represent an advanced technology used for opening an interactive

communication session between two parts: the client and the server components. This

technology is based on WebSocket - a computer communications protocol, which

provides full-duplex communication due to a single TCP connection.

In order to establish a WebSocket connection, a protocol known as “handshake” is

implemented: the client sends a WebSocket handshake request to which the server returns

a WebSocket handshake response, as shown in the figure 4.14. This mechanism

resembles HTTP in terms of allowing servers to handle HTTP connections as well as

WebSocket connections on the same port.

Spring WebSockets will be used on the server side, since Spring Framework

already integrates this module, whereas Stomp Over WebSocket messaging protocol is

implemented on the client side.

Figure 4.14 WebSockets communication flow

Chapter 4

40

4.4.13. Google Geocoding API

Geocoding is the process of converting addresses (like a street address) into

geographic coordinates (latitude and longitude), that one can use to place markers on a

map, or position the map.
42

Reverse geocoding is the inverse process to geocoding, used for converting

geographic coordinates into a human-readable address. The figure 4.15 exemplifies the

structure of a geocoding request, as presented in the official documentation
43

.

Figure 4.15 Geocoding API request format

The outputFormat parameter indicates the type of the result (JSON or XML).

In the proposed application, the geocoding API will be used in order to obtain the

latitude and longitude corresponding to addresses provided by the users. The JSON

format is used for mapping the response and the location‟s latitude and longitude are

extracted from it. An indicator will be placed on the map, based on the identified

coordinates. For example, if the obtained latitude is 46.7712° and the longitude is

23.6236°, Cluj-Napoca would be indicated on the map as in figure 4.16.

Figure 4.16 Google Maps with pin-point on Cluj-Napoca

4.4.14. Git, Bitbucket and SourceTree

Git
44

 represents an open source distributed version control system, which can be

used to track changes in computer files and also to coordinate work on those files among

team members.

42

 https://developers.google.com/maps/documentation/geocoding/start
43

 https://developers.google.com/maps/documentation/geocoding/intro

Chapter 4

41

A history of all the versions of the files within a project is kept, which provides the

possibility of reverting the code to previous versions if necessary.

Bitbucket
45

 is a web-based version control repository hosting service owned by

Atlassian, for source code and development projects that use either Mercurial or Git

revision control systems. Bitbucket offers free accounts with unlimited numbers of

repositories, therefore it represents a good solution for storing the project. Some of its

main features are pull requests with code review and comments, merge checks,

documentation and issue tracking, which are all useful in the development process.

SourceTree is a free Git client for Windows and Mac, which provides an interface

which replaces the command line, simplifying the use of Git.

The above presented technologies and tools simplify the code development process.

The implemented code will be safely stored in a Bitbucket repository, where changes can

be constantly pushed through commits, done directly from SourceTree. The possibility to

rollback to previous commits offers the freedom of experimenting without affecting the

proj

44

 https://git-scm.com/
45

 https://bitbucket.org/

Chapter 5

42

Chapter 5. Detailed Design and Implementation

This chapter presents step by step the decisions taken during the development of

this project, from design to implementation. The proposed system is composed of 3

subsystems: web application (front-end component), backend component and database.

An overview of the system will be offered through the client and server

architecture diagrams, since the architectural pattern used is client-server, as presented in

the section 4.1.1. The front-end component (client) contains the user interface and all the

necessary logic to forward user requests to the back-end component (server), which is

responsible for handling those requests, by using the business logic. Moreover, the main

smaller modules of each subsystem will be described.

5.1. Web application architecture

5.1.1. General description

AngularJS is the framework used for developing the front-end component of the

application and it is based on the MVC pattern. The view is defined in HTML, while the

model and the controller are implemented in JavaScript.

Model View Controller (MVC) represents an architectural pattern, in which

different aspects of the application are broken into components to separate

responsibilities. The Model contains the data and logic, the View contains the visual

layout and presentation, while the Controller connects the two.

Using this pattern, the various components have a relationship defined by their

interactions. The model is only aware of itself. Generally, the view is aware of the

model, as it‟s responsible for rendering data contained in the model and invoking actions

(methods) on the model. The job of the controller is to create and populate the model and

hand it over to the view. The controller needs to know about the model, and how to

resolve the view and provide it the model.

In our project, the AngularJS MVC pattern is implemented using AngularJS, a

JavaScript framework (described in section 4.4.10), as well as other technologies such as

HTML, CSS, Bootstrap, already presented in the subchapter 4.2.

5.1.2. Components description

The figure 5.1 shows in details how different components are connected in the

developed application. Starting from the module, which represents the container for the

different parts of the application, to directives, which extend the power of HTML, each

piece has its own responsibilities, which will be presented next.

Chapter 5

43

Figure 5.1 Detailed architecture of front-end component

5.1.2.1. Routes and View

The view in an AngularJS application is created with HTML. Each view is

managed by Angular Router, which is used for defining the navigation paths within the

application, based on the current location of the user. The figure 5.2 exemplifies how the

routing is done in our application, with the following elements: templateUrl, which

identifies the path to a certain view and controller together with controllerAs, referring to

the associated controller of that view, responsible with handling the displayed data.

AngularJS is based on the Single Page Application (SPA) concept, which means

that all the code (JS, HTML, CSS) is retrieved with a single page load. Moreover, the

navigation between pages is performed without refreshing the whole page. Here comes

the router‟s responsibility, by dynamically rendering a view, based on URL changes.

Figure 5.2 AngularUI routing

Chapter 5

44

The figure 5.3 presents how the main navigation pages, which can be accessed by

all users, are connected, while the figure 5.4 shows only the pages which can be accessed

by authenticated users, with minor differences. The page which can be used only by the

organizations is manage-event page.

Figure 5.3 Guest‟s navigation diagram

Figure 5.4 Authenticated user‟s navigation diagram

5.1.2.2. Controller

 Controllers are one of the key components in the MVC architecture of

AngularJS, used to control the data flow in the application. A controller is a JavaScript

object which contains attributes/properties and functions and accepts different

parameters.

The figure 5.5 shows how the event controller is implemented within our

application, all the other controllers used being declared in a similar way. Before creating

a controller, the module needs to be created, because it encapsulates all application

components. The controller‟s name “EventCtrl” is followed by a list of parameters, from

which “eventService” and “UserService” are services injected through dependency

injection.

Figure 5.5 Event Controller definition

Chapter 5

45

In order to directly update the model, controllers and views are connected through

$scope object, which is the binding part between HTML and JavaScript. For populating

$scope, functions need to be defined and used in the controllers. Several controllers have

been used: HeaderController, HomeController, EventController, VolunteerController,

OgranizationController, AdminController, TaskController, SocketController, etc.

5.1.2.3. Services
Angular Services have the responsibility to provide application data/business logic

to components. The service decides whether to provide mock data or go to server and

fetch data from database/file/another service(s) etc. In this application, the services are

actually communicating with the backend server through HTTP requests, in order to

obtain the required data and forward it to controllers.

AngularJS services can be defined using the factory keyword or the service

keyword. There are several differences between these two types of components, but the

main one is related to the flexibility they offer:

 Factory is a function that returns the object directly, so basically what is needed

to directly receive data in the controller, where the service function is called. The

figure 5.6 is a template used for instantiating the majority of services within our

application.

Figure 5.6 EventService definition

 Service is a constructor functions of the object, which is instantiated with the new

keyword and does not return anything explicitly. There is a particular situation when

Service is used in the application, for creating an object holding the authenticated

user details, which has to be common to all controllers. The figure 5.7 shows how

the UserService is implemented, in order to identify the user‟s role and initialize the

corresponding authenticated user instace: OrganizationProfile, VolunteerProfile or

Admin.

Figure 5.7 UserService definition

Chapter 5

46

The factories used are: volunteerService, organizationService, adminService,

eventService, taskService, storyService, socketService. The services used are:

UserService, VolunteerService, OrganizationService and AdminService, used for

authenticating the user and storing its credentials at the application level.

5.2. Backend Architecture

5.2.1. General description

For developing the back-end application, the main technology used is Spring

Framework, as well as several Spring projects, as presented in the section 4.4.2.

The Layered Architecture is used for organizing the project structure, since it

separates the code into four main categories: presentation, application (business),

domain and persistence, therefore providing simplicity, consistency and browsability,

as shown in the figure 5.8.

Figure 5.8 Layered architecture pattern

Next, each layer‟s responsibility will be described, explaining how it is mapped on

our implementation needs:

Chapter 5

47

 The presentation layer is usually responsible for presenting the application‟s UI

to the end-client or managing client‟s requests. In our case, this layer is actually

composed of controllers, which have the role of handling user requests, by using

the services dependencies. The controllers forward data to the front-end

component, which displays it.

 The application layer (business logic layer) contains all the logic that is

required by the application to meet its functional requirements and, at the same

time, is not a part of the domain rules. The services of our application are located

at this level, being directly accessed by the controllers from the above layer. The

application layer components work with models and repositories provided by the

layers located below it.

 The domain layer represents the underlying domain that mostly contains domain

entities and, in some specific cases, services. Business rules such as algorithms

and invariants should all be a part of the domain layer. The models of this

application compose the domain layer.

 The persistence layer (infrastructure layer) is responsible for persisting the

data into the database and, in our case, consists of repositories through which

CRUD (Create, Read, Update, Delete) operations are performed on the database.

The database layer is not part of this architectural pattern, but its presence in the figure

5.6 clarifies how the connection between the back-end server component and the

database is realized through the persistence layer.

There are two important rules which were followed in order to correctly implement

the Layered Architecture:

1. All the dependencies go in one direction, from presentation to infrastructure.

2. No logic related to one layer‟s concern are placed in another layer. This rule

promotes two of the OO Design Principles, high cohesion and low coupling.

5.2.2. Components description

In the figure 5.9 the components of the application and their relationships are

presented at a high level. The main components (packages) of the back-end application

are: Controller, Service, Repository and Model. Some auxiliary components such as

Security, Config, Filter and Util have been used. Next, the main purpose of each package

will be described:

 Controller - contains a part of the application logic and has the role of

forwarding user requests to services, as well as returning the required data

provided by services as response to user request

 Service - encapsulates a major part of the business logic, being a middleware

between controller and repository

 Repository - provides access to the database, using the data model

 Model - defines the data model of the application; the models represent entities

which are persisted to the database

 Security - contains the JWT security related business logic

 Config - contains the WebSockets configuration

Chapter 5

48

 Filter - communicates with the services and the models in order to filter the

access to application resources

 Util - provides utility services such as mail service, http client service, etc. which

are just “helping” the main services to accomplish their work

Figure 5.9 Backend package diagram

Next, the above presented packages and their relationships will be described in details.

5.2.2.1. Controller
This component is represented by several Java classes, which expose the

application‟s data through RESTful APIs. The controllers are located at the Presentation

Layer and define the access points from external clients such as the front-end component.

When a request from the front-end application is intercepted, the corresponding

controller handles it and delegates part of the responsibility to the linked service, which

executes the request. Afterwards, an HTTP response is sent back to the front-end.

Each Java class from the Controller package uses several annotations, from which

the most used will be presented:

 @RestController - the DispatcherServlet provides a single entry point in the

application and it delegates the requests to additional components such as actual

controller classes, which are annotated with @RestController. So these

controllers have the role of handling web requests. This annotation replaces

@Controller and @ResponseBody.

Chapter 5

49

 @GetMapping - it is a specialized version of @RequestMapping annotation,

that acts like a shortcut for @RequestMapping(method =

RequestMethod.GET). @GetMapping annotated methods handle the HTTP

GET requests matched with given URI expression.

 @PostMapping, @PutMapping, @DeleteMapping - similar to @GetMapping,

the only difference is that the corresponding annotated methods handle HTTP

POST, HTTP PUT and HTTP DELETE request, respectively.

 @Autowired - is used for automatic dependency injection. The annotation is

used for injecting services into controllers and repositories into services, as well.

The dependency goes always in the direction controller -> service ->

repository, which means that controllers depend on services, while services

depend on repositories, but the inverse dependency is not allowed (layered

architecture).

 @PathVariable, @RequestParam, @RequestBody - define the types of

parameters which can be used to perform an HTTP request, basically to make a

request to a web service.

In the figure 5.10 it is shown how the previous presented concepts are applied on a

controller class in our application. The definition of a RESTful web service which

retrieves the task having the specified identifier id is shown.

Figure 5.10 Definition of TaskController

Other controllers which are defined in a similar way are: AdminController,

VolunteerController, OrganizationController, EventController, StoryController,

WebSocketsController, each consisting of several REST endpoints which expose the

application‟s data.

Chapter 5

50

5.2.2.2. Service
This part of the system architecture is responsible with the business logic. As

presented before, the service component represents the middleware between controller

and repository, which means that it receives requests from the higher level

(controller) and it utilizes the data model and the database access level, in order to

execute those requests.

Java classes within Service package are marked as Spring Beans through the

@Service annotation, denoting their role of performing service tasks. Each service class

implements a corresponding interface. Direct communication with the lower level - data

access layer - is possible due to the @Autowired annotation presented before, which

marks this time the injected repositories. The figure 5.11 shows how a service class is

declared in our application and how the service method which retrieves the comments

corresponding to an event is implemented.

Figure 5.11 Definition of EventService

 The other services used are organized in a similar manner, in order to maintain

the high cohesion between classes. The following services have been implemented:

UserService, VolunteerProfileService, OrganizationProfileService, EventService,

TaskService, VolunteerToEventService, LocationService, MessageService,

EventCommentService, VolunteerTaskService, VolunteerFeedbackService, together with

the associated interfaces.

5.2.2.3. Repository
The Data Access Layer communicates with the Data Storage Layer to perform

CRUD operations. CRUD represents an acronym for the database operations Create,

Read, Update, and Delete. By extending the JpaRepository presented in the section

4.4.4, these operations are inherited, so there is no need to actually write their

implementation. This represents an advantage since the developer does not need to focus

on how to code repetitive methods, being able to just use them.

In order to use this facility, the interfaces are annotated with @Repository and

they have to extend the predefined interface JpaRepository<ID, T>, where ID

represents the identifier‟s type, while T is the class type of the entity for which the

repository is created.

Chapter 5

51

If more complicated operations are required, a template can be used. You just have

to declare the method and the repository will know how to translate it. As exemplified in

the figure 5.12, a method for finding a volunteer profile with the specified first name and

last name would be:

Figure 5.0.12 Implementation of Repository interface for VolunteerProfile entity

We will not present all the created repositories, since for each entity there is a

corresponding repository through which it is created, read, updated and deleted from the

database.

5.2.2.4. Model
This section presents the application‟s data model. The structure of each entity will

be specified, together with its role. Besides the entities which are persisted to the

database, another type of models called DTOs and having similar structure as the entities

are used, in order to transfer data from and to the database.

The implemented Java classes are:

 User - defines the user related data, common to all user types (Volunteer,

Organization, Administrator), containing also properties specific to user

account; the username, e-mail, password, user role, and also the account

related information.

 VolunteerProfile - contains information provided by the volunteer user at

registration, such as first name, last name, date of birth, address, skills,

interests, experience, etc. which is used for creating a personal profile.

 OrganizationProfile - stores organization specific data: name, acronym,

date of creation, description, website and facebook links, as well as

information about the actual person who manages the organization‟s

account

 Event - is an activity presented by an organization and described through

the following attributes: title, description, location, hour interval,

category, total number of volunteers needed, organizer.

 EventCategory - defines the category of an event; an event can be

associated to several categories

 EventComment - describes the attributes of a comment to an event; it

identifies the user who added the comment, the date when it was posted

and the text of the comment.

 Location - represents the place where the events are organized and

contains the address, as well as the corresponding longitude and latitude,

which are used for placing a marker on Google Maps

 Task - represents „a piece of work‟ which needs to be done by volunteers

in the context of an event, and it contains information in which both

volunteers and organizations are interested: title, description, date

Chapter 5

52

 (because it might differ from the event‟s actual date), location, hour

interval and status.

 Story - is created by a volunteer in order to share thoughts about an event

with other users and it contains a title, a short description and a link

to that event.

 VolunteerToEvent - used for storing the status of a volunteer to an event,

which can be one of: SAVED, APPLIED, ACCEPTED, REJECTED,

LEFT; since many volunteers have different statuses to many events, a

connecting entity was required.

 VolunteerFeedback - represents the characteristics of the feedback

offered by the organization to each volunteer, regarding their engagement

to events; a description and a relevant title should be added

 Message - defines the attributes of the messages exchanged between the

users of the application: sender, receiver, time of creation, actual message

content, a flag indicating if it is read or not.

The figure 5.13 shows how the model, repository, service, service interface and

controller classes are connected, in order to access, manipulate and transmit event‟s data.

These relationships are valid for all the other models and their associated classes.

Moreover, an UML class diagram presenting the most important relationships can be

consulted in the Appendix 4, at the end of the paper.

Figure 5.13 Classes interaction

5.2.2.5. Security
The security system is implemented using JWT (JSON Web Tokens). JWT is used

for verifying the user‟s identity at login and each request done after the user is

authenticated includes the generated token. The figure 5.14 shows how the user‟s role is

verified at login, when the unique token is generated.

Figure 5.14 JWT check of user‟s role

Chapter 5

53

5.2.2.6. Config
This package contains the WebSocket configurations, which enable the

communication between the client and server. In the developed application, this protocol

is used in order to provide an efficient way of sending and receiving messages between

users, as well as for providing instant notifications whenever a volunteer is accepted/

rejected to an event.

5.2.2.7. Filter
The navigation filters of the application are defined at this level. The filter has the

role of intercepting any external request and of validating it. Two filters have been used.

The first one is the Cors Filter, which specifies the access configurations: the origin of

the request, the HTTP methods accepted, the maximum duration, as well as the header

types allowed. The figure 5.15 presents the method used for filtering the incoming

requests.

Figure 5.15 Cors Filter implementation

The second filter is the JWT Filter, which is responsible for blocking unauthorized

requests, if the user who initiates them does not possess a valid token.

5.2.2.8. Util
The Util package contains services such as MailService, HttpService and

DozerService which are used by the main services. The MailService is implemented

using the JavaMail API, in order to send different types of emails to registered users. The

HttpService is used for making a request to the geocoding API provided by Google, to

obtain the coordinates of a certain address.

A special type of service used is DozerService, which is a implemented using the

singleton design pattern. Dozer is a Java Bean to Java Bean mapper that recursively

copies data from one object to another, attribute by attribute. This service provides the

Data Transfer Objects (DTO) from which the response to a certain request is built. The

figure 5.16 shows how the Dozer singleton mapper is used to convert the entity User to

the data transfer object UserDTO.

Figure 5.16 User object mapped with DozerBeanMapper

Chapter 5

54

5.3. Database
In order to store the application data, MySQL database is used, since it is the

world‟s most popular open source database and it presents several advantages

emphasized in the section 4.2.6. Spring provides specific annotations for mapping the

relationships between entities which represent in fact the relationships between database

tables. Such annotations are: @OneToOne, @OneToMany, @ManyToMany, etc.

The figure 5.17 presents the database diagram, which is composed of 14 tables and

the relationships between them. Since MySQL is a relational database, each table is

linked to at least one other table.

Figure 5.17 Database diagram

Chapter 5

55

Next, we will present the main tables of the database, their connection to other tables and

the contained fields, together with their data types.

User table contains the authentication information which is common for all system‟s

users: the credentials used for accessing the application, as well as account specific data.

The following fields are used:

 id: primary key of the table; type: int

 email: stores the user‟s email address; type: varchar

 username: unique identifier, part of user‟s credentials; type: varchar

 password: secret token used for authentication, part of user‟s credentials; type:

varchar

 user_role: identifies the user type and can be volunteer, organization or admin;

type: varchar

 account_non_expired: flag to indicate if the account is expired; type: boolean

 account_non_locked: flag to indicate if the account is locked by the admin; type:

boolean

 credentials_non_expired: flag which indicates if the users credentials are

expired; type: boolean

 created: account creation date; type: datetime

Volunteer_profile table stores the personal data of the volunteer user, provided at

registration or by using the profile editing functionality. The table is composed of the

next columns:

 id: primary key, matching the user‟s primary key; type: int

 first_name: user‟s first name; type: varchar

 last_name: user‟s last name; type: varchar

 born_date: user‟s date of birth; type: datetime

 age: age calculated based on the provided date of birth; type: int

 address: user‟s address; type: varchar

 phone: personal phone number; type: varchar

 about_me, experience, skills, interests: short description provided by the

volunteer; type: varchar

 occupation: job/career information; type: varchar

This table is connected to volunteer_task, volunteer_feedback, volunteer_to_event

and story tables.

Organization_profile table contains each organization‟s data, which is specific to this

type of user. The following information is stored:

 id: primary key of the table; type: int

 name: organization‟s name; type: varchar

 acronym: abbreviation of organization‟s name; type: varchar

 description: general information about the organization; type: varchar

 address: organization‟s headquarters or office location; type: varchar

 cif: unique code by which an organization is identified; type: varchar

 creation_date: date when the organization‟s activity started; type: datetime

Chapter 5

56

 contact_person_name: name of the person who uses the account for the

organization; type: varchar

 role_of_contact_person: role of the organisation‟s representative; type: varchar

 website, facebook_page: links to the website and facebook page; type: varchar

This table is connected to activity_domain and event tables.

Event table holds the event related information and we could say that is the „central‟

table of the database, since it is connected to many other tables. The contained fields are:

 id: primary key of the table; type: int

 title: identifies the title of the event; type: varchar

 creation_date: date when the event is created; type: date

 event_date: date when the event takes place; type: date

 apply_until_date: deadline for applying as volunteer to event; type: date

 description: short summary of the event purpose to attract volunteers; type:

varchar

 total_needed_volunteers, total_applied_volunteers,

total_accepted_volunteers, total_rejected_volunteers: the number of

volunteers needed, who applied, who are accepted or rejected, respectively; type:

int

 start_hour, end_hour: hour interval of the event; type: datetime

 location_id: foreign key, indicating the event‟s location; type: int

 organization_profile_id: foreign key, representing the identifier of the organizer

Task table stores all the tasks created for the events. It is directly connected to the event

table and indirectly (through volunteer_task) to the volunteer_profile table. The table is

composed of the following columns:

 id: primary key of the table; type: int

 title: identifies the title of the task; type: varchar

 description: presents in details the volunteers‟ responsibility; type: varchar

 date: date when task should be done; type: date

 start_hour, end_hour: hour interval of the task; type: datetime

 task_status: can be to_do, in_progress, done or canceled; type: varchar

 location: indicates the task‟s location, because it might differ from the event‟s

location; type: varchar

 total_required_volunteers, total_applied_volunteers: number of volunteers

needed to accomplish the task and the number of volunteers who already applied;

type: int

 event_id: foreign key, indicating the identifier of the event for which the task is

created; type: int

This table is connected to event and volunteer_task table, which is actually the

connection between task and volunteer_profile tables.

Story table contains the stories added by volunteers about the events they participated at.

The following information is stored:

 id: primary key of the table; type: int

Chapter 5

57

 title: identifies the title of the story; type: varchar

 description: summary of the volunteering experience; type: varchar

 date: date when the story is created; type: datetime

 event_id: foreign key, representing the identifier of the event to which the story

is related; type: int

 volunteer_profile_id: foreign key, representing the identifier of the volunteer

user who added the story; type: int

This table is linked to the event and volunteer_profile tables, since a story is added by a

volunteer and it should be related to an event.

Chapter 6

58

Chapter 6. Testing and Validation

This chapter presents the testing and validation methods used for checking if the system

behaves as expected. Both manual and automated test tools have been used in order to

cover as many functionalities as possible.

6.1. Manual testing

It represents the process of using the features and functions of the application as an

end user and verify if the software is working as required. In order to successfully

conduct manual tests, the software requirements must be completely understood by the

tester. The next step is to write test cases, in order to ensure good test coverage. Since

manual testing is necessary in order to ensure a good user experience and a high level of

quality, this testing method was used in our case. We will present two of the test cases

used for identifying bugs within the developed application: Organization creates an

event, which is described in the table 6.1 and Volunteer applies to event, captured in the

table 6.2.

6.1.1. Test case 1: Organization creates an event

Preconditions: User must have a valid organization account

Table 6.1 Steps of test case 1

No. Action Expected result

1 Open the web application The homepage is displayed

2 Select Login option from

the navigation bar

The Login modal window containing the username and

password input fields is displayed

3 Enter required credentials

and press the Login button

The user is redirected to the organization-profile page

4 Click on the Add event

button

A modal containing the event‟s title, location, date,

application deadline, description, hour interval, category

and required no. of volunteers is displayed

5 Click on the Add event

button

If the input is valid, a success message appears,

otherwise an error message is

displayed

6 Visualize created event The created event is displayed on the organization‟s

profile page, as well as on homepage

Chapter 6

59

6.1.2. Test case 2: Volunteer applies to event

Preconditions: User must have a valid volunteer account

Table 6.2 Steps of test case 2

No. Action Expected result

1 Open the web application The homepage is displayed

2 Select Login option from

the navigation bar

The Login modal window containing the username and

password input fields is displayed

3 Enter required credentials

and press the Login

button

The user is redirected to the volunteer-profile page

4 Access the homepage The homepage is displayed

5 Search the event to which

volunteer wants to apply

The searched event is displayed

6 Hover the event

component

The Save and Apply buttons are visible now

7 Click on the Apply button A success message appears if the user has not already

applied to that event or if he was not rejected,

otherwise an error message appears

8 View event to which the

volunteer applied

The event should be displayed when selecting Already

Joined on homepage or on the volunteer-profile page

under the I applied to label

By following the steps described in the test cases, it can be noticed if the system

behaves as expected when invalid input is provided. This can be done by checking if

corresponding success and error messages are displayed as a result of user‟s actions.

6.2. Automation testing

While manual testing done by humans requires physical time and effort to ensure

the software code works correctly, automation testing is done through an automation

tool, less time is needed in exploratory tests and more time is needed in maintaining test

scripts for increasing overall test coverage.

Chapter 6

60

Some of the essential tools, frameworks, and libraries that can be used by

developers for writing unit tests and integration tests when coding in Java are: JUnit,

REST Assured, Selenium, Postman, TestNG, Mockito, Cucumber and Robot

Framework.

The figure 6.1 presents the test automation pyramid, showing that the number of

required tests decreases as advancing from unit tests (lowest level) to UI testing (highest

level).

Figure 6.1 Test automation pyramid

Next, we will present the tools and frameworks used at each level of the test

automation pyramid, for testing the developed web application. Some of them are part of

the list presented before.

 Unit Level Automation

A unit test is a piece of code written by a developer that executes a specific

functionality in the code to be tested and asserts a certain behavior or state.

JUnit
46

 is a unit testing framework for Java Programming language and is used in

test-driven development. Almost all major IDEs, e.g. Eclipse, NetBeans, and IntelliJ,

provide JUnit integrations, which means you can both write and run the unit test right

from those IDEs.

A JUnit test is a method contained in a class which is only used for testing. This is

called a Test class. To define that a certain method is a test method, annotate it with the

@Test annotation.

Since a unit test targets a small unit of code, e.g., a method or a class, we used it

for testing simple methods.

 API Testing

API testing involves testing the collection of APIs and checking if they meet

expectations for functionality, reliability, performance, and security and if the correct

response is returned.

46

 https://junit.org/junit4/

https://junit.org/junit4/

Chapter 6

61

The tool used for performing API testing is Postman
47

, which is a Google Chrome

app for interacting with HTTP APIs. It has a friendly GUI for constructing requests and

reading responses.

The majority of our application‟s endpoints have been tested using Postman. The

figure 6.2 shows how a request to http://localhost:8080/events is done and which is the

obtained result. Since this REST API can be accessed without authentication, we just

have to specify the HTTP method used (GET), the endpoint (previously specified) and

select NoAuth type. For visualizing the result we chose JSON format. The HTTP status

code obtained is 200 (OK).

 UI Testing

For testing the UI component of the application, the DevTools
48

 provided by

Chrome was used during the implementation. It is a set of web developer tools built

directly into the Google Chrome browser, which can help you diagnose problems

quickly, and help you build better websites, faster.

Figure 6.2. Example of API call using Postman

47

 https://www.getpostman.com/
48

 https://developers.google.com/web/tools/chrome-devtools/

https://www.getpostman.com/
https://developers.google.com/web/tools/chrome-devtools/

Chapter 7

62

Chapter 7. User’s manual

This chapter presents the hardware and software resources required to configure

and run the developed project on a computer. A set of instructions for installing each

component of the system, as well as utilization instructions together with relevant

pictures are provided. Therefore, new system users should be able to easily overcome the

challenge of using the developed web application.

7.1. System requirements

In order to provide an optimal environment for running the application, the

computer used should have the following specifications:

 CPU: Intel Core i5

 Frequency: 1.8 GHz

 RAM memory: 4 GB

 Operating system: Windows, Linux or OS X

 Web browsers: Google Chrome, Mozilla Firefox, Safari, Opera

7.2. Installation and running

The back-end and the front-end projects are both hosted on Bitbucket, into

separate repositories, since they do not contain common code. Therefore, the first step

would be to clone each repository on the local machine, then configure and install all the

required dependencies of the back-end project, together with the database. Finally, the

setup of the front-end project should be done.

Next, we will present step by step the phases described above.

Step 1: Obtain a local copy of the projects
 Download and install GIT

49

 Require access to both repositories since they are private, as shown in the figure

7.1

 Clone each Bitbucket repository in a separate empty local directory using the “git

clone <repository-url>” command or directly from Bitbucket, using a Git client

such as SourceTree or SmartGit

Figure 7.1 Bitbucket repositories overview

49

 https://git-scm.com/

https://git-scm.com/

Chapter 7

63

Step 2: Setup back-end project
 Download and install Java SE Development Kit 8

50

 Download and install IntelliJ IDEA
51

 or other Java IDE (such as Eclipse,

NetBeans, etc.)

 Download and install Apache Maven 3.5.4
52

 Import project in IntelliJ: open IntelliJ -> Import Project -> Select directory

containing the back-end project -> Next -> Import project from external model

and select Maven -> Next -> Finish. If another IDE is used, similar steps should

be followed.

 Before running the project, the database should be created, as shown at step 3

presented below.

 The application.properties file should specify the configuration for enabling the

database connection with the user credentials, as exemplified in the figure 7.2.

 Run the application by clicking or Right Click on MyApplication.java -> Run

MyApplication.main()

 The application should be now available on port 8080, so go to any web browser

and enter http://localhost:8080/events to see if any results are displayed

Figure 7.2 Database configuration in application.properties

Step 3: Setup the database
 Download and install MySQL Installer

53
, which provides a wizard-based

installation experience for all the MySQL software needs

 Start MySQL Server

 Open MySQL Workbench application and create a new connection and a new

user

 Create a new schema called “vappor”

 Import the vappor.sql script containing the database (which can be found in the

directory of the back-end project): Data Import -> Import from Self-Contained

file -> Select the vappor.sql script file -> Start import

 Create the database and populate it by executing the imported script

Step 4: Setup front-end project
 Import project in IntelliJ, this time skipping the Maven configuration part

50

 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
51

 https://www.jetbrains.com/idea/download/
52

 https://maven.apache.org/download.cgi
53

 https://dev.mysql.com/downloads/installer/

http://localhost:8080/events
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.jetbrains.com/idea/download/
https://maven.apache.org/download.cgi
https://dev.mysql.com/downloads/installer/

Chapter 7

64

 In the file system, navigate to the directory where package.json file is located,

open a terminal window and use the command npm install, for installing all the

dependencies required by the project

 Run the application using the “grunt serve” command form the terminal window

provided by IntelliJ

 The application starts on the port 9000: http://localhost:9000/

If the project is correctly configured at this point, the communication between the

front-end (client) and back-end (server) components should be enabled and the user

should be able to navigate the application, as presented in the following section.

7.3. Utilization instructions

A walk-through of the application will be done, by presenting each web page that

the user can access, based on its role: guest, volunteer, organization or administrator. The

sitemap of the web application will be shown, in order to help user gain a better visual

perspective over the use case scenarios of the developed software system.

7.3.1. Sitemap

The sitemap presented in the figure 7.3 shows how different pages of the

application are connected and which users are able to access them. The sitemap was very

useful during the design phase, offering an overview of the user interface and it was

modified during the implementation phase, based on required changes.

Figure 7.3 Sitemap

http://localhost:8080/events

Chapter 7

65

7.3.2. Application navigation

Each page of the application, together with a relevant image will be presented,

starting with the homepage and other pages which can be accessed by all users and

continuing with pages to which the access is restricted based on user‟s authorization. The

main use cases will be emphasized along with the website navigation description.

 Homepage

The first page the user can interact with when entering the application is the

homepage, presented in the figure 7.4. It can be accessed by any user, since it presents an

overview of the events added by the organizations and provides mechanisms of searching

events and of filtering by date (using the calendar component), by category or by status

(coming soon or passed).

Other pages which can be directly accessed from homepage are About, Contact

and Detailed Event pages.

Figure 7.4 Homepage

The unauthenticated user is able to Login using a username and a password (figure

7.5) if he already has an account, otherwise he can Register as a Volunteer (figure 7.6)

or as an Organization (figure 7.7) , by providing the required information.

Chapter 7

66

Figure 7.5 Login modal

Figure 7.6 Volunteer register modal

Figure 7.7 Organization register modal

Chapter 7

67

 Detailed Event Page

Any user can access this page by clicking on the event‟s title or date from the

media component containing the most important event details, which is displayed on

homepage. The detailed event page has three main horizontal sections, as it can be

noticed from the figure 7.8: the first one presents the title, date and organizer of the event

(and a section which can be used by volunteers to save or apply to event), the second

offers more details about the event such as the hour interval, the location marked also on

Google maps, a representative image and a short description. The third section is

represented by the comments area, which can be used by authenticated users to discuss

about the event and can be just viewed by unauthenticated users.

Figure 7.8 Detailed event page

 Volunteer-Profile Page

After authentication as a volunteer user, the volunteer-profile page is displayed

(figure 7.9). It presents personal information about the volunteer, which is relevant in the

volunteer selection process done by organizations. The volunteer is able to edit his

profile, to view the saved events or the events he applied to. The status (accepted or

rejected) to a certain event can also be checked. If tasks have been assigned to the

volunteer, they are visible on this page. Moreover, he can add stories about the events he

participated at, using the template from the figure 7.11, and visualize them. Other

authenticated users (volunteers and organizations) can visit the volunteer-profile page,

but will see only a part of this data.

Chapter 7

68

Figure 7.9 Volunteer-profile page

 Organization-Profile Page

After authentication as an organization user, the organization-profile page is

displayed (figure 7.10). Same as the volunteers, organizations are able to modify the

previously provided information. The organization user can add new events, edit the

existing events or delete them. The modal used for editing an event is shown in the figure

7.12. The presented events can be filtered using the calendar component. Each event can

be separately managed by the organization from the Manage Event Page, accessible by

clicking the Manage button. Other authenticated users (volunteers and organizations) can

visit the organization user profile.

Figure 7.10 Organization-profile page

Chapter 7

69

Figure 7.11 Add story modal

Figure 7.12 Edit event modal

 Manage Event Page

The event management process can be splitted into four phases, as emphasized by

the design of the Manage Event page:

1. Check volunteers phase - is the phase when the volunteers which applied

to the event must be accepted or rejected, as it is shown in the figure 7.13;

the volunteers‟ profiles can be accessed by just clicking their name.

Chapter 7

70

Figure 7.13 Check volunteers phase

2. Add new task phase - for each task, the required data (title, location,

description, selected volunteers, date, time interval) must be entered.

Tasks can be assigned only to accepted (available) volunteers. The figure

7.14 presents the template for adding a task.

Figure 7.14 Add task phase

3. Manage tasks phase – as shown in the figure 7.15, the created tasks can

be visualized, edited, deleted and feedback can be sent to volunteers.

Figure 7.15 Manage tasks phase

Chapter 7

71

4. Generate charts phase - charts are generated in order to offer a better

overview of the event‟s dynamic and volunteers‟ engagement. The first

chart in the figure 7.16 offers an overview of the number of volunteers

who applied to event, who were accepted or rejected. The second chart

shows the number of tasks which have a specific status.

Figure 7.16 Generate charts phase

 Settings page

This page presents a functionality which allows the user to modify the account‟s

password. The current password is required in order to successfully perform this

operation, as presented in the figure 7.17.

Figure 7.17 Change password on Settings page

Chapter 8

72

Chapter 8. Conclusions

This chapter will present the conclusion of the paper, by offering an overview of

the progress made in accomplishing the proposed objectives. Ideas for further

development will be shared, since the obtained results could be improved and the

application‟s functionalities completed.

8.1. Achievements

The main objective of the proposed project was to design and implement a web

information system which supports the organizations in the volunteers selection and

management processes and provides efficient communication mechanisms. The

developed web application represents a powerful tool which can be used by volunteers

who search for volunteering opportunities and organizations which promote their

projects, recruit volunteers and manage them. Moreover, the users of the application can

use the chat functionality to exchange messages and they will be notified with regards to

important events. Therefore, we can affirm that the main objective was accomplished.

Next, we will present how the specific objectives were achieved through the

features and functions provided by the implemented system. An important aspect is the

fact that the web application can be accessed by non-authenticated users (named guests),

who are allowed to access the unrestricted pages. In order to gain more access, the

registration is required and it is differentiated based on the user‟s type: volunteer or

organization. If the registration is successful, the users are able to authenticate using the

unique username and the associated password.

Organization and volunteer users have a personal profile which they can manage

by modifying previously provided information. The organizations can add events to

which volunteers may apply, whereas the volunteers may create stories about the events

they participated at. A way of sharing ideas about the events is represented by the

comments section, where authenticated users can add comments. The admin user is

responsible with managing this area and is able to even block user accounts if necessary.

Event management and evaluation represents an important feature offered by the

system, since it reduces the organizations‟effort for the volunteer‟s management.

Through our web application, organizations are able to accept and reject volunteers to a

certain event, create tasks and manage them, send feedback to volunteers and generate

useful charts.

Moreover, the system provides communication and interaction mechanism such

as email, online messaging, notifications, which efficientize the exchange of information.

As presented above, the specific objectives which were mapped to the functional

requirements of the system are covered. The realization of general objectives,

represented by non-functional requirements, will be evaluated next.

Usability - The user experience offered by our application was carefully thought.

The user interface is friendly and intuitive, guiding the user to accomplish the initiated

tasks, as shown in the images from the section 7.3.2. As an example, the volunteer user is

able to apply to an event from three different pages of the applications. This facility is

Chapter 8

73

provided in order to facilitate the participation to event process. Moreover, users

continuously receive feedback from the system through success and error messages.

Security - Protecting user data is an important objective of the system. This is done

by using secret tokens for authentication and information exchange, thus restricting the

access to some pages of the application and securely transmitting information between

client and server.

Performance - In order to monitor the performance of the backend server, we used

JavaMelody
54

, a tool which measures and calculates statistics on real operation of an

application, depending on its usage. By consulting the obtained statistics, it can be

observed that the targeted product performance is satisfied.

Portability- The portability of the developed application is ensured through the

fact that it is a web application and it can be opened in various web browsers.

Therefore, its behavior was thoroughly tested in the following web browsers: Google

Chrome, Mozilla Firefox, Safari and Opera.

8.2. Further development

Due to the fact that the application was developed on a modular principle and each

functional component is located in a separate project module, the subsequent

development of the application should not require a huge effort on the developer‟s side.

The implemented volunteer recruitment and management system provides the basic

features and functions required from a system of this type. Therefore, many possibilities

of further development can be identified in order to improve the existing functions and to

add more value to the application‟s business. We will present next some ideas which

could be used as a starting point for ehancing the developed web application.

 Membership option: the volunteers could become members of one or several

organizations and will be notified whenever a new event is added by that

organizer. Moreover, the organizations could bring their own members on the

platform and could easily differentiate them from other volunteers. This idea

could be implemented by saving the connections between volunteers and

associated organizations.

 Volunteer availability: allowing volunteers to define their availability would

facilitate the task assignation process, while the possibility of directly accepting

or declining a task would reduce the volunteer manager‟s work. The volunteer

could just pick an hour interval from a list of options when applying to an event.

 Management of large events: the current implementation targeted relatively

small events, which are organized during a single day. In order to cover events

which last more than one day, an event should be added for each day. By adding

a date interval or integrating the idea of subevents, our platform could support

the management of larger events.

 Groups of volunteers per event: viewing who the other participants to events

are, would increase the volunteers‟ interest in the event. If groups containing the

volunteers who participate to the same event would exist, they could easily

54

 https://github.com/javamelody/javamelody/wiki

https://github.com/javamelody/javamelody/wiki

Chapter 8

74

interract in order to clarify event related aspects, without asking the organizer‟s

help. The chat functionality might be used for implementing this idea.

 Participant user: besides the volunteer and organization users, another type of

user could be added - participant - such that the application could be used also by

the participants to the events, who could visualize details and confirm their

participation

 Social media integration: would simplify the authentication, if volunteer users

could use their Gmail and Facebook accounts in order to register and login.

Moreover, if the events could be shared on Facebook, Twitter or orther social

media environments, more users will be attracted on the platform. Such APIs

exist and they could easily be integrated into the project.

An idea which is costly, from a perspective of time and human resources, but

would bring a huge benefit to the entire project, is the implementation of a mobile

application to be used mainly by volunteers. They could “clock-in” and “clock-out”

when working on the assigned tasks, using the location provided thorugh GPS.

Therefore, their involvment would be quantifyable and the volunteer evaluation process

could be improved. Moreover, they would be able to change the status of a task from “to-

do” into “in-progress” or other, improving the task‟s progress visibility and offering

organizations the possibility of keeping track of volunteer‟s activity.

75

Bibliography

[1] Anca Nastase, “Despre măsurarea impactului voluntariatului în România”,

SlideShare, 2016

[Online]. Available: https://www.slideshare.net/inscomunicare/despre-msurarea-

impactului-voluntariatului-n-romnia

[2] Wilson John, “Volunteering. Annual Review of Sociology”, August 2000, Vol.

26:215-240, DOI:10.1146/annurev.soc.26.1.215

[3] Jeffrey L. Brudney, Lucas C.P.M. Meijs, “Models of Volunteer Management:

Professional Volunteer Program Management in Social Work”, Human Service

Organizations Management, Leadership & Governance, 2014, 38:3, 297-309, DOI:

10.1080/23303131.2014.899281

[4] J. Sch nb ck, M. Raab, J. Altmann, E. Kapsammer, A. Kusel, B. Pr ll, W.

Retschitzegger, W. Schwinger, “A Survey on Volunteer Management Systems”, 2016

49th Hawaii International Conference on System Sciences, DOI

10.1109/HICSS.2016.100

[5] Hung-Yi Chen, Yueh-Chin Chen, Huei-Ling Li, Hsiao-Chun Wu, “Developing

volunteer management system with Java EE Technology: The case of Taichung volunteer

service promotion center”, 2017 IEEE 8th International Conference on Awareness

Science and Technology (iCAST), DOI: 10.1109/ICAwST.2017.8256433

[6] Shuangli Wang, “A research on motivating and managing volunteers for large-scale

sports events in China”, 2009 ISECS International Colloquium on Computing,

Communication, Control, and Management, DOI: 10.1109/CCCM.2009.5267855

[7] Jeni Warburton, Melissa Moore, Melanie Oppenheimer, “Challenges to the

Recruitment and Retention of Volunteers in Traditional Nonprofit Organizations: A Case

Study of Australian Meals on Wheels”, International Journal of Public Administration

0:0, 2017, pages 1-13

[8] Harshad B. Prajapati, Vipul K. Dabhi, “High Quality Web-Application Development

on Java

EE Platform”, Advance Computing Conference, 2009. IACC 2009. IEEE International,

DOI: 10.1109/IADCC.2009.4809267

[9] Y. Furukawa, “Web-based control application using WebSocket”, in Proceedings of

ICALEPCS 2011, Grenoble, France

[10] Kyle Andrei, Chris Bernard, Jay Leslie and Laura Quinn, “A Consumers Guide to

Software

for Volunteer Management”, May 2011, pp. 4-12.

[Online]. Available:

76

https://www.techsoup.org/support/articles-and-how-tos/consumers-guide-to-software-

volunteer-management

[11] Steven Hall, Chris Milway, Helen Ridgway, Jack Garfinkel, Tony Goodrow, Myles

Kunzli, “How to choose a volunteer management system”, Knowhow Nonprofit,

November 2017

[Online]. Available:

https://knowhownonprofit.org/how-to/how-to-choose-a-volunteer-management-system

[12] Gabriel L. Muller, “HTML5 WebSocket protocol and its application to distributed

computing”, Master‟s thesis, Cranfield University, School of engineering, 2014

[13] Deepak Kumar, “Best Practices for Building RESTful Web services”, Infosys

Limited, Bengaluru, India, 2017.

[Online]. Available:

:https://www.infosys.com/digital/insights/Documents/restful-web-services.pdf

[14] Thomas Connolly, Carolyn Begg, “Database systems - A practical Approach to

Design, Implementation, and Management”, Sixth Edition, Pearson, 2015

[15] George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair, “Distributed

systems concepts and design”, Fifth Edition, Addison Wesley, 2012

[16] Karl Wiegers, Joy Beatty, “Software Requirements”, 3rd Edition, Microsoft Press,

2013

[17] Kathy Sierra, Bert Bates, “Head First Java”, Second Edition, O‟Reilly Media, 2005

[18] Ovidiu Pop, Information Systems, Lecture Notes, TUCN, Faculty of Automation and

Computer Science, 2018

[19] Best Volunteer Management Software in 2018, Capterra Reviews

[Online]. Available: https://www.capterra.com/volunteer-management-software/

[20] Samaritan technologies - Volunteer software

[Online]. Available: https://samaritan.com/

[21] Spring Framework Online Documentation

[Online]. Available: https://docs.spring.io/spring/docs/current/spring-framework-

reference

[22] AngularJS Online Documentation

[Online]. Available: https://docs.angularjs.org/guide/concepts

[23] JSON Web Token Online Documentation

[Online]. Available: https://jwt.io

77

Appendix 1: List of figures

Figure 3.1 Profile and Task packages .. 12
Figure 3.2 Evolution Package .. 12
Figure 4.1 Guest Use Case UML Diagram ... 21
Figure 4.2 Volunteer Use Case UML Diagram ... 22
Figure 4.3 Organization Use Case UML Diagram .. 23

Figure 4.4 Administrator Use Case UML Diagram .. 24
Figure 4.5 Create task use case flow diagram ... 27
Figure 4.6 System architecture .. 28

Figure 4.7 Spring Framework overview .. 30
Figure 4.8 RESTful communication in Spring MVC .. 31
Figure 4.9 Maven project structure ... 32
Figure 4.10 Maven‟s default lifecycle phases ... 32

Figure 4.11 JWT security flow .. 34
Figure 4.12 Example of expression in AngularJS ... 37

Figure 4.13 Data binding in AngularJS templates ... 37
Figure 4.14 WebSockets communication flow ... 39

Figure 4.15 Geocoding API request format .. 40
Figure 4.16 Google Maps with pin-point on Cluj-Napoca 40
Figure 5.1 Detailed architecture of front-end component 43

Figure 5.2 AngularUI routing .. 43

Figure 5.3 Guest‟s navigation diagram ... 44
Figure 5.4 Authenticated user‟s navigation diagram ... 44
Figure 5.5 Event Controller definition .. 44

Figure 5.6 EventService definition .. 45
Figure 5.7 UserService definition .. 45

Figure 5.8 Layered architecture pattern ... 46
Figure 5.9 Backend package diagram ... 48
Figure 5.10 Definition of TaskController .. 49

Figure 5.11 Definition of EventService ... 50

Figure 5.0.12 Implementation of Repository interface for VolunteerProfile entity 51

Figure 5.13 Classes interaction .. 52

Figure 5.14 JWT check of user‟s role ... 52
Figure 5.15 Cors Filter implementation .. 53
Figure 5.16 User object mapped with DozerBeanMapper 53
Figure 5.17 Database diagram ... 54
Figure 6.1 Test automation pyramid ... 60

Figure 6.2. Example of API call using Postman ... 61
Figure 7.1 Bitbucket repositories overview ... 62
Figure 7.2 Database configuration in application.properties 63
Figure 7.3 Sitemap ... 64

Figure 7.4 Homepage .. 65
Figure 7.5 Login modal .. 66
Figure 7.6 Volunteer register modal .. 66

Figure 7.7 Organization register modal ... 66

78

Figure 7.8 Detailed event page .. 67
Figure 7.9 Volunteer-profile page ... 68
Figure 7.10 Organization-profile page .. 68
Figure 7.11 Add story modal ... 69

Figure 7.12 Edit event modal .. 69
Figure 7.13 Check volunteers phase .. 70
Figure 7.14 Add task phase ... 70
Figure 7.15 Manage tasks phase .. 70
Figure 7.16 Generate charts phase ... 71

Figure 7.17 Change password on Settings page .. 71

79

Appendix 2: List of tables

Table 3.1 Comparative analysis of the similar systems .. 16
Table 4.1 Functional requirements .. 18
Table 4.2 Actors and responsibilities description .. 20
Table 6.1 Steps of test case 1 ... 58
Table 6.2 Steps of test case 2 ... 59

80

Appendix 3: Glossary

Term Definition

Organization

In the context of this system, it denotes a user type and is

represented by an organization member. Through organization we

refer to an ONG, a society, a community or a self- organized

group of persons organizing an event.

Event

It represents an activity proposed by an organization where

volunteers can apply in order to achieve a common goal. The

event details (title, description, date, application deadline, number

of volunteers required, etc.) are specified by the organization.

HTTP
HyperText Transfer Protocol is an application protocol used for

specifying the rules for data communication in World Wide Web.

REST
REpresentational State Transfer is an architectural style for

providing communication standards between computer systems

on the web.

API

Application Programming Interface represents a set of functions

and procedures that allow the creation of applications which

access the features or data of an operating system, application, or

other service.

WebSockets
Is an advanced technology that makes it possible to open an

interactive communication session between the user's browser and

a server.

JSON
JavaScript Object Notation is an open-standard file format that

uses human-readable text to transmit data objects consisting of

attribute–value pairs and array data types.

STOMP
Simple Text Oriented Message Protocol, formerly known as

TTMP, is a simple text-based protocol, designed for working

with message-oriented middleware (MOM).

81

Appendix 4: UML Class diagram

82

