
Programming Techniques
Revision

Technical University of Cluj-Napoca, Romania

Department of Computer Science

DSRL – Distributed Systems Research Laboratory 2

Agenda

• Object Oriented Programming Basics

• UML Basics

• Polynomials

2

DSRL – Distributed Systems Research Laboratory 3

Object Oriented Programming Basics
OOP Principles

• Abstraction

• Identify the common features and behavior of a set of objects and represent

them in a model (i.e. class)

• Encapsulation

• Group the features and behaviors in an abstract data type and define access

levels for an object’s data

• Inheritance

• Define and create specialized classes from already defined general classes –

the specialized classes can share and extend their behavior without redefining

the same behavior

• Polymorphism

• The objects from a class hierarchy can use methods with the same name but

with different behavior

3

DSRL – Distributed Systems Research Laboratory 4

Object Oriented Programming Basics
Classes

• Definition

• Reference types defined by the user

• Access modifiers

• Public, package private (no modifier specified)

• Class variables (i.e. fields/attributes/instance variables)

• Define the state of an object

• Access modifiers: public, protected, package-private (no modifier specified),

private

• Class Methods

• Define the behavior exposed by the class

• Constructor – initialize new objects

• Access modifiers: public, protected, package-private (no modifier specified),

private

4

DSRL – Distributed Systems Research Laboratory 5

Object Oriented Programming Basics
Objects

• Definition

• Instantiation of a class

• Declaration, Instantiation and Initialization

Point originOne = new Point(23, 94);

• The “this” keyword

• Within an instance method or a constructor, it is a reference to the current

object - the object whose method or constructor is being called

5

Declaration Instantiation Initialization

DSRL – Distributed Systems Research Laboratory 6

Object Oriented Programming Basics
Interfaces

• Definition

• Reference type, similar to a class, that can contain only constants, method

signatures, default methods, static methods, and nested types

• Method bodies exist only for

• Default methods (annotated with default keyword) and

• Static methods - method that is associated with the class in which it is defined rather than

with any object

• Interfaces cannot be instantiated - they can only be implemented by classes or

extended by other interfaces.

• A class that implements an interface must implement all the

methods declared in the interface

• An interface name can be used anywhere a type can be used

6

DSRL – Distributed Systems Research Laboratory 7

Object Oriented Programming Basics
Abstract Classes

• Definition

• A class that is declared abstract - it may or may not include abstract methods

• Abstract method - method that is declared without an implementation (without braces, and

followed by a semicolon)

• Abstract classes cannot be instantiated, but they can be sub-classed

• When an abstract class is sub-classed, the subclass usually

provides implementations for all of the abstract methods in its

parent class

• If it does not, then the subclass must also be declared abstract

7

DSRL – Distributed Systems Research Laboratory 8

Object Oriented Programming Basics
Inheritance

• Definition

• Process by which a class (subclass/derived class/extended class/child

class) is derived from another class (superclass/base class/parent class),

thus reusing the fields and methods of the superclass without having to write

them again in the subclass.

8

DSRL – Distributed Systems Research Laboratory 9

UML Basics
Class Diagrams (I)

• UML Class Notation

9

DSRL – Distributed Systems Research Laboratory 10

UML Basics
Class Diagrams (II)

• UML Class Relationships

• Association - objects of one thing are connected to objects of another thing

• An association can have a name used to describe the nature of the relationship

• When a class participates in an association, it has a specific role that it plays in that

relationship

10

DSRL – Distributed Systems Research Laboratory 11

UML Basics
Class Diagrams (III)

• UML Class Relationships

• Association – special cases

Aggregation

Composition

11

DSRL – Distributed Systems Research Laboratory 12

UML Basics
Class Diagrams (IV)

• UML Class Relationships

• Generalization - established between a general kind of thing (superclass) and

a more specific kind of thing (subclass) => the child is substitutable for a

declaration of the parent

12

DSRL – Distributed Systems Research Laboratory 13

UML Basics
Class Diagrams (V)

• UML Class Relationships

• Dependency - shows that one class uses operations from another class or it

uses variables or arguments typed by the other class (if the used class

changes, the operation of the other class may be affected)

13

DSRL – Distributed Systems Research Laboratory 14

UML Basics
Class Diagrams (VI)

• UML Class Relationships

• Realization - semantic relationship between classifiers (e.g classes, interfaces,

collaborations use cases) in which one classifier specifies a contract that

another classifier guarantees to carry out

14

DSRL – Distributed Systems Research Laboratory 15

UML Basics
Use Case Diagrams (I)

• Use case - description of a set of sequences of actions, including

variants that a system performs to yield an observable result of

value to an actor

• Actor - set of roles that users of use cases play when interacting

with these use cases

• Typically, an actor represents a role that a human or hardware device or even

another system plays with a system

15

Use case: <use case goal>

Primary actor: <a role name for the actor who

initiates the use case>

Main success scenario: <the steps of the main

success scenario from trigger to goal delivery>

Extensions: <alternate scenarios of success or

failure>

DSRL – Distributed Systems Research Laboratory 16

UML Basics
Use Case Diagrams (II)

• Use Case: Buy a product

• Primary Actor: Customer

• Main Success Scenario:

• Customer browses catalogue and selects item to buy.

• Customer goes to the check out

• Customer fills in shipping information

• System presents full pricing information

• Customer fills in credit card information

• System authorizes purchase

• System confirms sale and sends confirming email to customer

• Extensions:

• 6a: System fails to authorize credit purchases -> Customer may reenter credit

card information or may cancel

16

(From

http://www.cems.uwe.ac.uk/~jsa/UMLJavaShortCourse09/CGOutput/Unit1/unit1%28

0809%29/page_23.htm)

DSRL – Distributed Systems Research Laboratory 17

Polynomials
Definition

• c1, c2,…, cn – coefficients

• n – polynomial degree

• X – variable (indeterminate)

17

01

2

2

1

1 *...***)(cXcXcXcXcXP n

n

n

n

n

n  







DSRL – Distributed Systems Research Laboratory 18

Polynomials
Arithmetic of Polynomials (I)

18

Addition

Subtraction

DSRL – Distributed Systems Research Laboratory 19

Polynomials
Arithmetic of Polynomials (II)

19

Multiplication Division

DSRL – Distributed Systems Research Laboratory 20

Polynomials
Arithmetic of Polynomials (III)

20

Value of a polynomial

DSRL – Distributed Systems Research Laboratory 21

Assignment 1

• “Propose, design and implement a system for polynomial

processing. Consider the polynomials of one variable and

integer coefficients.”

• Tasks:

• 1. Create the conceptual class diagram for assignment 1.

• 2. Create a graphical user interface for assignment 1 with mockup methods.

21

DSRL – Distributed Systems Research Laboratory 22

Tasks

22

DSRL – Distributed Systems Research Laboratory 23

• https://cnamd09.wikispaces.com/file/view/0914

+Polinoame.pdf

23

Bibliography

