
FACULTY OF AUTOMATION AND COMPUTER SCIENCE
COMPUTER SCIENCE DEPARTMENT

Interactive HR Onboarding Application

LICENSE THESIS

Graduate: Csaba-László Gábor
Supervisor: Prof. Asist. Ing. Cosmina Ivan

2020

FACULTY OF AUTOMATION AND COMPUTER SCIENCE
COMPUTER SCIENCE DEPARTMENT

DEAN, HEAD OF DEPARTMENT,
Prof. dr. eng. Liviu MICLEA Prof. dr. eng. Rodica POTOLEA

Graduate: Csaba-László Gábor

Interactive HR Onboarding Application

1. Project proposal: The purpose of the project is to build an HR system for big
companies where employees can log their time, send business trip requests or go
through an onboarding process where they learn how to use the application.

2. Project contents: Table of contents, Introductions, Project Objectives, Biblio-
graphic Research, Analysis and Theoretical Foundation, Detailed Design and Imple-
mentation, Testing and Validation, User’s manual, Conclusions, Bibliography and
Glossary.

3. Place of documentation: Technical University of Cluj-Napoca, Computer Science
Department

4. Consultants: Prof. Asist. Ing. Cosmina Ivan

5. Date of issue of the proposal: November 1, 2019

6. Date of delivery: July 8, 2020

Graduate: Csaba-László Gábor

Supervisor: Prof. Asist. Ing. Cosmina Ivan

FACULTY OF AUTOMATION AND COMPUTER SCIENCE
COMPUTER SCIENCE DEPARTMENT

Declaraţie pe proprie răspundere privind
autenticitatea lucrării de licenţă

Subsemnatul(a)
Csaba-László Gábor legitimat(ă) cu carte de identitate seria CJ nr.
CNP , autorul lucrării Interactive HR Onboarding Application elab-
orată ı̂n vederea susţinerii examenului de finalizare a studiilor de licenţă la Facultatea de
Automatică şi Calculatoare, Specializarea Calculatoare din cadrul Universităţii Tehnice
din Cluj-Napoca, sesiunea Iulie a anului universitar 2019-2020, declar pe proprie răspun-
dere, că această lucrare este rezultatul propriei activităţi intelectuale, pe baza cercetărilor
mele şi pe baza informaţiilor obţinute din surse care au fost citate, ı̂n textul lucrării şi ı̂n
bibliografie.

Declar, că această lucrare nu conţine porţiuni plagiate, iar sursele bibliografice au
fost folosite cu respectarea legislaţiei române şi a convenţiilor internaţionale privind drep-
turile de autor.

Declar, de asemenea, că această lucrare nu a mai fost prezentată ı̂n faţa unei alte
comisii de examen de licenţă.

În cazul constatării ulterioare a unor declaraţii false, voi suporta sancţiunile admin-
istrative, respectiv, anularea examenului de licenţă.

Data Nume, Prenume

Semnătura

Contents

Chapter 1 Introduction - Project Context 1
1.1 Project context . 1
1.2 Motivation . 1
1.3 Project content . 2

Chapter 2 Project Objectives and Specifications 3
2.1 Main Objectives . 3
2.2 Secondary Objectives . 4
2.3 Necessary Resources . 4

Chapter 3 Bibliographic research 5
3.1 HR Management Software . 5

3.1.1 Common aspects . 6
3.1.2 Onboarding Experience . 6
3.1.3 Comparison to other alternatives 8

3.2 Security in applications . 10
3.3 Push notifications . 11
3.4 Conclusions . 14

Chapter 4 Analysis and Theoretical Foundation 15
4.1 Client Server architecture - Conceptual Architecture 15
4.2 Onboarding Component - Conceptual Architecture 16
4.3 Development platform . 17
4.4 Functional requirements . 17
4.5 Non-functional requirements . 19
4.6 Use Cases of the system . 20

4.6.1 Logging in the system . 22
4.6.2 Log out from the system . 23
4.6.3 Change Account information . 24
4.6.4 Change password . 24
4.6.5 Send Business Trip Request . 26
4.6.6 Approving Business Trip Request 27

i

4.6.7 View Business Trip Request Metrics 28
4.6.8 Fill Timecard . 29
4.6.9 Approving Timecards . 30
4.6.10 Export Timecard as PDF . 31
4.6.11 View interactive tutorial . 32

Chapter 5 Detailed Design and Implementation 35
5.1 System Architecture . 35
5.2 Technologies used . 38

5.2.1 Spring Boot . 38
5.2.2 Vue.js . 39
5.2.3 Hibernate ORM . 40
5.2.4 JWT . 41
5.2.5 MySQL . 42
5.2.6 MongoDB . 42
5.2.7 RabbitMQ . 44
5.2.8 gRPC . 44
5.2.9 SockJS . 46
5.2.10 WebView . 47

5.3 Layers . 47
5.4 Class diagram . 47

5.4.1 Controllers . 48
5.4.2 Models . 49
5.4.3 Services . 49
5.4.4 Frontend components . 50

5.5 Database Design . 51

Chapter 6 Testing and Validation 55
6.1 Manual testing . 55
6.2 Unit testing . 55
6.3 Mocking . 56
6.4 Integration testing . 56

6.4.1 H2 . 57

Chapter 7 User’s manual 59
7.1 Application installation . 59
7.2 Application utilization - General information 60
7.3 Application utilization - Regular User level 60

7.3.1 Authentication . 60
7.3.2 Filling timecards . 61
7.3.3 Submitting business trip requests 62
7.3.4 Going through the Onboarding process 63

ii

7.3.5 Change Password . 63
7.3.6 Changing Public Profile . 64

7.4 Application utilization - Moderator level 65
7.4.1 Approving requests . 65
7.4.2 View Metrics . 65

7.5 Application utilization - Administrator level 66
7.5.1 CRUD operations on basic entities 66

7.6 Application utilization - Project Manager level 67
7.6.1 Approving Timecards . 67

7.7 Application utilization - Payroll level . 68
7.7.1 Exporting Timecards as PDF . 68

Chapter 8 Conclusions 69
8.1 Results . 69
8.2 Evaluation . 69
8.3 Future developments . 70

Bibliography 71

Appendix A Glossary 73

Appendix B 75

List of Figures 75

Appendix C 79

List of Tables 79

iii

Chapter 1

Introduction - Project Context

The purpose of this project is to create an easy to use application which eases HR
tasks in an enterprise environment such as submitting business tasks which can be ap-
proved/rejected, filling timecards (users can submit the duration of time they’ve worked
on a task) and providing training for employees by using automated ways to show how the
HR management application works (Onboarding process). Also, metrics will be provided
for several aspects so managers/company owners can have an overview of how their com-
pany is working. People are the real assets of a company, so they should be educated and
their opinion has to be taken into account. That’s why several solutions will be imple-
mented that help the company to improve itself and to be more efficient. In the end this
solution will lower costs, will improve productivity and will give the company’s employees
a better day to day life.

1.1 Project context

In big companies, manually managing labour work is next to impossible. Because of
this, an automated way needs to be developed to carry out this task. The problem is that
such systems are fairly complex and hard to use. Also, large enterprise companies waste
a lot of time by training their newcomers. These new employees need time to become
familiar with the company’s processes. But in today’s world where employees come and
go, this process should be made as efficient as possible by using automated ways.

1.2 Motivation

Big companies have a lot of employees and everybody has to track their time.
Different companies solve this problem differently but almost all of them have some system
built for it. The problem is that those systems are legacy systems in a lot of cases or they
are really complex systems which are really hard to use and new employees find it difficult
to learn them. So we need an efficient solution which is easy to use and has an intuitive

1

2

user interface. In the long run such a simple system will save huge amounts of money
for the company and make it more efficient. Also, even if the system is simple to use,
employees still need to learn it. This is where an automated learning experience such as
an interactive Onboarding tutorial would shine which shows the users, in an interactive
fashion, how to use the system in the correct way. This project was my own personal
idea because I have seen and heard how big companies struggle with such easy tasks as
managing labour work. In the beginning, the project goal was not clear, but it was refined
during development.

1.3 Project content

In the second chapter of the document we are going to discuss the main objectives
of the system, the secondary objectives and all the necessary resources to build such a
system and to be able to deploy it.

In the third chapter we are going to dive deep into related systems and see how
they are implemented. We are going to see how user-friendly they are, how intuitive they
are and most importantly how easy is to learn to use them. We are going to compare
those systems between them, creating tables which will show the differences between the
systems but also the similarities. We are going to focus on the first introductory part of
every HR system namely the onboarding process.

In the fourth chapter we are going to analyse what we are trying to be build. We
are going to specify the functional and non-functional requirements. Also we’ll take a
look at some functional requirements and most importantly we are going to define our
architecture.

In the fifth chapter we are going to design the system in more depth including the
whole architecture. We are going to enumerate all of the technologies that we need to
implement the system and also specify where those technologies are going to be used in
the system. We will also define how the deployment will be done. In this chapter the
database design will be presented.

In the sixth chapter all the testing methods will be described. This includes manual
testing, unit testing and integration testing. All this testing effort contributes to the
reliability of the application.

No application or system can be made without the user manual so in the seventh
chapter, a throughout presentation will be made about the system: how it is used, what
are the flows, also some alternate flows. And all these descriptions will include some
screenshots about the application so the regular user will be able to easily understand it.

In the final chapter, namely the eighth chapter we are going to discuss our results
and also take a look at ideas for future development.

At the end of the document a glossary will be provided with all the terms which are
hard to understand for those people who are not familiar with these types of systems. Also
the bibliography, list of figures and list of tables are shown at the end of the document.

Chapter 2

Project Objectives and Specifications

2.1 Main Objectives

The main objectives are to:

• Provide a way to track how employees spend their time on internal activities or
external training events. To do this, provide an easy to use interface for employees
to fill their timecards so that they don’t waste too much time filling them, at
the end of each month employees submit their timecards and project managers can
review them. If the review process is over, the timecard information goes to the
Payroll team which manages the budget of the company and sends the salary to the
employees from different budgets based on the work done on different tasks/projects.
The Payroll team can also export this information as a pdf.

• Provide a way for employees to send business trip requests which will be
reviewed by moderators.

• Provide real time notifications for employees if their business trip requests
or timecards were approved/rejected

• Provide several real-time metrics which can help to identify weaknesses
in the company’s structure and help business owners improve their company. For
example, with the help of these metrics the company can tackle down cost related
issues and solve them. Metrics include: number of business trip requests per month,
per city, duration of these requests etc. For these functional requirements, charts
with the metrics will be shown in the UI

• Make the Onboarding process as smooth as possible by providing a smart-
phone application which acts as an interactive tutorial for the users. The app is
like a remote controller for the Desktop application so whenever a user wants to do
something but doesn’t know how to do it, it just presses the corresponding button
in the app, and the Desktop app becomes interactive (the cursor moves from itself)
and shows how to do that task like showing how to submit a business trip request.
In this way, users quickly learn how to use the company’s HR software and in the

3

4 CHAPTER 2. PROJECT OBJECTIVES AND SPECIFICATIONS

end it is a win-win for both parties. The company doesn’t have to provide trainings
for the newcomers to learn the software and newcomers are not frustrated.

2.2 Secondary Objectives

Some Secondary objectives are to:

• Make the application highly secure so that personal information would not
be leaked.

• Authentication: provide a way for users to log into the system by providing
their email and password.

2.3 Necessary Resources

This project needs these software dependencies:

• A relational database system like MySQL to store relational data.
• A fast and reliable NoSQL database system to store the metrics, this database

has to have very fast read access (to be real-time) - MongoDB
• A web application framework in Java for the backend part (Spring)
• A frontend application framework like Vue.js
• Some highly reliable asynchronous messaging system like RabbitMQ to be

able to send messages from one module to the other
• Remote procedure call library for different modules to be able to log in them-

selves in the central application via a single sign-on mechanism (gRPC)
• Push notifications library like SockJS to notify users if their request has been

accepted

As hardware requirements, a powerful PC is needed with at least 12 gigs of RAM, a
quad core CPU. A dedicated GPU is not needed for this project. I don’t need a dedicated
server but the project will be able to be deployed on one.

Chapter 3

Bibliographic research

3.1 HR Management Software

The general approach to developing an HR Management software is to build several
modules. A module is built for resume uploading and training material, another one for
time management, another one for performance management etc. ([1], [2]). By having
multiple subsystems we can create a decoupled application which is easier to debug, and
if one module fails, the other ones can still work afterwards.

It is important to make a distinction between HRM and HRIS systems[3]. HRM
means Human Resources Management while HRIS means Human Resource Information
System. An HRM is “an attempt to regulate the relationship between the employee and the
employer as part of a foundation” [4]. But this definition does not say anything about a
system which holds data about employees or uses that data to speed up the process. This
is where HRIS comes into play: “a human resources information system is a system used
to acquire, store, manipulate, analyze, retrieve, and distribute pertinent information about
an organization’s human resources” [5].

Several such solutions exist, each with its niche features. [3] presents some open
source solutions like: Sentrifugo ([6]) with features like interview schedule, time manage-
ment, expenses calculation, background checks etc., Orange HRM([7]) with features like
time off management.

[1] presents new features of such a system like scheduling trainings for employees,
tracking resumes of employees (storing them). A history with the past trainings of the
employees can be stored in a database and this data can be used later for things like
performance management or salary raise calculation. The previous solutions presented
a way to store only specific user data but [8] says that by storing a lot of data about
users (like telephone number, photos, medical information, resume, training records) helps
to efficiently utilize all the resources of a company. In this way, we don’t end up with
fragmented databases used for different software components. Instead, we can have mul-
tiple modules using the same database and in this way, synchronizing databases doesn’t
become a problem. Also, it is important to automize as many parts of the process as pos-

5

6 CHAPTER 3. BIBLIOGRAPHIC RESEARCH

sible. According to [9], “people-related costs now constitute the majority of total corporate
expenditures”.

Automating these processes is not enough, it is also important to measure perfor-
mance and align the processes if necessary after a throughout evaluation. Having relevant,
accurate and timely information is of great importance [10]. This means that informa-
tion needs to be collected from all the modules of the system and gather them into one
single place where it can be processed and analyzed. Both internal information like basic
employee information (age, gender etc.) and external information like socialcultural infor-
mation need to be taken into account. Also, according to [10], this data can help in several
functional requirements: can provide information for operational routines like workforce
management, tactical processes like training decisions or really important strategic deci-
sions. [11] shows that we can have a data mining approach with several pipelines where
each pipeline has a specific function, and this way, our huge dataset can be categorized
and relevant information and patterns can be extracted.

As seen in [3], current solutions are focusing too much on operational routines,
whereas tactical and strategic processes are not taken into account. The result is that
these solutions only help to lower the costs of the company but don’t let the company
improve itself, its processes and its employees. There are some articles talking about these
important processes but a real implementation is missing (only theory is provided but not
a real application).

3.1.1 Common aspects

Regarding technologies used, these types of applications are developed mostly using
PHP 1. The problem is, PHP is known for its security issues and such an important system
needs security. Another aspect is that PHP is slow so more powerful servers are needed
which cost money.

3.1.2 Onboarding Experience

In this solution we are going to focus on the onboarding experience which is really
important for new employees because, according to [12] “Employees will decide within
10 days if they intend to stay with the organization or begin looking for a different job“.
This means, that this process should be as smooth as possible and shouldn’t cause any
confusions in the mind of the newcomer. Also, according to [12], “Roughly 25% of our
permanent staff have been at UNC Charlotte for two years or less and that, with expected
retirements and growth, we face a growing challenge to properly orient and train hundreds
of new employees”, this means that we must take seriously people who just came to the
company and utilize them as efficiently as possible knowing that most of them won’t stay
for a long time in the company. In today’s world, employees come and go, every hour

1 https://en.wikipedia.org/wiki/PHP

3.1. HR MANAGEMENT SOFTWARE 7

wasted because of our incompetent systems or training materials wastes a lot of money
of the company. In most of the companies, when a new employee arrives, people from
the company spare some of their time and train these people. And this happens every
time a newcomer arrives. This process should be automated. According to [13] “36% of
companies have insufficient technology to automate or organize the onboarding process.”.
In [13] a study has been carried out with the conclusion that only 57% of new employees
can carry out tasks on their own. For the rest, help is needed.

Let’s see some examples of Onboarding experiences:
Cake HR[14] assigns tasks to each newcomer with some attached training materi-

als(videos, pdfs etc.) and they work on them like on real tasks. This approach is interesting
but has several issues: the materials need to be updated constantly and more importantly
the newcomers can be shy to ask questions from other colleagues because they think that
everything is written down in the documents and they may seem dumb to others if they
ask questions. Also, new-comers feel stressed on their first day of work because they got
some tasks that they have to complete.

Figure 3.1: Onboarding new Employees from [14]

Observe that the new employee works on these tasks like on real ones.

8 CHAPTER 3. BIBLIOGRAPHIC RESEARCH

Interestingly, BambooHR ([15]) has the same approach:

Figure 3.2: Onboarding Experience from [15]

A newcomer receives some tasks with attached training materials and needs to
complete them. Zoho ([16]) has a similar approach. I could only find a single interactive
approach. Namely2 presents a virtual way to preview the company’s floors and where
each room is located. This is still just a beginning in providing an interactive onboarding
experience but it is a good start.

3.1.3 Comparison to other alternatives

There are several such software in the International Market, so a comparison table
has been made:

Based on basic HR tasks:

Table 3.1: Comparison between systems taking into account their components

Name Onboarding Performance Time Payroll Recruitment Time and Employee

Man. Off Man. Man. Attendance Profiles

Man. Man.

Zoho Recruit X - - - X - -

Cake HR X X X - X X X

Conrep 3 X - X X X X X

Kronos workforce

management 4
- X X X - X X

Bitrix24 5 X X X - - X X

SAP SuccessFactors
6

X X - X - X -

BambooHR X X X - X X X

2 https://www.namely.com/employee-onboarding-software
3 https://www.conrep.com/products/human-resource-management/human-resource-management.php
4 https://www.kronos.com
5 https://www.bitrix24.com/
6 https://www.sap.com/romania/products/human-resources-hcm/hxm-suite.html

3.1. HR MANAGEMENT SOFTWARE 9

Based on price and platform:

Table 3.2: Comparison between systems taking into account their components

Name Price Android iOS WEB/CLOUD Windows Mac Linux

Zoho Recruit $25/month/user X X X - - -

Cake HR 100EUR/month/user X X X - - -

Conrep 7 40$/month/user - - X - - -

Kronos workforce
management 8

Not disclosed X - X - - -

Bitrix24 9 159,20EUR for all users X X X X X X

SAP SuccessFac-
tors 10

Not disclosed - - X - - -

BambooHR 8.25$/month/user X X X X X X

It can be seen that there isn’t a bulletproof solution for every business need. This
is why

• Big companies invest in multiple solutions (they buy multiple products), but
the disadvantage is that they pay twice or even three times for the same functionality

• Companies developing these kinds of software partner with each other and
develop a common solution, this is the case with Kronos Workforce Management
and SAP SuccessFactors (the new application after the partnership is called SAP
Time Management application by Kronos), but these solutions are very expensive

The problem is that having multiple solutions means having a segmented user ex-
perience and user data storage as well. So, employees need to learn multiple tools, but the
biggest disadvantage is that users’ data is stored in different places and because of this:

• It is harder to securely store them and comply to policies
• Data mining is not efficient on user data, so if predictions and metrics need

to be carried out on this data, it will be a lot harder than it would have been if the
data was stored in a single place

• It is awfully hard to update data (it needs to be updated in every single app)

If we take a look at the National, Romanian Market, then the number of solutions
is not so large. But, the prices are lower somewhat: some of the solutions cost 5.90
Ron/user/month which is roughly 1.5 Eur/user/month. And even the number of features
is satisfactory in these solutions but there are several things to note when choosing a
solution:

7 https://www.conrep.com/products/human-resource-management/human-resource-management.php
8 https://www.kronos.com
9 https://www.bitrix24.com/

10 https://www.sap.com/romania/products/human-resources-hcm/hxm-suite.html

10 CHAPTER 3. BIBLIOGRAPHIC RESEARCH

• Are there going to be future updates such as bug fixes, or integrations with
other systems such as Slack, Microsoft Teams etc.

• Will prices go up in the future? Switching to another platform is really ex-
pensive that’s why a good one has to be chosen from the beginning.

Another alternative when one needs a solution only for a national market is to
choose an international product with good regional translation. Cake HR ([14]) is a good
example for this. The problem is the same again: usually prices are higher.

3.2 Security in applications

Our system will consist of a frontend component (smartphone app is a part of it) and
backend component. This means that the frontend component will run on client side and
communicates with the backend. This is how a usual UI application works. But for this
reason, strong security measures should be made like authentication and authorization.

Authentication means that the user must provide his credentials to enter the system.
Authorization means that specific actions can be only carried out by specific users having
specific roles.

There are several ways to authenticate a user. The most simple one is basic HTTP
Auth which means that the username and password of the user are sent through the wire
each time. This is really bad from a security perspective because the password should be
stored in an encrypted form even in the database, sending it all the time in clear-text form
is really bad because an eavesdropper can steal it.

This is where Token based Authentication comes into play. Basically, when the
user authenticates for the first time, he sends his password and username, and gets back
a token in exchange. He then stores that token and uses it for consecutive calls. Even in
this case, the token can be stolen and used by somebody else but the biggest difference
is that a token has to be renewed periodically and also, it can be easily invalidated. And
most importantly, most of the people use the same or similar passwords for different sites
and in this case a token helps a lot because the attacker gets access only to a single site
and not to all of them.

3.3. PUSH NOTIFICATIONS 11

Working mechanism of the token based Authentication:

Figure 3.3: Token based Authentication, from [17]

It is a two step process, where the browser first sends the credentials, then gets back
the token, then it attaches the token for all the consecutive calls:

3.3 Push notifications

Unfortunately, HTTP in itself doesn’t let us send data directly from the server to
the client. A lower level protocol is needed. But before getting to the final solution, let’s
see how push notifications could be implemented.

This is how HTTP 1.1 works:

Figure 3.4: HTTP 1.1 from [18]

12 CHAPTER 3. BIBLIOGRAPHIC RESEARCH

Later versions of HTTP allow multiple streams of data to be sent at the same time,
but the concept remains the same: the client sends something, the server responds. So
even if the server cannot directly send data to the client, the client can ask for data from
time to time, and the server simply responds with no if no data is present or with the
data.

So the most simple solution is:

Figure 3.5: Short polling from [18]

To be able to use this solution, you need Ajax (Asynchronous JavaScript and XML).
It allows you to send a request to the server without refreshing the webpage.

The problem with short polling is that it is not efficient at all. Every request needs
to be processed on server side even if the server doesn’t have anything to respond with.
This wastes server resources but also wastes bandwith because every request sent (even if
empty) must contain some required data/headers which take up some space. So a more
efficient solution would be to just send a request to the server, the server hangs the request
(doesn’t respond immediately) and when it has data to respond with, it responds. Until
then the client does something else and waits for the incoming data asynchrounously. This
is called Long Polling.

These are the advantages of long polling:

• Almost real-time
• Efficient bandwidth utilization

3.3. PUSH NOTIFICATIONS 13

Some disadvantages of long polling:

• Results in a complex backend implementation (needs to keep connection open)
• Still resource hungry

Figure 3.6: Long polling from [18]

So, building on the lower level protocol TCP, a final solution was adopted by all the
major browser vendors called: WebSocket.

It works in the following way:

• client sends request to server (handshake)
• server responds and a real two-way TCP channel will be created between the

client and server
• the server can directly push data to the client even if he didn’t ask for it
• the only thing the client needs to do is to subscribe to the channel and listen

for incoming messages

Advantages of WebSocket:

• two-way connection: client and server both can send data
• really low latency - even can be used for real-time games

14 CHAPTER 3. BIBLIOGRAPHIC RESEARCH

• efficient bandwidth usage - HTTP headers are not sent with every request
• easy to implement in modern frameworks

Figure 3.7: WebSocket [18]

3.4 Conclusions

Taking a look at related HR systems we can conclude that none of them have a
great Onboarding experience. This is the part which needs to be improved as much as we
can. Feature wise, all the systems supported most of the features needed in an HR system
like timecard filling, vacation request etc. but the problem is that most of these tools are
paid ones, there are very few free solutions and those lack many functionalities and only
provide one, two functionalities like time management or employee management. They
are not complete systems in any way. My application will be free and would provide many
functionalities missing from these free systems such as onboarding experience, handling
business trip requests, having a multi-role access to the system where different users can
do different things etc.

All of the existing systems for which I could find the programming language in
which they were developed, were developed in PHP. Now, PHP is an amazing scripting
language but it is known for its security issues. Such an important system must have very
good security measures which is why I have chosen Java as a programming language and
Spring framework for the backend.

Also, another conclusion is to build such a system using several modules. All the
modules are extensible by design.

Chapter 4

Analysis and Theoretical Foundation

In this chapter we are going to take a look at the overall architecture of our system
and the use cases of the system. Also, we are going to specify the functional and non-
functional requirements.

4.1 Client Server architecture - Conceptual Architec-

ture

The application will be based on the client-server model. This means that the user
interacts with the client, which gets data from the server. There are two clients: the
frontend web client and the smartphone client. The user uses both clients.

Figure 4.1: Client-Server Architecture

15

16 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

The frontend and backend will communicate with HTTP, and the live pushes will
be carried out using WebSocket.

4.2 Onboarding Component - Conceptual Architec-

ture

The Onboarding component will be developed separately so that later it can be
reused for other modules as well. In this scenario, the user uses only the smartphone client
directly and views the existing frontend web client.

Figure 4.2: Conceptual Architecture of the Interactive Onboarding Component

Basically, the Interactive Onboarding Component will be a separate component on

4.3. DEVELOPMENT PLATFORM 17

the UI side which gets live notifications from the main backend and acts on the main UI
through Javascript DOM events.

The Smarthphone app will be developed separately and will use the same authenti-
cation mechanisms as the main UI. When the user wants to see a tutorial, the smartphone
app contacts the server, which sends a live event to the Onboarding component.

4.3 Development platform

The backend is developed using Java, so it will be able to run on any operating
system. Although the development platform which was used was Windows 10. The smart-
phone application is built using a hybrid approach. This means that it can run on both
Android and iOS. The biggest advantage for this approach is that some code (like the log
in flow) can be shared between the frontend component and app.

4.4 Functional requirements

There are 5 types of users in the system based on their role:

• Regular user which corresponds to the regular employee
• Moderator which can be a member of the Facility Department or other similar

departments in a company
• Admin which is usually a member of the IT team
• Payroll which is the Payroll team
• PM which is a project manager

FR-1: User authentication:

Table 4.1: Authentication related FR

FR User Moderator Admin Payroll PM

FR-1.1: Log in with password and
email

X X X X X

FR-1.2: Log out X X X X X

FR-1.3: View Account information X X X X X

FR-1.4: Change password X X X X X

18 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

FR-2: CRUD actions on resources:

Table 4.2: CRUD based FR

FR User Moderator Admin Payroll PM

FR-2.1: CRUD on users/roles X

FR-2.2: CRUD on tasks X

FR-2.3: CRUD on projects X

FR-2.4: CRUD on cities, countries,
transportation means

X

FR-3: send, approve, reject Business Trip Request:

Table 4.3: Business Trip Request related FR

FR User Moderator Admin Payroll PM

FR-3.1: Send Business Trip Request X

FR-3.2: Get real time notifications for
the status of business trip requests

X

FR-3.3: Approve Business Trip
Requests

X

FR-3.4: View metrics related to
business trip requests

X

FR-4: fill, send, approve, reject Timecard:

Table 4.4: Timecard related FR

FR User Moderator Admin Payroll PM

FR-4.1: Fill timecard X

FR-4.2: Approve timecards X

FR-4.3: Export timecard related
information for a given user as PDF

X

FR-4.4: Export all the timecards from
the previous month as PDF

X

FR-4.5: Get real time notifications for
the status of timecard

X

4.5. NON-FUNCTIONAL REQUIREMENTS 19

FR-5: view interactive tutorials during the onboarding process:

Table 4.5: Interactive tutorial related FR

FR User Moderator Admin Payroll PM

FR-5.1: See Interactive demo for
submitting business trip request

X

FR-5.2: See Interactive demo for
filling timecard

X

4.5 Non-functional requirements

The system must have:

• Security: passwords need to be encryped, access to resources needs to be re-
stricted to certain roles
• Extensibility: the system should be extensible. This means that components

can be removed at any time, or new components can be added at will.

Scalability is not a requirement in this application, because, although there are many
employees in a large company, their number doesn’t exceed ten thousand usually which is
still a small number. And we are not talking about ten thousand concurrent users. Users
usually fill their timecard at the end of the month, but there are three or four days left to
do that and each timecard filling process takes a maximum of 10 minutes. So on average
there are 10000/(3*8*6) ˜ 70 concurrent users (3 days, 8 hours working days, the duration
of a session is 10 minutes so there can be 6 sessions in one hour).

20 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

4.6 Use Cases of the system

Figure 4.3: Use Case Diagram for common use cases

4.6. USE CASES OF THE SYSTEM 21

Figure 4.4: Authentication Related Use Case Diagram

Figure 4.5: CRUD Related Use Case Diagram

22 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

4.6.1 Logging in the system

Actor logs in the system after providing an email and password.
Primary Actor: any User
Basic Flow:

1. User provides email and password.
2. System verifies user’s password.

Alternative Flow:
• 2a. Password is incorrect:

1. System rejects password.
2. System goes back to Step 1.

Preconditions:
1. User must have a valid account.
2. Application must be open.

Postconditions:
1. User should be authenticated.

Extension Points:
• 2b. Other Type of validation error happens:

1. System displays error message.

Figure 4.6: Use Case Diagram of Log In Flow

4.6. USE CASES OF THE SYSTEM 23

4.6.2 Log out from the system

Actor logs out from the system. Client system erases user data.
Primary Actor: any User
Basic Flow:

1. User logs out.
2. Client System deletes user data.

Alternative Flow: -
Preconditions:

1. User is logged in.
Postconditions:

1. User is logged out.
2. Client System doesn’t have any information stored about the user.

Figure 4.7: Use Case Diagram of Log Out Flow

24 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

4.6.3 Change Account information

Actor changes his firstname, lastname or email.
Primary Actor: any User
Basic Flow:

1. User changes firstname, lastname or email.
2. System verifies user provided data.

Alternative Flow:
• 2a. Data is invalid:

1. System displays error message.
2. System goes back to step 1.

Preconditions:
1. User is logged in.

Postconditions:
1. User data remains valid.

Figure 4.8: Use Case Diagram of Change Account Info Flow

4.6.4 Change password

User provides old password and new password.
Primary Actor: any User
Basic Flow:

1. User provides old password.

4.6. USE CASES OF THE SYSTEM 25

2. User provides new password twice.
3. System validates both passwords.

Alternative Flow:
• 3a. Old password is not valid:

1. System displays error message.
2. System goes back to step 1.

• 3b. New passwords do not match:

1. System displays error message.
2. System goes back to step 1.

• 3c. New password is not valid:

1. System displays error message.
2. System goes back to step 1.

Preconditions:
1. User is logged in.

Postconditions:
1. User has valid password stored in the system.

Figure 4.9: Use Case Diagram of Changing Password Flow

26 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

4.6.5 Send Business Trip Request

Regular user sends a business trip request after providing title, description, need of
laptop, start date and end date.
Primary Actor: Regular User
Basic Flow:

1. User completes form with data about the request.
2. System verifies data.

Alternative Flow:
• 2a.Entered data is invalid:

1. System displays error message.
2. System goes back to step 1.

• 1a.User cancels:

1. System goes back to step 1.
Preconditions:

1. User is logged in.
Postconditions:

1. Request is saved in the system for a success scenario.

Figure 4.10: Use Case Diagram of Sending a B. T. Request Flow

4.6. USE CASES OF THE SYSTEM 27

4.6.6 Approving Business Trip Request

Moderator searches through sent requests and approves them.
Primary Actor: Moderator
Basic Flow:

1. Moderator searches for sent business trip requests.
2. Moderator accepts request.
3. System changes status of request to Accepted.

Alternative Flow:

-
Preconditions:

1. Moderator is logged in.
Postconditions:

1. Approved/Rejected Request is not displayed.
Extension:

• 2a. Moderator rejects request

1. System changes status of request to Rejected.

Figure 4.11: Use Case Diagram of Accepting a B. T. Request Flow

28 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

4.6.7 View Business Trip Request Metrics

Moderator view different types of metrics related to business trip requests: how
many requests were done per city, per country, per transportation mean, per year and
month.
Primary Actor: Moderator
Basic Flow:

1. Moderator views Business Trip Request Metrics.
2. Moderator changes Metrics Parameters.

Alternative Flow: -
Preconditions:

1. Moderator is logged in.
Postconditions: -

Figure 4.12: Use Case Diagram of Viewing Metrics Flow

4.6. USE CASES OF THE SYSTEM 29

4.6.8 Fill Timecard

Regular User fills his timecard and sends it for approval.
Primary Actor: Regular User
Basic Flow:

1. Regular User logs worked hours by selecting date, hours and task. Regular User
repeats this step until done.

2. Regular User sends timecard for approval.
Alternative Flow: - Preconditions:

1. Regular User is logged in.
Postconditions:

1. Timecard is in a valid state.

Figure 4.13: Use Case Diagram of Filling a Timecard Flow

30 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

4.6.9 Approving Timecards

Project Manager checks and approves a timecard.
Primary Actor: Project Manager
Basic Flow:

1. Project Manager selects a specific timecard.
2. Project Manager approves the timecard.
3. System changes timecard’s status to Accepted

Alternative Flow: - Preconditions:
1. Project Manager is logged in.

Postconditions:
1. Approved/Rejected Timecard is not displayed.

Extension:
• 2a. Project Manager rejects the timecard.

1. System changes timecard’s status to Rejected

Figure 4.14: Use Case Diagram of Accepting a Timecard Flow

4.6. USE CASES OF THE SYSTEM 31

4.6.10 Export Timecard as PDF

Payroll member selects a timecard and exports it.
Primary Actor: Payroll
Basic Flow:

1. select timecard
2. export timecard as PDF

Alternative Flow: -
Preconditions:

1. Payroll is logged in.
2. Timecard exists.

Postconditions:
1. PDF file with Timecard information exists.

Figure 4.15: Use Case Diagram of Exporting a timecard as PDF Flow

32 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

4.6.11 View interactive tutorial

Regular user views an interactive tutorial.
Primary Actor: Regular User
Basic Flow:

1. Regular User selects tutorial.
2. Regular User views interactive tutorial.
3. System reverts all the data stored during the tutorial phase.

Alternative Flow:
• 2a. Tutorial is skipped:

1. System goes to Step 3.
Special Requirements:

1. Smartphone device which is capable of connecting to the internet.
Preconditions:

1. Web Application is open.
2. The primary actor is authenticated and authorized in both the smartphone

application and in the Web application for this use case.
3. Home screen of the smartphone application is in front of the primary actor.

Postconditions:
1. Timecard entity should remain in the same state as it was before the use case

regardless of the outcome of the use case. The use case being only a simulation,
shouldn’t modify the primary actor’s timecard.

2. Web Application should remain open regardless the outcome of the use case.

Figure 4.16: Use Case Diagram of Viewing an Interactive Tutorial Flow

4.6. USE CASES OF THE SYSTEM 33

The sequence diagram shows the interactions between the regular user and the sys-
tem during the interactive tutorial use case:

Figure 4.17: System Sequence Diagram of Viewing an Interactive Tutorial Flow

Chapter 5

Detailed Design and Implementation

5.1 System Architecture

The conceptual architecture was already presented in the previous chapter. Now,
the whole system architecture is presented along with all the technologies involved.

Figure 5.1: System architecture

A backend with several modules will be developed:

35

36 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

• The hr service is the core of the backend. It communicates with the main
database holding all the user related data and sends that data to the frontend com-
ponent.

• The metrics service module will save/get data from the NoSQL database
and send it to the UI. It carries out all the calculation needed for metrics.

• The notification service module is responsible for sending live events to the
UI when something important happens: the timecard or the business trip request of
the user is accepted/rejected.

The communication between the modules will be carried out in both synchronous
and asynchronous ways:

• Synchronous RPC will be used for authentication. The submodules will con-
tact the main module(hr service) which authenticates the user so that he can access
the services provided by the submodule.

• An asynchronous messaging broker will be used to send events from the main
module to submodules. In this way, modules become decoupled between each other,
the only common thing between them is the name of the of the queues on which data
gets transferred. Asynchronous messaging is used instead of synchronous because it
is non-blocking in nature. This means, that the main module can operate even if
some of the submodules fail.

A relational database system is needed for the relational data in the system and a
NoSQL database will be used for storing the metrics.

Spring Boot 1 already has an embedded Tomcat 2 container so there is no need for
a separate deployment container. Also, we need a static file serving container, for this,
Node was used.

Figure 5.2: Embedded Tomcat

The interactive Onboarding component is not a separate application, meaning that

1 https://spring.io/projects/spring-boot
2 https://tomcat.apache.org

5.1. SYSTEM ARCHITECTURE 37

it is deployed together with the Frontend component, it is just a separate module/component
in it. It is activated when a specific Push Notification is received from the backend. This
notification contains the type of the tutorial which needs to be shown. The Interactive Tu-
torial Component runs on the existing UI and it has knowledge about the elements present
on the page and activates their corresponding events like click event, press event etc. The
Smartphone application uses the same authentication flow as the the frontend component
so the main backend doesn’t have to be modified. The Smartphone application calls the
existing backend presented before via HTTP and the backend transmits a live WebSocket
notification to the Onboarding component. The existing HR server needs to be extended
to support the new push notification flow where it receives a request from the smartphone
application and sends a specific websocket event to the Onboarding component.

Regarding the backend modules, they were developed as Maven3 modules. So there
is a parent module named hr and 4 submodules:

Figure 5.3: Maven parent pom.xml

The model module is a common module between all the other modules. It only
contains some Java POJO classes which common in all modules. This module could have
been developed separately as a Maven library and then imported by all other components.

One of the submodules is service. The application cannot work without this mod-
ule. All the other modules just provide additional functionalities like metrics or real time
notifications but this module hosts the business logic of the app.

3 https://maven.apache.org/

38 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

5.2 Technologies used

In this section we are going to see how and why some technologies were used in the
project. This section doesn’t just provide theoretical background about various technolo-
gies but also shows how they are applied in the project.

5.2.1 Spring Boot

Spring4 is the most widely used web frameworks used since the 2000’s. Initially, a
container was needed to deploy the application on it, but later on in 2014, Spring Boot
was introduced with the ”convention over configuration” motto, this meant that a lot of
things were already preconfigured as defaults, so it takes less time to boostrap a starter
application. On the other hand, if configurations need to be changed, they can still be
changed.

The biggest improvement for Spring Boot was the introduction of the embedded
Tomcat container. This means, that the container is packaged together with the app and
can be started as a standalone application. Advantages:

• Faster startup
• Container version can be easily changed because it is just a library of the

application
• Smaller size
• Faster and easier deployment

Using Spring Boot in Maven is as simple as including it as a parent:

Figure 5.4: Maven’s pom.xml in the parent module

4 https://spring.io

5.2. TECHNOLOGIES USED 39

The entry point of the application (it can be started as a standalone app as stated
before):

Figure 5.5: The entry point of the Spring Boot application

5.2.2 Vue.js

JavaScript is still the language of choice for web UI development because it is widely
supported by all major browser vendors. But Javascript in itself is not enough for rapid
application development. This is where frameworks such as Vue.js5 shine.

Advantages of Vue.js over pure JavaScript:

• Reactive: this means that one-way binding can be made which updates the
view if the model changes

• Virtual DOM: updating the real DOM is a costly process, Vue.js stores a
virtual DOM and manipulates it, and when needed, updates the real DOM

• Code reuse: Vue.js uses templates which are basic UI components and can be
parametrized and reused

• Low learning curve

A template with some parameters:

Figure 5.6: Vue.js template

Vue.js allows us to create SPA (Single Page) applications. This means that all the

5 https://vuejs.org

40 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

components are wrapped inside a single HTML file but only those components are rendered
which are necessary.

App is the the parent of all the components in a Vue.js app, and only a single such
instance exists:

Figure 5.7: Parent Vue.js component

5.2.3 Hibernate ORM

Hibernate6 was used as ORM(Object relational mapper) to be able to work with
objects and still be able to use a relational database without much hassle. To use Hibernate,
you just need to annotate your DO class with @Entity and @Table

Figure 5.8: TransportationMean entity

You can notice, that this class extends a common superclass called BaseModel which
is there to provide a unique primary key for every type of model object:

Figure 5.9: BaseModel Hibernate parent entity

6 https://hibernate.org

5.2. TECHNOLOGIES USED 41

5.2.4 JWT

JWT(Json Web Token)7 is an open source standard. It allows to create a token in
such a way that it cannot be modified by any malicious user. When it is first created, it
is just a JSON String but it is cryptographically signed using a secret key. This key is
stored on the backend and nobody should have access to it. The token has 3 parts:

• The header contains basic info about the type of the token, about the algo-
rithm used to encrypt it

• The Payload contains the actual data about the user
• the Signature is created by signing the first two parts, the signature cannot

be modified, it ensures the validity of the token, if it is modified, then it becomes
invalid

As mentioned before, the JWT token has 3 parts:

Figure 5.10: JWT structure8

So, the user provides his password and email and these values are sent to the back-
end’s /api/auth/login API where they are checked against the values stored in the
DB(the password is hashed) and if they are valid, a JWT token is sent back to the fron-

7 https://jwt.io
8 https://nordicapis.com/why-cant-i-just-send-jwts-without-oauth

42 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

tend containing the email and role of the user. This token is then stored in the localstorage
area of the browser. Later on, every time when a new request is made to the backend, this
token is attached as a header.

Advantages of JWT over other authentication mechanisms such as sessions, cookies
etc.:

• can be used for mobile apps as well, cookies only work in a browser
• stateless, the server doesn’t need to store any information about the user in

its local cache

Before every request to the backend, the Authorization header is checked if it
contains a valid token. The class JwtFilter extends Spring’s OncePerRequestFilter meaning
that it is called exactly once before each request:

Figure 5.11: JwtFilter class

5.2.5 MySQL

MySQL version 5 was used to store all the relational data including users, timecards,
tasks, so MongoDB was only used to store metrics.

InnoDB was used as a database engine. It has several must have features such
as foreign key constraints, support for transactions, also it is very robust when it comes
to data corruption. Another widely used database engine would be MyISAM but it has
neither foreign key constraints nor transaction support.

5.2.6 MongoDB

For metrics we needed a schemaless representation where lists can be stored inside
objects(to calculate metrics related to business trip requests sent in a specific year and
month).

5.2. TECHNOLOGIES USED 43

MongoDB9 was the best NoSQL DB for this usecase because it allows us to store
JSON objects and also we needed a simple solution.

MongoDB is organized in collections which are like tables in the SQL world and
documents which are like individual rows in a table.

number is present in every MongoDB collection, it stores the number of business trip
requests which have that value in common. Say, you have 3 different cities, then there are
3 different documents in the collection city_metric and every such document stores how
many business trip requests go to that city in the number field. city, country, laptop,
status, tansportationMean, year and duration(expresses in days) are all indexed fields,
this means that search on them is really efficient. This is important because metrics are
calculated incrementally. So, if a new business trip request is saved, its parameters are
broken down and the necessary MongoDB documents are updated. If a business trip
request is deleted, on the other hand, the necessary documents are changed again, but this
time, number is decremented. So, before incrementing or decrementing the documents, a
search is needed to find the correct document based on the city, country, duration etc. of
the request.

Figure 5.12: MongoDB ”schema”

9 https://www.mongodb.com

44 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

5.2.7 RabbitMQ

RabbitMQ10 is a messaging broker capable of providing several types of messages
like fanout, direct or topic.

In the project, the Topic based exchange mechanism was used which means that a
Topic can include multiple queues... The most basic element of RabbitMQ is a queue and
when a message is sent to a topic, a routing key is specified and all those queues which
match the routing key, receive the message. On the other end of the queue, listeners are
waiting to receive messages:

Figure 5.13: RabbitMQ listener

For example, when a a business trip request is accepted, 2 things need to happen:

• The status based metrics need to be updated, so the metrics module sub-
scribes to the metric.request.accept queue whose routing key is *.request.accept

• The user whose request was accepted needs to get a live notification, so the
notification module subscribes to the notification.request.accept queue whose
routing key is *.request.accept

This means that if a message is sent to either notification.request.accept or
metric.request.accept, both queues receive the messages, which is exactly what we
want. This implementation may seem unnecessary but it’s not. A single message can be
only be delivered to one consumer at a time. This means, that we must have two different
queues for our use case.

Figure 5.14: Sending a RabbitMQ message

5.2.8 gRPC

We used RabbitMQ for asynchronous communication between our modules. But
our metrics and notification modules need a way to contact the main service to provide

10 https://www.rabbitmq.com

5.2. TECHNOLOGIES USED 45

authentication. This should be done in a blocking way and also reqlly quickly. This is
where gRPC11 comes into play. gRPC is built on top of HTTP 2 and provides a language
independent remote procedure call mechanism.

You just create a protobuf file having a .proto extension with the help of an
IDL(Interface description language) and the gRPC compiler will compile it to whatever
language you are using:

Figure 5.15: Our .proto file used for login

This .proto file, after compiling it, will be turned into specific Java classes such as:

Figure 5.16: Generated Java Class

The LoginService is generated in the same way, but only in an interface is gener-
ated. To implement the interface:

11 https://grpc.io

46 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

Figure 5.17: Implementing LoginService

To use the interface on client side, we can create an instance of it (called a stub
which doesn’t have an implementation - under the hood it just calls the object on the
server side) and then call our method:

Figure 5.18: Calling the generated method

5.2.9 SockJS

SockJS12 is a library to ease our work with WebSocket. WebSocket itself is a pro-
tocol, so we need a wrapper around it.

Its usage is really simple. Just connect to the endpoint where Websocket is hosted
on the backend side:

Figure 5.19: Connect with SockJS

After that, we need to subscribe to the endpoint from where data is going to come.
Also, we need to provide a callback function which is called every time a new request
comes.

Figure 5.20: Subscribe with SockJS

12 https://github.com/sockjs

5.3. LAYERS 47

5.2.10 WebView

WebView13 is a technology which allows us to package a website into a mobile
application. It works on both iOS and Android and even Windows Phone. This means
that a Responsive website has to be designed which adjusts itself to various sizes and
devices.

The advantages of Webview are numerous:

• Can reuse code from the frontend code like login code, logout etc.
• No need to create separate applications for iOS and Android, can have a single

codebase which works fine on both systems

5.3 Layers

Layers correspond to packages in the project. The DO -> DTO and DTO ->
DO mapping is done by the ModelMapper library. Every Entity in the project has the
corresponding Controller which supports CRUD operations on the entity, a service and a
repository. Controllers return DTOs to the frontend instead of returning DOs.

Figure 5.21: Layers

5.4 Class diagram

Not every class is represented on these diagrams because there are so many classes
in the project.

13 https://developer.android.com/reference/android/webkit/WebView

48 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

5.4.1 Controllers

All the controllers extend a main CrudController class that supports CRUD op-
erations. Also, every controller uses the corresponding service e.g. CityController uses
CityService.

Figure 5.22: Controllers

For example the findAll() method of the CrudController is a GET API method,
meaning that an HTTP body doesn’t need to be sent. The a Request URL of this method
is the name of the entity. For example, for cities, it is \cities. When a controller needs
additional behaviour, it can override its parent’s methods.

Also, JSON objects which are received from the frontend are validated according to
the rules imposed on the DTO objects:

Figure 5.23: DTO validation in a controller

5.4. CLASS DIAGRAM 49

5.4.2 Models

Every model extends BaseModel which holds a primary key. Also, every Model has
its corresponding DTO class. When mapping models to DTOs, nested Model objects are
not being nested inside DTOs, they are flattened instead. This means that if Request has
User as a nested field, in the DTO, we’ll have only a String value: userEmail.

Figure 5.24: Models

5.4.3 Services

The common service class is CrudService supporting CRUD operations. Also, every
service uses the corresponding repository. A lot of times services need to use not just their
corresponding repository but other repositories as well. For example the UserRepository

is often used by several services because many entities contain user related information
such as the email address of the user. For example when a WorkedTask is saved, the user
who is attached to this worked task needs to be validated.

50 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

We can see the CrudService being in the center, all other services extend from it.

Figure 5.25: Services

5.4.4 Frontend components

As on the backend, I wanted to reuse as much code as possible on the frontend side,
so made three generic components: ModelForm which is responsible for opening a pop up
which adds new entities, ModelTable which shows all the entities in a table and supports
delete and edit operations and ModelTab which is their parent component.

5.5. DATABASE DESIGN 51

As previously stated, App is the highest level component, it is like a container,
because it can contain any of the lower level components in itself, and it can dynamically
change what it contains:

Figure 5.26: Frontend Components

Also, there are some other simple components which don’t make use of the generic
ModelTab, they are standalone components for simple use cases such as changing the
password, or viewing profile information:

Figure 5.27: Standalone Frontend Components

5.5 Database Design

For users, email, first name, last name are stored. token_start_date stores the
date from which the user’s token is valid. This means that if the user’s token is stolen,
it cannot be simply deactivated because tokens are not stored in the DB. So, instead, the
starting date is lifted, and all the issued tokens become invalid. Also, the UI uses the
token to extract the role of the User instead of calling the backend all the time. So, if
the role of the user is changed, the user’s token needs to be invalidated. In fact, this is
automatically done on the backend side. The users table is in a one to many relation

52 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

with the timecard and request tables because a single user can create many requests and
have many timecards but a request or timecard is linked to a single user.

Each user can have a single role. Roles can be: ROLE ADMIN, ROLE USER,
ROLE MODERATOR, ROLE PM for project managers, ROLE PAYROLL.

Figure 5.28: MySQL Database Design

The request table contains data about a business trip request such as details,
start_date, end_date, status. need_of_laptop, need_of_vpn etc. are boolean values
and store if the person requesting the business trip request needs these resources. The
request table is in a many-to-one relation with the transportation_mean and city tables
because a request can have a single city as destination and a single mean of transportation,

5.5. DATABASE DESIGN 53

but cities and transportation means are not limited to a single request. Many requests can
go to the same city etc.

Between the project and task we have a one-to-many relation, because a project
has many tasks, a task belongs to a single project.

Between the timcard and task we have a many-to-many relation, because a a
timecard can have many tasks in it and also a task can be present in many timecards. For
this, we have a join table named worked_task. worked_task also stores the duration of
the task (how much time the employee spent working on the task) and the date when the
employee was working on it.

It is important to note, that tasks are not a one-time thing in the project on which
only a single person is working and when it’s done, it’s done. Instead tasks have a contin-
uum meaning that a task can mean working on a submodule of a big application. In this
context the whole application is in a single project but different submodules have different
tasks.

Also, it is important to note, that taking vacation is also a task and it has its
corresponding project.

The database is in BCNF (Boyce-Codd Normal Form). It respects the first normal
form because all the data is atomic. It respects the second normal form because it has no
partial dependencies. A partial dependency means that a non-key column is not dependent
on the candidate key or not dependent on the whole candidate key if there is a composite
one. This is not the case with this design. For example, taking a look at the project table,
the description column is a non-prime attribute and id and title are both candidate
keys. But description depends on the whole of both of these keys, so this table is in
2NF. The other tables are as well. The database is also in 3NF because there isn’t any
transitive dependency. Transitive dependency means that two non-prime columns depend
on each other, like if the first name of the user would depend on the last name. This is not
the case in our database. And it is in BCNF because it has no functional dependencies of
type A -> B where A is not a superkey. Such dependencies would be present if we had
some prime-attribute which depends on a non-prime one, like if the title of the project
would depend on the description of the project. Of course, this is not the case. So we
concluded that our database is in fact a normalized database.

Chapter 6

Testing and Validation

Testing an application is really important. Not just to ensure that it works as
expected but also to prevent regression. Regression means that a new feature is added to
the application and a previous feature will break. This is where automated tests such as
unit testing, integration testing etc. come into play.

6.1 Manual testing

Not everything can be tested with automatic tools. Humans are good at observing
bugs which are not detected by tools. So I conducted a throughout manual testing. Some
scenarios which were manually tested were:

• Refresh the page suddenly in the middle of the interactive tutorial and see if
the system still rollbacks all the saved data during the tutorial.

• Try to access a page on the UI which is prohibited for the current role e.g
trying to access the Accept/Reject business trip requests page as a regular user.

• Refreshing the page after a successful login to see if the user reconnects to the
WebSocket stream and receives the notifications.

6.2 Unit testing

Unit testing means testing a single class or method etc. It is the most often used
testing method because of several reasons:

• They are quick to run. Several thousand unit tests can be run in under 10
seconds. This gives a quick feedback to the developer. Every time the user changes
something in the code, runs all the unit tests and sees if something is broken.

• They don’t need special circumstances to be able to run them. No need for
container, no need for database etc.

55

56 CHAPTER 6. TESTING AND VALIDATION

A sample test which assigns an empty name to the transformation mean and checks
if the validation passes:

Figure 6.1: Unit testing in Spring

6.3 Mocking

Not everything can be unit tested. Database interactions are hard to test. For these
tests, either mocking or integration tests can be used. Mocking means that the methods of
a class are not called as they are, instead they are mocked meaning that their functionality
is changed. The developer provides a new implementation of the method. For example a
database operation which would save an entity can be mocked so that it throws an SQL
exception.

Mocking can be also used with integration tests but it is usually used with unit
tests. The advantage of mocking is that we can unit test code which would be otherwise
impossible.

In this project, the mail service was mocked because it calls the API of a third
party. Mocking is the only possibility here:

Figure 6.2: Mocking the mail service

6.4 Integration testing

A lot of times, unit testing is not enough. You want to call the database to see if
everything behaves correctly. You want to call an API etc.

For this project, I created a base class called BaseControllerTest which uses
Spring’s MockMvc class to perform API calls which carry out CRUD operations on en-

6.4. INTEGRATION TESTING 57

tities. MockMvc allows us to call real APIs, it just mocks the main servlet of Spring, which
means that it doesn’t need a container to be able to run. These are still integration tests
but with a mocked application servlet.

An integration test which calls an API which returns the role with id 1 and checks
if the name of the role is ROLE ADMIN.

Figure 6.3: Spring integration test

The BaseControllerTest class contains generic methods like the findById method.

Figure 6.4: Spring’s MockMvc class

6.4.1 H2

For integration tests, I have used H21 in-memory database because it is faster than
a traditional disk based database. Differences are small between MySQL and H2 so what
works with H2, should also work with MySQL. Before starting the integration tests, a script
named data.sql is executed which populates the database with data. No need for manual
schema creation because Hibernate takes care of that with the spring.jpa.hibernate.ddl-
auto=create-drop option.

1 https://www.h2database.com

58 CHAPTER 6. TESTING AND VALIDATION

H2 was used for all the integration tests. Before starting the integration tests, an
in-memory database is created which is identical to the real MySQL database and this
database is populated with some dummy data contained in the data.sql file:

Figure 6.5: Populating H2 database with data

Then, the integration tests retrieve data from this dummy data instead of the real
database. For example creating a token for a user then checking if the token contains the
correct email address and role:

Figure 6.6: Testing Token Generation

Chapter 7

User’s manual

7.1 Application installation

Java 11 needs to be installed. Maven version 3+ needs to be installed. Go into the
main backend directory (hr) and then run mvn clean install. This will compile all the
.proto files and all the code.

You have to have MySQL version 5, MongoDB 4.0.4 and RabbitMQ 3 installed.
If you have Docker1 installed, you can simply start a MongoDB and RabbitMQ instance
with the following commands:

mongodb: docker run -d -p 27017-27019:27017-27019 --name mongodb

mongo:4.0.4

rabbitmq: docker run -d -p 5672:5672 -p 15672:15672 --name my-rab rabbitmq:3-

management

After this, go to the folder service and run
mvnw spring-boot:run -Drun.arguments="mongodb-update".
After that go to the folder metrics and run
mvnw spring-boot:run -Drun.arguments="mongodb-update".
After that go to the folder notification and run
mvnw spring-boot:run.

-Drun.arguments="mongodb-update" has to be appended only when the applica-
tion is first run.

If you are getting an error related to model not being found, you may need to
manually copy it to Maven’s .m2 folder.

The server is started, now let’s start the frontend. You need to have Node installed
and the npm package manager. Go into the frontend directory and run npm install first
to install all the dependencies needed, then run npm run serve. The frontend should be

1 https://www.docker.com

59

60 CHAPTER 7. USER’S MANUAL

up and running and calling code from the backend. If the frontend is made available on
the employees’ machines, then the API_URL variable needs to be changed to the server’s
ip address in the file src\api\index.js. The same modification needs to be done in the
smartphone project in the main.js file.

The files for the smartphone app can either be packaged in an Android/iOS app
or directly served from the server with the help of Node (the same way the frontend is
served). In this case the application is accessed just as a website and is not installed on
the employees’ phones. The smartphone app must connect to the company’s network if it
wants to access the server.

7.2 Application utilization - General information

The user is directed to the home page after a successful login. There is a dropdown
called Action on the top of the page where available actions can be selected by the user.

Figure 7.1: Action dropdown

Every table in the application which shows data can be sorted by any column by
clicking on one of the headers. Sorting can be done in both ascending or descending order
by clicking twice on the header.

7.3 Application utilization - Regular User level

7.3.1 Authentication

When the user first accesses the application, he has to provide an email and password
to be able to log in. The remember me option can be selected if the user wants to be logged
in for 30 consecutive days instead of only 5 hours.

7.3. APPLICATION UTILIZATION - REGULAR USER LEVEL 61

Figure 7.2: Log in page

7.3.2 Filling timecards

Calendar action needs to be selected from the Action dropdown. A timecard
appears. To log hours, click on one of the days or select an interval by selecting multiple
days and a pop up will appear.

Figure 7.3: Timecard - log hours

After selecting the project and task, the new logged hours will be placed in the
calendar:

62 CHAPTER 7. USER’S MANUAL

Figure 7.4: Timecard - after logging

7.3.3 Submitting business trip requests

My business Trip Requests action needs to be selected from the Action drop-
down. After clicking on the Add new Request button, a pop up appears which needs
to be completed with valid data and hit SAVE.

Figure 7.5: Sending a business trip request

Also, on this page, past requests can be deleted.

7.3. APPLICATION UTILIZATION - REGULAR USER LEVEL 63

7.3.4 Going through the Onboarding process

After opening the smartphone application, you have to log in. After that, you will be
presented with the following screen and you can press one of the two buttons corresponding
to the tutorial you’d like to view.

Figure 7.6: Home screen - smartphone app

But you need to have the Desktop app open the whole time, otherwise it won’t
work. When pressing one of these buttons, the Desktop App becomes alive and starts
showing the interactive tutorial.

7.3.5 Change Password

Change Password action needs to be selected from the Profile dropdown on the
right hand side.

64 CHAPTER 7. USER’S MANUAL

Figure 7.7: Profile dropdown

You will see a page where the current password needs to be introduced, and the
new one twice.

Figure 7.8: Change Password page

7.3.6 Changing Public Profile

My Profile action needs to be selected from the Profile dropdown.

7.4. APPLICATION UTILIZATION - MODERATOR LEVEL 65

Figure 7.9: My Profile page

7.4 Application utilization - Moderator level

7.4.1 Approving requests

Accept/Deny Requests action needs to be selected from the Action dropdown.
Two action buttons are present next to each row for request approval/deletion.

Figure 7.10: Accept/Deny Requests

7.4.2 View Metrics

They appear on the Moderator’s Home Page. In total there are seven charts with
the following metrics: number of business trip requests based on cities, countries, duration,
transportation mean, status, laptop and year/month.

66 CHAPTER 7. USER’S MANUAL

The company can infer valuable information from these charts. For example, the next
chart which is based on the number of business trip requests for a given month and year
can show spikes in some months when too many people go to a business trip request like
in September 2019. These spikes can be analyzed and deduced what went wrong. When
a spike happens, too many people leave the company at once (even if just for a sort dura-
tion) which means that less people remain to solve internal activities which can be a huge
burden on the company. This shouldn’t happen.

Figure 7.11: Metrics based on year and month

7.5 Application utilization - Administrator level

7.5.1 CRUD operations on basic entities

Modify XYZ action needs to be selected from the Action dropdown where XYZ
can be cities, countries, transportation, projects. There is an add new XYZ button
on the top of the page. After opening it, a pop up appears and after completing it, a new
XYZ will be saved and added. Also, there are two buttons for editing and deletion.

7.6. APPLICATION UTILIZATION - PROJECT MANAGER LEVEL 67

Figure 7.12: Creating and updating projects

7.6 Application utilization - Project Manager level

7.6.1 Approving Timecards

Timecards action needs to be selected from the Action dropdown.

Figure 7.13: Approve/Reject Timecard

Three buttons are available: View/Approve/Reject Timecard. When View Time-
card is clicked, a pop up appears which shows all the information related to the corre-
sponding timecard.

68 CHAPTER 7. USER’S MANUAL

7.7 Application utilization - Payroll level

7.7.1 Exporting Timecards as PDF

Accepted Timecards action needs to be selected from the Action dropdown. Two
buttons are available next to each timecard:

Figure 7.14: Exporting Timecard as PDF

The first button shows a single timecard in a calendar, the second button downloads
the PDF file with the all the information related to that timecard. Also there is a button
with the text Download all from previous month which downloads all the timecards
from the previous month in different PDF files.

Chapter 8

Conclusions

8.1 Results

We managed to build an easy to use HR system capable to keep track of employee’s
work, let employees send business trip requests which are stored in the system and later
on a person responsible for this can check metrics related to all these requests and make
some conclusions like too many people ask for a laptop when they go on a business trip
or too many people want to go with a car instead of train. Also, this application is an
improvement over other similar HR systems because it doesn’t have a confusing UI, it has
an interactive onboarding tutorial which helps new employees become familiar with the
system and also the UI is reactive which means the pages load quickly and everything is
fast and responsive.

8.2 Evaluation

It was hard to find an objective way to evaluate the project. What I did was
to ask two persons (who haven’t used such systems in their life) to fill their timecards
without telling them how to do that. I measured the time taken to finish their task.
Every material on the internet and also the documentation from the previous chapter was
available to them. The learning time was also calculated into the final time.

Table 8.1: Measured time to complete task

System User1 User2

Own system 200s 140s

Sentrifugo [6] 600s 500s

Orange HRM [7] 350s 420s

69

70 CHAPTER 8. CONCLUSIONS

It can be seen that this system is more efficient when it comes to learning how to use
it. Sentrifugo [6] didn’t have a very intuitive UI, that’s why it performed the worst. Both
of these two open source systems had some documentation on the internet, but it wasn’t
as clear and intuitive as the documentation and interactive tutorial from this system.

8.3 Future developments

One area to improve the Interactive tutorial is in audio content. Currently the
interactive tutorial only provides a visual part but not an audio one. The component could
provide a voice which explains every step of the tutorial. In this way, not just one, but two
sensory organs are stimulated, namely the eyes and ears which provides better learning
capabilities for the end user.

Some other features which could be added:

• Stop and Try feature. The user would have the possibility to stop the
tutorial at any point, go back with some steps, or go forward, or simply try to
continue alone without the help of the tutorial.

• Disable Audio feature. The user has the possibility to disable the sound of
the tutorial.

• Enlarge/Minimize cursor effect feature. The user can make the cursor
which shows the interactive tutorial bigger or smaller depending on his preferences.

• Notification feature. The user gets a notification if the tutorial was updated.
This usually means that the system itself was updated and the user won’t be lost
when using the new system.

Further improvements:

• Provide metrics not just for business trip requests but for timecards as well
• Provide more customizable metrics such as being able to select some fields,

select some possible values for them or select a range of possible values and see all the
requests complying to those values: e.g. selecting all the business trip requests which
take between 4 and 7 days and the employee requested a laptop and the request is
open

• The UI is not tested currently with automated tests, only manual testing
is done. This can be improved by testing it with some automated tools such as
Selenium.

Bibliography

[1] A. S. S. Navaz, S. F. A S, C. Prabhadevi, V. Sangeetha, and S. Gopalakrishnan,
“Human Resource Management System,” International Organization of Scientific Re-
search - Journal of Computer Engineering, vol. 8, pp. 62–71, (Impact Factor : 1.686),
09 2013.

[2] G. Dessler, N. D. Cole, and J. Bulmash, Human resources management in Canada,
10th ed. Toronto : Pearson Prentice Hall, 2008, ch. 3.

[3] Zubaidah Abdulhakeem Majeed and Sibel Tariyan Özyern, “Implementation of the
human resources information systems and comparative study of various platforms,”
Universal Journal of Engineering Science, pp. 66 – 78, 2016.

[4] R. Wayne Mondy and Robert M. Noe, Human Resource Management. Pearson, 2005.

[5] Tannenbaum and Scott I., “Human resource information systems: User group impli-
cations,” Journal of Systems management, vol. 41, no. 1, p. 27, 1990.

[6] Sentrifugo, “Free and powerful human resource management system,” URL: http:
//www.sentrifugo.com.

[7] Orange HRM, “An open source human resource management system that covers per-
sonnel information management, employee self service, leave, time tracking etc.”URL:
https://www.orangehrm.com.

[8] HRManagersoftware, “Human resource management software, hr system designed for
small and medium sized businesses,” http://hrmanagersoftware.com/.

[9] Oracle, “Oracle human resources management system,” https://www.oracle.com/
assets/018835.pdf.

[10] M. Silva and C. Lima, The Role of Information Systems in Human Resource Man-
agement. IntechOpen, 10 2018, ch. 7.

[11] Masum, Abdul Kadar Muhammad and Beh, Loo-See and Azad, Md Abul Kalam
and Hoque, Kazi, “Intelligent human resource information system (i-hris): a holistic
decision support framework for hr excellence.” Int. Arab J. Inf. Technol., vol. 15, no. 1,
pp. 121–130, 2018.

71

http://www.sentrifugo.com
http://www.sentrifugo.com
https://www.orangehrm.com
http://hrmanagersoftware.com/
https://www.oracle.com/assets/018835.pdf
https://www.oracle.com/assets/018835.pdf

72 BIBLIOGRAPHY

[12] UNC CHARLOTTE, HR department, “New employee onboarding process,” https:
//hr.uncc.edu/sites/hr.uncc.edu/files/media/documents/onboarding ppt.pdf.

[13] Kronos, “New hire momentum: Driving the onboarding experi-
ence,” https://interactive.blr.com/Global/FileLib/HRDA Campaigns/
Kronos-New-Hire-Momentum-Onboarding FINAL.PDF.

[14] Cake HR, “Award-winning hr management software,” URL: https://cake.hr.

[15] BambooHR, “Cloud-based, intuitive, affordable HR system,” URL: https://www.
bamboohr.com.

[16] Zoho, “Suite of software systems to run an entire business on,” URL: https://www.
zoho.com.

[17] Vaadata, “JWT tokens and security – working principles and use cases,” https://www.
vaadata.com/blog/jwt-tokens-and-security-working-principles-and-use-cases.

[18] A. Alinone, “From data push to websockets,” https://lightstreamer.com/share/docs/
Lightstreamer presentation.pdf.

https://hr.uncc.edu/sites/hr.uncc.edu/files/media/documents/onboarding_ppt.pdf
https://hr.uncc.edu/sites/hr.uncc.edu/files/media/documents/onboarding_ppt.pdf
https://interactive.blr.com/Global/FileLib/HRDA_Campaigns/Kronos-New-Hire-Momentum-Onboarding_FINAL.PDF
https://interactive.blr.com/Global/FileLib/HRDA_Campaigns/Kronos-New-Hire-Momentum-Onboarding_FINAL.PDF
https://cake.hr
https://www.bamboohr.com
https://www.bamboohr.com
https://www.zoho.com
https://www.zoho.com
https://www.vaadata.com/blog/jwt-tokens-and-security-working-principles-and-use-cases
https://www.vaadata.com/blog/jwt-tokens-and-security-working-principles-and-use-cases
https://lightstreamer.com/share/docs/Lightstreamer_presentation.pdf
https://lightstreamer.com/share/docs/Lightstreamer_presentation.pdf

Appendix A

Glossary

Table A.1: Glossary

Term Definition

Ajax Asynchronous JavaScript and XML - technology which is used to send
HTTP requests asynchronously

TCP Transmission Control protocol, layer 4 protocol, used for reliable packet
transfer

PHP Widely used scripting language of the web

DOM Document Object Model - tree-like representation of a web UI interface

Maven Java package management and build automation tool

POJO Plain Old Java Object - denotes a Java object which contains only
fields and basic getters and setters

SPA Single Page Application - type of Web User Interface where there is a
single page with many components, and these components are only
rendered when needed

Hashing Generating a value from text using a formula, used for encryption

Local storage Area of a modern browser capable of storing key-value pairs

IDL Interface description language, language used to describe a software
interface

ORM Object Relational Mapper - tool used to map object oriented classes
onto database tables

DO Data Object - object oriented object which maps to a database table

DTO Data Transfer object - object which is an external representation of a
DO object, it is returned to the client

73

74 APPENDIX A. GLOSSARY

Term Definition

CRUD Create, Read, Update, Delete operations on entities

Backend Part of the application running on the server, not visible to the end user

Frontend Part of the application running on the client’s machine

HTTP Hypertext Transfer Protocol - Application Layer Protocol used for high
level data communication between applications

API Application Programming Interface - it is usually loosely used, means
something which has an interface and specification

Appendix B

List of Figures

3.1 Onboarding new Employees from [14] . 7
3.2 Onboarding Experience from [15] . 8
3.3 Token based Authentication, from [17] . 11
3.4 HTTP 1.1 from [18] . 11
3.5 Short polling from [18] . 12
3.6 Long polling from [18] . 13
3.7 WebSocket [18] . 14

4.1 Client-Server Architecture . 15
4.2 Conceptual Architecture of the Interactive Onboarding Component 16
4.3 Use Case Diagram for common use cases 20
4.4 Authentication Related Use Case Diagram 21
4.5 CRUD Related Use Case Diagram . 21
4.6 Use Case Diagram of Log In Flow . 22
4.7 Use Case Diagram of Log Out Flow . 23
4.8 Use Case Diagram of Change Account Info Flow 24
4.9 Use Case Diagram of Changing Password Flow 25
4.10 Use Case Diagram of Sending a B. T. Request Flow 26
4.11 Use Case Diagram of Accepting a B. T. Request Flow 27
4.12 Use Case Diagram of Viewing Metrics Flow 28
4.13 Use Case Diagram of Filling a Timecard Flow 29
4.14 Use Case Diagram of Accepting a Timecard Flow 30

75

76 LIST OF FIGURES

4.15 Use Case Diagram of Exporting a timecard as PDF Flow 31
4.16 Use Case Diagram of Viewing an Interactive Tutorial Flow 32
4.17 System Sequence Diagram of Viewing an Interactive Tutorial Flow 33

5.1 System architecture . 35
5.2 Caption for LOF . 36
5.3 Maven parent pom.xml . 37
5.4 Maven’s pom.xml in the parent module . 38
5.5 The entry point of the Spring Boot application 39
5.6 Vue.js template . 39
5.7 Parent Vue.js component . 40
5.8 TransportationMean entity . 40
5.9 BaseModel Hibernate parent entity . 40
5.10 Caption for LOF . 41
5.11 JwtFilter class . 42
5.12 MongoDB ”schema” . 43
5.13 RabbitMQ listener . 44
5.14 Sending a RabbitMQ message . 44
5.15 Our .proto file used for login . 45
5.16 Generated Java Class . 45
5.17 Implementing LoginService . 46
5.18 Calling the generated method . 46
5.19 Connect with SockJS . 46
5.20 Subscribe with SockJS . 46
5.21 Layers . 47
5.22 Controllers . 48
5.23 DTO validation in a controller . 48
5.24 Models . 49
5.25 Services . 50
5.26 Frontend Components . 51
5.27 Standalone Frontend Components . 51
5.28 MySQL Database Design . 52

6.1 Unit testing in Spring . 56
6.2 Mocking the mail service . 56
6.3 Spring integration test . 57
6.4 Spring’s MockMvc class . 57
6.5 Populating H2 database with data . 58
6.6 Testing Token Generation . 58

7.1 Action dropdown . 60
7.2 Log in page . 61
7.3 Timecard - log hours . 61

LIST OF FIGURES 77

7.4 Timecard - after logging . 62
7.5 Sending a business trip request . 62
7.6 Home screen - smartphone app . 63
7.7 Profile dropdown . 64
7.8 Change Password page . 64
7.9 My Profile page . 65
7.10 Accept/Deny Requests . 65
7.11 Metrics based on year and month . 66
7.12 Creating and updating projects . 67
7.13 Approve/Reject Timecard . 67
7.14 Exporting Timecard as PDF . 68

Appendix C

List of Tables

3.1 Comparison between systems taking into account their components 8
3.2 Comparison between systems taking into account their components 9

4.1 Authentication related FR . 17
4.2 CRUD based FR . 18
4.3 Business Trip Request related FR . 18
4.4 Timecard related FR . 18
4.5 Interactive tutorial related FR . 19

8.1 Measured time to complete task . 69

A.1 Glossary . 73

79

	Chapter Introduction - Project Context
	Project context
	Motivation
	Project content

	Chapter Project Objectives and Specifications
	Main Objectives
	Secondary Objectives
	Necessary Resources

	Chapter Bibliographic research
	HR Management Software
	Common aspects
	Onboarding Experience
	Comparison to other alternatives

	Security in applications
	Push notifications
	Conclusions

	Chapter Analysis and Theoretical Foundation
	Client Server architecture - Conceptual Architecture
	Onboarding Component - Conceptual Architecture
	Development platform
	Functional requirements
	Non-functional requirements
	Use Cases of the system
	Logging in the system
	Log out from the system
	Change Account information
	Change password
	Send Business Trip Request
	Approving Business Trip Request
	View Business Trip Request Metrics
	Fill Timecard
	Approving Timecards
	Export Timecard as PDF
	View interactive tutorial

	Chapter Detailed Design and Implementation
	System Architecture
	Technologies used
	Spring Boot
	Vue.js
	Hibernate ORM
	JWT
	MySQL
	MongoDB
	RabbitMQ
	gRPC
	SockJS
	WebView

	Layers
	Class diagram
	Controllers
	Models
	Services
	Frontend components

	Database Design

	Chapter Testing and Validation
	Manual testing
	Unit testing
	Mocking
	Integration testing
	H2

	Chapter User's manual
	Application installation
	Application utilization - General information
	Application utilization - Regular User level
	Authentication
	Filling timecards
	Submitting business trip requests
	Going through the Onboarding process
	Change Password
	Changing Public Profile

	Application utilization - Moderator level
	Approving requests
	View Metrics

	Application utilization - Administrator level
	CRUD operations on basic entities

	Application utilization - Project Manager level
	Approving Timecards

	Application utilization - Payroll level
	Exporting Timecards as PDF

	Chapter Conclusions
	Results
	Evaluation
	Future developments

	Bibliography
	Appendix Glossary
	Appendix
	List of Figures
	Appendix
	List of Tables

