

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

1

Table of Contents

Chapter 1. Introduction ... 1

1.1. Project context .. 1

1.2. Motivation ... 1

1.3. Structure .. 2

Chapter 2. Project Objectives .. 3

2.1. Functional requirements ... 3

2.2. Non-Functional requirements ... 3

2.3. Necessary resources .. 4

Chapter 3. Bibliographic Research ... 5

3.1. Emergency calls solutions (Principle of operation) .. 5

3.2. GPS Tracking technologies (Principle of operation) .. 5

3.2.1. Location and Map APIs for Android and their comparison 6

3.3. Messaging protocols ... 9

3.3.1. Advanced Message Queuing Protocol ... 9

3.3.2. Hypertext Transfer Protocol .. 9

3.3.3. Signalling System .. 11

3.4. Messaging technologies .. 11

3.5. Speech recognition applicability for patient tracking ... 15

3.6. Competitors analysis ... 15

Chapter 4. Analysis and Theoretical Foundation 17

4.1. Conceptual architecture .. 17

4.2. Use cases ... 18

4.2.1. Patient actor ... 19

4.2.2. Doctor actor ... 20

4.2.3. Emergency call detailed use case .. 22

4.2.4. Track patient detailed use case .. 24

4.2.5. Call Doctor detailed use case ... 26

4.2.6. Send message detailed use case ... 28

4.2.7. Change user profile detailed use case .. 30

4.3. Technological perspective .. 32

Chapter 5. Detailed Design and Implementation 35

5.1. System architecture ... 35

2

5.1.1. System components ... 36

5.2. Application modules ... 38

5.2.1. Patient Tracker ... 39

5.2.2. Emergency Call ... 40

5.2.3. Messaging .. 40

5.2.4. Typing by voice ... 41

5.3. Design patterns used in the project ... 41

5.3.1. Model View Presenter pattern ... 41

5.3.2. Factory method pattern .. 42

5.3.3. Adapter pattern .. 43

5.4. Architecture of the Android application ... 43

5.4.1. Arch module .. 44

5.4.2. App module ... 44

Chapter 6. Testing and Validation .. 49

6.1. Test cases .. 49

6.1.1. Logging the user into the system ... 49

6.1.2. Register the user into the system ... 50

6.1.3. Add new patient ... 50

6.1.4. Send message ... 51

6.1.5. Emergency call .. 51

Chapter 7. Installation and User manual ... 52

7.1. System requirements ... 52

7.2. Software requirements .. 52

7.3. Installation .. 52

7.4. Using the application .. 53

7.4.1. Opening the application ... 53

7.4.2. The first use of the application .. 54

7.5. Login, Signup and Recover Password .. 54

Chapter 8. Conclusions... 60

8.1. Contributions and achievements ... 60

8.2. Further development ... 61

Bibliography .. 62

Appendix 1 - List of figures and tables ... 64

Appendix 2 – Glossary .. 66

3

Chapter 1

1

Chapter 1. Introduction

1.1. Project context

We live in a world where we have the possibility to explore what’s surrounding us

in a way that virtually knows no boundaries. We have the possibility to stay connected

almost continuously with each other, we can express ourselves freely in many different

ways and we like to stay up-to-date regarding what is happening around. The way we do

things are more accelerated then ever due to the continuous information flow that reaches

us so we do not like to wait and we want things to happen instantly. This is even more

true when our health is not in its best shape.

In the healthcare tings go slower due to the limitations of our bodies, of our nature

but when we are in need of treatment or we get hospitalized, things appear to go slower

and we get impatient because our lifestyle demands to be everywhere and everything to

happen instantly. But staying connected also has positive sides, for example in cases of

emergency the victim(s) do not have to wait long for the help to come, because due to the

fast information flow the help can react and arrive really fast.

There is always a need for healthcare because we unfortunately tend to have

health issues and because of this the healthcare system will always be occupied and many

times agglomerated.

Thanks to the fast and constant development of the information systems new

doors and possibilities appear from time to time which makes it possible to make our life

easier and more comfortable. With the help of these innovations we are able to improve

the healthcare in many ways.

One of these ways would be a new application that would be designed to facilitate

the communication among doctors and patients and help to organize the work with

patients and their data like medical sheets or contact information.

The purpose of this project is to define and construct a system capable of

supervising in real time the seriously ill patients inside, near or even outside of a hospital.

Starting from this we can deduce that the main users of this system will be doctors and

patients.

The system will offer the possibility for different features which might facilitate

the work of doctors and nurses, like: tracking their patient’s location and status

continuously, communicating with the patients through messaging, sending warning

messages and initiating emergency calls when certain scenarios happen.

1.2. Motivation

The decision to develop the Patient Tracker system was born because I would like

to help the workers and patients of the healthcare system. Nowadays smartphones are

essential parts of our lives. Considering this, their portability and the fact that Android is

one of the most used operating systems, choosing to develop and Android application

was expedient because it is easy to use, user friendly and it can reach a lot of people in a

very short time.

Chapter 1

2

1.3. Structure

In the following the structure of the thesis will be presented broken down into

chapters and briefly describing their content.

Chapter 1 (Introduction)

This chapter briefly describes the project context, the problem which could be

solved by the proposed system and a motivation that confirms that why this

project was chosen to be designed.

Chapter 2 (Project objectives)

This chapter contains the detailed presentation of proposed system’s the project

objectives.

Chapter 3 (Bibliographic research)

This chapter contains the necessary information that is required to develop a

tracker application. A study and a comparison will be presented regarding the

protocols and technologies that can be used in order to implement such a project.

Among these we can differentiate between messaging, GPS and cell network

protocols and technologies. This chapter also studies and compares some of the

similar systems.

Chapter 4 (Analysis and theoretical foundation)

This chapter contains the principles of operation regarding the system and the

different technologies used by the system. This chapter also presents the

functional requirements of the system.

Chapter 5 (Detailed design and implementation)

This chapter contains the detailed description of how the system works and how it

was designed and implemented. All of the systems components are described and

also how they communicate among them.

Chapter 6 (Testing and validation)

This chapter contains the summary of the testing and validation phases of the

project.

Chapter 7 (Installation and user manual)

This chapter explains how the system can be obtained, installed and gives

instructions about how this system can be used in the right way.

Chapter 8 (Conclusions)

This chapter contains an analysis regarding how the system can be improved.

Chapter 2

3

Chapter 2. Project Objectives

As the healthcare is more agglomerated than ever, sometimes it is hard for the

doctors and nurses to keep track of every patient thus extending the time to treat them and

ease their pain. In every hospital there are outpatients who can walk outside of the

building but has to stay in the hospital for a period of time and every one of them must be

supervised by nurses or doctors. The general practitioners also have responsibility for

many patients who arrive from longer distances for example other districts of the city or,

even from other villages.

With the help of a portable system the care givers and also the patients in a

hospital would have an insurance that if anything happens to a patient the responsible

person would know exactly where he/she is and can immediately consult with him/her

even if they are not in the same area. This system would free some hands and save some

time for the caregivers. The system would be deployed as an Android application which

offers a possibility to the doctors and patients to talk, change some messages and pieces

of important information in a simple way. Patients would also be able to call for help if

needed, and -to make sure that the help arrives- send SOS messages with their exact

address to the ambulance and also to their doctors who will be able to act fast. The

system would give ensurance for the care givers by providing GPS coordinates - and

other data if needed - of a patient.

Among the users surely can be expected some elderly people, who might not be

able to easily use a mobile application. To help them the application offers a

minimalistic, friendly user interface a text-to-speech functionality, which helps by

reading the content from the screen.

2.1. Functional requirements

• Real time location tracking (localization via cell network, GPS) of patients

in order to the doctors and nurses be able to act immediately and

accurately if something wrong happens

• To implement the messaging (communication between the client and

service provider using the basic functionality of Android that controls the

sending and receiving of messages), which makes possible to reduce the

preparation time for nurses, doctors

• Handle messaging with the help of speech-to-text features

• To implement emergency calls that can be initiated manually and sends

automatically the address of patients

2.2. Non-Functional requirements

A non-functional requirement (NFR) is a requirement that specifies criteria that

can be used to judge the operation of a system, rather than specific behaviors. The plan

for implementing non-functional requirements is detailed in the system architecture,

because they are usually architecturally significant requirements.

In a nutshell, non-functional requirements define how a system supposed to be

(ex: “the system shall be <requirement>”). The non-functional requirements are listed

and explained in details below (Table 2.1).

Chapter 2

4

Table 2.1 Non-functional Requirements

NFR 1 (Availability) The system always has to be available because in healthcare

cannot be permitted that a patient gets out of sight because of

some faluires. The system will run on a server continuously

and apart from server maintenance or a blackout there are no

predictable special cases that can cause a faluire.

NFR 2 (Response Time) The system has to be able to deliver fast user inputs and

respond to them.

NFR 3 (Usability) The system has to be designed in a way, that any user can

easily understand how it should be used. This is supported

with a minimalistic and simple user interface and a few

instruction messages to help the user.

NFR 4 (Performance) The system has a short response time because in healthcare is

essential

2.3. Necessary resources

• Software:

o Android L (version 5.0 - Lollipop) or newer version

o Windows 10

o Firebase Realtime Database API - to store the necessary

information

o JDK 1.8 + Android SDK - To create the Android application

o Google API - to implement the GPS tracking feature

• Hardware:

o Asus Zenfone 2: intel atom quad core (1,8GHz), 2GB RAM -

Device used to test the application

o Dell inspiron: Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz (4

CPUs), ~ 2,3GHz, AMD Radeon HD 8600M Series, 6GB RAM -

Device used to develop and test the application

Chapter 3

5

Chapter 3. Bibliographic Research

3.1. Emergency calls solutions (Principle of operation)

A SIM card is used to just authenticate the identity of a telephone user on a

particular network. It also contains the account details which allows the phone user to

make a phone call. The phone in itself is capable of making a call, but the SIM card must

be able to connect to a particular network after verifying its identity.

The purpose of an emergency call is to call for help immediately but there are

several factors on a mobile phone that can delay this extremely important call for help:

• Lack of SIM card1:

 Emergency calls do not need any network authentication. This is a well thought

feature because in an unfortunate event when someone’s life is at risk and every

second counts, the time loss due to entering the PIN code and waiting for

authentication might be deadly. This is why whenever somebody makes an

emergency call, the network connects that person to the emergency desk without

authenticating thus bypassing the function of a SIM (Subscriber Identification

Module) card.

• Lock screen:

Usually on every phone a lock screen is set to prevent accessing the device for

everyone who is not the owner or not trusted by the owner. This security measure

also can delay the emergency call for example when the owner is nervous or is in

shock state and can not unlock the phone even for the third try; or even the owner

is unconscious and somebody else should call for help not knowing how to unlock

the phone. Because of these possibilities it was decided that the emergency call

should bypass the lock screen and take the user straight to the dialer in order to be

able to call for help as soon as possible.

• Weak network signal:

It is possible to make emergency calls even if there is no network coverage for a

provider (like Orange, T mobile, etc.). This is possible because emergency calls

can be made through any available signal of any provider. If a network is too

weak then the call will be made through a stronger network which is available at

that time. It is important to be noted that if there are no available networks no

calls nor emergency calls can be made.

3.2. GPS Tracking technologies (Principle of operation)

The Global Positioning System (GPS) is a worldwide radio-navigation system

formed from a total of 24 satellites and their ground stations. The GPS system was

initially designed for military purposes.

1 https://www.quora.com/If-a-cell-phone-doesn-t-have-a-SIM-card-how-can-it-make-emergency-calls

Chapter 3

6

Today mapping solutions are accustomed and important parts of everyday life.

Many people use them to locate everything on the planet: to search for a country, a

mountain, an ocean or to search for a specific address or just to get driving directions.

Nowadays almost every piece of information has a location, and if it has a location than it

can be put on a map. The use of this system is free of charge for the civil users.

GPS tracking is a method of telling where something is positioned. It can also be

equipped in a car or put in a mobile phone. Since it’s portable it is able to track the

movement of a person or a car. The GPS tracking system uses the Global Navigation

Satellite System (GNSS) network. This network consists of a set of satellites that transmit

microwave signals to GPS devices to make available information like location, direction,

time and speed so a GPS tracking system can offer real-time and also historic navigation.

This system provides special signals for the devices which later process these signals and

can calculate velocity, time and even three-dimensional views. There are 24 satellites that

travel around the Earth each 12-hours and send signals from space that can be received

by the end devices. The control of the Positioning System of different tracking stations

that are located across the globe. These stations help in tracking signals from the GPS

satellites.

A GPS tracking system can be used for many different purposes. From the

commercial perspective, it can be used to track the route of vehicles. Some systems use

passive tracking and others send the information to the centralized database. The passive

system can monitor location and store this data in certain scenarios. This kind of system

is capable of telling for example where a truck has been in the last 12 hours while an

active system can do real-time tracking and automatically sends the current location to a

center where the responsible people can track a truck in real-time for example. This kind

of system is a better option for monitoring people (elderly, children, people with

Alzheimer) because it allows a caregiver to see where are these people exactly and

whether they are in a safe place or not. Real time tracking is also popular in security

solutions because it allows the user to pinpoint the precise location of the device

equipped with GPS tracker[3].

3.2.1. Location and Map APIs for Android and their comparison

Today we have many possibilities to choose from when we would like to benefit

from the services provided by GPS. Among these let us examine a few applications (and

the APIs provided by them) that are well known by society such as: Google Maps, Here,

Waze. In the following they will be compared one by one with regard to the project

objectives and the best will be chosen to be used in the Patient Tracker application.

Google Maps is an application for smartphones operating under Android OS. can be

used. In order to be possible to use the Google Maps within our application we must rely

on Google APIs which provides Add-ons for the Android SDK so the set of libraries and

services – provided by Google – can be put in use. The Google Maps API can be installed

inside the Android SDK Manager. The API automatically handles access to Google Maps

servers and response to map gestures[20].

Without a doubt, it is the best overall navigation app for Android. Recently, Google

has added the ability to download offline areas (which was there in a less official form

Chapter 3

7

before), which is useful if you are heading to an area with poor connectivity but to save

storage space on the mobile devices and ensure the offline maps to be up-to-date, offline

maps expire within 15 days. Google Maps should also be preferred when traveling to the

countryside. Google updates the information regularly and provides extensive details.

The Google Maps API has the capabilities to:

• Get and work with detailed and vast information

• To be used from any location worldwide

• Add markers, polygons, and overlays to a basic map, and

• To change the user’s view of a particular map area.

• To convert addresses into coordinates

• To convert coordinates into addresses

• Create info views on the map

Waze2 is a community-driven application for smartphones or tablets that is capable of

turn-by-turn navigation via GPS and sharing user-submitted travel times and route

details. It serves the same purpose as Google Maps: to provide detailed information about

the current location and to navigate the driver/traveler in the world. It mainly focuses on

providing real-time traffic information. As a “wazer” (community member) one can

report accidents, traffic jams, and similar incidents on the way. Friends can see each

other’s Estimated Time of Arrival (ETA) when driving to the same place and it also

delivers a unique user experience. Waze may seem to take a more complicated route

sometimes, but it knows how to avoid the traffic.

Waze supports Android and iPhone by providing the Waze Transport SDK, which

is available for anybody who is a Waze Transport SDK partner and would like to develop

mobile applications. With this SDK developers can build applications for navigating or

getting location data and also many more things such as:

• Getting ETA and routing points (provides capabilities like drive and arrival time

calculations, based on Waze’s cloud data).

• Search for places in the application

• Set the Waze map to a desired location from the application

Unfortunately the Waze Transportation SDK does not support:

• Server-side access to Waze data, like traffic reports, speed, etc.

• Embedding the Waze map and navigation in your app

• Offline maps

• Detailed maps world wide

Here Maps is an application for Android and iOS that provides mapping and GPS

navigation. It is currently available in more than 180 countries and it provides turn-by-

turn walking navigation. It also uses an augmented reality technology called LiveSight

that provides additional information like contact information, open hours and reviews

about buildings if the user holds up the phone directs the camera onto the building.

It developed an API (Here Maps API) for Android. Applications built with this

API are able to plan routes and interact with extruded 3D buildings. Here also created a

2https://books.google.ro/books?id=TehLDQAAQBAJ&pg=PP2&dq=waze+android&hl=en&sa=X&ved=0ahU
KEwijjbLvouXaAhWHzKQKHSXfCucQ6wEIQTAE#v=onepage&q=waze%20android&f=false

Chapter 3

8

service for iOS and it provides iPhone users with maps in more than 180 countries, also

public transit, walking and driving directions. It is capable of voice guided navigation.

Multiple map views are accessible: satellite view, public transportation view and live

traffic view. Users are able to or remove new elements with the help of the Here Map

Creator. This service is accessible on Android and iOS as well and gives the possibility to

the users to add new roads, edit or remove them; add new places, edit or remove them;

add new markets/shops, edit or remove them (grocery store, clothing store, types of

restaurants, sports equipment store). In some cases: photos, working hours and contact

details might be attached to these places. The service even permits to edit details such as

house numbers, speed limits on roads, number of lanes, type of the road (open road,

tunnel, bridge, pavement, etc.)[7].

From the users’ point of view Here Maps is one of the simplest navigation apps

for Android which in some people opinion “could look better”. Recently, Here

Maps rebranded to – “Here We Go”. It has been tailored for offline use. In addition, it

lets you download the map of an entire country. Unlike Google Maps, it does not offer an

expiration period for the offline maps. It also provides a quick-action button to search for

Nearby places. It is one the best alternatives to Google Maps.

Here Maps also launched an SDK to help the work of developers. There are many

applications that use Here as backbone. The SDK provides access to multiple sets of data

such as average road speeds, traffic build-up. In 2015 Here Mobile SDK was created

which contains native Android and iOS APIs which permit many things that expand the

list of advantages:

• displaying raster tile map

• search of online points of interest

• geo-coding/decoding and online route calculation

• using turn-by-turn guidance

• having the best method for offline use

By comparing the previously mentioned location APIs and the features and capabilities

offered by them, Google Maps (and Google Maps API) had been chosen, because it is an

obvious choice in many aspects:

• First of all, Google Maps API was developed by Google just like the Android OS

and due to this fact, it can assure compatibility with any Android application that

uses it

• It has Add-ons that can be installed directly in Android Studio (Android SDK

Manager). As mentioned above the API automatically

• Handles access to Google Maps servers and their response to map gestures.

• It is suitable for any location worldwide which means it has an extremely large

coverage.

• It can work with offline maps, which expire within 15 days to save memory.

Usually this time is short, but it fits our goal perfectly, because it will not be used

frequently just occasionally and even then just in some special cases.

• It is not capable of sharing real time traffic information among the members of the

community like Waze, but in a hospital we do not need this kind of functionality.

• The UI is user friendly and the Google Maps API as a whole, fits perfectly to our

needs.

Chapter 3

9

3.3. Messaging protocols

In this subchapter different messaging protocols will be presented that will make

it possible for the components of Patient Tracker project to communicate among each

other in an easy and efficient way.

3.3.1. Advanced Message Queuing Protocol

The AMQP is an open standard that defines a protocol for systems to exchange

messages. AMQP defines not only the interaction that happens between a consumer /

producer and a broker, but also the over-the-wire representation of the messages and

commands that are being exchanged. Since it specifies the wire format for messages,

AMQP is truly interoperable, nothing is left to the interpretation of a particular vendor or

hosting platform. AMQP provides both synchronous and asynchronous methods that can

be called by the client. The difference is that synchronous methods return a response

while the asynchronous don’t return any response.

3.3.2. Hypertext Transfer Protocol

The HTTP3 is an application protocol for distributed and collaborative systems. It

uses a request-response protocol in the client-server computing model. For example, a

web browser running on a computer can be the client and a web page running on another

computer can be the server. The client sends a HTTP request to the server to which the

server responds by providing the necessary resources (HTML files) or by executing the

operations asked by the client and sending a response message to the client. The message

contains a completion status about the request and it may contain in its message body a

result obtained by executing the requested operation by the client or a requested

file/information. It is designed in a way to permit a client-server communication even if

there are some intermediate elements in the network.

HTTP resources are identified and located on the network by Uniform Resource

Locators (URLs), using the Uniform Resource Identifiers (URI’s) schemes http and https.

HTTP uses new connections for every new request sent to the server, but this was

improved by HTTP 1.1 which is able to reuse a connection multiple times thus has less

latency.

A HTTP session is a sequence of request-response transactions. First of all, the

client establishes a Transmission Control Protocol (TCP) connection to a port on the

server and a HTTP server waits for the client’s request message by listening usually on

port 80. After this the server responds with a status response and the body of this message

contains a requested resource. If the request was successful an OK status is returned,

otherwise an error message. It has many methods to indicate towards the server what kind

of action is requested. These most important methods are listed in Table 3.1 below:

3 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Chapter 3

10

Table 3.1 – Http request methods

GET Retrieves data from the server and it should not have any other effect.

POST Requests the server to accept the new entity as a new member of the

resource identified by the URI. This entity can be a newsgroup, mailing

list, a message or even a block of data that can be added to a database/

PUT Requests to store the sent data under the provided URI. If at the

destination already exists such an entity it will be updated, but if the URI

points to a location where does not exist a resource, then the server creates

that particular resource coded in the URI.

DELETE Deletes the specified resource

HEAD Similarly to GET it requests a response but without the body. It might be

useful at retrieving meta-data about some entities without having to

transport the whole.

TRACE Echoes the received request so the client can notice if any changes were

made by the intermediate servers.

OPTIONS Returns the HTTP methods supported for the specified URL

PATCH Applies modifications to a resource specified by the URI

HTTP status codes4 are very simple and well structured. Every status code is a

three-digit number and the first digit defines the type of the status code. There are five

categories that are dedicated for different types of status codes. Status codes whose first

digit is 1 are informational codes. Codes starting with 2 are successful codes, starting

with 3 are redirection codes, starting with 4 are client error codes and codes starting with

5 are server error codes.

HTTP sends messages in plain text format (ASCII). The client sends the request

and the server responds with a response.

• Request message consists of:

o A request line (e.g. GET/PUT/DELETE/etc.)

o Request header fields (e.g. Language: en)

o Empty line

o A message body which is optional

• Response message consists of

o Status line which includes the indispensable status code (200 OK,

client’s request succeeded)

o Response header fields (context-type: text/html)

o Empty line

o A message body which is optional

4 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Chapter 3

11

3.3.3. Signalling System

The Signalling System No.75 is a set of protocols used for telephony signaling. It

is used for more telephone related mechanisms among which (regarding the project) the

following can be enumerated: setting up/tearing down telephone calls and Short Message

Service. It uses full-duplex links to connect and communicate two nodes (phones) of the

system.

3.4. Messaging technologies

During the documentation and research phase of the thesis the following

messaging technologies were found, from which later I chose one that fits the most to my

project considering all the project objectives and carefully analyzing what these

technologies can offer.

RabbitMQ is a message broker6 software implemented by Erlang that

implements the AMQP broker. Erlang is able to run on any operating system. RabbitMQ

can easily be extended with the addition of some plugins:

Android system: RabbitMQ can be used since there is a Java Client Library that

RabbitMQ implemented and allows Java code to interface with the queue. It allows to use

a set of methods for basic (ack, cancel, deliver, consume, get, publish, reject), channel

(close, flow, open), exchange (bind, declare, delete, unbind) and queue (bind, declare,

delete, purge, unbind) operations[10].

In the first phases of the Patient Tracker’s design while looking for a messaging

technology RabbitMQ was found but later it seemed that with Firebase better results can

be achieved.

Google released Firebase in the summer of 2016 with the purpose of giving an

infrastructure and support that might be needed on order to build great applications. It is

not a replacement to the existing APIs like Android and iOS. It is rather an enhancement,

that offers things that might prove useful (database, security, messaging, etc.) for building

an application. This helps the developers because they do not need to implement all these

components from scratch and saves time. It also offers some technologies that can be

used in the application. Each of the technologies can be used separately. The developers

are not forced to use them all. Many of these are free to use (Authentication, Cloud

Messaging, Notifications, etc.). The other technologies have a free version that has

limitations and can be used for testing and for smaller apps. For example, the free tier

version of Realtime Database can store 1Gb of Data and have 100 simultaneous

connections. Similarly, for Cloud Functions the free tier allows a number of 125,000

invocations per month [15].

Firebase uses Representational State Transfer (REST) API7 in a way that any

Firebase Database URL can be a REST endpoint so to send a JSON object all is need to

be done is appending the .json to the end of the URL and send a HTTPS request from the

client. Since REST is an architectural style that defines a set of rules and properties based

5 https://en.wikipedia.org/wiki/Signalling_System_No._7
6 www.cloudamqp.com/blog/2015-07-29-rabbitmq-on-android.html
7 https://firebase.google.com/docs/reference/rest/database/

https://en.wikipedia.org/wiki/Signalling_System_No._7
http://www.cloudamqp.com/blog/2015-07-29-rabbitmq-on-android.html
https://firebase.google.com/docs/reference/rest/database/

Chapter 3

12

on HTTP basically the Firebase Real-time Database uses HTTP in the background to

work with the data, which is written in JSON objects and structured in a tree of these

objects.

For a real-time database it is not enough only to use HTTP because this requires

constant requests from the client side to see if there were any changes in the database.

This would not be efficient, occupy a large bandwidth and increase latency. In the

Firebase Real-time Database Server-sent Events (SSE) is also used to synchronize the

data with the client whenever a change is being made in the database. SEE is a

technology where a client receives updates automatically form a server via HTTP

connection. Server-sent events basically is a standard that describes how servers can

initiate data transmission towards clients once the initial client connection has been

established. They are mainly used to send continuous data streams to a client browser or

device.

Firebase offers the possibility to do many different things by using tools. We will

discuss the ones that were used for the project in the table below (Table 3.2).

Table 3.2 – Firebase tools used in the project8

 Description

Authentication Provides backend services, easy to use SDKs to authenticate

the project’s users. It supports authentication by e-mails, phone

numbers, passwords and it is able handle Facebook, Google

and Twitter integrations.

(Real-time) Database Stores data -that is coming from authenticated users- in a

JSON tree. The data is synchronized and every one of the

connected clients will receive the changes in the data as soon

as they happen. All of the users share one Realtime Database

instance.

These solutions have been chosen because these were the ones that fitted the best

to the project’s nature. Namely here they are and a few notes why they have been chosen:

Authentication as many other authentication services by knowing the user’s

identity allows the application to safely and securely store data. Firebase Authentication

enables to save user data in the cloud thus providing the same experience regardless of

the user’s device.

Each user has a unique Identifier, a time stamp that stores the date on which the

user account was created, a time stamp with the date of the last sign-in and a very

important and also unique User UID. It also worth noticing that the password is nowhere

to be found, and not only in the admin’s user interface, but also the Firebase SDK does

not provide any means to retrieve the user’s password programmatically. This is

intentional to keep the applications more secure. The password can be retrieved only by

the forgot password feature which is accessible only through the user’s email account.

The key capabilities are FirebaseUI Auth and Firebase SDK Authentication.

8 https://en.wikipedia.org/wiki/Firebase#Firebase_Auth

https://en.wikipedia.org/wiki/Firebase#Firebase_Auth

Chapter 3

13

The first one holds a complete sign-in system and it can be integrated as a whole in

applications. The second one is able to handle the basic email, password and phone

number authentication. There are some other possibilities like anonymous authentication

that lets the user to explore some of the basic features of an application in “guest” mode

and later this temporary account can be upgraded to a regular account.

 This service has been chosen because it provides a free, easy to use authentication

system that is secure, stable, has an already implemented forgot password feature, and it

even has Google, Facebook integrations.

Real-time Database is a cloud-hosted, NoSQL-based database. It is able to

synchronize connected devices having an event driven database. In its database there is

no server-side code instead all of the code is written in the client side. Whenever a data

change occurs in the database, events are fired on the client side and later these can be

handled.

This database is organizing all the data in a tree structure. The nodes of this tree

are JSON objects which can be manipulated by giving their path. For example, let us a

user can be accessed by giving its path which is root\users\id. If a new node is added to

the database it will get a unique ID and knowing this id the node can be read or modified

instantly, without the need to search and match the data in order to locate the node again.

If any modification happens in this structure every user with access to this

database and to that specific data will be synchronized with the changes in seconds. It

also works with applications with different version number, or among different platforms

(web, mobile).

The Real-time Database is integrated with the Authentication service which

enables only the authenticated users to read or write data in the database considering that

they do not have any restrictions regarding the data in the database.

This database is optimized for offline use too. When a device is offline it is

inevitable to lose connection with the real-time database, but with offline sync the

developer can get the most out of the application since in offline mode a cache is used

with the purpose to store the changes in the data. Later when the internet connection is

restored all the changes in the cache are synchronized with the database, so no time or

work is lost. The cache has to be enabled programmatically by the developer because not

every application requires the offline mode.

The Real-time Database is really helpful because it offers solutions (through the

Firebase SDK) to store and read data, which is essential for the project. The application is

built on the Real-time database, which forms the backbone of my project and it also

resolves many problems for one main feature in the application which namely is the

patient tracking. Tracking in real time can be a complex task due to the synchronization

of the coordinates. The Real-time Database synchronizes solves this problem by instantly

feeding the new coordinates to the tracker as soon as they were changed. All these

operations has to be executed securely which is ensured by the Firebase Realtime

Database Security Rules. These rules are a set of rules which defines how the data is

structured and who have access to that data. Its purpose is to make it easier to build a

real-time experience. Storing data is a common requirement that appear in apps.

Chapter 3

14

A new version of the Firebase Real-time Database has been identified that has the

name Cloud Firestore9. This is also a cloud-hosted, NoSQL database that is similar to the

Firebase Database. It is a Firebase product as well and it is built on its ancestor’s

(Firebase Realtime Database) success.

Similarly to Real-time Database is capable of keeping all the data synchronized

accross many platforms, devices and even application version numbers which is achieved

through realtime listeners. It offers offline support just like the Real-time Database that

also works on mobile and web as well.

Just like its ancestor Cloud Firestore offers integration with many other tools.

Among these we can find all the products from Google Cloud Platform.

Its main capabilities are felxibility, expressive querying, realtime updates, offline

support and also scalability.

The data in the Cloud Firestore database is stored otherwise. The NoSQL data

model stores data in documents which contain fields mapped to values. All these

documents are stored in some collections which are basically containers that are used to

organize the data. By using this data model Cloud Firestore supports any datastructure

that that fits the project’s needs.

It is also capable of querying data which is efficient and flexible. It is capable of

creating shallow queries to get data at document level without needing to read the whole

collection or sub-collections. Sorting and filtering can be applied on the queries in order

to narrow down the results.

To keep the applications up-to-date with data Firestore uses real-time listeners

just like the Firebase Real-time Database. It uses Firebase Authentication to secure and

limit the access to the real-time database.

As a conclusion it can be said that despite of all the new features of the Cloud

Firestore10 and despite the fact that it is newer and maybe more performant compared to

its ancestor Firebase Real-time Database. The Real-time Database was chosen instead of

Firestore because Firestore is brand new, which also means that it is not entirely tested

and cannot be foreseen all the effects that will appear using Firestore. On the Firebase’s

homepage is even stated that Firestore is still considered as “Beta”11.

Firebase Real-time Database had been chosen to make sure that there will be no

surprises regarding the stability, but the necessary tools and features are doing what is

expected.

Cloud Storage12 offers the possibility to upload and download different kind of

files to the cloud from the application.

Among the main capabilities we can mention the robust operations and strong

security. The first assures that in any case the files reach their destination. This is

achieved by restarting uploads or downloads if they are stopped and

uploading/downloading files even if the network quality is poor. The second one means

9 https://firebase.google.com/docs/firestore/
10 https://firebase.google.com/docs/database/rtdb-vs-firestore
11 https://cloud.google.com/firestore/docs/
12 https://firebase.google.com/docs/storage/?authuser=0

https://firebase.google.com/docs/firestore/
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://cloud.google.com/firestore/docs/
https://firebase.google.com/docs/storage/?authuser=0

Chapter 3

15

that the Cloud Storage can provide access based on filenames, sizes or the type of their

content.

This service was not used because the users of my project on one hand need a

minimalistic and performant application while on the other hand they would not benefit

from being able to upload and download files.

3.5. Speech recognition applicability for patient tracking

Android devices provide two main voice-based functionalities: text-to-speech and

speech-to-text and both serve the purpose to help the interaction by voice with smart

devices.

Speech-to-text: with this feature users of Android devices can dictate into any

text box on the device where textual input might be required. E-mails, text messages and

even searches all belong in this category. The keyboard has a built-in button with a

microphone symbol on it. The user can initiate a speech-to-text operation by pressing this

button and the spoken input is automatically transcribed into written text. The user can

then decide what should happen with the transcribed text. Text-to-speech also can be

used in a way to enable the user to search by voice[13].

The results have improved considerably for using it on small devices due to the

use of cloud-based resources for speech recognition and also these devices are held close

to the mouth which provides better audio signal.

There are many difficulties with this technology. One of them is that the input is

practically unpredictable because users can say anything and an incredibly large

vocabulary is needed to cover all the possible inputs.

Text-to-speech: Text-to-speech is used to convert text to speech. Various

applications can take advantage of text-to-speech. Many applications take advantage of

this functionality like Google Translate, different Fitness Applications (Home Workout, 7

Minute Workout, etc.) and Talk-Back for example uses text-to-speech to help blind and

visually impaired users by describing what items are touched. Talk-Back can also be used

to read a book in the Google Play Books application. The text-to-speech is also available

on Android Kindle as well as on Google Maps for giving step-by-step driving

instructions. There is a wide range of third-party applications that make use of text-to-

speech[13].

3.6. Competitors analysis

Competitor analysis plays an important role in strategic planning. It helps in

gaining awareness of the competitors’ past, present and future strategies and provide an

informed basis to develop strategies to achieve competitive advantage in the future.

Competitive analysis directs mainly at the competitors who target the same

market. The table below shows the major competitors who were all implemented for

Android. The source of competitor information is gathered from Google Play 13. Some of

the major competitors were tired and each one of their advantages and disadvantages

were observed and analysed. These characteristics have been compared bearing in mind

13 https://play.google.com/store/apps

Chapter 3

16

this project’s main objectives/features which are discussed in the following table(Table

3.3):

Table 3.3 Comparison of the proposed system with similar, already existing

systems

Feature Remote

Patient

Monitoring

Medocity

CHF

Caring

Buddy

Proposed

system

Location Tracking
✔ ❌ ✔ ✔

Messaging
❌ ✔ ❌ ✔

Text-to-speech
❌ ❌ ❌ ✔

Track medications
❌ ✔ ❌ ❌

Call Doctor
✔ ❌ ❌ ✔

Emergency call
❌ ❌ ❌ ✔

Symbol interpretations:

✔ - exists an implementation

❌ - does not exist an implementation

The ‘Remote Patient Monitoring’ runs on Android devices and these devices’

sensors are used to monitor a patient’s activity. The doctors can create geofences to get

notified if a patient is leaving the defined area. It is not capable of providing

communication functionalities like messaging. It has no text-to-speech feature which

helps the elderly to navigate and interact better with the application and finally it does not

provide the possibility for emergency calls.

The ‘Medocity CHF’ also runs on Android. Among its capabilities one can find a

possibility to chat, medication tracking and a collection of medical resources. The

application can’t track the location of patients nor can read out loud the texts appearing

on the screen.

‘Caring Buddy’ is an Android application that is capable location tracking. There

is no possibility for messaging, initiating emergency calls or listening to the written text.

The Patient Tracker application is a powerful tool that can offer more than any of

its competitors by being able to:

Chapter 4

17

Chapter 4. Analysis and Theoretical Foundation

4.1. Conceptual architecture

The proposed system is implemented using the client-server architecture as you

can see in the Figure 4.1 – Simplified Conceptual Architecture below which ilustrates the

simplified conceptual architecture of the system and is meant to offer an insight in how

the main components of the system are connected.

By being one of the most widely used architectures in software development

because of its outstanding reliability, the client-server architecture assumes that there is at

least a service provider and a client who needs that particular service. The architecture

also assumes that these two main components are part of a distributed system in which

the tasks are shared among the service providers, called servers and the service

requesters, called clients.

Mostly the clients and servers are communicating through the Internet, just like in

our case, because this methodology of communication gives us the benefits of sharing the

data fast and also securely.

Figure 4.1 – Simplified Conceptual Architecture

As the Figure 4.1 – Simplified Conceptual Architecture above presents in the

simplified, high level conceptual architecture of the project, there are two kinds of

(distributed) components which are the following:

• Server: the Firebase Real-time Database, the Google Maps and the SMS

service represent the servers of the system.

• Client: a mobile device that is used by patients or doctors.

Chapter 4

18

After the client initiated and established a connection with the server(s) it sends

its user data and then it requests information about other users (doctors or patients). The

client also requests GPS coordinates from Google Maps and it forwards to the Real-time

Database.

The Real-time Database stores the information provided by the clients and shares

(some part of it) with other clients. Whenever a client changes something in the database,

it will send a synchronization request towards all the other clients in order to notify them

about the changes and fetch the new data.

4.2. Use cases

There are two types of actors (Figure 4.2 – User types) that can use the system,

both having some unique (see Table 4.1 – List of user actions) actions. We will analyze

both actors together broken down into features alongside with the associated use cases.

Figure 4.2 – User types

Chapter 4

19

Table 4.1 – List of user actions

User Action

number

User Action

UA 1 (Login Page)

UA 1.1 Initiate recover password

UA 1.2 Initiate signup

UA 2 (Signup Page)

UA 2.1 Signup

UA 2.2 Return to login

UA 3 (Recover password Page)

UA 3.1 Recover password

UA 3.2 Return to login

UA 4 (Patient User Main Page)

UA 4.1 Initiate Emergency call

UA 4.2 View/scroll contacts (doctors)

UA 4.3 Send SMS to doctor

UA 4.4 Call doctor

UA 4.5 View/edit profile information

UA 4.6 Listen to diagnosis or treatment

UA 4.7 Signout

UA 5 (Doctor User Main Page)

UA 5.1 View/scroll contacts (patients)

UA 5.2 Send SMS to patient

UA 5.3 View patient’s position

UA 5.4 View/edit patient’s diagnosis or treatment

UA 5.5 Delete patient

UA 5.6 View/edit profile information

UA 5.7 Signout

UA 6 (View/ Edit Profile Page)

UA 6.1 Edit information

UA 6.2 Add patients (only for doctors)

UA 6.3 Edit CNP (only for patients)

UA 6.4 Save changes

UA 6.5 Signout

UA 6.6 Go back to Main Page

4.2.1. Patient actor

The patient use case diagram is illustrated in Figure 4.3 – Patient Use Case

Diagram below. The patient is the user that has installed the Patient Tracker

application, but being a patient gives access to the operations that are relevant to a

patient. The patient uses the application to message the doctors or to call for help.

These are the main functionalities of the application which will be presented later

with more details. Since this is a minimalistic application to help the patients -as

Chapter 4

20

the use case shows us- they can do four things which can be divided into two

main functionalities and two helper functionalities:

• Main functionalities:

▪ Call help: the patient is able to call for help immediately if needed.

▪ Send messages to doctors: the patient can send messages to the

doctor if he/she has an important question or needs medical

attention.

▪ Change profile

• Helper functionalities:

▪ Speech-to-text: the patient can tell the message and the application

writes it in the message box, after which the user just has to hit the

send button.

▪ Text-to-speech: if the user cannot see properly a text, just by

tapping on it the application will read out loud the text.

4.2.2. Doctor actor

The doctor use case diagram is illustrated in

Figure 4.4 – Doctor Use Case Diagram below. The doctor is the user that has

installed the Patient Tracker application but being a doctor (or nurse in some cases) gives

access to the operations that are relevant to a doctor. The doctor uses the application to

answer to the messages sent by the patients or to verify that everything is in order with

the patient and the patient is in that area where he/she supposed to be. These are the main

functionalities of the application which will be presented later with more details.

Since this is a minimalistic application to help the work of the doctors -as the use

case shows us- they can do two things with this application:

• Main functionalities

Figure 4.3 – Patient Use Case Diagram

Chapter 4

21

▪ View and track the position of patients

▪ View patient profile and edit the diagnosis and treatment attributes

▪ Sent messages to patients. The doctor can send messages to the

patients if he/she answers to an important question or needs to

announce important news

▪ Change profile

• Helper functionalities

▪ Speech-to-text: the doctor can tell the message and the application

writes it in the message box, after which the user just has to hit the

send button.

Figure 4.4 – Doctor Use Case Diagram

Chapter 4

22

4.2.3. Emergency call detailed use case

In the following the Use Case for Emergency Calls will be presented, which is a

base activity of the system. The figure below (Figure 4.5 - Emergency call flowchart) will

present the workflow of the Emergency Call process.

1. Basic flow

Use-Case Start

This use case starts when the actor (patient) wants to initiate an emergency call.

1.1. The actor starts the aplication.

1.2. The system checks the granted permissions.

1.3. The actor initiates an emergency call operation.

1.4. The system calls the predefined number (112).

1.5. The system sends out som SOS messages to make sure there is an answer.

Use-Case End

The actor closes the application.

2. Alternative Flows

At any time, System fails:

Figure 4.5 - Emergency call flowchart

Chapter 4

23

To support recovery and correct communication, ensure all transaction sensitive

states and events can be recovered from any step of the scenario.

2.1. Patient reenters the system.

This flow can occur in one of the following steps: 1.2, 1.4

2.1.1. System detects anomalies preventing to make a call:

2.1.1.1. The system checks the (phone_call and write_sms) premissions

2.1.1.2. The system starts a sound alarm on the speakers

2.1.2. Session timeout

2.1.2.1. System signals error, rejects entry and asks again for credentials.

2.1.3. The actor selects the Back operation and leaves to the home page.

2.1.3.1. The system remains unchanged

3. Special Requirements

A mobile phone with Android OS 4.0.0 or newer.

4. Preconditions

• The actor is authenticated and authorized for this use case.

• An emergency call scenario is opened through an initiate emergency call

operation.

• All necessary permissions are granted

5. Postconditions

• Scenario entities should remain in a consistent state if the emergency call had

effect (there was an answer).

Chapter 4

24

4.2.4. Track patient detailed use case

Figure 4.6 – Patient tracking flowchart

1. Basic flow

Use-Case Start

This use case starts when the actor (doctor) wants to verify a patient’s location.

1.1. The actor starts the aplication.

1.2. The system system provides the available – and trackable - patients.

1.3. The actor selects an existing patient to track his/her location.

1.4. The system collects the necessary permissions.

1.5. The system collects the necessary resources (coordinates, address).

1.6. The system pinpoints the patient’s location.

1.7. The system displays the patient’s address.

1.8. The system repeats the previous steps (1.5, 1.7) until the actor does not want to

continue.

Use-Case End

Chapter 4

25

The actor ends the pinpoint location operation 1.8.

2. Alternative Flows

At any time, System fails:

To support recovery and correct location tracking, ensure all transaction sensitive

states and events can be recovered from any step of the scenario.

2.1. Doctor reenters the system.

This flow can occur in one of the following steps: 1.2, 1.4, 1.5, 1.6, 1.7

2.1.1. System detects anomalies preventing location tracking:

2.1.1.1. The system checks the (internet and location) premissions

2.1.1.2. The system starts a sound alarm on the speakers

2.1.1.3. Doctor continues patient tracking

2.1.2. Session timeout

2.1.2.1. System signals error, rejects entry and asks again for credentials.

2.1.3. The system does not get coordinates from the patient:

2.1.3.1. The last know location of the patient is displayed

2.1.3.2.

2.2. The actor selects the Back operation and leaves the pinpoint location page

2.2.1. The system remains unchanged

2.3. The GPS signal is weak

This flow can occur in the step 1.5

3. Special Requirements

A mobile phone with Android OS 4.0.0 or newer.

4. Preconditions

• The actor is authenticated and authorized for this use case.

• A pinpoint location scenario is opened through a pinpoint location operation.

• All necessary permissions are granted

• There is GPS signal in the area

• There is internet connection

5. Postconditions

• Scenario entities should remain in a consistent state if the track location has

ended with success.

Chapter 4

26

4.2.5. Call Doctor detailed use case

Figure 4.7 – Datailed call doctor flowchart

1. Basic flow

Use-Case Start

This use case starts when the actor (patient) wants to initiate a call towards a

doctor.

1.1. The actor starts the aplication.

1.2. The system checks the granted permissions.

1.3. The actor selects the doctor who will be called.

1.4. The system calls the doctor using the default dialer on the mobile phone.

Use-Case End

The actor ends the call.

2. Alternative Flows

At any time, System fails:

To support recovery and correct communication, ensure all transaction sensitive

states and events can be recovered from any step of the scenario.

Chapter 4

27

2.1. Patient reenters the system.

This flow can occur in one of the following steps: 1.2, 1.4

2.1.1. System detects anomalies preventing to make a call:

2.1.1.1. The system checks the (phone_call) premissions

2.1.1.2. The system asks for permission to call

2.1.2. Session timeout

2.1.2.1. System signals error, rejects entry and asks again for credentials.

2.1.3. The actor selects the Back operation and leaves to the home page.

2.1.3.1. The system remains unchanged

3. Special Requirements

A mobile phone with Android OS 4.0.0 or newer.

4. Preconditions

• The actor is authenticated and authorized for this use case.

• A call doctor scenario is opened through selecting a doctor and starting a call

operation.

• All necessary permissions are granted

5. Postconditions

Scenario entities should remain in a consistent state if the doctor call had effect or

if there was no answer to the call.

Chapter 4

28

4.2.6. Send message detailed use case

Figure 4.8 – Send message flowchart

1. Basic flow

Use-Case Start

This use case starts when the actor (patient/ doctor) wants to send a message

towards a doctor or patient respectively.

1.1. The actor starts the aplication.

1.2. The system checks the granted permissions.

1.3. The actor selects the doctor (or patient) who will be messaged.

Chapter 4

29

1.4. The system initiates the send message operation.

1.5. The actor composes the message in the text editor.

1.6. On send pressed the system sends the message.

Use-Case End

The system terminates the send message operation.

2. Alternative Flows

At any time, System fails:

To support recovery and correct communication, ensure all transaction sensitive

states and events can be recovered from any step of the scenario.

2.1. Patient/ doctor reenters the system.

This flow can occur in one of the following steps: 1.2, 1.4

2.1.1. System detects anomalies preventing to send a message:

2.1.1.1. The system checks the (send_SMS) premissions

2.1.1.2. The system asks for permission to send message

2.1.2. Session timeout

2.1.2.1. System signals error, rejects entry and asks again for credentials.

2.1.3. The actor selects the Back operation and leaves to the home page.

2.1.3.1. The system remains unchanged

3. Special Requirements

A mobile phone with Android OS 4.0.0 or newer.

4. Preconditions

• The actor is authenticated and authorized for this use case.

• A call doctor scenario is opened through selecting a doctor and starting a call

operation.

• All necessary permissions are granted

5. Postconditions

Scenario entities should remain in a consistent state if the send message had

effect.

Chapter 4

30

4.2.7. Change user profile detailed use case

Figure 4.9 – Change user profile flowchart

Chapter 4

31

1. Basic flow

Use-Case Start

This use case starts when the actor (doctor or patient) wants to change his/her

profile data

.

1.1. The actor starts the aplication.

1.2. The system checks the internet connecton.

1.3. The actor selects My Profile operation.

1.4. The actor modifies user data.

1.5. The actor selects the save operation.

1.6. The system asks wheter the actor really wants to change the profile data.

1.7. The system saves the modified data in user profile.

1.8. The actor is redirected to the main page (activity).

Use-Case End

The actor ends the change profile data operation at 1.8.

2. Alternative Flows

At any time, System fails:

To support recovery and correct location tracking, ensure all transaction sensitive

states and events can be recovered from any step of the scenario.

2.1. Actor reenters the system.

This flow can occur in one of the following steps: 1.1, 1.2

2.1.1. System detects anomalies preventing the device to communicate the

changes with the server:

2.1.1.1. The system checks the (internet) premissions

2.1.1.2. The actor continues the operation.

2.1.2. Session timeout

2.1.2.1. System signals error, rejects entry and asks again for credentials.

2.1.3. The system does not get correct input data from the actor:

2.1.3.1. The system asks the actor to provide the data correctly

2.1.3.2. The actor continues the operation.

2.2. The actor selects the Back operation and leaves the change user profile page

This flow can occur in one of the following steps: 1.4

2.2.1. The system remains unchanged

2.3. The actor selects the Sign-out operation on purpose

This flow can occur in one of the following steps: 1.4

2.3.1. The system verifies that the actor initiated this operation on purpose

2.3.2. The actor is signed out

2.4. The actor selects the Sign-out operation accidentaly

2.4.1. The system verifies that the actor initiated this operation on purpose

2.4.2. The actor returns to change profile operation

2.5. The actor selects the Save operation accidentaly

This flow can occur in one of the following steps: 1.4, 1.5

Chapter 4

32

2.5.1. The system verifies that the actor initiated this operation on purpose

2.5.2. The actor returns to change profile operation

3. Special Requirements

A mobile phone with Android OS 4.0.0 or newer.

4. Preconditions

• The actor is authenticated and authorized for this use case.

• A pinpoint location scenario is opened through a change profile operation.

• All necessary permissions are granted

• There is internet connection

5. Postconditions

• Scenario entities should remain in a consistent state if the track location has

ended with success.

4.3. Technological perspective

As mentioned before the Real-time Database offered by Firebase is a database

that stores data in a tree strucutre in which every node is a JSON object. (Figure 4.10 -

Real-time Database structure).

Every node is saved under a unique ID, which are created automatically during a

method call which is called push. Thes Ids created by using push are 20-character unique

Ids. These IDs are used to handle situations when multiple users are accessing the

database at the same time. This way they can write data at the same time without

conflicts.

Chapter 4

33

Figure 4.10 - Real-time Database structure

A push ID contains in itself 120 bits of information from which a part is a

timestamp (48 bits) and a part is random (72 bits). To create the random ids that are

visible in the Figure 4.10 - Real-time Database structure the ID formed from 120 bits is

encoded into ASCII characters using a base64 alphabet. Hovewer even if the IDs are

correct and unique som issues might appear. An issue can be with the order. Since the

timestamp is created on the client machine there is a possibility that it’s clock is not

accurate. This issue is compensated in the moment after establishing a connection with

the Firebase server in which te server sends a timestamp to correct the local clock (if that

is incorrect). Another issue is the security. Are these push IDs really secure because if

someone knows the root of the database and guesses correctly a push ID, the data in that

node will be accessible. As Firebase states: „These IDs are very hard to guess, but if you

do not trust the IDs generated by push, you can generate IDs using a more secure

mechanism”[11].

Google Maps similarly to other applications that use GPS based localization, we

can say that it is built on a principle named trilateration, since the principle of operation

of a GPS system is based on trilateration14 which is a simple mathematical principle.

There are two categories of trilateration: two dimension and three-dimension

Trilateration. To calculate correclty the position the receiver device must know two

important things. The first is the current location which is determined by 3 satellites

14 www.eetimes.com/document.asp?doc_id=1278363

http://www.eetimes.com/document.asp?doc_id=1278363

Chapter 4

34

orbiting above the device. The second is the distance between the current location and the

Space Vechicles from the Global Navigation Satellite System (GNSS).

The Short Message Service(SMS) used by the Patient Tracker application is

based on the Global System for Mobule communications (GSM) in which messages are

sent to a Short Message Service Center (SMSC) which has a store and forward

mechanism. This mechanism tries to send the messages to the recipients and if the

recepient is currently not available it queues the task for later retry. It also has a froward

and forget option that tries to send the message only once. There are no guarantees that a

mesage will be delivered but it is not common that some messages get lost.

Chapter 5

35

Chapter 5. Detailed Design and Implementation

The following chapter will present a detailed description of the system

considering the solutions used at implementation, the architecture and all the parts

involved.

Further the modules will be presented from which the whole project is built up. We

will discuss each and one of them separately in detail.

5.1. System architecture

In this subchapter the architecture of the proposed system will be presented in

details.

Figure 5.1 – Detailed conceptual architecture

The proposed system is based on a client-server architecture which using the

advantages of a distributed system supports the Patient Tracker application which was

designed to help the work of doctors in a hospital, general practitioners but also to help in

giving more attention to the patients thus facilitating their recovery.

The components of the Patient Tracker system are listed and described in details

below, organized in two groups: clients and servers.

Chapter 5

36

• Clients are those mobile devices (smartphones that run on Android OS) which

is used by doctors, nurses, general practitioners and their patients. Right at the

beginning we should differentiate the clients by their type thus creating two

main groups: workers of the healthcare system or caregivers and patients of

the healthcare system or just simply patients. We will discuss in detail the

roles, behavior and architecture of these two types of client later.

• Servers of the Patient Tracker systems as it can be seen in the

• Figure 5.1 – Detailed conceptual architecture are namely the SMS service,

Firebase Real-time Database which is a cloud service and Google Maps.

These servers accept requests from clients and most of the times they provide

some information that was requested by the client, for example in the case of

Firebase Real-time Database or Google Maps. In some other cases the client

sends or shares some information with the servers because it is necessary to

have some centralized and synchronized data on the servers (or at least on one

of the servers) in order to connect the client in question with the other clients.

We will discuss in detail the roles of each server, their behavior and

architecture later.

As mentioned above the components of the system share information. Sharing

information means that the servers offers the client some useful information who will be

able to use this, while the client stores some data in the database for later use. While

sharing information the servers do not expose information such as their software

specification or the state of the hardware on which they run. Instead they provide a

transparent interface for the client. This interfacing is necessary for the sake of simplicity,

transparency and simplicity and it is achieved with the help of some Application

Programming Interfaces (APIs) through which the client and server exchange

information. This information between the client and Real-time Database is represented

in JSON files.

Because the server(s) provide a lot of useful information to the client, all this with

high precision and small latency we can say that the servers have a large amount of

computing power. The servers and client exchange data which is in most of the cases is

stored on the servers and displayed by the client.

5.1.1. System components

The Client application which the main part of the project, obviously is used by

clients, more precisely doctors and patients. Since there are two types of users the client

application is differentiated accordingly to a “doctor part” and a “patient part”. This

design decision was made for the sake of simplicity, because this application is a simple

one with not a huge workload, moreover the maintenance of a single application is easier

than of two separate applications, also if a software update is coming the compatibility

issues will not be a problem. At last but not least the clients will have to download and

use one single application, which comes handy especially in cases when the doctors do

Chapter 5

37

not have to worry about the patients downloading and using another (wrong) application

or using the right application but with the wrong version.

 The Doctor part of the client application appears, when someone registers in the

application as a doctor. After this he or she will be stored in the database as a doctor and

whenever logs in the doctor part of the application will appear for him/her.

As a doctor a user can do the following things with the application:

• Log in

• Use the forgot my password possibility

• View the list of his or her patients, which means that the doctor can see as a

preview the following information per patient:

o The patient’s full name (first name and last name)

o The patient’s CNP and age

o The medical signs that were registered and noted by the patient on the

patient part of the application.

• View a patient’s profile that contains all the necessary information that helps

in diagnosing or contacting the patient as fast as possible, which includes:

o Data related to diagnosis such as: medical signs noted by the patient,

age, occupation

o Data related to contacting the patient like: phone number, address, e-

mail address, CNP

• Add some information to the patient’s profile information, in order to notify

the patient about important news, which can be two specific things:

o A diagnosis for the patient and a remainder if a diagnosis has a name

that is hard to memorize

o A treatment for the patient to explain is short to him/her what to do for

a faster healing or how to take the medications.

• View the patient’s location on a map and also see the exact address where the

patient is or was when last time used the application.

• Send an SMS message to the patient.

• Add patients by their CNP

• Remove patients from the list

• View and edit the profile data in the user profile menu, where the following

attributes can be changed: name, e-mail address, phone number, postal

address, password, the doctor’s title, specialization or hospital where he or she

works.

• Logout

The Patient part of the application appears when someone registers in the

application as a patient. After this he or she will be stored in the database as a patient and

whenever logs in the patient part of the application will appear for him/her. Also, the

application will automatically send location data to the database in order to doctors be

able to pinpoint a patient’s location.

Chapter 5

38

As a patient a user can do the following things with the application:

• Log in

• Use the forgot my password possibility

• View the list of his or her doctors or caregivers, which means that the patient

can see as a preview the following information per caregiver:

o The caregiver’s full name (first name and last name)

o The hospital or place where the caregiver works

o The specialization and title of the caregiver.

• View the diagnosis written by the doctor

• View the treatment methodology mentioned by the doctor

• Send an SMS message to the doctor

• Call the doctor

• Make an emergency call that will notify the ambulance by calling them and by

SMS, and it also will notify by SMS the doctors.

• View and edit the profile data in the user profile menu where the following

attributes can be changed: CNP, name, e-mail address, phone number, postal

address, password, medical signs and occupation.

On the server side of the Patient Tracker application some components did not

needed to be implemented from scratch (like the real-time database mechanisms or the

localization mechanisms) because Google and Firebase provides an already implemented

and working solution for both of them, moreover with the different Application

Programming Interfaces (APIs) and Software Development Kits (SDKs) every developer

can succeed with ease. Even for using the Short Message Service (SMS) the SDK

provided by Android can be used.

The application communicates with these servers for the following reasons:

o Store, change, retrieve data, for example when a registration happens in

the application the new user and its data will be stored in the Firebase

Real-time Database all this is achieved by communicating it through the

API provided by Firebase.

o Use a service that can be found on a particular server, for example to draw

the map, zoom in on that map and pinpoint a location which can be found

on the Google Maps server; or forward a text message towards someone

which can be achieved through the Short Message Service Center (SMSC)

that navigates the message through the network.

5.2. Application modules

Modules are standalone parts from the application that are complete separately

work as little applications. In the build process of the project these modules were

implemented first, later tested and finally integrated in the project with the necessary

modifications of course, in order to these modules do not have compatibility or

communication issues between them.

During the integration process these modules did not keep their separate module

form, instead since the were small enough, their classes were moved to the main project

(or module).

Chapter 5

39

5.2.1. Patient Tracker

The patient tracker module is one of the biggest modules which has one single

purpose, which is letting know the doctors where their patients are. This goal is achieved

by the cooperation of more components, namely: doctor and patient parts of the

application, the real-time database and localization via passive location providers or GPS

and network providers (cell tower and WIFI).

Let us observe below in Figure 5.2 – Patient Tracking module, conceptual

diagram the conceptual architecture of this module:

Figure 5.2 – Patient Tracking module, conceptual diagram

The clients are connected via the Cloud Service, which assumes there is internet

connection. For this module to work it is not enough to have internet connection but it

also requires the location to be enabled and be in the ON state. However this precondition

is only true for the Patient because the patient will use localization via GPS or network,

to determine its own current location.

As soon as a patient enters the application and provides the necessary permissions

(mobile data and GPS), the application will request in the background a location from all

the providers available, which includes GPS, cell towers and WiFi. If there is a result and

that result differs from the last known location the application uploads the new location

data of the patient to the Real-time Database. Since using GPS and mobile network at the

same time is resource demanding because it highly increases the battery usage the

application will not request new location data all the time, but periodically which can be

set to half a minute, a minute or any desired time interval.

When a doctor logs in, the application in the backgorund will automatically listen

to changes in the real-time database, more specifically to key – value pairs that store the

coordinates of the patients. If the doctor is looking at a specific patient’s position as soon

as the coordinates were modified the marker (that shows the patient’s exact position on

the map) will be moved to the new position, which normally should be a minor visible

change on the map as long as the patient does not travel at very high speeds.

Chapter 5

40

5.2.2. Emergency Call

The Emergency Call module is one of the most important modules in the projects

since it is designed to call for help in situations where even a life might depend on it. This

functionality is accessible only for patients because in these kinds of environments where

this project will be used they are more vulnerable and it is justifiable for them to have a

measure to call for help.

Figure 5.3 – Code snippet for initiating an emergency call

The patient does not have to search for a phone numbers or write it by hand

instead he/she only has to press a big red button to call immediately for help. As we can

see in the Figure 5.3 – Code snippet for initiating an emergency callonly a few lines of

code is needed to start the call. This call will open the default dialer of the smartphone

and call the given number right away.

To avoid calling 112 when the button is accidentally pressed a listener was

implemented that will only enable to initiate an emergency call if the button was pressed

two times consecutively in a certain period of time, for example in half of a second.

If there is no call permission granted by the user unfortunately the application will

not be able to make an emergency call, instead it will ask the user to grant this

permission.

5.2.3. Messaging

The messaging module is a helper module in the project because it offers the users

the possibility to contact each other via SMS. This functionality is available both doctors

and patients which means doctors can text their patients and vice versa. This might be

helpful especially for doctors because if they have something important to announce they

can just look up a patient from the application and text him right away without the need

to search among phone numbers, notes or datasheets. This also applies to the patients

even if they don’t have to pay attention to many doctors.

Chapter 5

41

 The messaging module helps this communication with hints like in Figure 5.4 –

Send SMS doctor and patient view and writing an automatic introduction before the

message and a note after the message based on the user profiles found in the database

such as: “Hello Pop Andrei! I am Dr. Iancu from the hospital” after which comes the

message composed by the user and finally “Sent from PatTrack application.”

Figure 5.4 – Send SMS doctor and patient view

5.2.4. Typing by voice

This module is a helper module for the previous Messaging. Basically, it offers a

possibility to write the text message by voice input. It might prove useful when both

hands are full or when a patient is bedded and cannot handle easily such a task.

5.3. Design patterns used in the project

5.3.1. Model View Presenter pattern

As the name suggest this design pattern is based on three components which are

the following:

• Model

• Presenter

• View

Chapter 5

42

Figure 5.5 Model-View-Presenter design pattern

As the Figure 5.5 Model-View-Presenter design pattern presents each and one of

the three components have a well defined role. This modularization first of all help to

organize the code especially for large projects, makes the project more understandable

and organized and it makes the project easily expansible and testable.

The Model is responsible to manage the data which in our case is in the Firebase

Database and the the Presenter communicates with via the API provided by Firebase. It

stores all the data which will be used by the application[1].

The Presenter forms a middle layer between model and view. All the presentation

logic belongs here, which includes querying the data from model or react to user inputs

by updating the view with the required data. It decides what will happen if there was an

interaction with the view. The view registered the user action but what to do with it is

implemented in the Presenter. After deciding the appropriate action to a user input returns

the formatted data to the View[1].

The View has one single purpose which is displaying the data in a way that was

specified by the presenter which means that the only thing it will do is to call a presenter

method whenever it registers a user action. Usually the Activity classes represent the view

from this design pattern[1].

5.3.2. Factory method pattern

Using the Factory method pattern, the project will be able to create objects

without being specified in advance what is the class of the object that will be created[12].

This mean that if it can be known about an object that which class it will belong to, by

calling the factory method the problem is solved, because this method will decide and

create the appropriate class for the object in question.

In this project the factory method is used at registration since it cannot be know in

advance who will register next: a doctor or a patient? By analyzing the user inputs the

factory method will decide what class is going to be created for the registering user which

can be either DoctorUser or PatientUser.

Chapter 5

43

5.3.3. Adapter pattern

This design pattern is a structural design pattern and it joins two unrelated

interfaces[12].

In my project there are two adapter classes: DoctorUserListAdapter and

PatientUserListAdapter. These adapters have the purpose of making it possible to use

customized and complex design elements in a normal ListView that usually is used for

displaying lists in Android. These design elements contain the list of patients for doctors

and list of doctors for patients respectively.

5.4. Architecture of the Android application

In this subchapter is described the architecture of the mobile application that was

developed in Android Studio Integrated Development Environment (IDE) using mainly

the Java programming language. This environment uses the SDK provided by Android

and it also offers the possibility of integrating and using APIs like the ones provided by

Firebase and Google Maps.

The Graphical User Interface (GUI) was built in Android Studio’s layout editor

which uses XML language. The layout editor has a powerful visual design editor that

based on the position and size of the movable UI elements generates XML code thus

helping the developer. In this project the layout files were written by hand with the help

of IDE’s auto complete features and they were verified with visual feedback provided by

the visual design editor.

The project (as we can see in the Figure 5.6 – Project’s modules) is constructed

from two modules which are the following:

• Arch: is the skeleton of the project. It has abstract classes and interfaces

and it defines the whole projects architecture. The whole project follows

its pattern which is presented in more detail above (Model View Presenter

pattern).

• App: is the working part of the application, the “meat on the skeleton”.

This module contains all the Activities, helper classes and user interface

elements.

Figure 5.6 – Project’s modules

Chapter 5

44

5.4.1. Arch module

This module contains the following classes which are illustrated in the Figure 5.7

– Arch module, class diagram below:

• BaseContract: is an interface in order to make the the differentiation

between presenter and view accordingly to the MVP design pattern and

precisely defin the actions that each one of them can individually do. It has

two inner classes:

o Interface View:

o Interface Presenter

• BaseActivity: has two generic types (View and Presenter) and couples

them by creating a BaseViewModel.

• BasePresenter: has a single generic type: View. It contains different

methods for attaching, detaching, getting the view and verifying if there is

a view attached.

• BaseViewModel: is a ViewModel that contains two generic types: a

presenter and a view. The view extends BaseContract.View, while the

presenter BaseContract.Presenter (which has a view and this view is a part

of the presenter).

Basically it creates an architecture where we can attach and detach views

(activities or fragments) to the presenter. With this arcitecure we can save

all the important data (temporarily) in the presenter which will not be

destroyed when the View or Activity gets destroyed. Instead we can attach

a new one to the presenter and load the necessary data in it.

• BaseFragment: is is similar to the BaseActivity but instead of Activity it

extends the Fragment interface which has some different characteristics.

Figure 5.7 – Arch module, class diagram

5.4.2. App module

This module contains the following groups of classes which are illustreted in the

below:

Chapter 5

45

• Activities: they represent the View from Model View Presenter pattern

and it usually contains a reference to the presenter provided by

dependency injectors. In this project there is an interface which defines the

relation between the presenter and view. This means that view and the

presenter are in a ViewModel. In their relation a presenter has-a view.

The activities are: LoginActiviy, SignupActivity, ResetPasswordActivity,

DoctorMainActivity, PatientMainActivity, DoctorProfileActivity,

PatientProfileActivity, MapsActivity and SmsActivity,

PatientDatasheedActivity.

• Contracts: they are interfaces which define what the activities(vies) and

presenters will do, and connects these two components. The contracts are:

LoginContract, SignupContract, ResetPasswordContract,

DoctorMainContract, PatientMainContract, DoctorProfileContract,

PatientProfileContract, PatientDatasheetContract.

• Presenters: they represent the Presenter from the MVP pattern. These

are: LoginPresenter, SignupPresenter, ResetPasswordPresenter,

DoctorMainPresenter, PatientMainPresenter, DoctorProfilePresenter,

PatientProfilePresenter, PatientDatasheetPresenter.

• Validators: are used to validate user input. In order to avoid rewriting the

same code many times an interface was used (Figure 5.8 – Validator class

diagram) and in every class that implements this (Validator) interface

changed the condition against which the user input vas validated. Some of

these are: PasswordValidator, NameValidator, EmailValidator,

PhoneNrValidator.

• Models: these represent the real world doctors and patients ans objects.

There is a general User class which holds the common attributes of the

doctors and patients. PatientUser and DoctorUser are extending the User

class and each adds its „special” attributes that are different for each.

• Layout files: they part of the MVP pattern, because they display all the

data and through them collects the system the user inputs.

Figure 5.8 – Validator class diagram

Chapter 5

46

As mentioned before the application is build on a skeleton defined in the arch

module. This means that every class from the app module extends or implements the

corresponding interface or abstract class from the arch module(see Figure 5.11 –

Application package diagram). Since there are many relations an illustration will follow

that will present the relation of classes in the Login part of the application (Figure 5.9 –

Partial class diagram).

Figure 5.9 – Partial class diagram (Login)

When as shown in the figure when the Login part of the project is created a

presenter (LoginPresenter) is created, initiated and it also gets a view (LoginActivity) attached.

After all this the LoginPresenter and LoginActivity can communicate and use each other’s

methods. An example can be seen in the Figure 5.12 – Presenter and Activity cooperation.

The whole project is built on this model thus the diagram would be the exact same for the

other activities except for the SmsActivity and the MapsActivity because the get the required data

through the intents (Figure 5.10 – put and get information from intent) when they are created.

They get the information either from DoctorMainActivity or PatientMainActivity the MVP pattern

still stand because the SMS and Maps activities function as views with the difference that they get

the information from DoctorMainPresenter or PatientMainPresenter.

Chapter 5

47

Figure 5.10 – put and get information from intent

Figure 5.11 – Application package diagram

Chapter 5

48

Figure 5.12 – Presenter and Activity cooperation

Chapter 6

49

Chapter 6. Testing and Validation

This chapter will describe the testing methods used during the project

development and the obtained results as well.

After every development phase it is required a testing phase during which the

developer tries to find unwanted behavior in the software. Besides testing the new

module, the compatibility and cooperation is also tested between the “old” components

and the new one. All this happens before accepting an update in the software.

The project was tested manually following the test cases which are based on the

system’s functionalities, but a tool named Test Lab offered by Firebase was tried as an

experiment.

Test Lab might be a useful tool during the development phase because with this

tool the developer can test the product on a wide range of devices which would be

impossible otherwise, because even the developer cannot possess nor tens or hundreds of

devices to test the application, nor the necessary time to do the testing. This tool has been

tried but the main testing phases were done manually on 2-3 devices.

6.1. Test cases

In this subchapter the main test cases of the Patient Tracker system will be

enumerated.

6.1.1. Logging the user into the system

Table 6.1 – Test case – user login

 Phase Result

1 Opent the Patient Tracker application The application displays the LoginActivity.

2 Enter credentials in the login fields

(email and password)

The text entered by the user will appear in

the login fields

3 Validate the user input The user will see error messages regarding

the format of the input (valid/invalid email)

4 Confirm credentials (press Login) The user gets a response from the server

according to the correctnes of the

credentials

Chapter 6

50

6.1.2. Register the user into the system

Table 6.2 Test case – user register

 Phase Result

1 Opent the Patient Tracker application The application displays the LoginActivity.

2 Press Register Now and select the

checkbox (only for doctors)

The application displays the SignupActivity

and changes the icon according to the

checkbox’s state.

3 Enter the required information in the

text fields.

The text entered by the user will appear in

the fields.

4 Validate the user input The user will see error messages regarding

the format of the input (valid/invalid email,

password, phone number, etc.)

5 Confirm signup (press Register) The user gets a response from the server

according to the correctnes of the

credentials

6.1.3. Add new patient

Table 6.3 – Test case – add new patient

 Phase Result

1 Opent the Patient Tracker application

(as a docotr)

The application displays the

DoctorMainActivity.

2 Press My profile The application displays the

DoctorProfileActivity and the profile data.

3 Change Add Patient switch position. The system enables user input at add patient

field

4 Enter CNP The text entered by the user will appear in

the fields and the user will see an error

message if the CNP has a wrong format.

5 Confirm add(press ADD) The user gets a response from the

application according success of the

operation

6 See results The new patient appears on the main page

Chapter 6

51

6.1.4. Send message

Table 6.4 Test case – send message

 Phase Result

1 Opent the Patient Tracker application The application displays the

DoctorMainActivity or PatientMainActivity.

2 Select someone from the user list and

press the message icon on the left.

The application displays the SmsActivity

receiver’s name and phone number.

3 Enter a message The system displays the entered text

4 Sending the message The system sends the message.

5 Receiving the message The receiver user gets the message

completed automatically with an

introduction of the sender.

6.1.5. Emergency call

Table 6.5 - Test case – Emergency call

 Phase Result

1 Opent the Patient Tracker application

(as a patient)

The application displays the

PatientMainActivity.

2 Double tap on the Emergency Call The application calls 112.

3 The system sends messages to 112 and to

the doctor with the patient current location.

Chapter 7

52

Chapter 7. Installation and User manual

In this chapter will outline the main steps that are required to install and run the

Patient Tracker application. Later is described a user guide that will walk the user

through the user step by step with illustrations.

 The application have some system and software requirements that the users’

device has to meet in order to be able to use the app.

7.1. System requirements

The patient tracker application can be installed on any smart device with Android

OS, at least 10 MB of free storage and 50 MB RAM memory. Another requirement is to

have a stable internet connection, because otherwise the application cannot communicate

with the servers (Google Maps and Firebase) and the user will not be able to login,

register, or have a look at the list of contacts.

The application works with GPS coordinates, which requires the location to be

turned on or it will not be able to provide patient location data towards the doctors. The

application also needs a working SIM card in order to be able to call or send SMS.

7.2. Software requirements

The Patient Tracker application requires an Android OS which has an API Level

equal or higher than 23 (Android M - Marshmallow), which is the recommended API

Level for the application.

7.3. Installation

Thanks to the always developing Google Play there are more ways to install the

Patient Tracker application on the user devices.

The first methodology is to add the device to the list of devices in Google Play

and search for the application from a desktop computer. When the application is found

one can give the command to install the application to the mobile device as soon as it is

connected to the internet. This methodology is advised if the user is in the possession of

multiple mobile devices and wants the application to be installed on all of them. This way

it avoids the inconvenience to install the application separately on each one of them.

The second methodology is to enter Google Play Store (which is preinstalled on

all of the Android devices) from the mobile device by tapping on the icon and wait for

the application to start up.

In the main menu at the top of the page the user can see a hint that says “Google

Play”(Figure 7.1 – Google Play Search). By tapping on that text, the text will transform

into “Search Google Play” which indicates that the user is in search mode and the

Chapter 7

53

application waits for the user to input something to search for. There the user will enter

the application name which is “Patient Tracker”.

Figure 7.1 – Google Play Search

According to the quality of the Internet connection, Google Play will display the

found matches for „Patient Tracker”. Every one of the results can be inspected by tapping

on the which redirects the user to the application’s page to show all the information about

that particular application.

By pressing the button „Install” the download will start and the user will se a

progress dialog which provides visual feedback about he staus of the installation in

percents. When the installation completes a notification will apear that the application is

installed and is ready to use. A bubble window might appear at the bottom of the screen

that says „Application is ready” and gives two possibilities for a few seconds: „Cancel”

and „Open”.

There is a third method to install the application, which is installation by the .apk

file. This type of installation requires the user to download the apk file on the device or

first to the computer and after that copy to the device. When all this is done the user have

to search for the saved apk file on the mobile device. When the file is found the user must

start the install manualy by taping on it and answering to the questions that appear or pres

the file for longer and select from the menu the install option and follow the instructions.

7.4. Using the application

7.4.1. Opening the application

After the installation process the user opens the Patient Tracker application by

tapping on its icon. The icon is easy to recognize, it simbolizes a doctor and a patient

standig next to each other. The figures are white on a blue backround.

Chapter 7

54

7.4.2. The first use of the application

The user will see a short animation as the icon and the login fields appear and

move to their final place. Right after the animation the user is asked to give the

application the permission to access the device’s location as it is presented in Figure 7.2 –

First login. It is recommended to respond with „Allow” .

Figure 7.2 – First login

7.5. Login, Signup and Recover Password

By pressing the “Register Now!” text the user will be redirected to register page

which will also greet the user with an animation. On the signup page the user is asked to

enter the necessary information to create a new account.

The first information is given by checking or unchecking a checkbox which says

“Doctor?”. If the user is a doctor he or she must check this checkbox. If the icon is

changed to a doctor then the box was checked successfully and the user will be registered

as a doctor otherwise will be registered as a patient.

Doctors must provide information about their: name, e-mail, phone number, job

title, specialization, hospital where the work and a password along with a confirmation

password to make sure there was no mistake when entering the password.

Patients must provide information similarly about their: name, e-mail, phone

number, occupation, CNP, medical signs (what they observed on themselves, where it

hurts?) and a password along with a confirmation password to make sure there was no

mistake when entering the password.

Chapter 7

55

For every information there is a validation and a real-time feedback to let the user

know if the entered information is acceptable or not like in Figure 7.4 – Incorrect register

input and Figure 7.3 – Correct register input.

Figure 7.4 – Incorrect register input

After the signup process the user is redirected to the main page that corresponds

to the user type.

If the user already has an account it can login on the login page by entering the

credentials (email and password) and pressing the login button as presented in the Figure

7.5 - LoginPage and Figure 7.6 – Logged in below.

Figure 7.3 – Correct

register input

Chapter 7

56

 Figure 7.5 - LoginPage and Figure 7.6 – Logged in

In the unfortunate scenario in which the user forot the password he/she can tap on

the „Forgot Password?” text in the righ bottom corner of the screen and will be redirected

to a page where the password can be recovered by providing the e-mail address. Here as

we can see in Figure 7.8 Forgot Password1 and Figure 7.7 – Forgot Password2 the

system asks for an email address and it will send to that address a link. By accessing that

link the patient will be redirected to an external page (which practically is a page

provided by the Firebase server) where the user can provide a new password.

The application has a circular structure which means that the user can navigate

back to the login page from anywhere and from the login page can navigate to anywhere

but in some cases with the help of intermediate pages.

Chapter 7

57

Figure 7.8 Forgot Password1

When the user successfully logs in there are a set of actions that he/she can do

based on which user type he/she belongs to:

• Doctor:

o by pressing the chat button he can write an SMS

o by swiping left on a patient and tapping on the GPS icon he can see

on a map -with address- where is that particular patient

o by swiping left on a patient and tapping on the profile icon he can

see the patient profile and edit the diagnosis and treatment fields

o by swiping left on a patient and tapping consecutively twice on a

patient the doctor can remove the patient from the list

o by tapping on logout the doctor can log out and goes to the login

screen

o by tapping on my profile the doctor can see his own profile

informations and edit them. Here he can also add new patients to

his list.

o By tapping on save in MyProfile the doctor saves the changes

o By tapping on logout in MyProfile the doctor signs out

Patient: (

• Figure 7.9 Patient user guide)

o by pressing the chat button he can write an SMS to a doctor

o by swiping left on a doctor and tapping on the CALL icon he can

see dial up the doctor’s number immediately

Figure 7.7 – Forgot Password2

Chapter 7

58

o by tapping consecutively twice on the EMERGENCY CALL the

112 will be called, and the location of the patient will be sent to

the doctors and 112

o by tapping on logout the patient can log out and goes to the login

screen

o by tapping on my profile the doctor can see his own profile

informations and edit them. Here he can also change the CNP

o By tapping on save in MyProfile the patient saves the changes

o By tuapping on logout in MyProfile the patient signs out

Figure 7.9 Patient user guide

Chapter 7

59

Figure 7.10 Doctor user guide1

Figure 7.11 Doctor user guide 2

Chapter 8

60

Chapter 8. Conclusions

In this chapter will be discussed the achievements of this project and also some

ideas for developing the project even further.

8.1. Contributions and achievements

This project has created an opportunity for the technical development of the

software developer.

Along the way he has gone through the following stages:

• He gained useful and solid knowledge about software development in

Android such as: the concepts with which it operates, good practices

related to mobile software development.

• He has actively participated in the analysis and design phases, which has

formed an overall view of the project and also gained a perspective on

possible implementations

• He implemented the system in an iterative manner which enabled to go

through all the phases of software development for each iteration

• Has searched for different technical problems

• Found optimal solution in order to resolve every iterative task.

The project fulfilled all the proposed objectives from Functional requirements so

the final project allows and helps its user in:

• Creating an account with a valid e-mail address

• Logging in the application with the registered e-mail address and the given

password

• Seeing a list of patients/ doctors based on the user type.

• Viewing important information about the contacts that are in the contact

list

• Sending well-composed messages to the contacts

• Calling doctors with a single press of a button

• Calling for help with a single press of a button and sending location data

in message format at the same time

• Adding patients to the contact list

• Removing patients from the contact list

• Editing data that is important for patients (diagnosis, treatment)

• Tracking patients on the map in real time

• Recovering forgotten password

• Change profile data

The project helped in acquiring knowledge about different frameworks,

messaging and tracking technologies, protocols, architectural patterns and many ways to

solve a large variety of problems.

Chapter 8

61

8.2. Further development

As any other system could be improved this system has room too for further

improvements. To improve the user-experience the idea of some improvements came up

that could be introduced in the newer versions of this project:

• Developing an internal chat module that could improve the response time

in messaging and the user experience by knowing if the other part is

available or not

• Reducing the GPS and battery usage as much as possible

• Implementing real-time tutorials that would show the steps for the user

and would ask him to follow the instructions to do a task

• Background location tracking, would not only improve the accuracy of the

tracker but it would reduce power consumption since the screen shouldn’t

be switched on all the time to track location

• Implement dropdown lists where the user can quickly choose from, for

example: specializations, occupations, etc.

Bibliography

62

Bibliography

[1] Agarwal, Nitin. “Android MVP for Beginners – AndroidPub.” AndroidPub,

AndroidPub, 18 Apr. 2017, https://android.jlelse.eu/android-mvp-for-beginners-

25889c500443

[2] Ahmed Nabeel. “Message Broker vs. MOM (Message-Oriented Middleware).”

Stack Overflow, Aug. 2016, Available:

https://stackoverflow.com/questions/13202200/message-broker-vs-mom-message-

oriented-middleware.

[3] Bertanga, Patrick. “How Does a GPS Tracking System Work?” EETimes, 2010,

www.eetimes.com/document.asp?doc_id=1278363 .

[4] Das, Ankush. “Best Navigation Apps For Android.” Ubergizmo, Ubergizmo, May

2016, www.ubergizmo.com/articles/best-navigation-apps-android/

[5] Dossot, David. RabbitMQ Essentials: Hop Straight into Developing Your Own

Messaging Applications by Learning How to Utlize RabbitMQ. Packt Publishing,

2014.

[6] “Firebase Cloud Messaging | Firebase.” Edited by Anonymus Editor, Google,

Google, July 2018, https://firebase.google.com/docs/cloud-messaging/

[7] G, Aubrey. “HERE vs Google Maps Detailed Comparison as of 2018.” Slant, 2018,

www.slant.co/versus/3750/6934/~here_vs_google-maps .

[8] Hashimi, Sayed Y., et al. Pro Android 2. Apress, 2010.

[9] “Hypertext Transfer Protocol.” Edited by Anonymus Editor, Wikipedia, Wikimedia

Foundation, 6 July 2018,

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol .

[10] Johannson, Lovisa. “Get Started with RabbitMQ on Android (Android Studio).”

CloudAMQP, 2015. Available: www.cloudamqp.com/blog/2015-07-29-rabbitmq-

on-android.html

[11] Lehenbauer, Michael. “The 2^120 Ways to Ensure Unique Identifiers.” The

Firebase Blog, 11 Feb. 2015, https://firebase.googleblog.com/2015/02/the-2120-

ways-to-ensure-unique_68.html

[12] Kumar, Pankaj. “Java Design Patterns - Example Tutorial.” JournalDev, 2 May

2018, www.journaldev.com/1827/java-design-patterns-example-tutorial .

https://android.jlelse.eu/android-mvp-for-beginners-25889c500443
https://android.jlelse.eu/android-mvp-for-beginners-25889c500443
https://stackoverflow.com/questions/13202200/message-broker-vs-mom-message-oriented-middleware
https://stackoverflow.com/questions/13202200/message-broker-vs-mom-message-oriented-middleware
http://www.eetimes.com/document.asp?doc_id=1278363
http://www.ubergizmo.com/articles/best-navigation-apps-android/
https://firebase.google.com/docs/cloud-messaging/
http://www.slant.co/versus/3750/6934/~here_vs_google-maps
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://www.cloudamqp.com/blog/2015-07-29-rabbitmq-on-android.html
http://www.cloudamqp.com/blog/2015-07-29-rabbitmq-on-android.html
https://firebase.googleblog.com/2015/02/the-2120-ways-to-ensure-unique_68.html
https://firebase.googleblog.com/2015/02/the-2120-ways-to-ensure-unique_68.html
http://www.journaldev.com/1827/java-design-patterns-example-tutorial

Bibliography

63

[13] Leiva, Antonio. “MVP for Android: How to Organize the Presentation Layer.”

Antonio Leiva, 4 July 2018, https://antonioleiva.com/mvp-android/

[14] McTear, Michael, and Zoraida Callejas. Voice Application Development for

Android: a Practical Guide to Develop Advanced and Exciting Voice Application

for Android Using Open Source Software. Packt Pub., 2013.

[15] Moroney, Laurence. The Definitive Guide to Firebase: Build Android Apps on

Google's Mobile Platform. Apress, 2017.

[16] Muhammad Kamran Afridi, "Assistance System Service Development using a

Message-Oriented Middleware" master's thesis, 2012, http://midas1.e-technik.tu-

ilmenau.de

[17] “Non-Functional Requirement.” Edited by Walter Görlitz, Wikipedia, Wikimedia

[18] “SMS.” Edited by Anonymus Editor, Wikipedia, Wikimedia Foundation, 5 July

2018, https://en.wikipedia.org/wiki/SMS

[19] Sommerville, Ian. Software Engineering. Pearson, 2016.

[20] Svennerberg, Gabriel. Beginning Google Maps API 3. Apress, 2010.

[21] W., Raj Amal. Learning Android Google Maps. Packt Publishing, 2015.

https://antonioleiva.com/mvp-android/
http://midas1.e-technik.tu-ilmenau.de/
http://midas1.e-technik.tu-ilmenau.de/
https://en.wikipedia.org/wiki/SMS

Appendix 1

64

Appendix 1 - List of figures and tables

Figure 4.1 – Simplified Conceptual Architecture ... 17
Figure 4.2 – User types ... 18
Figure 4.3 – Patient Use Case Diagram .. 20

Figure 4.4 – Doctor Use Case Diagram .. 21
Figure 4.5 - Emergency call flowchart ... 22
Figure 4.6 – Patient tracking flowchart... 24
Figure 4.7 – Datailed call doctor flowchart .. 26
Figure 4.8 – Send message flowchart ... 28

Figure 4.9 – Change user profile flowchart .. 30

Figure 4.10 - Real-time Database structure .. 33

Figure 5.1 – Detailed conceptual architecture .. 35
Figure 5.2 – Patient Tracking module, conceptual diagram 39
Figure 5.3 – Code snippet for initiating an emergency call 40
Figure 5.4 – Send SMS doctor and patient view .. 41

Figure 5.5 – Model-View-Presenter design pattern ... 42
Figure 5.6 – Project’s modules ... 43

Figure 5.7 – Arch module, class diagram ... 44
Figure 5.8 – Validator class diagram .. 45
Figure 5.9 – Partial class diagram (Login).. 46

Figure 5.10 – Put and get information from intent ... 47
Figure 5.11 – Application package diagram ... 47

Figure 5.12 – Presenter and Activity cooperation .. 48

Figure 7.1 – Google Play Search .. 53

Figure 7.2 – First login.. 54
Figure 7.3 – Correct register input .. 55
Figure 7.4 – Incorrect register input ... 55

Figure 7.5 – LoginPage and Figure 7.6 – logged in .. 56

Figure 7.8 – Forgot Password1 ... 57
Figure 7.7 – Forgot Password2 ... 57
Figure 7.9 – Patient user guide ... 58
Figure 7.10 – Doctor user guide1 ... 59

Figure 7.11 – Doctor user guide 2 .. 59

Table 2.1 – Non-functional Requirements .. 4

Table 3.1 – Http request methods ... 10

Table 3.2 – Firebase tools used in the project ... 12
Table 3.3 – Comparison of the proposed system with similar, already existing

systems .. 16
Table 4.1 – List of user actions ... 19
Table 6.1 – Test case – user login ... 49

Table 6.2 Test case – user register .. 50
Table 6.3 – Test case – add new patient ... 50

file:///D:/Hitter_Andras_Lucrare_Licenta.doc%23_Toc518739299
file:///D:/Hitter_Andras_Lucrare_Licenta.doc%23_Toc518739300
file:///D:/Hitter_Andras_Lucrare_Licenta.doc%23_Toc518739302
file:///D:/Hitter_Andras_Lucrare_Licenta.doc%23_Toc518739322
file:///D:/Hitter_Andras_Lucrare_Licenta.doc%23_Toc518739326

Appendix 1

65

Table 6.4 – Test case – send message ... 51

Table 6.5 – Test case – Emergency call .. 51

Appendix 1

66

Appendix 2 – Glossary

Term Description

PT Patient Tracker

GPS Global Positioning System

API Application Programming Interface

JSON javaScript Object Notation

SDK Software Development Kit

RAM Random Access Memory

PIN Personal Identification Number

SIM Subscriber Identity Module

GNSS Global Navigation Satellite System

OS Operatin System

ETA Estimated Time of Arrival

AMQP Advanced Message Queuing Protocol

HTTP HyperText Transfer Protocol

HTML HyperText Markup Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

TCP Transmission Control Protocol

SMS Short Message Service

REST Representational State Transfer

SSE Server-sent Events

UID User ID

CNP Cod Numeric Personal (Personal

Identification Number)

MVP Model – View - Persenter

XML Extensible Markup Language

GUI Graphical User Interface

IDE Integrated Development Environment

