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» Electric circuit theory and electromagnetic field theory are the
two fundamental theories upon which all branches of electrical

engineering are built.

The basic electric circuit theory course
— an excellent starting point for a
beginning student In  electrical

engineering education ©

» Many branches of electrical engineering, such as energy
production, electric machines, control, electronics, communications

and instrumentation, are based on electric circuit theory.

©



The objectives of the Course

1. To present systematically the basic theory of the electric circuits
2. To introduce electrical components and the fundamental laws that
govern the behavior of an electrical circuit in case of:
- DC and AC circuits;
- two-ports networks;
- steady-state periodic non-sinusoidal regime;
- transient regime of liniar circuits; 4

- three-phase circuits;
- transmission lines.
3. To practice specific methods of analysis. 0

» On successful completion of this course, students will be able to:
analyze the operation of linear circuits in response to DC, sinusoidal,
non-sinusoidal and transient waveforms.




Teaching details:

= 14 |ectures Assessment Details:
(2 hours/lecture) Exam, 2 hours, 100%

= 14 seminars (ANSWER TO MULTIPLE CHOICE
(2 hours/seminar) TEST + SOLVE PROBLEMS)

Number of ECTS credit points: 4
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Course content:

Chapter 1 - DC CIRCUITS (recap from semester I)

Chapter 2 — AC CIRCUITS

Chapter 3 - THREE PHASE CIRCUITS

Chapter 4 — TWO PORT NETWORKS

Chapter 5 — STEADY-STATE PERIODIC NON-SINUSOIDAL REGIME

Chapter 6 — TRANSIENT REGIME



CHAPTER 1: DC Circuits

. Basic concepts




1.1 INTRODUCTION

An electrical circuit is an interconnection of electrical elements

A simple electrical circuit Electret

Antenna

microphone

Electric circuit of a radio transmitter

Electric circuits are used in numerous electrical systems to accomplish different tasks.
Our objectives in this course is not the study of various uses and applications of the circuits.

Q

Rather, our major concern is the analysis of the circuits (study of the behavior of
the circuit):

How does it respond to a given input

How do the interconnected elements and devices in the circuit interact etc.

©



» International System of Units (SI) adopted
by the General Conference on Weights and
Measures in 1960

Six basic S| units and one derived unit relevant to this text.

Quantity Basic unit Symbol
Length meter m
Mass kilogram kg
Time second S
Electric current ampere A
Thermodynamic temperature kelvin K
Luminous intensity candela cd
Charge coulomb C

1.2 SYSTEM OF UNITS

The SI prefixes.
Multiplier Prefix

10'8 exa
1012 peta
10" tera
10° giga
10° mega
10° kilo
107 hecto
10 deka
10! deci
102 centi
107 milli
10-° micro
107 nano
1012 pico
10— femto
1018 atto
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1.3 CHARGE AND CURRENT

« The most basic quantity in an electric circuit is the electric charge.

Charge is an electrical property of the atomic particles of which matter

consists, measured in coulombs (C)

The following points should be noted about electric charge:

1. The coulomb is a large unit for charges. In 1 C of charge, there
are 1/(1.602 X< 1{]_'9) — 6.24 % 10" electrons. Thus realistic or
laboratory values of charges are on the order of pC, nC, or uC.'

2. According to experimental observations, the only charges that
occur in nature are integral multiples of the electronic charge
e=—1602 x 107 "7C.

3. The law of conservation of charge states that charge can neither

be created nor destroyed, only transferred. Thus the algebraic sum

of the electric charges in a system does not change.




1.3 CHARGE AND CURRENT

« The motion of charges creates electric current

1 O) =) |
_.__'I_) _-_,-":"'-,{J_-_',-':'H )7
I v H H
\ - It is conventional to take the current flow as the
! movement of positive charges. That is, opposite to the
+10 - flow of negative charges.
Battery (This convention was introduced by Benjamin Franklin (1706-1790), the

American scientist and inventor)
Electric current due to flow of

electronic charge in conductor - Because the current in metallic conductors is due to

negatively charged electrons, we will follow the universally
accepted convention that current is the net flow of positive
charges.

[ Electric current is the time rate of change of charge, measured in amperes (A) ]

. dq ‘ J
i=— = | idt
dt ¢
to
] ampere = 1 coulomb/second The Charge transferred between time to and t

©



A direct current (DC) is
a current that remains
constant with time.

T &

0

SA/ —SA/

(a) (b)
a) Positive current flow b) negative current flow

1.3 CHARGE AND CURRENT

An alternating current (AC) is a
current that varies sinusoidally with
time.

0 \/ ‘i

- The direction of current flow is
conventionally taken as the direction of
positive charge movement.

©



1.3 CHARGE AND CURRENT

Historical

Andre-Marie Ampere (1775-1836), a French mathematician and
physicist, laid the foundation of electrodynamics. He defined the elec-
tric current and developed a way to measure it in the 1820s.

Born in Lyons, France, Ampere at age 12 mastered Latin in a few
weeks, as he was intensely interested in mathematics and many of the
best mathematical works were in Latin. He was a brilliant scientist and
a prolific wnter. He formulated the laws of electromagnetics. He in-
vented the electromagnet and the ammeter. The unit of electric current,
the ampere, was named after him.

The Bumdy Library Collection
at The Huntington Library,
San Marino, California.




1.3 CHARGE AND CURRENT

EXAMPLE 1.1.

How much charge 1s represented by 4,600 electrons?

Solution:
Each electron has —1.602 % 10~" C. Hence 4.600 electrons will have

—1.602 x 10" C/electron ¥ 4,600 electrons = —7.369 x 107'°C

PRACTICE PROBLEM 1.1.

Calculate the amount of charge represented by six million protons.

Answer: +9.612 x 1072 C.




1.3 CHARGE AND CURRENT

EXAMPLE 1.2.

The total charge entering a terminal is given by g = 3¢ sin 47 mC.
Calculate the current at t = (.5 s.

Solution:

d
P = = = Efﬁj sin 4 f) mC/s = (Ssmdwt + 207wt cos dwf) mA

At t = 0.5,

i=53sm2m + 10mwcos2m =0+ 107w = 31.42 mA

PRACTICE PROBLEM 1.2.

If in Example 1.2, g = (10 — 10e™ %) mC, find the current at = 1.0 s.

Answer: 2.707 mA.




EXAMPLE 1.3.

1.3 CHARGE AND CURRENT

Determine the total charge entering a terminal between ¢ = 1 s and

t = 2 s if the current passing the terminal is i = (3t* — 1) A.

Solution:

wd

2 2
Q=j' idt = J (3t — Hdt
=1 1
2

1
—{E—E}—(I —E)—S.fl{:

1

PRACTICE PROBLEM 1.3.

The current flowing through an element is

{4;;. 0<r1<1
417A, 1> 1

Calculate the charge entering the element from t = O to r = 2 s.

Answer: 13.333 C.




1.4 VOLTAGE

— b
_i_i) =0 «;3)7 - To move the electron in a conductor in a particular
V=l = direction requires some work or energy transfer: an
! external electromotive force (emf) also known as
+ 1= voltage or potential difference.
Battery

\oltage (or potential difference) is the energy required to move a unit charge
through an element, measured in volts (V)

O

+
U.. = dw w is energy in joules (J)
ab dg - Qischargein coulombs (C)
Uﬂ,b . r
| volt = 1 joule/coulomb = 1 newton-meter/coulomb
o h Uap = —Upq

Polarity of voltage uab



1.4 VOLTAGE

+ — - . .
Two equivalent representations of the
same voltage v,,: (a) Point a is 9 V above
RY —9V point b; (b) point b is —9 V above point a.
On the left: the voltage increases by 9V from the — sign to the + sign
- b fm b On the right: the voltage decreases by 9V from the — sign t the + sign

A DC voltage: voltage that remains constant with time (is represented by U).
Is commonly produced by a battery.

An AC voltage: voltage that varies sinusoidally with time (is represented by u).
Is commonly produced by an electric generator.

©




1.4 VOLTAGE

The Burndy Library Collection
at The Huntington Library,
San Marino, California.

Historical

Alessandro Antonio Volta (1745-1827), an Italian physicist,
invented the electric battery—which provided the first continuous flow
of electricity—and the capacitor.

Born into a noble family in Como, Italy, Volta was performing
electrical experiments at age 18. His invention of the battery in 1796
revolutionized the use of electricity. The publication of his work in
1800 marked the beginning of electric circuit theory. Volta received
many honors during his lifetime. The unit of voltage or potential dif-
ference, the volt, was named in his honor.




1.4 VOLTAGE

v" Current and voltage are the two basic variables in electric circuits.

v The common term signal is used for an electric quantity such as a current or a
voltage (or even electromagnetic wave) when it is used for conveying information.

v' Engineers prefer to call such variables signals rather than mathematical functions
of time becuase of their importance in communications and other disciplines.

°.° Electric current is always through an element and
4 electric voltage is always across the element
° between two points.




1.5 POWER AND ENERGY

Power is the time rate of expending or absorbing energy, measured in

watts (W)
dw ~dw dw dq .
p=—r or p_dt_dq dt—ul ) p=u-i

p is power in watts (W)
w is energy in joules (J)
t is time in seconds (s)

JA 3A
i —
o o
+ —
4V J 4V D
- +
o ol
(a) (b)
Two cases of an element with a supplying
powerof 12W:(a) p= -4 X3 =
—12W,(b)p= -4 X3 =—12W.

i

The power p is a time-varying quantity called the
instantaneous power.

If p has a + sign, power is being delivered to or
absorbed by the element.

If p has a - sign, power is being supplied by the
element.

0
+
Reference
polarities for
u )
power using the
passive sign
—  convention
p=—u-i

+Power absorbed = —Power supplied @



1.5 POWER AND ENERGY

=0 Law of conservation of energy: the algebraic sum of
power in a circuit, at any instant of time, must be zero.

t t
w = p-dt=[ui-dt
t

o 0

Energy is the capacity to do work, measured in joules (J).

The electric power utility companies measure
energy in watts-hours (Wh), where:

I Wh = 3,600




1.5 POWER AND ENERGY

EXAMPLE 1.4.

An energy source forces a constant current of 2 A for 10 s to flow
through a light bulb. If 2.3 kJ is given off in the form of light and heat
energy, calculate the voltage drop across the bulb.

Solution:
The total charge is

Ag=iAr=2X10=20C
The voltage drop is

_Aw 23x10° 15y
“TAqT 20

PRACTICE PROBLEM 1.4.

To move charge ¢ from point a to point b requires —30 J. Find the
voltage dropupif: (a) g = 6 C, (b) g = —3 C.

Answer: (a) =5 V, (b) 10 V.




1.5 POWER AND ENERGY

EXAMPLE 1.5.

Find the power delivered to an element at t = 3 ms if the current enter-
ing its positive terminal is

i=5cos60mr A
and the voltage is: (a) v = 3i, (b) v = 3 di/dr.

Solution:
(a) The voltage is v = 3i = 15 cos 607 r; hence, the power is

p = vi = 75cos” 60t W
At t = 3 ms,

p=T75cos” (607 X 3 X 1077) = 75cos” 0.187 = 53.48 W

(b) We find the voltage and the power as

P
v = 3d—; = 3(—607)5 sin 607t = —9007 sin 607t V
p =vi = —45007 sin 607 cos 607t W

At t = 3 ms,

p = —45007 sin 0.187 cos 0. 187 W
= —14137.167 sin 32.4° cos 32.4° = —6.396 kW

PRACTICE PROBLEM 1.5.

Find the power delivered to the element in Example 1.5 at r = 5 ms
if the current remains the same but the voltage is: (a) v = 2i V,

(b) v =(10+ Sjidr) V.
0

Answer: (a) 17.27 W, (b) 29.7 W.




1.5 POWER AND ENERGY

EXAMPLE 1.6.

How much energy does a 100-W electric bulb consume in two hours?

Solution:
w = pt = 100 (W) X 2 (h) X 60 (min/h) X 60 (s/min)
= 720,000 ) = 720 kJ
This is the same as

w=pt=100W X 2h = 200 Wh

PRACTICE PROBLEM 1.6.

A stove element draws 15 A when connected to a 240-V line. How
long does it take to consume 180 kJ?

Answer: 50 s.




1.6 CIRCUIT ELEMENTS

There are two types of elements found in electric circuits:

» PASSIVE ELEMENTS which are not capable to generate energy
(resistors, capacitors and inductors)

» ACTIVE ELEMENTS which are capable to generate energy (generators,
batteries, operational amplifiers)

mmmm) Passive circuits and active circuits

capacitor

resistor

M Active elements
Figure: passive elements \

Source: [https://powerinception.com/]

(=)



1.6 CIRCUIT ELEMENTS

An ideal independent source is an active element that provides a specified
voltage or current that is completely independent of other elements.

Ideal — source has zero internal resistance

An ideal independent VOLTAGE source is an active element that delivers
to the circuit whatever current is necessary to maintain its terminal

voltage.

Element dipolar ideal, capabil sa mentina intre bornele sale o tensiune electrica independenta de
curentul debitat

ga
] [#] (o] [s] (] g)i
O 0 ® @ 6 -

Voltage — current characteristic

©



1.6 CIRCUIT ELEMENTS

An ideal independent CURRENT source is an active element that provides
a specified current completely independent of the voltage across the source.

Element dipolar ideal care debiteaza un curent de intensitate precizata independentd de tensiunea
intre bornele sale.

- The ideal current source delivers to the circuit whatever voltage is necessary to
maintain the designated current.

Voltage

jf o @ O 5

L The arrows indicates the direction of current

-—

| Current
|

Voltage — current characteristic

©



1.6 CIRCUIT ELEMENTS

An ideal dependent (or controlled) source is an active element in which the
source quantity is controlled by another voltage or current.

&

(a)

I. A voltage-controlled voltage source (VCVS).
2. A current-controlled voltage source (CCVS).
3. A voltage-controlled current source (VCCS).
4. A current-controlled current source (CCCS).

<P

(b)

Syfnbols for: (a) dependent voltage

source, (b) dependent current source.

- Dependent sources are useful in modeling
elements such us transistors, operational
amplifiers and integrated circuits.




SUMMARY

AN electric circuit consists of electrical elements connected

together.

. The International System of Units (S1) is the international mea-

surement language, which enables enginesers to communicate their
results. From the seven principal units, the units of other physical
quantities can be derived.

. Current is the rate of charge flow past a given point in a given

direction.
94
i
. Yoltage is the energy required to move | C of charge through an
element. dw
U =—
dq

. Power is the energy supplied or absorbed per unit time. It is also

the product of voltage and current.
aw

=d—q=

P u-i

. According to the passive sign convention, power assumes a posi-

tive sign when the cumrent enters the positive polarity of the voltage
across an element.

. An ideal voltage source produces a specific potential difference

across its terminals regardless of what is connected to it. An ideal
current source produces a specific current through its terminals
regardless of what is connected to it.

. Yoltage and curmrent sources can be dependent or independent. A

dependent source is one whose value depends on some other cir-
cuit variable.


http://www.google.ro/imgres?q=objective&um=1&hl=ro&sa=N&rlz=1T4ADRA_enRO404RO417&biw=1280&bih=822&tbm=isch&tbnid=fy3o_Br0jKkAjM:&imgrefurl=http://bownishi.com/home/our-obejctive/&docid=UOItTXQgrzSnuM&imgurl=http://bownishi.com/wp-content/uploads/2012/03/Objectives.png&w=291&h=221&ei=RvD2T_KdLIXXtAb1n83SBQ&zoom=1

1.1

1.2

1.3

14

1.6

g7

One millivolt 1s one millionth of a volt.

(a) True  (b) False
The prefix micro stands for:
@l10®° ®m10° (@107  @10°°

The voltage 2,000,000 V can be expressed in powers

of 10 as:
(a)2 mV (b) 2kV (c)2MV (d)2GV

A charge of 2 C flowing past a given point each
second is a current of 2 A.

(b) False

The unit of current is:

(a) True

(a) coulomb  (b) ampere

(c) volt (d) joule

Voltage is measured in:

(a) watts (b) amperes

(c) volts (d) joules per second

A 4-A current charging a dielectric material will
accumulate a charge of 24 C after 6 s.

(a) True (b) False

1.8

1.9

The voltage across a 1.1-kW toaster that produces a
current of 10 A is:

(@Ilkv  (11oov  @lov @nyv
Which of these is not an electrical quantity?

(a) charge (b) ime (c) voltage

(d) current  (e) power

Answers: 1.1b, 1.2d, 1.3¢c, 1.4a, 1.5b, 1.6¢, 1.7a, 1.8c¢,
1.9b, 1.10d.



9 BASIC LAWS




2.1 OHM’S LAW

Materials in general have the characteristic behavior of resisting the flow of electric
charge. This physical property, or ability to resist current is kown as resistance (R).

[
R=pZ

- p is known as resistivity of the material (ohm/m)
+ - A cross section area of the material (m-m)
[] - L is the lenght of the material (m)

Material with

resistivity p Resistivities of common materials.

Cross-sectional Material Resistivity ({2-m) Usage
area A - Silver .64 ¢ 1078 Conductor
Copper 1.72 = 107% Conductor
Aluminum 28 % 1078 Conductor
Gold 245 = 107% Conductor
The reS|StanCe R Of an element Carbon 4= 1077 Semiconductor
_ o ] Germanium 47 » 1072 Semiconductor
denotes |tS ab|||ty to reS|St the Silicon 6.4 = 107 Semiconductor
) ] ) Paper 10" Insulator
flow of electric current; it 1S| Mica 5% 10" Insulator
. Glass 10" Insulator
measured in ohms (Q) Teflon 3 % 102 Insulator

©



2.1 OHM’S LAW

120 ohm 5% < 4 —

Multiplier Tolerance
0 Black Black Black Black 1 8
1 Brown Brown Brown Brown 1%
2 Red Red Red Red 2% « fap ,
3 Orange § Orange § Orange Orange
: : -—
5 Green Green Green Green 10°
6 Blue Blue Blue Blue 10° 4._ B
< R e
7 Violet Violet Violet Violet 10’
8 10° ,
9 | | white || white || White 10° 4 w" g —
0.1|| Gold |fs% .
001 [ Siver |[10% EM sl
1st 2nd 3rd Multiplier Tolerlance »
.

‘-—— me asas PW5A =
40 10%.P-T!l

4.7k ohm 1%




2.1 OHM’S LAW

Ohm’s Law states that the voltage V across a resistor is directly
proportional to the current I flowing through the resistor.

U=1-R R=H | ) =1V/A
I

- Since the value of R can range from zero to infinity, it is important that we
consider the two extreme possible values of R.

|} 7] =0
U=0|R=0 U xﬁ. -
- ey
U=IR=0 [=lim==0
A short circuit is a circuit element with An open circuit is a circuit element
resistance approaching to zero. with resistance approaching infinity.

(30)



2.1 OHM’S LAW

- Aresistors that obeys Ohm’s Law is kown as a linear resistor.

A A 3
Slope=R
Slope =R
> -
/ i i
The current — voltage The current — voltage characteristic
characteristic of a linear resistor of a nonlinear resistor

- A resistors that not obeys Ohm’s Law is kown as a nonlinear resistor (its
resistance varies with current).

mmm) Linear circuits and non-linear circuits




2.1 OHM’S LAW

Historical

Georg Simon Ohm (1787-1854), a German physicist, in 1826
experimentally determined the most basic law relating voltage and cur-
rent for a resistor. Ohm’s work was initially denied by critics.

Born of humble beginnings in Erlangen, Bavaria, Ohm threw him-
self into electrical research. His efforts resulted in his famous law.
He was awarded the Copley Medal in 1841 by the Royal Society of
London. In 1849, he was given the Professor of Physics chair by the
University of Munich. To honor him, the unit of resistance was named
the ohm.

© SSPLvia Getty Images



2.1 OHM’S LAW

Conductance G is the ability to conduct the flow of electric current; it
IS measured in siemens (S).

I 1 14
—| =T w
U

G=1 =
===

- The power disipated by a resistor can be expressed in terms of R:

U2

P=U-1=1I%R
R

- The power disipated by a resistor can be expressed in terms of G:

IZ

P=U-1=U%G=—
G



EXAMPLE 2.1.
An electric 1ron draws 2 A at 120 V. Find 1ts resistance.

Solution:
From Ohm's law,

PRACTICE PROBLEM 2.1.

The essential component of a toaster is an electrical element (a resis-
tor) that converts electrical energy to heat energy. How much current
1s drawn by a toaster with resistance 13 {) at 110 V?

Answer: 7.333 A.



EXAMPLE 2.2.

In the circuit shown in Fig. B, calculate the current i, the conductance

G, and the power p.

Solution:

The voltage across the resistor is the same as the source voltage (30 V)
because the resistor and the voltage source are connected to the same
pair of terminals. Hence, the current is

v 30

i=—=

- _6mA
R sxi00 ™M

The conductance is

1 1
G=—=———=02mS
R 5x%10°

We can calculate the power in various ways using either Egs. (1.7),
(2.10), or (2.11).

p=vi=306x10") = 180 mW
or

p=i’R=(6x10 7?5 x 10° = 180 mW
or

p =v’G = (30’02 X 10" = 180 mW

0V Q)




PRACTICE PROBLEM 2.2.

For the circuit shown in Fig. calculate the voltage v, the conduc-
tance G. and the power p.

3 mA

i~
vy

Answer: 30 V, 100 uS, 90 mW.



2.2 NODES, BRANCHES and LOOPS

A node (n) Is the point of connection between more than two branches.

A branch (b) is the connections between two nodes.

A loop (I) is any closed path in a circuit.

50
—— b=1l+n-1
10V 202 30 2A oy
=3
@ : s d n=2




2.3 KIRCHHOFF’S LAW

Kirchhoff’s current law (KCL) applies to the nodes of a network and states
that the algebraic sum of the currents at a node is zero.

N
Zln=0

n=l (there are n — 1 independent nodes or equations)

- We shall assign positive polarity (+) to a current leaving a node, and
negative polarity (-) to a current entering a node.

Kirchhoff’s voltage law (KVL) the algebric sum of all voltages around a
closed path (or loop) iz zero.

M
zum=0

m=1

Sum of voltage drops = sum of voltage rise

(there are | — n + 1 independent loops or equations)

©



2.3 KIRCHHOFF’S LAW

For Examples and Practice problems
using Ohm’s Law, KCL and KVL, see SEMINAR 1



2.4 SERIES RESISTORS and VOLTAGE DIVISION

The equivalent resistance of any number of resistors connected in series
IS the sum of the individual resistances.

N
Rﬂ"—l = RJ + Rz + --- + R."n-’ =2R”

n=|

Rn

U. =
n R1+R2++RN

Principle of voltage division

_1.__ a R, R, _I.., a R
A AAAA YN
PR tug- YUy 1 +— U=IReq
':*:_J" ‘ E 'ui,-r U
Req = Ry + R; i = Ror,
b b
Uy =IR; U,=IR, R, R,
—U+U+U,=0 U1=r TRr," 2TR 4R,"

U=U;+U, =I(R;+Ry,)




2.5 PARALLEL RESISTORS and CURRENT DIVISION

The equivalent conductance of resistors connected in parallel is the sum
of their individual conductances.

I, = U
n_G1+G2+”'+GN

I

1
= — + — o+ — » Gegq =G+ G+ G35+ -+ Gy
ch R, 2 N !
I H'l:ﬂ:lf-'ﬂ 1 ‘I ‘I
e B - i
- ) — = — 4+ — I o—
+ I ¥ Ko B R
+—=H -":3 "*-:. A
EQ SR, Sk ) E ()
RiR '
Req = 142
) S Ri+R, |
Node b b
I E I -
R; +R,
E E 1 1 E
=+ =E(x+—) =
R, R, R; Ry Req

Principle of current division

U= ;
< Rt_.q or lf:..qu

E= llRl - 12R2

Rl'l
I, = —
R; + R,
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2.6 WYE — DELTA TRANSFORMATIONS

- This situasions arise in circuits analysis when the resistors are neither in parallel nor in

series.

- Many circuits of the type shown in Fig.1 (a bridge network), can pe simplified by using
three-terminal equivalent networks such: the wye (Y) or tee (T) network, and delta (A) or pi

(IT) network.

- They are used in three-phase networks,
electrical filters and matching networks

Wye (Y) network

[

Tee (T) network

[

Delta (A) network

" / * R
R, R,
AAMA 7 3 1 AMAN
\ /
g
R /i’_/ 5\ R = =
b £ “ R!" j“ j“ R a
\ y
Yool
'
v 4 2

Pi (IT) network



2.6 WYE — DELTA TRANSFORMATIONS

» DELTATO WYE CONVERSION

R{. R, = RF}RE
| =
| _T_“’_ 3 1 \, v 3 R, + R, + R,
\ f Ry % X R,
o Z <5 "N __ KRR
b {i ,.-} . ‘ L ) Rn‘ T R.h + Rc
! .-"f = R,
A\ ] R, R;,
¥ l"-.."Il 4 R — il /
B 2 4 i Rﬂ‘ Ll Rh + R-':
Delta (A) network Wye (YY) network
R,
] ] a ATATATLE = b
- We not need to memorize equations; to X R, R, f/

- .4 "
transform_ Ain'Y, We create an extra node n and \r/ A /
follow this conversion rule: ,/f

. y
Y, i
Each resistor in the Y network is the Ry 7, R,

product of the resistors in the two
adiacent A branches, divided by the sum
of the three A resistors.

A
= Ry /
a.';

1
"
b
~

b

/Supeposition of Yand A
" networks as an aid in
transforming one to another

©



» WYE TO DELTA CONVERSION

\

/ R|R1_R2H3_R3Hl \

2.6 WYE — DELTA TRANSFORMATIONS

Rf.f -

R,

R|R; + RyR; + R3R,
R>

Rh=

o _ RiRy+ RaRs + R3R
c R3

- We not need to memorize equations; to transform A in 'Y, we create an extra node n and

follow this conversion rule:

Each resistor in the A network is the sum of the all possible products of Y
resistors taken two time, divided by the opposite Y resistor.

©



2.6 WYE — DELTA TRANSFORMATIONS
The A and Y networks are said to be balanced when:

Ry = R, = R3 = Ry, R, = Ry, = R. = Ry
Under this conditions, conversion formula become:

R,
RY — TA or R_\ —

°.° In making A/Y transformation, we do not take anything out of the circuit or
& put anything new. We are merely substituting different but mathematically
i equivalent three-terminal networks patterns to create a circuit in which
resistors are either in series or in parallel, allowing us to calculate Req if

necessary.

©



For Examples and Practice problems
regarding calculation of Req, Geq and A/Y conversion, see
SEMINAR 1

©



SUMMARY

. A resistor is a passive element in which the voltage v across it is

directly proportional to the current i through it. That is, a resistor

is a device that obeys Ohm’s law,
v = iR

where R is the resistance of the resistor.

. A short circuit is a resistor (a perfectly, conducting wire) with zero

resistance (R = 0). An open circuit is a resistor with infinite resis-
tance (R = =),

. The conductance G of a resistor is the reciprocal of its resistance:

. A branch is a single two-terminal element in an electric circuit. A

node is the point of connection between two or more branches. A
loop is a closed path in a circuit. The number of branches b, the
number of nodes n, and the number of independent loops [ in a
network are related as

b=I[1+n-—1


http://www.google.ro/imgres?q=objective&um=1&hl=ro&sa=N&rlz=1T4ADRA_enRO404RO417&biw=1280&bih=822&tbm=isch&tbnid=fy3o_Br0jKkAjM:&imgrefurl=http://bownishi.com/home/our-obejctive/&docid=UOItTXQgrzSnuM&imgurl=http://bownishi.com/wp-content/uploads/2012/03/Objectives.png&w=291&h=221&ei=RvD2T_KdLIXXtAb1n83SBQ&zoom=1

SUMMARY

. Kirchhoff’s current law (KCL) states that the currents at any node

algebraically sum to zero. In other words, the sum of the currents
entering a node equals the sum of currents leaving the node.

. Kirchhoff’s voltage law (KVL) states that the voltages around a

closed path algebraically sum to zero. In other words, the sum of
voltage rises equals the sum of voltage drops.

. Two elements are in series when they are connected sequentially,

end to end. When elements are in series, the same current flows
through them (i; = ;). They are in parallel if they are connected
to the same two nodes. Elements in parallel always have the same
voltage across them (v, = v;).

. When two resistors R; (=1/G;) and R, (=1/G>) are in series, their

equivalent resistance R, and equivalent conductance G, are

GG,

R.=R +R, G, ,=——"—
e T 16, + G,


http://www.google.ro/imgres?q=objective&um=1&hl=ro&sa=N&rlz=1T4ADRA_enRO404RO417&biw=1280&bih=822&tbm=isch&tbnid=fy3o_Br0jKkAjM:&imgrefurl=http://bownishi.com/home/our-obejctive/&docid=UOItTXQgrzSnuM&imgurl=http://bownishi.com/wp-content/uploads/2012/03/Objectives.png&w=291&h=221&ei=RvD2T_KdLIXXtAb1n83SBQ&zoom=1

SUMMARY

9. When two resistors R; (=1/G)) and R, (=1/G,) are in parallel,
their equivalent resistance R.q and equivalent conductance G, are
R\R;

R,.=——= G.,=G, +G
R+ R, a ' .

10. The voltage division principle for two resistors in series is

R, R;

TTRAR TR +Ry

11. The current division principle for two resistors in parallel is

R, . . R,

h=——i, h=——i
R, + R R, + R,

12. The formulas for a delta-to-wye transformation are

R, = RbRC R. = RCRH
I_Ra+Rb+Rc5 2_R-::-i_}‘:L».F:--I_R.:'
R_R
Rq= a*vb
' R, + R, + R_


http://www.google.ro/imgres?q=objective&um=1&hl=ro&sa=N&rlz=1T4ADRA_enRO404RO417&biw=1280&bih=822&tbm=isch&tbnid=fy3o_Br0jKkAjM:&imgrefurl=http://bownishi.com/home/our-obejctive/&docid=UOItTXQgrzSnuM&imgurl=http://bownishi.com/wp-content/uploads/2012/03/Objectives.png&w=291&h=221&ei=RvD2T_KdLIXXtAb1n83SBQ&zoom=1

SUMMARY

13. The formulas for a wye-to-delta transformation are
R\R; + RyR3 + R3R, R\R;, + R-Rs + R3R,
Rﬂ — J HF:- =
R, R,
_ RiRy + RyR3 + R3R,
C R-:"

14. The basic laws covered in this chapter can be applied to the prob-
lems of electrical lighting and design of dc meters.
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Historical

Thomas Alva Edison (1847-1931) was perhaps the greatest
American inventor. He patented 1093 inventions, including such
history-making inventions as the incandescent electric bulb, the phono-
graph, and the first commercial motion pictures.

Born in Milan, Ohio, the youngest of seven children, Edison received
only three months of formal education because he hated school. He was
home-schooled by his mother and quickly began to read on his own. In
1868, Edison read one of Faraday’s books and found his calling. He
moved to Menlo Park, New Jersey, in 1876, where he managed a well-
staffed research laboratory. Most of his inventions came out of this
laboratory. His laboratory served as a model for modern research organ-
izations. Because of his diverse interests and the overwhelming number
of his inventions and patents, Edison began to establish manufacturing
companies for making the devices he invented. He designed the first elec-
tric power station to supply electric light. Formal electrical engineering
education began in the mid-1880s with Edison as a role model and leader.

Library of Congress




2.1

2.2

2.3

2.4

REVIEW QUESTIONS

The reciprocal of resistance is: 2.6 The current [ in the circuit of Fig. 2.63 is:
(a) voltage (b) current (a) —0.8 A (b) —0.2 A
(¢) conductance (d) coulombs ()02 A (d) 0.8 A
An electric heater draws 10 A from a 120-V line. The a I
resistance of the heater is: WY

2 2 I I
(a) 1200 €} (b) 120 O 3V k_i) "\95"'!
(c) 120} (d) 1.2 () 6 €

AMAM,
The voltage drop across a 1.5-kW toaster that draws For Review Question 2.6.
12 A of current is:
(a) 18 kV (b) 125V 2.7 The current [, of Fig. 2.64 is:
(c) 120V (d) 1042V (a) —4 A (b)y —2A (c)4 A (d) 16 A
The maximum current that a 2W, 80 k() resistor can .
safely conduct is: ? OA
(a) 160 kA (b) 40 kA >
(c) 5 mA (d) 25 uA 2A i 4A
'C‘._.F AMAN v *_D

A network has 12 branches and 8 independent
loops. How many nodes are there in the
network?

@19 ®17 @©5 (D4 Iy

A
TATATLY

For Review Question 2.7.



REVIEW QUESTIONS

2.9 Which of the circuits in Fig. 2.66 will give you

Vi =1V?

5V 5V 5V 5V

_©_\"_] a —j, 3 a _.©_O a 4@—0 a
3V 'C‘_") 3V ':E} 3V @) 3V @) For Review Question 2.9.
e

or O~
—6/ O b + b _,@_O b b
LV LV 1V 1V
(a) (b) (c) (d)
2.10 In the circuit of Fig. 2.67, a decrease in R; leads to a
decrease of, select all that apply: R, For Review Question 2.10.
(a) current through R A
b) voltage across R < <
® ¢ ’ v FD S R, S R
(c) voltage across R, N T =

(d) power dissipated in R,

(e) none of the above

Answers: 2.1c, 2.2c, 2.3b, 2.4c, 2.5¢c, 2.6b, 2.7a, 2.8d,

2.9d, 2.10b, d.
A4
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/e Content of this Subchapter:

1. Nodal Analysis
2. Mesh Analysis

I With this two techniques, any linear circuit can be analyzed by obtaining a
set of simultaneous equations that are then solved to obtain the required

values of current or voltage.



Nodal Analysis

Nodal Analysis, Node-Voltage Analysis, or the Branch Current Method

- Nodal analysis provide a general procedure -H— V2
for analyzing circuits using node voltages as the J Q

circuit variables.

- Choosing node voltages instead of element .

voltages as circuit variables is convenient and T @
reduces the number of equations one must \ﬁ_gL/ \
4

solve simultaneously.

- Nodal analysis is possible when all the circuit elements’' branch constitutive relations
have a conductance representation. Nodal analysis produces a compact set of equations
for the network, which can be solved by hand for “small circuits”, or can be quickly solved
using linear algebra by computer.

- Because of the compact system of equations, many circuit simulation programs
(e.g. Module from ORCAD software) use nodal analysis as a basis.

@


https://en.wikipedia.org/wiki/SPICE

3.1 Nodal Analysis

Steps to compute currents using Node Analysis:

1. Select a node as the reference node. Assign voltages V1, .., Vn-nto the
remaining (N-1) nodes.
I ‘ ‘ Common symbols for indicating a
Iy reference node, (a) common ground,
(b) ground, (c) chassis ground.
(a) (b) (c)
He\p‘fU\ |
TIPS 10
A L/ Supernode
!._1
v' Take as reference node the node with most branches 2o itV /¢
connecting to it. g A -~ _‘_’f:"
v If a voltage source is connected between the ] e
reference node and a non-reference node, we simply - L L P9
set the voltage at the non-reference node equal to the ) = z
voltage source.




3.1 Nodal Analysis

2. Write the system of equations specific to the Node Analysis.

GV =GRV, == GywopVivoy = Zlk + ZGJEJ

kenodel jenodel

1= GV + GV = =Gy V1) = 2.1+ DGE,
kenode?2 jenode?2

—Gvon1 —Gvon2Va =+ Govoyov—yViv-ny = Zl kT Z GE;
kenode(N-1)  jenode(N-1)

~

G

. - the self-conductance of node a

G,, - the mutual conductance between node a and node b
ZGJEJ - sum of the currents due to current sources connected to node &

2.1c - sum of the currents due to voltage sources connected to node k&

(sign + for currents that enters node; sign — for currents that leaves node)




3.1 Nodal Analysis

3. Compute the above system of equations in order to compute de Node
Voltages.

4. Compute the currents by applying Omh’s Law for each branch of the
circuit.










Mesh Analysis

Loop Analysis, Mesh Current Method or Maxwell’s Circulating Currents Method

- |Is a method that is used to solve planar circuits for
the currents (and indirectly the voltages) at any
place in the electrical circuit.

- Using mesh currents instead of directly applying
KCL and KVL can greatly reduce the amount of
calculation required.

This is because there are fewer mesh currents than there are physical branch currents.

- Mesh Analysis is a very handy tool to compute current within electronic circuits. From
knowing the current within each mesh (section), we can solve for voltage and power
(watts) at each component.

Ex: Engineers and designers use this information to select correct parts that won’t emit the magic
white smoke when power is applied.

Magic smoke is a humorous name for the caustic smoke produced by burning out electronic circuits or components (usually by
overheating, overdamping, or incorrect wiring configurations), which is held to contain the essence of the component's function.
The smoke typically smells of burning plastic and other chemicals, and sometimes contains specks of sticky black ash. The color
of the smoke depends on which component is overheating, but it is commonly white or grey. Simple overheating eventually
results in component failure, but does not release smoke. Real smoke is almost always the result of incorrect wiring or a

manufacturing failure in the component.



3.2 Mesh Analysis
v' Mesh Analysis is not as general as Nodal Analysis because is it only applicable to a
circuit that is planar

Planar circuit = circuit that can be drawn on a plane surface with no wires crossing each
other; otherwise is nonplanar circuit.

[ . . . .
v _ - A circuit may have crossing branches and still
o / ,;7 be planar if it can be redraw such that it has no
40 “*/"“v o 320 crossing branches.
60 ) '
A i0 6% 1A
1r~/ SRA, (§a
™ 1 / 10
Y | iy : Ay 20
SA a0 90 aF \ & ;"I ‘ A
vy PEEED 5”‘{?{ 230 e {:: . = i
100 1\ 40 / 50 E% mff ] 260
Example of a nonplanar circuit '1 A ,.’f ) s 1
7N | = iz Ta=
8 u*"wi* 10 ] 1

Mesh = loop which does not contain any other loops within it.




3.2 Mesh Analysis

Steps to compute currents using Mesh Analysis:

STEP_1: ldentify “meshes” within the circuit encompassing all components.
Label all the internal loops with circulating currents (mesh currents)
(]1 ’ ]2 y wuny ]N etc')'

- The direction of the mesh current is arbitrary (clockwise or counterclockwise)
and does not affect the validity of the solution.

[

Helpr\ v' As a general rule of thumb, only label inside loops in a clockwise

T'\DS direction with circulating currents as the aim is to cover all the
elements of the circuit at least once.

v If the assumed direction of a mesh current is wrong, the answer
for that current will have a negative value.




3.2 Mesh Analysis

& Before you chose the mesh currents check in which of those 3 possible cases your
o circuit is fit:

» CASE 1: Circuit with no current sources
» CASE 2: When a current source exists only in one mesh

» CASE 3: When a current source exists between two meshes

Take into account in choosing mesh currents the rule of thumbs for each case.

60 RN 1] ¢!
AW —* ——HWWY

_-"2;13 -
0v(R /_) : KJ%.J Z40

__;H

!|_ '., __-' i

In this case we must reconsider the meshes
(CASE 3)

(a)




3.2 Mesh Analysis

STEP_2: Write the system of equations specific to the Mesh Analysis.

-

Ry\Jy+RyJy+-+RyJy= Y E + Y R,

kemeshl jemeshl

IRy Iy + RopJy +4 Ry v = D E+ Y R
kemesh?2 jemesh?2

Ry, + Ryody++ Ry Jy = D Eg+ > R,
kemeshN jenodeN

\

Ryn - self-resistance (the total resistance) of the Nth loop

R, - the mutual resistance between loop a and loop b

(with sign + if the mesh currents through the common resistance have the same
direction, with sign — otherwise)

D R,I; - sum of the sources contained by the mesh

> E, -sum of the voltages due to voltage sources contained by the mesh




3.2 Mesh Analysis

STEP _3: Compute the above system of equations in order to compute de
Mesh Currents.

STEP 4: Compute the currents through branches based on Mesh (loop) Currents.

—

A

For Examples and Practice problems
Mesh Analysis see SEMINAR 2




SUMMARY

I. Nodal analysis is the application of Kirchhoff's current law at the
nonreference nodes. (It is applicable to both planar and nonplanar
circuits.) We express the result in terms of the node voltages. Solv-
ing the simultaneous equations yields the node voltages.

. A supemmode consists of two nonreference nodes connected by a
(dependent or independent) voltage source.

3. Mesh analysis 1s the application of Kirchhoff’s voltage law around
meshes in a planar circuit. We express the result in terms of mesh
currents. Solving the simultaneous equations yields the mesh
currents.

[t

4. A supermesh consists of two meshes that have a (dependent or
independent) current source in common.

5. Nodal analysis 1s normally used when a circuit has fewer node
equations than mesh equations. Mesh analysis 1s normally used
when a circuit has fewer mesh equations than node eguations.
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Content of this Subchapter:

. sSuperposition Theorem

. Source Transformation

Thevenin’s Theorem

Norton’s Theorem

Milman’s Theorem

Maximum Power Transfer Theorem

> oW

For the following analysis methods:
» Superposition Theorem

» Thevenin’s Theorem

» Norton’s Theorem

PLEASE CHECK THE COURSE FROM SEMESTER 1:
Passive Electronic Components and Circuits (PECC)




Superposition Theorem

Superposition Theorem is one of those strokes of genius that takes
a complex subject and simplifies it in a way that makes perfect sense.

Superposition theorem states that for a linear system the response
(voltage or current) in any branch of a bilateral linear circuit having more
than one independent source equals the algebraic sum of the responses
caused by each independent source acting alone, where all the other
independent sources are replaced by their internal impedances.

- The theorem is applicable to linear networks (time varying or time invariant)
consisting of independent sources, linear dependent sources, linear passive
elements (resistors, inductors, capacitors) and linear transformers.

- Superposition works for voltage and current but not power. In other words, the sum
of the powers of each source with the other sources turned off is not the real
consumed power. To calculate power we first use superposition to find both current
and voltage of each linear element and then calculate the sum of the multiplied
voltages and currents.




4.1 Superposition Theorem

Steps to Apply Superposition Principle:

1. Turn off (set to zero) all independent sources except one by:

- Replacing all other independent voltage sources with a short circuit (thereby
eliminating difference of potential i.e. U=0; internal impedance of ideal voltage source is
zero (short circuit)).

- Replacing all other independent current sources with an open circuit (thereby
eliminating current i.e. /[=0; internal impedance of ideal current source is infinite (open
circuit)).

- Dependent sources are left intact because they are controlled by circuit variables.

I / § ‘ Removing the effects of ideal sources E A *
N

2. Find the output (voltage or current) due to that active source using any techniques

3. Repeat steps 1 and 2 for each of the other independent source.

4. The total current through any portion of the circuit is equal to the algebraic sum of the
currents produced by each independent source. (‘)



4.1 Superposition Theorem

A

Access the below link to watch a video who explains with a numerical example
Superposition Theorem:

https://www.youtube.com/watch?v=UwiaDe01s60




Source Transformation for Independent Sources

- When is applicable, source transformation is a powerful tool that allows circuit
manipulations to ease circuit analysis.

A source transformation is the process of replacing a voltage source Us in
series with a resistors R by a current source is in parallel with a resistor
R, or vice versa.

Es(T) -— SR

A source transformation does not affect the remaining| © g
part of the circuit. &




4.2 Source transformation

R
| ."'.,_‘I."'\._’.-"‘-.'._."'\._' O O
ES = IS < R
o b - O b
Eg
Eq=I-R or I = R

When dealing with source transformation, we should keep the following
points in mind:

- The arrow of the current source is directed toward the positive terminal of
the voltage source.

- Source transformation is not possible when R=0, which is the case with an
ideal voltage source (for a practical, nonideal voltage source, R#0).

- An ideal current source with R=° cannot be replaced by a finite voltage

source.



Thevenin’s Theorem

- Thevenin’s Theorem is especially useful in analyzing power systems and
other electronic circuits where one particular resistor in the circuit (called
the “load” resistor) is subject to change, and re-calculation of the circuit is
necessary with each trial value of load resistance, to determine voltage
across it and current through it.

Thevenin’s Theorem states that it is possible to simplify any linear circuit, no
matter how complex, to an equivalent circuit with just a single voltage source
and series resistance connected to a load.

Linear -

two-terminal U Load ‘ UTh CD U Load

circuit -




4.3 Thevenin’s Theorem

Steps to Apply Thevenin’s Theorem:

1. Find the Thevenin source voltage by removing the load resistor from the original circuit

and calculating voltage across the open connection points where the load resistor used to
be.

) If terminals a-b are made open-circuited, no
Linear L current flows, so that the open circuit voltage
two-terminal U, UTh — U0 across the terminals a-b must be equal with
circuit ;I_ the voltage source UTH.
- C b

Urn = Uy

2. Find the Thevenin resistance by removing all power sources in the original circuit (voltage
sources shorted and current sources open) and calculating total resistance between the open
connection points.

. T With the load disconnected and terminals a-b
Linear circuit with . . .
: . open-circuited, we turn-off all independent
all independent R, RTh = Rin
sources set equal - sources. - -
to zero o b RTH - is the input resistance at the terminals

when the independent sources are turned off.

@

RTI'I = JF;‘.'Ln



4.3 Thevenin’s Theorem

3. Draw the Thevenin equivalent circuit, with the Thevenin voltage source in series with the
Thevenin resistance. The load resistor re-attaches between the two open points of the
equivalent circuit

U = See in the figure that the Thevenin
Th = Ry equivalent is a simple voltage divider.

b

2. Analyze voltage and current for the load resistor following the rules for series circuits.

Urp
[ =————
Ry,
U,=R.I}, = Urp

Rrn + Ry




4.3 Thevenin’s Theorem

A

Access the below link to watch a video who explains with a numerical example
Thevenin’s Theorem:

https://www.youtube.com/watch?v=Zqfi8SjmaBo




Norton’s Theorem

- In 1936, about 43 years after Thevenin publish his theorem, E.L. Norton, an American
engineer at Bell Telephone Laboratories, proposed a similar theorem.

Thevenin’s Theorem states that it is possible to simplify any linear circuit,
no matter how complex, to an equivalent circuit with just a single current
source and parallel resistance connected to a load.

O a
Linear a L

two-terminal mm) < Ry

circuit

o b




4 .4 Norton’s Theorem

Steps to Apply Norton’s Theorem

1. Find the Norton source current by removing the load resistor from the original circuit and

calculating current through a short (wire) jumping across the open connection points
where the load resistor used to be.

As with Thevenin’s Theorem, everything in the original circuit except the load resistance has
been reduced to an equivalent circuit that is simpler to analyze. Also similar to Thevenin'’s

Theorem are the steps used in Norton’s Theorem to calculate the Norton source current

(Inorton) @nd Norton resistance (Ryqyion)-

2. Find the Norton resistance by removing all power sources in the original circuit (voltage

sources shorted and current sources open) and calculating total resistance between the
open connection points.

@



4 .4 Norton’s Theorem

3. Draw the Norton equivalent circuit, with the Norton current source in parallel with the
Norton resistance. The load resistor re-attaches between the two open points of the
equivalent circuit.

o

a

R_.r..r R."'-" - RTh

g
-
_.l-ll'.l'-ll'lllll.rllll- "Il_

Ft
L

4. Analyze voltage and current for the load resistor following the rules for parallel circuits.

a

Linear [ Io =]

) I — I N — 15C
two-terminal N SscC
circuit o

b




4 .4 Norton’s Theorem

v The Thevenin and Norton equivalent circuits are related by a source

- \
lpfu
H‘?"\‘;))S ~ transformation which 1s

often called Norton-Thevenin transformation.

I =
N R

_Umn

v' Since Vyy, Iy and Ry are related according above equation, to determine the Thevenin
or Norton equivalent circuit requires that we find:

—

* The open-circuit voltage U,

across terminals a and b.

* The short-circuit current|/sc
* The equivalent or input resi

at terminals a and b.
stance R;, at terminals @ and b when

all independent sources are turned off.

Urn = Uy

Iy

Rpyp =

= Isc

U
Zo_ g,

ISC
@®




4 .4 Norton’s Theorem

A

Access the below link to watch a video who explains with a numerical example
Norton’s Theorem:

https://www.youtube.com/watch?v=bu4HR8b_QKI




Millman’s Theorem

- A theorem which helps in simplifying electrical networks with a bunch of parallel branches.

- Can be used to find the potential difference between two points of a network which contains only
parallel branches.

Millman’s Theorem states that — when a number of voltage sources (E1,
E2, E3...En) are in parallel having internal resistance (R1, R2, R3...Rn)
respectively, the arrangement can replace by a single equivalent voltage
source V in series with an equivalent series resistance R.

_ Lk=1Er"Yr
ng R2§ ............ §Rn §RL _/R Ré E= n_ Yy

0O Oe Ok OFE L !

) N G_ G]_+ Gz+,,,,,,,+ Gn

@




4.5 Millman’s Theorem

A

Access the below link to watch a video who explains with a numerical example
Millman’s Theorem:

https://www.youtube.com/watch?v=8MI1E3rn26Eg




Maximum Power Transfer Theorem

- The Maximum Power Transfer Theorem is not so much a means of analysis as it is an
aid to system design.

- The theorem results in maximum power transfer, and not maximum efficiency. If the
resistance of the load is made larger than the resistance of the source, then efficiency is
higher, since a higher percentage of the source power is transferred to the load, but the
magnitude of the load power is lower since the total circuit resistance goes up.

The maximum amount of power will be dissipated by a load resistance
when that load resistance is equal to the Thevenin/Norton resistance of
the network supplying the power

- This is essentially what is aimed for in radio transmitter design, where the antenna or transmission
line “impedance” is matched to final power amplifier “‘impedance” for maximum radio frequency power
output. Impedance, the overall opposition to AC and DC current, is very similar to resistance, and
must be equal between source and load for the greatest amount of power to be transferred to the
load. A load impedance that is too high will result in low power output. A load impedance that is too
low will not only result in low power output, but possibly overheating of the amplifier due to the power
dissipated in its internal (Thevenin or Norton) impedance.



4.6 Maximum Power Transfer Theorem

A

4

T Paas [

N
N

https://www.youtube.com/watch?v=PCoyrvNnGUO




4.5 Maximum Power Transfer Theorem

The Maximum Power Transfer Theorem is not:

- Maximum power transfer does not coincide with maximum efficiency.

Application of The Maximum Power Transfer theorem to AC power distribution )
will not result in maximum or even high efficiency. ..
o

-The goal of high efficiency is more important for AC power distribution, which
dictates a relatively low generator impedance compared to load impedance.

Similar to AC power distribution, high fidelity audio amplifiers are designed for a
relatively low output impedance and a relatively high speaker load impedance. As a
ratio, “output impedance” : “load impedance” is known as damping factor, typically in
the range of 100 to 1000.

Maximum power transfer does not coincide with the goal of lowest noise. For
example, the low-level radio frequency amplifier between the antenna and a radio
receiver is often designed for lowest possible noise. This often requires a mismatch of
the amplifier input impedance to the antenna as compared with that dictated by the
maximum power transfer theorem.

®
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For more Examples and Practice problems

using Superposition Theorem, Source Transformation,
Thevenin’s Theorem, Norton’s Theorem, Millman’s Theorem and Maximum Power
Transfer Theorem

see SEMINAR 3

@



SUMMARY

1.

2.

A linear network consists of linear elements, linear dependent
sources, and linear independent sources.

Network theorems are used to reduce a complex circuit to a sim-
pler one, thereby making circuit analysis much simpler.

. The superposition principle states that for a circuit having multi-

ple independent sources, the voltage across (or current through) an
element is equal to the algebraic sum of all the individual voltages
(or currents) due to each independent source acting one at a time.

. Source transformation is a procedure for transforming a voltage

source in series with a resistor to a current source in parallel with
a resistor, or vice versa.

. Thevenin’s and Norton’s theorems allow us to isolate a portion of

a network while the remaining portion of the network is replaced
by an equivalent network. The Thevenin equivalent consists of a
voltage source Urp [in series with a resistor Rpy,. while the Norton
equivalent consists of a current source [y in parallel with a resis-
tor Ry. The two theorems are related by source transformation.

_Jrn

Rl.l..r = RTh* IN —_ RTh


http://www.google.ro/imgres?q=objective&um=1&hl=ro&sa=N&rlz=1T4ADRA_enRO404RO417&biw=1280&bih=822&tbm=isch&tbnid=fy3o_Br0jKkAjM:&imgrefurl=http://bownishi.com/home/our-obejctive/&docid=UOItTXQgrzSnuM&imgurl=http://bownishi.com/wp-content/uploads/2012/03/Objectives.png&w=291&h=221&ei=RvD2T_KdLIXXtAb1n83SBQ&zoom=1

6. For a given Thevenin equivalent circuit, maximum power transfer
occurs when R; = Rqy; that is, when the load resistance is equal
to the Thevenin resistance.

7. The maximum power transfer theorem states that the maximum
power is delivered by a source to the load R; when R; is equal to
R+p,. the Thevenin resistance at the terminals of the load.




REVIEW QUESTIONS

The current through a branch in a linear network 1s

2 A when the input source voltage 1s 10 V. If the
voltage 1s reduced to 1 V and the polarity is reversed,
the current through the branch is:

(a) —2A (b)—02ZA (c)02A

(di2A (e) 20 A

For superposition, it is not required that only one
independent source be considered at a time; any

number of independent sources may be considered
simultaneously.

ia) True (b) False

The superposition principle applies to power
calculation.

(b) False

Refer to Fig. 1 . The Thevenin resistance at
terminals a and b 1s:

i(a) True

(a) 25 10} by 200 02
ci510) (d)y4 02
50
AW <_L
+ “ 7
50V _) , § 00
T Fig. 1

5

The Thevenin voltage across terminals @ and b of the
circuit in Fig 1 1s:

(a) 50V (b) 40V

(c)20V (d) 10V

The Norton current at terminals a and b of the circuit
in Fig. 4.67 1s:

(a) 10A
c)2A

(b)25A
(d) 0 A

The Norton resistance Ry is exactly equal to the
Thevenin resistance R.,.

(a) True (b) False




8 Which pair of circuits in Fig. 2  are equivalent?

(a)aand b {(b) b and d
(c)aand c {(d)candd
540 502
AR AN |
20V 4 A
o o
(a) (b
] {1
4 A 502 20V 542
i O
(c) (d}
Fig. 2

9

10

A load is connected to a network. At the terminals to
which the load is connected, R, = 10 {} and

Vi = 40 V. The maximum possible power supplied
to the load is:

(a) 160 W
(c)40'W

(b) BOW
(d) 1 W

The source 1s supplying the maximum power to the
load when the load resistance equals the source
resistance.

(a) True (b) False

Answers: 4.1b, 4.2a, 4.3b, 4.4d, 4.5b, 4.6a, 4.7a, 4.8c,

4.9¢, 4.10a.
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Generalities about TIME VARIABLE QUANTITIES

v" Instantaneous value: the value of the
current at any given instant of time: i(7)
v" Periodic function: T — period

5 _____________________________ i(f) = i(t + kT)
' ! ' v Frequency: f [Hz]:

I o 2T
/ T 2= / T
v i —1I ;
Peak value (amplitude) - I, ; 1 ) k (T
v’ Average (mean) value—1,,, : 1,00 = J-idf j = 1 jidz
I -4 T
t f
ty+T
v" Root mean square (effective, RMS) value—-71: [= |— ji2dt >0

‘ @®




2.1 INTRODUCTION

* Asinusoid is a signal that has the form of the sine or cosine function.

- Asinusoidal current is refered to an alternating current (AC);

- Such current reverses at regular time intervals and has alternately positive
and negative values;

- Circuits driven by sinusoidal current or voltage sources are called AC Circuits.

We are interested in sinusoids because:

- Nature itself is characteristically sinusoidal (motion of pendulum, the vibrtaion of a
string, the ripples on the ocean surface etc.

- A sinusoidal signal is easy to generate and transmit, it is the form of voltage generate
throughout the world and supplied to homes, factories, laboratories, and so on.

- Through Fourier analysis, any practical periodic signal can be represented by a sum of
sinusoids (play an important role in the analysis of periodic signals).

- A sinusois is easy to handle mathematically; the derivative and integral of a sinusoid

< are themselves sinusoids.
The sinusoid is an extremely important function in circuit analysis!!! @



2.1 INTRODUCTION

- the instantaneous value of a sinusoidal
current:

i(t)=1,, sin(of +7y)

[, - peak value (amplitude)

ot +vy - the argument

Yy - the (initial) phase

|
F_L"; -1

P12 = Y1 — Y2 - phase shift, phase displacement

P =(0t+y)—(0t+7y7)=71 =72 %0




P12 <0

1>0  y2>0

Ai 2.1 INTRODUCTION

1)if o120 = yY1— ¥2 = 0, iyleadsin phase the currenti,
2)if @15 = ¥1— ¥ <0, iilags in phase behind the current i,

3if o12= y¥1— ¥> =0, i; and i, are in phase

4)if @12 = y1— Y2 = 1,
‘ T
5)if @12 = Y1 — }’z:iE,

i, and i, are in anti — phase

i, and i, are in quadrature




2.1 INTRODUCTION

Historical

Heinrich Rudorf Hertz (1857-1894), a German experimental physi-
cist, demonstrated that electromagnetic waves obey the same funda-
mental laws as lLight. His work confirmed James Clerk Maxwell's
celebrated 1864 theory and prediction that such waves existed.

Hertz was born into a prosperous family in Hamburg, Germany.
He attended the University of Berlin and did his doctorate under the
prominent physicist Hermann von Helmholtz. He became a professor
at Karlsruhe, where he began his quest for electromagnetic waves.
Hertz successfully generated and detected electromagnetic waves; he
was the first to show that light 1s electromagnetic energy. In 1887, Hertz
noted for the first time the photoelectric effect of electrons in a molec-
ular structure. Although Hertz only lived to the age of 37, his discov-
ery of electromagnetic waves paved the way for the practical use of
such waves in radio, television, and other communication systems. The

The Burmndy Library Collection

at The Huntington Library, . :
San ;mynl-j:iga]ifﬂmm?w unit of frequency. the hertz, bears his name.




2.1 INTRODUCTION

The average value (it cannot be used for sinusoids):

H+kT

=1 : j in(ot + y)dt I | cos(mf + )|t1 v
i =1, — sin(® =—|- =
" kT ! 21tk ! tl
h
I,
= [cos(wt] +7)—cos(wt] + koT +y)] =
- 2km
- instead:
T/2
21 Y/
Lyod = j I, sin otdt = —"- ‘—cosmt‘éz—]m.
To 0 Tt

0




2.1 INTRODUCTION

The RMS (effective) value :

Hh+T q+T

]2
=—j i2dr=m Jsinz(mt+y)dt= m

2

it results: ] = I—m or 1, = \/5]

i =~/21sin(ot +7v)

» The root mean square (RMS) value of an alternating current is numerically
equal to the magnitude of the steady direct current that would produce the same
heating effect, in the same resistance, in the same period of time.






2.1 INTRODUCTION

Mathematical operations with sinusoidal quantities :

v' The multiplication of a sinusoid with a scalar:

i = ai; = al;\2 sin(ot +7v1) = IN2 sin(of + )

I =al;y=y,

v" The addition of a sinusoidal time function:

ilzllﬁsin(a)t+7/1) : izzlzx/zsin(a)t+)/2)

i1+iz=i:1\/zsin(a)t+y).

1 :\/]12 +]22 + 2111, cos(y1 —7v2)

_ [1 sinyl +[2 SiIl’YZ

14 =
&7 Iycosyy +1,cosy»y




2.1 INTRODUCTION

v' The derivation of a sinusoidal current
i = I/2 sin(ot + )

% = co]\/zcos(cot +7v) = wl+2 sin(®f + 7y + g).

There results a sinusoidal current having the same frequency, having the amplitude
multiplied by w and which leads the initial current by 77/2.

v" The integration of a sinusoidal current

.fidt =— ! cos(at +y) = sin(@t + ¥ —g).

There results a sinusoidal current having the same frequency, having the amplitude divided
by w and which lags behind the initial current by w/2.

@



2.2. CAPACITORS

- In both digital and analog electronic circuits a capacitor is a fundamental element.
- It enables the filtering of signals and it provides a fundamental memory element.
- The capacitor is an element that stores energy in an electric field.

A capacitor consists of two conducting plates
Dielectnic with permittivity €

separated by an insulator (or dielectric). %
1 Metal plates,
each with area 4
I C i C[,!
—- —
I o o= | .
+ Y- + U - — —_—
(a) (b)
Circuit symbols for capacitors: (a) fixed

capacitor, (b) variable capacitor.

- In many practical applications, the plates may be
aluminum foil while the dielectric may be air, ceramic, d
paper or mica.




2.2. CAPACITORS

- When a voltage source is conected to the

— | capacitor, the source deposits a positive

charge g on one plate and a negative

+g —g charge -q on the other. The capacitor is said
N to store the electric charge.

g=C-u

Y
./

Capacitance is the ratio of the charge on one plate of a capacitor to the
voltage difference between the two plates, measured in farads (F).

1 farad = 1 coulomb/volt




2.2. CAPACITORS

insulator
If the plates have an area A and

plate of area 4 )
' are separated by a distance d, the

1 A - .
! : ol and thickness s electric field generated across the
i plates is:
* ] q
HE |9 E=a
+ ,,
™~ g : i‘“— d and the voltage across the capacitor
T L plates is:
qd
u=F--d=—
A

The current flowing into the capacitor is the rate of change of the charge across the capacitor
plates i = dqg/ dt:

~dq d (eA ) eA du du
[ = u =

PP TA W EL Rl

The constant of proportionality C is referred to as the capacitance of the capacitor. It is a
function of the geometric characteristics of the capacitor - plate separation (d) and plate
area (A) - and by the permittivity (¢) of the dielectric material between the plates.

s A
c=%22

’ ®



2.2. CAPACITORS

1. The surface area of the plates—the larger the area, the greater the
capacitance. cA
2. The spacing between the plates—the smaller the spacing, the greater C=—
the capacitance.

3. The permittivity of the material—the higher the permittivity, the
greater the capacitance.

Dielectric with
Distance "d Permittivity = £

| Inmetres
_  —
Conductive ._::::::::::::::'_
Plate A ST B
-
L ead
S Leakage resistance pr—
AN L ead
) ) Conductive .
- | ) Plate with Area Conductive
Capacitance A in mE Plate B

Circuit model of a nonideal capacitor.

@



2.2. CAPACITORS

Historical

Michael Faraday (1791-1867), an English chemist and physicist,
was probably the greatest experimentalist who ever lived.

Born near London, Faraday realized his boyhood dream by work-
ing with the great chemist Sir Humphry Davy at the Royal Institu-
tion, where he worked for 54 years. He made several contributions
in all areas of physical science and coined such words as electroly-
sis, anode, and cathode. His discovery of electromagnetic induction
in 1831 was a major breakthrough in engineering because it provided
a way of generating electricity. The electric motor and generator oper-
ate on this principle. The unit of capacitance, the farad, was named
in his honor.

The Burndy Library Collection
at The Huntington Library,
San Manno, California.




2.2. CAPACITORS

Capacitors are commercially available in different values and types.
Typically, capacitors have values in the picofarad (pF) to microfarad (uF)
range. They are described by the dielectric material they are made of and
by whether they are of fixed or variable type.

@®



2.2. CAPACITORS

: : L d
The current-voltage relationship of a capacitor is [ = Cd—?
1 (! 1
ww=¢ [ iwar u® =7 | O+ u(eo)
—o0 to

u(to) = q(tp)/C is the voltage across the capacitor at time fg.

Note that:
- for DC (constant in time) signals ( du/dt = 0) the capacitor acts as an open
circuit (i=0).

- the capacitor does not like voltage discontinuities since that would require
that the current goes to infinity which is not physically possible.



2.2. CAPACITORS

EXAMPLE 2.1.

(a) Calculate the charge stored on a 3-pF capacitor with 20 V across it.
(b) Find the energy stored in the capacitor.
Solution:
(a) Since g = Cuv,
g=73x 10" x20=60pC
(b) The energy stored is

ul:

1, 1 .
70 =5 x3x10 '2 % 400 = 600 pl

PRACTICE PROBLEM 2.1.

What is the voltage across a 4.5-uF capacitor if the charge on one plate
15 0.12 mC? How much energy i1s stored?

Answer: 26.67T A, 1.6 ml.




2.2. CAPACITORS

EXAMPLE 2.2.

The voltage across a 5-uF capacitor is
vif) = 10 cos 6000 V
Calculate the current through it.

Solution:
By definition, the current is

i = EE =35 X m-ﬁi(mmaﬁmm:}
dt dt

= —5 % 107° x 6000 x 10 sin 6000t = —0.3 sin 6000t A

PRACTICE PROBLEM 2.2.

If a 10-uF capacitor is connected to a voltage source with

v(t) = 73 sin 2000t V

determine the current through the capacitor.

Answer: 1.5 cos 2000 A.




EXAMPLE 2.2. 2.2. CAPACITORS

Determine the current through a 200-uF capacitor whose voltage is

shown 1n Figure 1
i) &

Solution: 30 =
The voltage waveform can be described mathematically as

F

50t V 0<r=1 0 ]' 3 3' :'1 >
o) = 1 100 — 50t V 1 <<t<3 \/
=200 + 5t V J<t<4 -50 |
. 0 otherwise Figure 1

Since i = Cdv/dt and C = 200 uF, we take the derivative of v to obtain

i

o v oy
: 6 — t
i) =200 x 10 7 x4 50 3 < <4 10
.0 otherwise
(10mA  0<t<] o Y Y IR
_)-1omA 1<r<3
] 10mA  3<ir<4 -0
0 otherwise

%,

. o Figure 2
Thus the current waveform is as shown in Figure 2




2.2. CAPACITORS

The instantaneous power delivered to the capacitor is

d-.
p=uvi= Cv=—
dt

The energy stored in the capacitor is therefore

" I S uir) vir)
dv l
w=| prydr=C L-‘d—[;dT =C v dv = —Cv’

Jup( —ao) 2 v —a)

Y — o Y o— ol

We note that v(—o2c) = 0, because the capacitor was uncharged at
t = —. Thus,




2.2. CAPACITORS

EXAMPLE 2.4.
Obtain the energy stored in each capacitor under dc conditions.
2 mF
[
Il
Solution: 2kQ
Under dc conditions, we replace each capacitor with an open circuit, WW
as shown in Figure 2a). . The current through the series combination SRQEE J
of the 2-k{) and 4-k() resistors is obtained by current division as 6 mA (D 2 3k IR
4 mF _—l—
fT3r2ra0mATImA @
Hence, the voltages v, and v, across the capacitors are o+ vy —
v, =2000i =4V v, =4000i = 8 V 2kQ .
A
and the energies stored in them are ) L
SkQ =
1 = =2 Z e
w, = ECIU% — 5{2 % 10—?}(4)2 = 16 ml 6 mA t/. = k0 _|g_ = 4 kQ)
v
I 2 _ | —3y 002 ?
wr, =—Cws =—(4 X 10 "}8) = 128 mJ
2 2 (b)
Figure 2



2.2. CAPACITORS

Parallel capacitors

: I +
i) o= == cy=—u =y i} Cog == u

.F:I|‘|‘h_h_ T I
du du du du C. =C.+C,+C.+.---+C
— (. — _ ... = e | 2 3 N
l Cldt Czdt+C3d -+ +Cndt q
N
_ ZC du  du 4
B klde — “edt
k=1

The equivalent capacitance of NV parallel-conected capacitors is the sum of
the individual capacitances.

@



2.2. CAPACITORS

Series capacitors
i C, C, C;

— | ] | Ciw —
I I I
I | | '_II
+¥ - +¥ - + V- + Uy — +
T ‘ v @D Ceq —_ v
U=U; + Uy T U3+ "+ Uy o
i " L
=i | YT ¥ vkdy) i | irldrEaal)
C, ] (7) 1{Zo) C, . 2%%0
fo fo | 1 1 1 |
= + + + 0+ —
- Cq C1 C, Gy Cy
it st i(T)dT + vy(lp)
Cwn |

In

i
(T)dT + v(ty) + vy(ty) 4

Iy

C| Cg CN J

N
= C—Eq J i(T)dT + v(ty)

+ = + vpltp)

Ly




2.2. CAPACITORS

The equivalent capacitance of /N series-conected capacitors is the
reciprocal of the sum of the reciprocal of the individual capacitances.

In case of 2 capacitors (N=2)

1 ] ]
i g i ‘ GG
C C, C. S

Cs “7 0+ G




2.3. INDUCTORS

- Is a passive element designed to store energy in magnetic field.

- Inductors are used in numerous applications in electronic and power system (power
supplies, transformers, radios, TVs, radars, electric motors etc.)

An inductor consists of a coil of
conducting wave.

+—Length, {—

Cross-sectional area. A

i+ |
+ L -
u=L b= || L
(a) (b) (c)

Circuit symbols for inductors: (a) air-core,
(b) iron-core, (c) variable iron-core.

Core material

Number of turns, N

Any conductor of electric current has inductive
properties and may be regarded as an inductor.
But in order to enhence the inductive effect, a
practical inductor is usually formed into
cylindrical coil with many turns of conducting

wire. O



Uu=>L—

dt

2.3. INDUCTORS

If current is allowed to pass through an inductor, it is found
that the voltage across the inductor is directly proportional
to the time rate of change of the current.

L is the constant of proportionality called inductance of the
inductor

Inductance is the property whereby an inductor exhibit opposition to the
change of current through it, measured in henrys (H).

N°pA .
= f—”“ -

| volt-second per ampere.

N is number of turns

| is the lenght

A is the cross-sectional area

M is the permeability of the core

inductance can be increased by increasing the number of turns of
coil, using material with higher permeability as the core, increasing the
cross-sectional area, or reducing the length of the coil.




2.3. INDUCTORS

Historical

Joseph Henry (1797-1878), an American physicist, discovered induc-
tance and constructed an electric motor.

Born in Albany, New York, Henry graduated from Albany Acad-
emy and taught philosophy at Princeton University from 1832 to 1846.
He was the first secretary of the Smithsonian Institution. He conducted
several experiments on electromagnetism and developed powerful elec-
tromagnets that could lift objects weighing thousands of pounds. Inter-
estingly, Joseph Henry discovered electromagnetic induction before
Faraday but failed to publish his findings. The unit of inductance, the
henry, was named after him.

MOAAs People Collection




2.3. INDUCTORS

Like capacitors, commercially available inductors come in differ-
ent values and types. Typical practical inductors have inductance values
ranging from a few microhenrys (uH). as in communication systems,
to tens of henrys (H) as in power systems. Inductors may be fixed or
variable. The core may be made of iron, steel, plastic, or air. The terms
coil and choke are also used for inductors.

@



2.3. INDUCTORS

L 1t
) ) = T f u(t)dt + i(to)
[ t

i(t) = %Jj u(t)dt 0

The power delivered to the inductor:

L Ldi .
p=ui=|L_ )i

The energy stored in the inductor:

[ [ di
w=f p(t)dt=Lf —idt =  Since i(—=) =0

at > L,

i . 1 .2 1 .2
ZLJ‘ IdtZELI (t)—ELI (—OO)




2.3. INDUCTORS

Note that:

for DC (constant in time) signals the inductor
acts as an short-circuit (u=0).

the current through an inductor cannot
change instantaneously. L R,

Circuit model for a practical inductor.

like the ideal capacitor, the ideal inductor
does not dissipate energy.

A practical, nonideal inductor has a significant resistive component,
as shown in Fig. This is due to the fact that the inductor is
made of a conducting material such as copper, which has some
resistance. This resistance is called the winding resistance R,,, and
it appears in series with the inductance of the inductor. The pres-
ence of R, makes it both an energy storage device and an energy
dissipation device. Since R,, is usually very small, it is ignored in
most cases. The nonideal inductor also has a winding capacitance
C,, due to the capacitive coupling between the conducting coils. C,,
is very small and can be ignored in most cases. exceot at high fre-
quencies.

0




2.3. INDUCTORS

EXAMPLE 2.2.

The current through a 0.1-H inductor is i(f) = 10te " A. Find the volt-
age across the inductor and the energy stored in it.

Solution:
Since v = Ldi/dt and L = 0.1 H,

d - - - -
v = {].IE(]DIE M= 4 (=5 T=e¢ M1 -5V

The energy stored is

1 1
w = ELF = Em.mmﬁe"“’ — 5t% 101




2.3. INDUCTORS

EXAMPLE 2.6.
I1Q 50
AW A .
) “‘L
=40 ;
P = p
12v (%) . .
ve =—— 1F T
(a)
L Y 30
A A .
_J‘_ L‘L
z4Q .
(+
v® L]
e : (8]
il |
(b)

Figure 6.27
For Example 6.10.

Consider the circuit in Fig. 6.27(a). Under dc conditions, find: (a) i, ve,
and i;, (b) the energy stored in the capacitor and inductor.

Solution:

(a) Under dc conditions, we replace the capacitor with an open circuit
and the inductor with a short circuit, as in Fig. 6.27(b). It is evident
from Fig. 6.27(b) that
12
1+5

i=i, = —2A

The voltage v is the same as the voltage across the 5-() resistor. Hence,
ve=5=10V
(b) The energy in the capacitor is

1 1
wczaa%ziumfp=mj

and that in the inductor is

Li = —(21-(2 ) =41

1
IUL:E




2.3. INDUCTORS

EXAMPLE 2.7.

Find the current through a 5-H inductor if the voltage across it is

301, t =0
v(f) =
0, t< 0

Also, find the energy stored at r = 5 s. Assume i(v) = 0.

Solution:

] i
Since i = 7 [ vi(f)dt + i(tg) and L = 5 H,

o

Iy

1 (' 3
i=— [ 0°dt +0=6X —=72t" A
5, 3

The power p = vi = 60¢°, and the energy stored is then

65

A
I
w = [pdr= [ 60r5dr=6t:€
: "0

= 156.25 k]
0




2.3. INDUCTORS

Series inductors

i L] L: L:l. L.-"'-" ]
FEEE Y FEX K™ fFEKK ™ FEE K™ 0O
("}—,- W II W ll " II S—— LY L .- e T _— ¥V T b
g = ., = Fg = e A — +

A A

2
HI
u ‘ u = L,

y
S

U=u;+u;+uz+--+uy

di  di di di [
=L1—+Ly—+Lz3—+ -+ Ly—= eq ' S N
e P PRI I Ndt

di I
- (Ll +L2 + Lg + -+ LN)EZ -

N

(N, i,
- Z kK lat — “eqt
k=1

The equivalent inductance of NV series-conected inductors is the sum
of the individual inductances.
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Series and parallel inductors

2.3. INDUCTORS

—_— — -
Cal ] e M :
+ !] 12 h_‘ '[N T
u ‘ u g‘[‘eq
Ly 3L, 3L, Lo
o O
O
_ ]]ﬂrd+'()+lfd+'( I l | [ +1
[ = U dt 1(f — 1L ai <+ 15t = i
PR Y Rt Ly L L L Ly

N B N
(30 [va+ ey

In

l i
e J vdt+ IN(ID)
I

ri
) J vdt + .'l[fg.\]' + ."-2“(].}

Iy
S Rl fN{IDJ
|

~ 1
vdt + i(ty)

e




2.3. INDUCTORS

The equivalent inductance of N parallel-conected inductors is the
reciprocal of the sum of the reciprocal of the individual inductances.

In case of 2 inductors (N=2)

= + or Lo =




Important characteristics of the basic elements:

Resistor (R) Inductor (L) Capacitor (C)
u(®) = - f i(Ode

- o

i =u/R

p or w: 2p u?
=1 = —
P R

same

Circuit variable

that cannot Not applicable
change abruptly:

Parallel: R{R;
R =—=
“‘ Ry +R,

w = = Cu?

Leg = L1 + L,

I = LiL,
4 L, +L,

short circuit

2.4. RLC circuits

Lo

_Cdu
t=C0
1
=—L"?'
w =L

C,1C;
Cea = T rC
1 TG
Cog = C1 + Cy

open circuit




2.4. RLC circuits

In contrast to a resistor, which spends or dissipates > @
energy ireversibly, an inductor or capacitor, stores or '.
releases energy. &

lR'lr l'f*f lI_

| |
R rUR ==JUC Lé JUL




2.4. RLC circuits

» R, L, C series circuit

O l.{': u(t) = U2 sin(ot + B)
S~~—7 . .
o e i(7) = I\2 sin(at + y)
uy (1) L where I and y are unknown.
uc(t)
2o~
o || u(®) =ur(@)+ur()+uc?)
C

Ri(t)+ L d;f;) + é ji(t)dt =U+2 sin(wt + )

-the phase displacement between a voltage and the associated current

p=p-y




2.4. RLC circuits

-There are two possibilities: u(t) = U2 sin(wt + B)
a) If f=0 then y=-¢ i(t) = I\/Esin(a)m— ¥)

u(t)zU\/Esina)t p=F=v
i(¢) = I\2 sin(ot - p)

b) If =0 then Lf=¢

u(t)y=U \/5 sin(t + @)
i(t) = I\/Esin wt

Remark: solving the problems, we will choose as having the itial phase
angle equal to zero the quantity (current or voltage) which is more often
encountered in the functioning equation of the circuit.




2.4. RLC circuits
u(t) = U2 sin(at + f)
i(t) =12 sin(a)f +7)
d’(t) 4 j (t)dt = U2 sin(wt + f3)

RI\/Esina)hLleﬁcoswf—ilﬁcoswf:

Ri(t)+ L

= U\/Esina)tcosgo+U\/Ecosa)tsingo
By identification:

Ucosp = IR
: 1
Using = I(ol ———)
wC

U cos g 1s called the active component of the voltage,

Usin g is called the reactive component of the voltage

1
I = v oL ———

2 1 o Q. oC
R [ — O=PB-y=arctg
\/ + (@ a)C) R




1
where: |Z =\/R2 +(00L——)2

oC

2.4. RLC circuits

1s the impedance of the circuit

4 1

~

The impedance triangle: R2 4+ X2 = 72 @

wl — — = X is the reactance,
wC
wl = X 1 1s the inductive reactance, B
! X,
— = 1S the capacitive reactance
\ wC ¢ P / Z
Xy - Xc
©
A
0
R




2.4. RLC circuits

» R, L, C parallel circuit

:.{ — - 1 {u(t) =U~2sinw-t

i() = IN2 sin(w -t — )

L 5
-l- where I and ¢ are unknown.

() =ig(@®)+ip () +ic(?)

du(r)

G'“(f)+%ju(t)dt+C :]ﬁsin(a)-t—go)

GUsinw-t— cosw-t+w-CUcosw -t =

w- L
=Isinw-tcosp—Isin@pcosw-t




By identification:

Isingp = V(

"

(Icosp=GU

()

1

——w-CJ
L

I cos @ -1s called the active component of the current

Isin @ - is called the reactive component of the current

| 2
[=U G2+(——a)-Cj
w- L

, (1 i
G +|———w-C| =Y
- L

L—a)-C:B

(@ = arctan

b
- L

2.4. RLC circuits

1S the admittance of the circuit,

w- L 1s the susceptance.




2.4. RLC circuits

!

‘ﬁj
Admittance Triangle

E-j G (conductance)

R (resistance)

A (reactance)

Impedance Triangle

B (susceptance)

Obs: Admittance, Y, is the reciprocal
of impedance Z.




POWER IN SINUSOIDAL REGIME

i u(t):U\/Esina)-t
i(¢) = IN2 sin(o-t — )

v :>
1) The instantaneous power:

o pt) = u(t)i(y

p =2UI sin wt sim(wt — @) = UI cos ¢ —UI cos(2awt — @)

- The instantaneous power is the sum of a fundamental component and a
harmonic component whose angular frequency is twice the angular
frequency of the voltage and current.




2.5. POWER IN SINUSOIDAL REGIME

P A UI(COS(p+1)

u
i —
p
Ul
- >
¢ TN
UI(coscp—l) “. \
\‘—i
0 0 0
p= p<0 b= p<0 b= p<0

The meaning of a negative instantaneous power is that the circuit returns
power to the source. This happens when the circuit contains reactive (or

energy-storing) elements.



2.5. POWER IN SINUSOIDAL REGIME

2) The active power - 1s the average power over a cycle:

i 1k A
P:—Ipdt :—jU[cosgadt——JUICOS(2wt+¢)dt =Ul cos @
TO TO TO

P=Ulcoso |[W]

3) The total or apparent power :

S=UI |[VA] - the power factor | k = — = cosg

Ll

4) The reactive power :

Q =Ulsing | [VAr] S = \/P2 n QZ




PHASORS

REPRESENTATION OF SINUSOIDAL TIME FUNCTIONS BY
VECTORS AND COMPLEX NUMBERS

A phasor is a rotating vector representing a quantity, by means of a line
rotating about a point in a plane, the magnitude of the quantity being
proportional to the length of the line and the phase of the quantity
being equal to the angle between the line and a reference line

Sinusoids are easily expressed in terms of phasors, which are more convenient to work with
that sine and cosine functions.

The origin of the term phasor rightfully suggests that a (diagrammatic) calculus somewhat
similar to that possible for vectors is possible for phasors as well.

An important additional feature of the phasor transform is that differentiation and integration
of sinusoidal signals (having constant amplitude, period and phase) corresponds to simple
algebraic operations on the phasors; the phasor transform thus allows the analysis
(calculation) of the AC steady state of RLC circuits by solving simple algebraic equations
(with complex coefficients) in the phasor domain instead of solving differential equations
(with real coefficients) in the time domain.

The originator of the phasor transform was Charles Proteus Steinmetz working at General

Electric in the late 19th century.



2.6. PHASORS

Vector rotation

c,’;{f:::\\\\y o rads's
g +Am

9
120°

—— Ay = A, sin(ot + )

150°
| 360°
-1BI:II:| i (] Il:l I [a]
307 60° 90° 120 150
210° 330° | ot

770° A

Sinusoidal Waveform in
the Time Domain

JaRY

RotatingPhasor

(nd




2.6. PHASORS

The idea of phasor representation is based on Euler’s identity. In
general.,

e/? = cos¢p * jsing (Eq. 1)

which shows that we may regard cos¢ and sin¢ as the real and imag-
inary parts of e/*; we may write

cosd = Re(e’?) (Eq. 2a)
sind = Im(e’/®) (Eq. 2b)

where Re and Im stand for the real part of and the imaginary part of.
Given a sinusoid v(f) = V,, cos(wt + ¢). we use (EQ.-23) | to express
v(t) as

v(t) = V,y cos(wt + ¢) = Re(V,,e/ %) (Eq. 3)

or

v(f) = Re(Vye'?e’™) v(r) = Re(Ve™)

e ¥ T
V= 1rJIIr!u e’ 1':.'.' "JI"

@®



2.6. PHASORS

v(t) = Re(Ve/=')

Rotation at @ rad s |
Iy
< : >
Im i 1
atr= :D ;_ o
(a) (b)

Representation of Ve'': (a) sinor rotating counterclockwise, (b) its projection
on the real axis, as a function of time.

v(t) = Vycos(wt +¢) = N =V,/¢

( Time-domain (Phasor-domain
representation) representation)




2.6. PHASORS

A) Geometrical (phasorial) representation.
sol i:I\/Esm(oot+y) OAd=12
VAN
___________________________ " AOxy =t +7
Vector:
T 13 . - its projection onto the vertical
t ,,,,,,, X axis Oy represents the
ffffff ot instantaneous value of i(7) to the
\ ‘_,” ’(Dt + 'Y
" > scale chosen.
0 - Ox axis is called reference axis.
o
°_ v
" The phasor is not an electric current (voltage), it is only a symbol for it.
=

@



2.6. PHASORS

Mathematical operations in phasorial representation.

a) The multiplication of a sinusoid by a scalar ,,a”:

Y| :
@'\ The resulting phasor has its peak value ,,a”
(&)
wt+f times bigger and the same phase angle.
0 <
b) The addition: 1 + iziﬁl + 047 = [ V2/ ot + Y1+ 15 V2/ ot + Y9
A
Yo




2.6. PHASORS

c) The derivation :

Yo A % = w21 cos(awt + )

di . T
—:a)\/zlsm wt+v+—
di ( 4 2)

The derivation of a sinusoid corresponds to the multiplication of the peak
value by w and counter-clockwise rotation of the phasor with 7t/2

58



2.6. PHASORS

d) The integration:
vo 4
A 21 .
2 jidt = Lsm(a)t +y — Zj
) 2
ot+y
0 g I
=0 22t +y-=
® 2
W2
®

The integration of a sinusoid corresponds to the division of the peak value
by w and clockwise rotation of the phasor with /2

Important remark: in practical work, the Argand (phasorial) diagram is
simplified by omitting the axes.

@



REVIEW: COMPLEX NUMBERS

A complex number z may be wrntten in rectangular form as

I=x+ (B.1)

where j = \V—1; x is the real part of z while v is the imaginary part
of 7; that 1s,

The complex number

x = Rel(z), y = Imf(z) (B.2)

i1s shown plotted in the complex plane in

Fig. B.1. Since j = V—1,

Im A
I .
r/
¥
o
' -
0 X Re
Figure B.1

Graphical representation of a
complex number.

l i

— = —j

J

jt=—1

PF=jeit=—j iB.3)
jt=jjt=1

P=icit=i
.".‘+-|-:J'|'I




REVIEW: COMPLEX NUMBERS

A second way of representing the complex number z is by speci-
fying its magnitude r and the angle € it makes with the real axis, as
Fig. B.1 shows. This is known as the polar form. It is given by

2= 2//0 =r/6 (B.4)
where
/ y
r=VxX+y, 0= tan_]; (B.5a)
or
X = rcos#f, v = rsin# (B.5b)
that is,

z=x+jy=r/6=rcosb + jrsinf (B.6)




REVIEW: COMPLEX NUMBERS

In converting from rectangular to polar form using Eq. (B.3). we must
exercise care in determining the correct value of 8. These are the four

possibilities:

yV
Z=Xx+jw B = tan_]'; (1st Quadrant)
yV
z=—x+jy, 6 =180°— tan_"? (2nd Quadrant)
' (B.7)
¥
z=—x—jy, 6=180°+ tan_'%{_ (3rd Quadrant)

‘l._:'
z=x—jy, 6 = 360° — tﬂn_"? (4th Quadrant)

assuming that x and y are positive.




REVIEW: COMPLEX NUMBERS

The third way of representing the complex z is the exponential
form:

z = rel? (B.8)

This is almost the same as the polar form, because we use the same
magnitude r and the angle 6.

The three forms of representing a complex number are summa-
rized as follows.

(x = r cosf,y = rsinf) Rectangular form
/ \/ 2 A
z=r/6, r=\Vx + v, 8 = tan L’ Polar form
@ r=\Vx*+y.0 =tan L Exponential form

(B.9)

The first two forms are related by Egs. (B.5) and (B.6). In Section B.3
we will derive Euler’s formula, which proves that the third form is also

equivalent to the first two.



2.6. PHASORS

B) Analytical (or complex) representation.

+j

[ = ]\/Esin(a)t +7v)

- The complex time function
(complex instantaneous value):

ot +y " ;= [\/Eej(oot-w)

0
i =12 sin(wr +7) i = [\/2e7(@1HY)

[ = J2r1 cos(awt +y)+ j\/EI sin(at + ),




2.6. PHASORS

Mathematical operations in complex representation.

a) The multiplication by a scalar ,,a’:

a-i:alx/zsin(a)tJr;/) o a2/ =g

b) The addition :

c) The derivation:

demonstration: ”

where:

di

dt

< joi

T

Adding sinusoids of the same fre-
quency is equivalent to adding their
comesponding phasors.

Differentiating a sinusoid 1s equivalent
to multiplying s corresponding phasor
by fewr.

E—w]ﬁcos(a)t+y)— wl\2sin(wt + y + )

T

olN2e 7 — oz 2 = jol2e" ) = jo-i,

J* .
2 :cosz+]sm— Jj

@



2.6. PHASORS

1 | Integrating a sinusoid is equivalent to
. . idt > . I dividing its cormesponding phasor
N . -— .
d) The integration : j < o oy jo.

1 \/5 j(wt+7—%)
e -
a

J'ia’t = —ﬂcos(a)z”ry) ! sin(awt + y —%) -
@

_ V2 o/ (@) 5 -L,]\/Eej(wtw) _ Ll
@ jo jo

. s T\ .. T 1
where: ¢ 2 :cos(— —j+]s1n(— _j =—j=—
2 2 '

The simplified complex representation:
i=12 sin(wt + 7)o 1 = le’Y

It 1s called complex effective value.




L I
— -
O N
+ +’
U f ! U = C
U=joll | = jwCU

Im A

Im A Im A

& 1

~
1]
~ Y




2.7. CHARACTERISATION OF LINEAR CIRCUITS IN COMPLEX PLANE

u=U\2sin(ot+pB) U=U-e/’
i=I2sin(wt +y) I=1-¢

2.7.1. The complex impedance

VA :g = fi(o,R,L,C,...)

:gej(ﬁ—ﬂf) :gCOS(,B—j/) + jgsin(ﬂ—j/)

7 =
o 1 1 Ji

I~ i~

=7Ze'’ =Zcosp+ jZsing =R+ jX

IN

Where: Z is the impedance
R =Zcosg is the resistive or in-phase component,

X =7 sing 1s the reactive or quadrature component.




>

cg

1IN

@ 7 =R+ X°

= arctan —
v R

+1

AVARARRRRRRRRRRRRNASNY

A

Q<€

R>0
For the RLC series circuit:
R
N 1
— 1 Z:R+jX:R+j(a)L——)
N~——"7 C()C
u R
u, ULQ L [:Q:Ue{ﬁ _Y i(B-0)
‘T-I\ L z? Z
| | . U
¢ i:Im[\/il-e]w"‘]:E\/Esin(a)z”rﬂ—go)

@



2.7.2. The complex admittance

I 1
Y===—=g(w;R,L,C,...
Y=0°2 g1 ( )
I-¢7 I _in ] ]
Y = = — ¢ /P = Zcos(B-y)— j-—sin(B -
Y="0070 i (B-y)—J T (B-7)

Y=Ye’’=Ycosp— jYsing=G- jB
G =Y cos¢ 1s the conductance (the real part of Y),

B =Ysing is the susceptance (the imaginary part of Y).

Y =G>+ B




- 1t should be noted that G = i and B = £ because:
7’ z?

1 R-jX R X

1
Y = = = —_
~ Z R+jX R+X° R+X° "R X’

=G jB

Y =+/G*+ B2 — the admittance triangle

+
—.

- the current:
G>0 +1

> [=U-Y=UYe /? =UYe/ (P9

=<

i(t) = Im[\2 1e/® 1= UY~2 sin(wt + B — @)

ANOOONONNNNNNNANNNNNNNNN
S

@



2.7.3. The complex power

Let U=UeF and I =1Iel7

- the complex power: S = Ql*

S =Ue’P 1777 =UI1e/\P7) =Ule/? = Se/? =Ul(cosp + jsing) =P+ jO

S =U"I=Ule™’? =Ul cosp— jUlsingp =P — jO

A+ ]

P>0 SZQI*
P<0 .
Q>0 ' Q

5 vl

P<0 :
Q=0 :-Q

Q<0 S"=U"1I




George Westinghouse. Photo
© Bettmann/Corbis

Historical

Nikola Tesla (1856-1943) and George Westinghouse (1846-1914)
helped establish alternating current as the primary mode of electricity
transmission and distribution.

Today it is obvious that ac generation is well established as the form
of electric power that makes widespread distribution of electric power
efficient and economical. However, at the end of the 19th century, which
was the better—ac or dc—was hotly debated and had extremely out-
spoken supporters on both sides. The dc side was led by Thomas Edison,
who had earned a lot of respect for his many contributions. Power gen-
eration using ac really began to build after the successful contributions
of Tesla. The real commercial success in ac came from George
Westinghouse and the outstanding team, including Tesla, he assembled.
In addition, two other big names were C. E. Scott and B. G. Lamme.

The most significant contribution to the early success of ac was
the patenting of the polyphase ac motor by Tesla in 1888. The induc-
tion motor and polyphase generation and distribution systems doomed
the use of dc as the prime energy source.
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1. INTRODUCTION

When two coils with or without contacts between them affect each other
through the magnetic field generated by one of them, they are said to be
magnetically coupled.

Inductive coupling is widely used throughout
electrical technology; examples include:

v Electric motors and generators

v Inductive charging products

v" Induction cookers and induction heating
systems 13,56 MHz
Induction loop communication systems
Metal detectors

Radio-frequency identification
Transformers

Wireless power transfer

-----

SN LR

Contactless Card

ANANENENAN

Working principle of nductive coupling in NFC devices
NFC (Near Field Communication) works based on the principle
of mductive coupling, where loosely coupled inductive circuits share
power and data over a distance ofa few centimeters. All NFC devices
operate at 13.56MHz. NFC devices share the basic technology with
proximity (13.56MHz) RFID (Radio-Frequency Identification) tags and
contactless smartcards, but have a number of key additional features.

@

Source: [www.wireless.intgckts.com]



2. MUTUAL INDUCTANCE

When two coils are in a close proximity to each other, the magnetic flux caused by current
in one coil links with the other coil and inducing voltage in the latter. This phenomenon is
known as mutual inductance.

- Consider a coil with N turns, when current i flows through the coil, a magnetic flux ¢ is produced around it.
According to Faraday’s law, the voltage v induced in the coil is proportional to the number of turns N and the time
rate of change of the magnetic flux ®@; that is,

An inductor : * e P dj
inductance L i(f) *) 3 AT Al
N turns N (S
e For each turn, the induced volatge 15 + N
v
Vip = d9 (Faradays's Law) -t
dt +
e For N turns, the induced volatge 1s y it
: : .
y=NI_yd0di_ i L+
dt di di dt "
1T
do _ -

= L=N 5 (self -inductance)
i




, self - inductances L,
Coil 1:

N, turns

_ self - inductances L,
Coil 2:
N, turns
e Assuming no currentin coil 2,
the flux generated by coil 1 1s
¢, = ¢,,(onlycoil 1)+ ¢, (both cnils)
do, dg, dr]

—v,=N,—=N, =
NEN T [’1
where L =N, — d¢
di,
:jlﬁzhwzdﬂz:“de¢u£EL:ﬁ{uE£
dt di, di dt

i(1) {) vy

2. MUTUAL INDUCTANCE

L,

Ny turns N, turns

e The mutual - inductance of

coil 2 with respect to coil 11s

ﬂ{N:;NEEQE
1 di,
¢ The open - circuit mutual voltage 1s
| di
v, =M, —L
M ar

@



2. MUTUAL INDUCTANCE

) self -inductances L, O
Coil1:

+ +
N, turns
Coil 2- self -inductances L, v, o ir(f)
N, turns
® Assumingno currentincoill, 5 — =
the flux generated by coil 21s N;turns N, turns

¢, = ¢,,(only coil 2) + ¢,, (both coils)

—V; :NE%ZNA délﬁzizﬁ
dt di, dt dt

e The mutual - inductance of

coil 1with respect to coil 21s

dg,,
M,=N =M
where L, :de_@ ) | di, i
di, e The open - circuit mutual voltage 1s
:vlzNJ%:Nld‘f’nﬂ:Muﬁ di,
dt di, dt dt v =M, =




2. MUTUAL INDUCTANCE

We will see that M ,,=M,,=M.

Mutual coupling only exists when the inductors or
coils are in close proximity, and the circuits are driven
by time-varying sources.

Mutual inductance 1s the ability of one inductor to
induce a voltage across a neighboring inductor,
measured in henrys (H).

The dot convention states that a j__ '/’ﬂ%

current entering the dotted terminal — N
induces a positive polarity of the 3 % Loy
mutual voltage at the dotted terminal L dr
of the second coil.

Mutual inductance is always a positive quantity, the mutual
voltage M di/dt may be negative or positive, just like self-
induced voltage L di/dkt.

@



2. MUTUAL INDUCTANCE

Examples illustrating how to apply the dot convention:

_ M M M
I Ty . [y 4
e Y Yy =2 Yy <=
5 + -~ 5
L] »
di l = di | din o L di, - =
= M— S B = —M— Y - M2
- dt )G ) E dr == d o C = dt <,
L ]

4
Coil 1 Coil 2

i, induces ¢, and ¢, | . .
'1 . . , . de, N d(¢|]+¢|2)+N de, . di M diy
I, induces ¢, and ¢, | i =M T = T "t =1 PP

¢ =(d,+d,)+ ¢y, v, =N, d¢, =N, d{“"ﬁz:;"ﬁﬂ]I+N2 9 =L2£+M i

b =, + (¢, + ) dt t dt dt di
-




2. MUTUAL INDUCTANCE

Example:
j3Q

-j4 P

12£0°V (‘.".) sQx Ejen 3120




Example:

100,/0° V i)

= +j8Q -
a1 e
i2Q
+
j6 Q) -

Z5Q

2. MUTUAL INDUCTANCE




2. MUTUAL INDUCTANCE

2.1. Series-Aiding Connection

M o
—
B b
I I —
—_— B
O 411 4110 O &,
L, L,
¢
+ Vi — + V, — —-
Vi =J[*lﬁ‘“]‘/*‘rlzﬂ
dt dt
di di But Mu:Mm:M:
vV, =LE—+M2]— di
dt dt =v=(L+L,+2M)—
vV=v+V, ’
. . . . =L =L +L, +2M
eq 1 2
=Llﬁ+M|2E—I—L2ﬂ+Mﬁ£
dt dt dt dt

di
=(L1 +1, +M|2+le)§;




2.2. Series-Opposing Connection

2. MUTUAL INDUCTANCE

Pu
—_—
m ¢11
i i e
° — °
O 4115 4115 O b
Ll LZ
oy b
1 - + V2 - -—
di di
=L —-M,—
dt dt But M. = M. =M
di . di ut My, =My =M,
Vy =Ly —— My — di
dt dt =v=(L+L,-2M)=
V=v,+V, dt
di  di o di . di | fa=htl-2M
=L ——M,—+L,——M, —
dt dt dt dt

di
=(L1 +L,-M,, _MEI)E




2. MUTUAL INDUCTANCE

2.3. Energy in a Coupled Circuit

1., 1. . . 1., 1 . .
w=—Li’ +—L,i; + Mii, w=—Li’ +—L,i; — Mii,
2 2 2 2
M M
iy 2 i
o O o {‘_-\' 0
. . o |e
L, % L, L, g E L,
i
o 2 O O
M M
i
R 2 . Yy <2
- - . -
.3 £ )3 g
i- ---lIi ill
o O o i




2.4. Coupling Coefficient

e The coupling coefficient k 1s

defined as
k = M (0<k <)
LL,
or M=k,LL,
° k ¢12 ¢2

TG+ Oty

e k =1means perfect coupling.

¢, =¢,, =0

2. MUTUAL INDUCTANCE

Ly L,
O
¢bia
+ ‘i’ll - +
a'#“'l A
@ o T % E 5
"‘"".._‘:
O
N, turns N, turns
Ly L,
o
by
+ ., fzz t
' \'. -
O

N, turns

N, turns




perfect coupling: If all flux produced by one coil links another coil, then k£ = 1
and we have 100 percent coupling.
No coupling: If the flux produced by one coil doesn’t link the other coil, then k

=0 and we have 0 percent coupling.

loose coupling: if k < 0.5, as shown in Fig .

tight coupling: if k >= 0.5, as shown in Fie

Figure 1- Loose coupling Figure 2 — Tight coupling




Example:

Q :Find k and the energy stored in the
coupledinductorsat ¢ =1s.

M 25
JLL, 20
eFormeshl,

(10+ 2001, + j10I, =60230° (1a)
e For mesh 2, S

JI0L +(j16— j4)I, =0

L =3905£-194°

~ {12 =3.254160.6°

{f] =3.905cos(4f —19.4°)

Sol: k= =0.56

(1b)

—i,(1)=-3.389, i,(1)=2.824

W= %L,z’f +%L2i§ +Mii, =20.73]

2. MUTUAL INDUCTANCE

25 H

10 €
MWW

d _

'
sng Ean =

I
=
11

v=60cos(4t+30°)V

¢ =4 rad/s

jlo

{ Y

10 €2

ANy
- . -~
. = —a I Y
G) j20Q3 %;Iﬁﬂ @ —j4 Q

A




3. LINEAR TRANSFORMER

A transformer is a magnetic device that takes advantage of the phenomenon of mutual inductance.
v The coil that is directly connected to the voltage source is called the primary winding.
v" The coil connected to the load is called the secondary winding.

v" The resistances R1 and R2 are included to account for the losses (power dissipation) in the coils.
v" The transformer is said to be linear if the coils are wound on a magnetically linear material.

) -}

Secondary coil

i




4. IDEAL TRANSFORMER

» An ideal transformer is one with perfect coupling (k = 1). It consists of two (or more) coils
with a large number of turns wound on a common core of high permeability. Because of this

high permeability of the core, the flux links all the turns of both coils, thereby resulting in a
perfect coupling.

Secondary
winding

1. Coils have very large reactance. (L,, L,, M ~ )
2. Coupling coefficient is equal to unity. (k= 1)
3. Primary and secondary are lossless.

(series resistances R,= R,= ()



V,=joLl + joMI, (la)
{VE = joMI, + joL,I, (1b)
From (1a),

I =(V| _ijIE)/ijI (Tc)
Substituting 1(c) into (1b) gives
v, =%v1 {Lz —ﬂﬁ ijlz

| 1

e For perfect coupling,

k=]. or M=1|I|L1L2
JLL J
=V, =42V, = ﬁv,mvl
Ll LI

where n1s called the turns ratio.

4. IDEAL TRANSFORMER

joM
I I,
_'. *—
+ +
° °
V), JjoL, jwL, Vs




I, I,
o : ] "n —
L . *aia . et
o i
v, 2| EV, Z
-vI:NI%, vZ:NZ%
:>V_1:£:n or Vl:NEZn
1l”Il Nl V] Nl

e The transformer 1s lossless = v,i; = v,i,

i v, 1 (I, V 1
%:—1:—:—2 1
i v, n |l

vV, n

4. IDEAL TRANSFORMER

A step-down transformer is one whose secondary voltage is less than

its primary voltage.

A step-up transformer is one whose secondary voltage is greater than

its primary voltage.
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Sinusoidal Steady State Analysis




Content of this Subchapter:

1. The Ohm’s law in complex notation

2. Kirchhoff’s law

3. The superposition theorem

4. Thévenin - Norton equivalent network theorem

5. The equivalence theorem between a voltage source and a
current source

6. The reciprocity theorem

7. Mesh (or loop) analysis of linear networks

8. Node analysis of linear networks




1. The Ohm’s law in complex notation

|
|
' di, 1 ¢. L di
| e, +u, =Ri +L, —+ Ilkdt+ZLk.—J
| dt Ck = " odt
I| j£k
|
| |

; : r 4 ®k

S In complex notation:

, — =1
J=1 J=
j#k J#k

1 L
Ek+Uk=’{Rk”[“ka‘wc]}waw,- — E4U =2y 4 3 2,1,
k

Z,=R +]J [Q)ka — ] - the impedance if the branch k&

k

/ W= ja)ij - the mutual impedance between the branches & and j




2.1 Kirchhoff’s current law (KCL)

For any lumped electric circuit, for any nodes, and at any time, the
algebraic sum of all branch currents leaving the node is zero.

keq keq keq

2.2 Kirchhoff’s voltage law (KVL)

For any lumped electric circuit, for any of its loops, and at any time, the
algebraic sum of the branch voltages around the loop is zero.

ZUk = yzk]k:yEk

kep kep

kep




Ew+U;p=Zyly+ ja@gfx)

, 1
Zi =Ry + j(oLy ——)
(jkCD
(ex) _ . (ex) _
D) —Zij-zj O —Zij'lj
k+#j k#j
Ep+Up =Zyly +jo) Lyl
k#j
ZEk = Z(Zkklk + szjlj) where £y = joly
kep kep k#j

Z Ey = Z L Ly (if there is no magnetic coupling L;; = 0)
kep kep

@



joLy joC
1, & - A 1
—L /0000 , |l
-2
£ ](D-I. 12 ;,’ \\
2
e JoL, \ /
- T~ ./
O] -\:I - ~
. 7 lml,3
B




3. THE SUPERPOSITION THEOREM

The superposition theorem: for a linear network, the zero-state response

caused by several independent sources is the sum of the zero-state response

due to each independent source acting alone.

L L
I 0 Y, E, L= I,
m=1 m=1

According to the superposition theorem: I3 =15 + 15




i

For Examples with Superposition Theorem
See the SEMINAR




4. THEVENIN - NORTON EQUIVALENT NETWORK THEOREM

- Powerful tool,
- A very general theorem

A) The Thevenin theorem.
A IAB IAB
o0—> o—>
Z; =Zpo
A Uag Z :> Uas Z
\ 4 E=U,py v
B O
B
a) b)
E U g




QABO
Z T ZABO

[ p =

- U5y the open-circuit voltage of the network (the voltage across the terminals

A and B when the load 1s disconnected).

- 24, B, 1s obtained from the network by setting all independent sources to zero

(1.e., by replacing every independent voltage source by a short circuit and every

independent current source by an open circuit), without the load impedance Z.




GE]

A

For Examples with

Thevenin’s Theorem see the SEMINAR




B) The Norton theorem.

A IaB
O > O »
Y: =Y 1
A de ||z => (B R S I
v l:lABsc '
B O
B
a) b)
Y. =Y =1 -
=i~ =ABo T L4B, ~ AB Y+7.

= ' =]

lABsc
Y+Y 45,

Up =




l ABsc

U —
A Y AY g,
U 45
lABsc :lAB Z=0 — 7 : :QABOXABO
= ABo

/

£ 4Bsthe current delivered by the circuit when the terminals A
and B are short-circuited (Z = 0).

1

Y =
= ABo 7
= ABo




=

For Examples with

Norton’s Theorem see the SEMINAR




C) The equivalence theorem between a voltage source and a current source.

--------------- A IAB A - A lAB
o—> : ! -
E 1 vt
Uas Z |:> X:Z—i Yap -
Z; : - E
v 7 v
.............. 5 B
= a) b) """""""""""""""""""""""
1 =] —E
ABSC’ o AB UAB_O o Z
=i
1 1
Y :XABO =




5. THE RECIPROCITY THEOREM

The input and the output can be interchanged without altering the response of the
system to a given input waveform.

E
T . _
O <t
e | - =1
D
E Z) Z5 Z Z, Zs
B

- In electric circuits, reciprocity applies to a subset of all linear time-invariant
networks.




6. MESH (OR LOOP) ANALYSIS OF LINEAR NETWORKS
- New network variables are used: the mesh currents (or loop currents)

The branch currents: Ig= > .Jp
ke(p)

J1odgoesd goed

LWyt Lyt LipJp=Ey

Loyt Ly ot tLyplp=E,

Zpdy T Lyttt Lpptp=Lp

The network has N nodes and L branches; consequently it has

B = L. — N +1 meshes




a) Z,,1s called the self impedance of mesh p; it can be calculated as follows :

Zp= 2Zkm= 2Zp+ D joLgy
ke(p) ke(p) ke(p)

me(p) me(p)
k#m

Z,, 1s the sum of all the impedances of branches in mesh (p), plus the

algebraic sum of the mutual impedance between branches k& and m, both of

them belonging to the mesh (p).

Remarks :

—inz 7, all terms are positive;
ke(p)

-because L,,, = L, ., in the second term of Z  , each mutual inductance has to be

mk> —=pp?

taken twice (1.e., £2jwL,, ). The sign depends on the association of the mesh

@

current J, to the marked terminals of the mutual inductance.



b) Z,, 1s called the mutual impedance between mesh p and mesh g; it can be
calculated as follows ;
kE(p) kE(p) ke(p)

me(q) ke(q)  me(q)
k+m

Z,, 1s the sum of all impedances of the branches which are in common with

meshes (p) and (¢) plus a sum of the mutual impedances between the branch
ke(p) and the branch me(q)

Remarks :

- in the first sum of the right member of Z,, the impedance is positive if the mesh currents
J, and J, have the same direction through the common impedance of the (p) mesh and (q)
mesh, otherwise the sign is negative;

- in the second sum of the right member of Z,, the sign depends on the association of the
mesh currents J, and J, to the marked terminals of the two inductances situated in the
branch ke(p) and branch m €(q), respectively.

¢) E, isthe algebraic sum of all the source voltages in mesh (p)

E = ZEK
" ke @



Example: 1




5

For Examples with MESH (OR LOOP) ANALYSIS
see SEMINAR




7. NODE ANALYSIS OF LINEAR NETWORKS

- New network variables are used: the node voltages.

- Reference node (ground) : N — 1 independent nodes

r

Y viy+YppVy++Y v V=1
Yo rVi+ Yoo Vgt + Yo Vy 1 =Lser

Yy Vgt Vo + -+ Yy vV vy = Lsev
a) Y. - the self-admittance of node a

—ada

b) Y, -themutual admittance between node a and node b

c) 1., - the short-circuit current entering the node a.




Example: Kirchhoff’s theorems: 5 egs.

Mesh currents: 3 egs.

Node voltages: 2 egs.




5

For Examples with NODE ANALYSIS
See the SEMINAR
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1. Maximum Power Transfer Theorem

Proof of theorem at whiteboard ©




For maximum average power transfer, the load impedance must be equal
to the complex conjugate of Thevenin impedance.

- - b
Ly =Rp+X1 =Rm—-Xqj =2y,

- This result is knowm as the maximum average power transfer theorem for
the sinusoidal steady state.
U..|
B ‘irﬁ‘

mMax 8 RTI

1

- For purely real load (XL =0):

_ p2 _yv2 _
KL _\KR:H: B _‘zﬂ"

Th




Determine the load impedance Z; that maximizes the average power
drawn from the circuit What is the maximum average power?

4Q i5Q
N—
%m
10,0°V Z,

= _i6Q




1 Practice problem

For the circuit find the load impedance Z; that absorbs the maximum average
power. Calculate that maximum aver age power.

—J4Q 100
[
| 211D

8 Q (H)12a 50 Z,

Answer: 3.415 — j0.7317 (), 51.47 W.



.2. Resonance in AC circuits

v Resonance in AC circuit occurs because enerqy is stored in two different ways: in an
electric field as the capacitor is charged and in a magnetic field as current flows through
the inductor. Energy can be transferred from one to the other within the circuit and this

can be oscillatory.
v An important property of this circuit is its ability to resonate at a specific freauency. the

resonant frequency. /
v Resonance is when all the circuit parameters are all balanced \
and working in equal harmony like a tuning fork. © £ ﬂ

v In that state, the efficiency of the circuit is very high and very little power is needed to
get it to sustain oscillation at its given frequency.

v In an ideal resonant LC circuit L=C. In a perfect ideal circuit R can equal zero or infinity
depending on the parallel or series nature of L & C. In the real world R does not meet
those extremes, hence the Q ( Quality ) factor is very much less than ideal. Only at

RESONANCE does this apply.

v At resonance inductive and capacitive reactances balance and the circuit behaves
maore like a linear resistor because such components cancel out.
@



" ‘ RLC - at resonance: Q =0 (meaning X =0 or B =)

E=()
o - the phase shift between I and Uis 0 (sin ¢ = 0)

o

Remarks:
a) X' = 0 corresponds to the series resonance

b) B = 0 corresponds to the parallel resonance

¢) at resonance the current has an extreme

Y | 111

. series resonance

-

i
A parallel
resononce

el
i_
!




2.1 Series Resonance

Series Resonance circuits are one of the most important circuits used electrical and electronic circuits.
- They can be found in various forms such as in AC mains filters, noise filters and also in radio and
television tuning circuits producing a very selective tuning circut for the receiving of the different

frequency channels.

I R L e
T YV I I
—T — T e T
U Uy Ue s .
-The resonance condition: Q =0==X=10
1
o X=o——=0=> ol = N
Z=R+ j(oL-— @ i
— + oy, ——
j@l——2) 1
r r - the angular resonant frequency: @, = —
=Y. |' v 1 *JIC
2 2
IR” + (L ———
\ ( mC')

X
@ = arcle 2 = arcig




Xip Koy
4
:
T o
0 - 0 -
Frequency, [ Frequency,

- The graph of inductive reactance against frequency - The graph of capacitive reactance against frequency is a
15 a straight line linear curve. hyperbolic curve.

- The inductive reactance wvalue of an inductor - The Reactance value of a capacitor has a very high value at
increases linearly as the frequency across it low frequencies but quickly decreases as the frequency across
INncreases. It increases.

- Therefore, inductive reactance i1s positive and Is - Therefore, capacitive reactance is negative and is inversely
directly proportional to frequency. proportional to frequency

Capacitive : Inductrea
::TLH RS A Y
el ] - X,
5 Inductive and Capacitive
= Reactances are equa hara
8 | X Xe
; :
& |
X-Xe fmmmmmm2 '

(Frl Fraquancy, F

Zeries Hasonance



Capacitive Inductive

Zip Ac» AL : AL ® KC
A = : -
a I
c I
= |
T |
I
£ I
|
|
|
|
|
|
7=R b O» '
0 -
I
Dwaﬁ:f (7r) Frequency. f

impedance  Series Resonance

- When the capacitive reactance dominates the circuit the impedance curve has a hyperbolic shape to
itself, but when the inductive reactance dominates the circuit the curve is non-symmetrical due to the
linear response of X

- If the circuits impedance s at its minimum at resonance then consequently, the
circuits admittance must be at its maximum and one of the characteristics of a seres resonance
circuit 1s that admittance i1s very high. But this can be a bad thing because a very low value of
resistance at resonance means that the resulting current flowing through the circut may be

dangerously high.



The vector diagram (phasorial representation):

Remarks:
I R L e
o J—Y N I I a) R does not influence the resonance.
——T T w7
b) U=U, =RI
Ug UL Ue ) R

Z=+ R+ Y’ =R is minimum (X = 0),

£ Dr
the current is maximum: J[=—=17_

R

c‘)( U, =Ug|: voltage resonance!

d)it \U; =Ug >> U‘ —  overvoltages.

U, a&all ol | b . 1 1 L
_ _ ~1or @ =R :because , _ — ___ _=1==R
U R R % ©JLc Jrc™ \c
w, L= 1 L — 5 the characteristic impedance of a
a, C C series resonant circuit

@



Ur_Uc_pP1L_
o U R

P = Q - the quality factor (or Q-factor)
R

It shows how many times the voltage across the inductor or across the

capacitance of a series resonant circuit (at resonance) is greater than the
applied voltage.

- the damping factor

d: E
o

1
0

A
£ » As a series resonance circuit only functions on resonant
5 frequency, this type of circuit is also known as an Acceptor
5 Circuit because at resonance, the impedance of the circuit
= Is at its minimum so easily accepts the cument whose
frequency is equal to its resonant frequency.
0 ‘ -

[ Fr) Frequency. F

S=nes Resonance )’



Phase Angle of a Series Resonance Circuit

B &l ow fFl C apaciiive . . Above fR Inductive
[ leads Vs [ICE) At fr Lin phase with Vs [ lags Vs (ELI)

+o0° 4 '
i

+45° : x> Xc
| (Indu chive)
| s

0 = [
:'{n:-‘-“ .HL 1

1

_AF® (Capacitive) :
I
I

~00° p—— — — ——— T ——————————
I @ = Oy = @




2.2 Parallel Resonance

In many ways a parallel resonance circuit is exactly the same as the series resonance circuit.

- Both are 3-element networks that contain two reactive components making them a second-order
circuit, both are influenced by vanations in the supply frequency and both have a frequency point
where their two reactive components cancel each other out influencing the charactenstics of the
circuit. Both circuits have a resonant frequency point.

- The difference this time however, is that a parallel resonance circuit is influenced by the currents
flowing through each parallel branch within the parallel LC tank circuit.

A tank circuit is a parallel combination of L and C that is used in filter networks to either select or reject
AC frequencies.

A parallel resonant circuit stores the circuit energy in the magnetic field of the inductor and the electric
field of the capacitor.

- This energy is constantly being transferred back and forth between the inductor and the capacitor
which results in zero current and energy being drawn from the supply. This is because the
corresponding instantaneous values of | and |, will always be equal and opposite and therefore the
current drawn from the supply is the vector addition of these two currents and the current flowing in 1.

@



Iy o [ [~ o - - - -
R I { Lf L.-
1 [I==+— +UjeoC
) 3 TR Jer
v 11 [ 1 L
s A I=U|—-j| —-oC [=U(G- jB)
iy R @ L
-The resonance condition:
1 1
= = = B=——oC=0 o =——
Q=0 > B=0 L A
] [ ffi Q 1
- the angular resonant frequency: 0, =——
" JIce

Remark: In practice (that is having real L and C), the resonant
frequencies are different for the series and parallel connections.




£=R

Induciive L Anacitre
PACEI XL Ko
B — —-

Dynamic
impedsan ce

Y

Feralel Resonance

-
Frequency.

If the parallel circuts impedance is at its maximum at resonance then consequently, the
circuits admittance must be at its minimum and one of the charactenstics of a parallel resonance

circuit is that admittance is very low limiting the circuits current.
Unlike the series resonance circuit, the resistor in a parallel resonance circuit has a damping effect on

the circuits bandwidth making the circuit less selective.

Since the circuit current i1s constant for any value of impedance, 7, the voltage across a parallel
resonance circuit will have the same shape as the total impedance and for a parallel circuit the

voltage waveform is generally taken from across the capacitor,



Susceptance at Resonance

+iEc e
A A
Inductive
Susceptance
[
[ %)
= I f J
w - -
o .
g I
Capacitive
Susceptance rf Tola
Susceplance
. .‘ -
-iByL 4By -jBy

- The inductive susceptance, B, 1s inversely proportional to the frequency as represented by the
hyperbaolic curve.

- The capacitive susceptance, B i1s directly proportional to the frequency and is therefore represented by
a straight line.

- The final curve shows the plot of total susceptance of the parallel resonance circuit versus the
frequency and is the difference between the two susceptance’s.

We can see that at the resonant frequency point were it crosses the honzontal axis the total circuit
susceptance is zero.

Below the resonant frequency point, the inductive susceptance dominates the circuit producing a “lagging”
power factor, whereas above the resonant frequency point the capacitive susceptance dominates

producing a “leading” power factor.



The vector diagram (phasorial representation):

| Remarks:
’ | | | a) I=I =GU=UR
R 1 C
U . L — Y=\JG'+p =G is minimum (B = 0),
v the L=GU=1_
b{ I, =1- : current resonance!
c)if | I, =1.>>1 —  overcurrents.
_ 1 , 1 L
C= o, "R or @yl = a,C ~R \ because @ o= JIC
1 C
@0 C= = PY el 4 rhe characreristic admitfance of parallel resonant circuit
ool |VL

@



- the quality factor

- the damping factor

I[:ﬂl.ucu

-
Fraquency. J'




2.3 Resonance in real circuits

In a parallel circuit, the
resonance occurs when B, = 0

Zi=R+tjol and Z,=R,+ .1
joC
Y,= . and Y,= 1 .
RitjolL R, -
- wC
4 1 h
oL  4C
Ri--l_m_.[,h R§-|_ 21 >
\ @ C )
L
_ @ L _oC __,
e 24 212 1
Rl ) L R1_|_
2 2 2
@ C

C)



Remarlks:

a)

b)

C)

d)

if ,>p and R,>p or py<p and R, < thereis resonance;

if Ri==pPp=R, O Ri=pP~-Ro there is no resonance;

. _ 1 . o

if R=R=p0, an= F — the same as for a series resonant circuit
0

if R=R,=p, K6 &= o  — theresonance can occur at any frequency

(R+jm£;(R- J )
aC

_ =p
it L, ZRH[.@L-L}
| @c

in this case: 2 _ =




2.4 Resonance in inductively coupled circuits

I M D S L i 1 L
DHI_[-R:},;‘ﬁ{* R’E -i U, {Rl J [mLI > C L+ joMI,
1 > _

U_.L C ; 1
U, 3

Lo "LC | 1
. i -JI- ’ UZ{Rj—j{&JLE-—ﬁHQ‘F}&M‘ML
@

e | 1

It is possible to obtain resonance in the primary circuit, in the secondary
circuit or simultaneously in both circuits.

—gl =Z, =R + X, + jo M’é
| 1, I,
I, I, JjoM
— + i X )=+ 7w ] = ==
hD (RI j‘ll)_l jﬂ) M il RI_F_,FAE

where X =@ [;-  AX2=@ -

@ @ (5




It results:

2,2 2.2 2.2

.n a M oo M . @ M X

ZQIZRI—I_-]}LI—I_ R :Rl—l_ 2 -2 +](4Y-- 2 : j
Ry T jX, R T X3 BT X5

The resonance occur when X_=0:

_ o M’ X
RTX;

X7

Remarks:

a) the resistance R; does not influence the resonance, while R,
influences the resonance;

b) the realization of the resonance of inductively coupled circuits is
important especially in radio frequencies circuits, we can
approximate

RE < <"Y2




i Xo=w M

# l ]' 7 7
{mjl- }(f{lﬂg— ]:m‘m"

@ (Y

4,4 .2 2, 2 2 _
o (1-F)-o (1T o) T om0, =0
M

where: = —— is the coefficient of coupling,

xfblz

|
(1~ 7 s the resonance frequency of the primary circuit
VL1 Ch

(> — ———= 1s the resonance frequency of the secondary circuit
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Three-phase circuits.

Single phase systems:

3

J_ .
v, /6 (%)
T

—
T

Two-wire type

O b

N
.

V,/b 5?

Three-wire type

Polyphase systems:
a A
) O—
. P ’
vpﬁ \ﬂj) " N 2y
O o—1
: Ve :
v /b (t 7
b /b aﬁ_\) " 5 |

Two-phase three-wire system

V. A0

e a A L,

&5
Hﬂ;;mu b B L,

) o— |
Vo A+120° .
F% ¢ C L4

) o—{

n N

i
1

Three-phase four-wire system

@



Three-phase circuits.

* Three-phase systems are the most common, although, for certain special jobs,
greater number of phases 1s also used.

* For example, almost all mercury-arc rectifiers for power purposes are either
six-phase or twelve-phase and most of the rotary converters in use are six-
phase. All modern generators are practically three-phase. For transmitting
large amounts of power, three-phase 1s invariably used.

* The reasons for the immense popularity of three-phase apparatus are that:
v’ it is more efficient
v' the instantaneous power can be constant (not pulsating)
v' it uses less material for a given capacity
v' it costs less than single-phase apparatus etc.

“Phase” — two meanings (in electrical engineering):
1) astage of a periodic process,
2) aportion of a polyphase system of electric circuits.




Three-phase circuits.

Historical

Nikola Tesla (1856-1943) was a Croatian-American engineer whose
inventions—among them the induction motor and the first polyphase ac
power system—greatly influenced the settlement of the ac versus dc de-
bate in favor of ac. He was also responsible for the adoption of 60 Hz as
the standard for ac power systems in the United States.

Born in Austria-Hungary (now Croatia), to a clergyman, Tesla had
an incredible memory and a keen affinity for mathematics. He moved
to the United States in 1884 and first worked for Thomas Edison. At
that time, the country was in the “battle of the currents” with George
Westinghouse (1846-1914) promoting ac and Thomas Edison ngidly
leading the dc forces. Tesla left Edison and joined Westinghouse
because of his interest in ac. Through Westinghouse, Tesla gained the
reputation and acceptance of his polyphase ac generation, transmission,
and distribution system. He held 700 patents in his lifetime. His other
inventions include high-voltage apparatus (the tesla coil) and a wire-
less transmission system. The unit of magnetic flux density, the tesla,
was named in honor of him.

Courtesy Smithsonian
Institution




Three-phase circuits.

U Three-phase voltages are often produced with a three-phase AC generator
(or alternator).

The Generator

3-phase output

! I.—I—F"ll'il-l'- . Plagg © —a :1-;:.._:'
| | .
C.I'I ,rf’"_"—h-_.___LE :E'_"__d-"’"‘l"w-_'...""w“-..-."'"'
1 ;,-g'.‘_**.n"‘l'-__l.'x'h‘__m”i--l‘
. I_ lirne
s
A M s|L | A
B C
NHeutral
-

T. Davies 2002 @




Three-phase circuits.

eA A Phase output potential eB B Phase output potential C Phase output potential

A Phase output

B Phase output

C Phase output

DC supply input

Rotor rWy

three-phase sine wave voltage syt RiZAwwawApeng kyAcn

Neutral line



https://www.youtube.com/watch?v=RycspJC4OKM

Three-phase circuits.

1. SYMMETRICAL (BALANCED) THREE-PHASE SYSTEMS.

The ends of the phase windings: “starts” or “beginnings”, respectively

“finishes” or “ends”.

-

il(t): ]1\/§Sin(a)t+7l) (L — ]lem
If <i2(t)=[2\/§Sin(a)t+7/2) <£2 :[28172
i3(t):]3\/58in(a)t+73) I, :[36173

it results a symmetrical (balanced) three-phase system.

L=L=L=1 and y;—V,=V,—VY3=V3—Y1 =2m/3

Balanced phase voltages are equal in magnitude and are out of phase
with each other by 120°.




Three-phase circuits.
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The phase sequence is the time order in which the voltages pass

through their respective maximum values.

1) Positive phase-sequence (direct system)

-

i,(t)= [+/2 sin

N

i,(¢)= [+/2 sin

\

I (t) =12 sin(a)t + 7/)

1, =1e”
27
J(r—=)
sl,=1e 3
4
J(r——=)
I,=1e °

2) Negative phase-sequence (inverse system)

r

i,(t)= I+/2 sin

N

i,(¢)= /2 sin

"

I (t) =12 sin(a)t + 7/)

27
Ct)t+7/+?

4r
a)t+7/+?

e

I,=1e"
2
J(r+=)
I=1Ie °
4
J(r+—)
I,=1 °

"




Three-phase circuits.

Determine the phase sequence of the set of voltages

U,n = 200 cos(wt + 10°)
Up, = 200 cos(wt — 230°), V., = 200 cos(wt — 110°)

Solution:
The voltages can be expressed in phasor form as

V,, =200/10°V, V,,=200/-230°V, V, =200/—110°V

We notice that V, leads V, by 120° and V,, in turn leads V,,, by 120°.
Hence, we have an PHASE-SEQUENCE




Three-phase circuits.

The phase operator:
N 2r .2 1 A3
a=e * =e * =cos—+ jsin—=-—+ j—
3 3 2 2

Multiplication by a advances the position of a vector in a counter-clockwise (or
forward) direction by 27/3 or in a clockwise (or reverse) direction by 4 /3.

Ar 2r
612—613—e_j3=-l-j\/§ — l+a+a” =0.
2 2
J (11:[‘?”:11'1 [,=1,-1
’ (D 2) |, _
. T 11, =1a’ 124
F I,=1a 4= Laz
1 +1 L
N
2 [, +1,+1,=1(+a+a’)=0,
a
[ +1,+1,#0 e® €




Three-phase circuits.

Operations — three-phase systems:

a) addition: [, +/,+1,=0 = L+, =-1

b) difference:
I,-1,=1-a’I=1(1-a*)=13c'5.  |[-1,=I3¢".

w|




Three-phase circuits.

v' If the three armature coils of the 3-phase alternator are not interconnected but are kept
separate, then each phase or circuit would need two conductors, the total number of
conductors, in that case, being six. It means that each transmission cable would contain
six conductors which will make the whole system complicated and expensive.

v" Hence, the three phases are generally interconnected which results in substantial saving
of copper.

Finish ‘

|
o
Start 2 |
Finish ]
ETEY lQI ‘ >Loads
Start 4 |
Finish —
E?EB L
3-phase alternator Start 6 J

3-phase alternator are not jnterconn@d



Three-phase circuits.

2. PHASE INTERLINKAGE

- voltages, currents: symmetrical or unsymmetrical,
- load impedances: balanced or unbalanced

The general methods of interconnection are:

(a) Star or Wye (Y) connection
(b) Mesh or Delta (A ) connection.

NEUTRAL Three-phase source and
. three-phase load possible
conections:

* Y-Y connection

» Y A connection.

O o
THREE-PHASE THREE-PHASE .
WYE CONNECTED DELTA CONNECTED * A-Y connection.

B C

* A-A connection.




Three-phase circuits.

A balanced Y-Y system is a three-phase system with a balanced
Y-connected source and a balanced Y-connected load.

n, N — neutral points
n—N — neutral wire
; N 1-1', 2-2', 3-3' — line wires
e e Z,, Z,, Z; —phase impedances




Phasor diagrams illustrating the relation- ship
between line voltages and phase voltages.




A balanced Y-A system consists of a balanced Y-connected source
feeding a balanced A-connected load.




30°

/ 3{]:

30°

Phasor diagram illustrating the relationship
between phase and line currents.




A balanced A-A system is one in which both the balanced source
and balanced load are A-connected.

—_—

/ u=U,
o [, =31




A balanced A-Y system consists of a balanced A-connected source
feeding a balanced Y-connected load.




P=3U 1 cosep= \/EU,I, COS @

ph™ ph
Q:3Uph1phsing0:\/§Ulllsingo
S=3U 1 =~3U,1

ph™ ph




4. CALCULATION OF UNBALANCED THREE-PHASE CIRCUITS.

U’
I, 22—11: U,-Uy)Y,
12 :Q_zz (Qz 'QN)Zz
|77z,
[,=2=U,-U,)Y,
Z;
U
\lN :Z—z:QNZN

lN :£1+lz+l3

UyYy :(Ul_UN)Yl+(U2_UN)Y2+(U3_UN)Y3

QN(X1 +Xz +X3 +ZN): QlZl +Q2X2 +Q3Z3




=N

Uy, +U,Y, +ULY,

Y +Y,tY,;+Y,

the Millman Theorem

a) Symmetrical voltages (i.e. U, = U, U,=a’U, Us,=al):

Uy=U

Y, +a'¥, +al,

T T P

b) Symmetrical (balanced) load (1.e. ¥, =Y, =Y;=Y):

=N

_YU,+U,+U;)
3 +Y,

¢) Symmetrical circuit : ’ U,=0 ‘




d) In the absence of the neutral wire: Z, =0 — Y, =0

o _UX+UY, +UY, e i
~Y N 2
Y +Y,+tY; L,0—C <:1




5. MEASUREMENT OF POWER IN THREE-PHASE SYSTEMS

U The total active power in a polyphase circuit with » conductors is equal to
the sum of single-phase powers and, consequently, can be measured with
the help of wattmeters, connected so that the current coil is traversed by the
line current and the voltage coil is or connected between the conductor of
the respective phase and a common N point taken as a reference.

=P
1o (W !

VT p
20 Ez\ Z

o/
o—
‘o ?\Pk LOAD
W)
a— . — —
A n

no ~(Wh




ONE-WATTMETER METHOD FOR A

BALANCED LOAD
V4 Current coil
o
Voltage
coil
o o
O O

Total power = 3 X wattmeter reading




TWO-WATTMETER METHOD FOR A BALANCED OR

Wattmeter 1

P,—-P
Wattmeter 2 tanqb _ \/3 ( 1 2)

Total power = sum of wattmeter readings = P; + P,




THREE-WATTMETER METHOD FOR ATHREE-PHASE, 4-WIRE
SYSTEM FOR BALANCED AND UNBALANCED LOADS.

Waltmeter 1

Total power = Py + P; + P;




THREE-WATTMETER METHOD FOR A THREE-PHASE, 4-WIRE
SYSTEM FOR BALANCED AND UNBALANCED LOADS.

Walttmeter 1

Wattmeler 3
V+

M AL Py — P
tan¢ = \/3( )
¢ P, + P,

Total power = Py + P, + P;

@



Comparison of star and delta connections

» Loads connected in delta dissipate three times more power
than when connected in star to the same supply.

» For the same power, the phase currents must be the same for
both delta and star connections (since power = 3Ip 2Rp), hence
the line current in the delta-connected system is greater than
the line current in the corresponding star-connected system. To
achieve the same phase current in a star-connected system as
in a delta-connected system, the line voltage in the star system
is p3 times the line voltage in the delta system.

Thus for a given power transfer, a delta system is associated
with larger line currents (and thus larger conductor cross-
sectional area) and a star system is associated with a larger line
voltage (and thus greater insulation).

€



ADVANTAGES OF THREE-PHASE SYSTEMS

Advantages of three-phase systems over single-phase

supplies include:

» For a given amount of power transmitted through a system,
the three-phase system requires conductors with a smaller
cross-sectional area. This means a saving of copper (or
aluminium) and thus the original installation costs are less.

» Two voltages are available.

» Three-phase motors are very robust, relatively cheap,
generally smaller, have self-starting properties, provide a
steadier output and require little maintenance compared
with single-phase motors.




j Review Questions

What is the phase sequence of a three-phase motor
for which Vv = 220/ - 100° V and

(a) abc (b) ach

If in an ach phase sequence, V,, = 100/—=20°, then
Ven 18

(a) 100/—140°  (b) 100/100°

(c) 100/-50° (d) 100/10°

In a Y-connected load, the line current and phase
current are equal.

(a) True (b) False

In a A-connected load, the line current and phase
current are equal.

(a) True (b) False

In a Y-Y system, a line voltage of 220 V produces a
phase voltage of:

@381V (b)311V
d) 156V () 127V

()220 V

In a A-A system, a phase voltage of 100 V produces
a line voltage of:

(a) 58 V (b) 71V
@173V () 141V

(©) 100V

10

Which of these is not a required condition for a
balanced system:

(a) |er| - |\"'an = |vrul
bI,+1,+1.=0

{C} Van ¥ th e 3 Vt‘n =0

(d) Source voltages are 120° out of phase with each
other.

(e¢) Load impedances for the three phases are equal.
When a Y-connected load is supplied by voltages in

abce phase sequence, the line voltages lag the
corresponding phase voltages by 30°.

(a) True (b) False

In a balanced three-phase circuit, the total
instantaneous power is equal to the average power.

(a) True (b) False

The total power supplied to a balanced A-load is
found in the same way as for a balanced Y-load.

(a) True (b) False

Answers: 12.1a, 12.2a, 12.3c, 12.4a, 12.5b, 12.6e, 12.7¢,
12.8b, 12.9a, 12.10a.



Problems’

Practice on Problems proposed in:

Charlews K. Alexander, Matthew N.O.Sadiku, Fundamentals of
Electric Circuits (Fifth Edition), published by McGraw-Hill, 2013

Pages 544 - 553
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Chapter 3. Non-sinusoidal regime.

Not all signals in electrical and computer engineering are sinusoidal.

v' Most digital systems use square waveforms. Although at high switching
speeds, these waveforms are starting to look trapezoidal.

v' Most bioelectric signals are non-sinusoidal, many are composite ramp
functions.

v' When a switch is opened or closed, the time required for the signals to
return to steady state is accompanied by sinusoidal and non-sinusoidal
transients.




Chapter 3. Non-sinusoidal regime.

Samples of non-sinusoidal signals:

Sine

Square

Triangle

Sawtooth

(b)




Chapter 3. Non-sinusoidal regime.

Samples of non-sinusoidal signals:
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Chapter 3. Non-sinusoidal regime.

3.1 FOURIER EXPANSION.

U Oﬂi T}\ f(t)= Ao+ iﬁAk sin(ka)t + (ok)
/ \ __t 1u R l /\T— —_ =

A, — a constant (the average value),

V2 Ax Sin(k wt + (ok) - the k-th order harmonic (for k=1: fundamental),
V241 = An - the amplitude of the k-th harmonic,

Pk - the phase of the k-th harmonic

f(t)= Ao+ Z\/EAI{ COS @k SIn kit + Z\/EAI( sin @k Cos kawt
k=1 k=1

f(t) = Ao+ Z\/EB/{ sink ot + Z\/EC]{ cos kot Bk — Ak COS @,
k=1 k=1 C, =4 sing,



Chapter 3. Non-sinusoidal regime.

Finding the Coefficients of the Fourier Series.

f(t) = 4o+ iﬁBk sin kot + i\/ECk cos kot
k=1 k=1

1) A,

T T T T o
[ f(6)de = [ Aodt+ [ 3" N2Bisinkardt + | 3" N2Cicoskardt
0 0 0 k=1

0 k=1

T

T T o T
[ £yt = [ Aodt+ Y| [N2Bisin kardt + [N2Cicoskardt
0 0 k=1 0

0

f f()dt = iAodt + i 0+0]

1 T
Ao= ? ‘([ AQ - the average value of the function over a period




Chapter 3. Non-sinusoidal regime.

f(t) = 4o+ iﬁBk sin ket + iﬁCk coskawt
k=1 k=1

2) 2B,

T T T 0
J- f(t)sinmaotdt = j Aosin maordt + j sinm a){z \/EBk sin kot + Z \/ECk COS ka)t}a’t
) 0 0 k=1 k=1

-

0, if m#k .

T
1 ¢ sin kardt = , : _
'(';smma) sin k. <£, ok ISInmwtdt 0
L2 0
! r 2B
-‘-0 f(t)sinkordt =/2B;, L) sin ket sin kotdt = \/_2 kT

T
J2B, :% jo £(¢)sin kaord




Chapter 3. Non-sinusoidal regime.

f(t) = 4o+ iﬁBk sin ket + iﬁCk coskat
k=1 k=1

3) +2C,

T T T 00 0
jf(t) cosnwtdt = on cosnwtdt + jcosna){z \/EBk sin kot + Z\/EC/( COS ka)t}dt
0 0 0 k=1 k=1

-

T 0, if n=k .
J‘cosna)t coskatdt =< T ’ J.cosna)tdt =0
0 —, ifn=k g
(2
T T 5
jo f(t)coskardt =~/2C;, Io cos ket - cos kotdt = \/;Ck T

T
V2Ci = %jf(t) cos katdt
0




Chapter 3. Non-sinusoidal regime.

The Fourler serles of a periodic function £{f) is a representation that
resobves F() into a do component and an ac comiponent Comprsing
an infinite seres of hamonic sinusoids.

Function Value
cos 2nr |
sin 2nr 0
cos nir (—1)"
sin nr 0
nw (=12, n = even
.——
o 2 0 n = odd
T (-D)® V2 4 =odd
i
l 2 0, n = even
ej?.nw 1
ef""r (_l)ﬂ'
jnw/2 (-2, n = even
€ >
(=D V2 p = odd




S 4

-

B

f(r) = Ao+ i \2Besin ko + i J2Crcoskar
fe=1 =1

1
2
. | U i
dc coamgponeni I
Fuptamiental s compogiet
| 2 2 2

{f) ==+ —sinwt + —sin 3 + —gin St + -
Jir) 3 - inmi 3 in 3wl 5 In )

Sum of first two ac components gy of first three a Componenls Sum of first four ac components Sum of first five sc components



2|e-

& 4
¥
# - g M 3w 4o 5v 0w
% ] L] 1 |
I
I ] | i -
a Mr 3w 4w Sv 6w e c
Amplitude spectrum Phase spectrum

of the function of the function

g Y



Chapter 3. Non-sinusoidal regime.

@ Huton Archhve Gty

Historical

Jean Baptiste Joseph Fourler (1768-1830), a French mathemati-
cian, first presented the series and transform that bear his name. Fourier's
resulis were nol enthusiastically received by the scientific world. He
could not even pet his work published as a paper.

Bom in Auxeme, France, Founer was orphaned al age 8. He atlended
a local military college mn by Benedicline monks. where he demon-
siraled greal proficiency in mathematics. Like most of his conlempo-
rares, Foaner was swepl inlo the politics of the French Revolution
He played an imponant role in Napoleon's expeditions o Egypl in the
later 1790s. Due 0 hi=s polilical involvement, be narmowly escaped
death twice.




Chapter 3. Non-sinusoidal regime.

3.2 EVEN AND ODD SYMMETRY.

1) Even function: f(t) =f(-t) or fla)=f(-a)

)

sin(—ka) = —sinka

b)

Ll L

e)

Jf ()= Ay + Z\/EB;( sinka + Z:\/ECJc coska
k=1 k=1

cos(—ka) =coska

J(—ax)= Ay — Z\/EBk sin ko + Z\/EC,C cosko
k=1 k=1

Even function: the Fourier series does not contain sin harmonics
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2) Odd function: f(t) =-f(-t) or f(a)=- f(-a)

& |

L
- N | _ N\ N
| sin(—ka) = —sinka

a) b)

\

A A

c) d) e)

-

cos(—ka)=coska

f(— a): A4, + i\/in sinko + i\/zck coska
k=1 k=1 IAO =0 C; =0

— f(— a) =—A,+ i\/sz sinkoa — iﬁCk coska
k=1 k=1

Odd function: the Fourier series contains only sin harmonics




Chapter 3. Non-sinusoidal regime.

3) Half-wave symmetry: f(t) = —f(t—i—gj or f(a) =—f(o + 1)

f(t) f(t)

il -~ . S il T
SERE ™~ 4y =0
] b)
(1) |t B2p =0
AN C, =0
T T AR VR B

f(a)= Z\/EBZPH sin(2p +Da + Z\/ECsz cos(2p+1)a
p=l1 p=l1

Half-wave symmetry: the Fourier series contains only odd sin and cos harmonics




Chapter 3. Non-sinusoidal regime.

3.4 CHARACTERISTIC VALUES FOR PERIODIC NON-
SINUSOIDAL FUNCTIONS.

a) The maximum value (or the peak value): the biggest value of periodic non-
sinusoidal function over a period.

T
b) The average mean value : A, = % I f(t)dt

1
¢) The effective value (or r.m.s. value) : A=4,., ., = \/ijz (¢)dt
0

f(t)=4,+ \/EAI sin(awt + y,) + \/EAz sm(2at +y,) +...

A= \/;}[AO —I—\FA sm(a)t—l—j/l)—l—\FA sm(2at +y,) + .. ]2dt

0
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A= \/;'T“{AO +ZA22sm (ka)t+7/k)}dt

i 2 1 2m 22
A:\/F'([AodtJrzF_([Astm (kat +y, )dt

T 2 T
%IA,Qsinz (kat +y,)dt = %J‘ [1—cos2(ket +y, )t =
0 0

A
_ A [, = A’
= L[dt jcosZ(ka)t—l—}/k)dt}—Ak

0

U=\/U§+U12+U22+...

A:\/A§+A3+A§+...:\/A§+ZA§
k=1

=2+ +1}+




Chapter 3. Non-sinusoidal regime.

More information about non-sinusoidal periodic functions:

a)

b)

The form factor - k; : the ratio of the r.m.s. value of a quantity to its half-perioc
average value.

A
kf =— ,  forsinusoids &, = 72/2\/5 =1.11
Aha

The peak factor - k, : the ratio of the peak value of a quantity to its r.m.s. value.
,  for sinusoids kp = \/5 =1.41

Am
kp:A

The distorsion factor - k, : the ratio of the r.m.s. value of the harmonics to the
r.m.s. value of the function as a whole, neglecting the constant component

— 2
’ V;é__\M%éwm
d

g [l A




Chapter 3. Non-sinusoidal regime.

3.6 POWER FOR NON-SINUSOIDAL PERIODIC VARIABLES.

i t 0 0
o_p_ u(t) =Uy + Y 2U, sin(kart +y,) =Uy + Y u, (kor)
k=1 k=1
u(t) R i() = I, + Y V21, sin(ket +7,) = I, + Y i, (kex)
k=1 k=1
O—

a) The instantaneous power p(1). p()=u(t)-i(t) = (Uo + Z”k

T T
b) The active power P: P= lj'p(t)a’t = lJ.u(t) -1(t)dt
T+ T

0
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P:ﬁ(Uo+iukj£10+§;zkjdt ;j(Ul +U sz +1 Zuk +ZZuklk]a’t—

0 k=1 k=1 k=1

ledHTU ij[ sm(ka)t+)/lk)dt+T] ZIIU sin(kaot +y,, )dt +

k=1 k=1 0

#3201, sinker + ) sin(ner-+ 7, )

k=1 n=1

O oy

1foJ kot + 7 )sin(not + 7 )di =1 n#k
— SIN( KWt + SInN(nawrt + v. =
T k™ n 7/uk 7/zk Uklk COS(Dk n = k

where @y =V — Vi

P=Uyd,+ > Ul cosgp, | [W]

k=1
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¢) The reactive power Q :

Q= ZUk]k Si]lgpk [VAR]
k=1

d) The apparent power S :

S=Ul= U+ U +... /12 + 1} +... | [VA]

e) The distorsion power D S2:P2+Q2-I—D2 ) D:\/Sz_Pz_Q2

D = \/ Z i [U,f[,f +UI; -2U,U 1.1 cos(p, — @, )] [VAD]

k=1 n=1

k

p

P P
S JP*+0*+D’




Chapter 3. Non-sinusoidal regime.

3.7.NETWORK ANALYSIS IN NON-SINUSOIDAL REGIME

Steps for Applying Fourier Series:

1. Express the excitation as a Fourier series.
2. Transform the circuit from the time domain to the frequency

domain.
3. Find the response of the dc and ac components in the Fourier

series.
4. Add the individual dc and ac responses using the superposition

principle.



Chapter 3. Non-sinusoidal regime.

3.7. NETWORK ANALYSIS IN NON-SINUSOIDAL REGIME.
u(t)=U, + > N2U, sin(ket +y,,)
k=1
i(¢) =1, + Y 21, sin(kart +y,)
k=1

a) Ideal resistor .

i(t) o
i 5 U U, .
i(t) = u( ) =+ k; —Lsin(kat +y,,)

u(t) R

The voltage and the current are in phase.




Chapter 3. Non-sinusoidal regime.

b) Ideal inductor.
i(U) 0 .
u(t)=U,+ Z\/EUk sin(kat+y,,)
k=1
S g
dt
O
17 1 U 1 U 1
(t)=—[u(@®)dt =—U t +2 ZLsin(at +y,, — =) +...+ 2 —Lsin(kat +y, — =) +...
i(1) = [u(t)dt = Uyt +32 = Lsin(r +7,, =) Losin(ker + 7, =)

0

: U
Important remark: Assuming ¢ — oo , the first current component TOt —> 0

It is forbidden to apply d.c. voltage across an inductance (having negligible

resistance, an ideal inductance represents a short circuit).
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i(t)=Y 2 Vs sin(ka)t+ v —gj
k=1

koL

‘4
oa .
.

b)

I, = Y
koL
7/zk:7/uk_

or QO =7%u ~ Vi =~



Chapter 3. Non-sinusoidal regime.

¢) Ideal capacitor.

l:»—iim u(t)=U, + iﬁUk sin(kat +7,,)

U(l) C k=1
l¢.
u, =Efzdt
[ = C@ =20CU, sin(at +y,, +7/2)+...+2kaCU, sin(kat +y,, +7/2)+...

dt

i(t) = i\/fka)CUk sin(kot +y,, +7/2)
k=1

]kaO)C°Uk N T i‘_‘

ot

D —
| |
1l
o
\/

7T
P=Yuk ~Vik =77

a) b)
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d) R, L, C circuit.

) ¢ u®)=Uy+ Y N2U,sin(kot +7,,)
k=1

then: ()= Y 21I, sin(kar +y,)
k=1

U, _ .
where: [, = — YVie = Ve — P
\/R2+(k0)L—ka)Cj ka)L_L
@, = arctan kaC
R
The resonance condition:
1

X, =kol———=0
kaC
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One of the most frequent tasks to which networks are applied is the
process of shaping (or filtering) some electrical signal information.
Another examples are: coupling and matching networks, alternators,
phase-shifter, amplifiers etc.

Such networks are useful in communications, control system, power
systems and electronics and to facilitate cascades design.

Knowing the parameters of a two-port network enables us to treat it as a
“black box” which is embedded within a larger network.

Supply 1out Filler Cor L oad




A two-port network is an electrical network with two separate ports
for input and output.

le SRR o2
Input Network Output

lg— — o2

Two Part Network

v’ A single phase transformer is an ideal example of two port network.

2

‘e 4_‘ —— °

v The relation between input and output signals of the network can
be determined by transferring various network parameters, such
as, impedance, admittance, voltage ratio and current ratio .



https://www.electrical4u.com/single-phase-transformer/
https://www.electrical4u.com/electrical-impedance/
https://www.electrical4u.com/admittance/
https://www.electrical4u.com/voltage-and-turn-ratio-test-of-transformer/
https://www.electrical4u.com/voltage-and-turn-ratio-test-of-transformer/

[ ..
& I Definitions:
input 1| : output mput port
port U | w T
. | 2 - output port
h - linear
- port: a pair of terminals through which a current may enter or - passive
leave a network (an access to the network and consists of a pair of terminals; the - reciprocity

current entering one terminal leaves thtough the other terminal so that the net current

entering the port equals zero)

- symmetrical:

- balanced:

'Y Z1
] 1 2
o — | L5 2
I
e s Bt e ¢ .
; | i ’
ro L 02 1 2
Y Z1
a) Reference axes b) Balanced ~unsymmetrical

Z1 Z1 221 22,
1 2 1 2 1 2
Z2 Z; | iZz
2' 1 2 o . 02'
Z4 %l

c) Unbalanced- d) Balanced- ¢) Unbalanced-

unsymmetrical symmetrical symmetrical @



1. TWO-PORT NETWORK. EQUATIONS AND PARAMETERS.

1.1. The fundamental equations. ABCD parameters (Transmission
parameters).

U1 AU, +Bl,| & ]

where A4, B, C, D are called fundamental (or transmission) parameters

(4 and D — dimensionless, B is impedance, C is admittance)

S = 1 - 1s the reciprocal of the open-circuit voltage transfer ratio
(U, from port 1 to port 2

(Ql ]120
C = 1 - 1s the reciprocal of the open-circuit transfer impedance
U, from port 1 to port 2

( L jIZO




5= 1
B
QJ U,=0
D= 1
;
12 U,=0
AD—-BC =1

I
o2 tput
outpu
#QZ port

o2

)
=0
~c

5 € =
—
fue

- 1s the reciprocal of the short-circuit transfer admittance
from port 1 to port 2.

- 1s the reciprocal of the short-circuit current transfer ratio
from port 1 to port 2.

- the condition of reciprocity
(if the network 1s symmetrical : 4 = D)



1.2.Impedance parameters.

{Ul VATV ARALY )
Uy=Zyl1+2Ly1,

where Z; are called the Z parameters.

A= é Z, =
Zy
EZ_ZH'Zzz_Zu'Zzl Z, =
Z,, J
1
C=— L, =
£
D= _é Ly =
L ZZ] §

|
[@Y[N

- for a reciprocal network:
L= -2y

- for symmetrical network:

Z]_]:'Zzz
©




1,=CU,+DI,

{Ql =AU, +BI,

Up=Zy 1 +Zy1,

{Ql =Z 11 +Zp1,




1.3. Admittance parameters.

{11 =Y U, +XpU,
Ly=YU;+Y»nU,

where Y;; are called the Y parameters.

1X21
B= Y— Y,
3 =21 ]
C = Y Y, Y, Y,
Y,
p-Lu
\ Y \

- for a reciprocal network:

Y=~ 1 |

- for symmetrical network:

’ Y, =~

22‘

©



Y, = AJ I =Y U +Y)pU,
U,=0 I, =Y)U;+Y»nU

[\

I
Y, - __lj Uy =AU, +BI,
U,=0 I, =CU,+DI,




L =Y U +Y)hU,
Iy =YyUj+Y5U

[\

Uy=4U, +BI,
[, =CU,+DI,




1.4. Hybrid parameters.

The hybrid parameters result when I1 and U2 are chosen as independent
variables.

{QJ =hu°[,+h12°Q2
[2 :hzl'lﬁ'hzz'gg

_| Y, _[ Y, _| L _| L,
h]] _ h]Z _ hZ] _ h22 o
!1 QZZO QZ L:o !1 szo Q2 l1:0

v The h terms are known as the hybrid parameters (or, simply, h parameters) because
they are a hybrid combination of ratios.

v’ They are very useful for describing electronic devices such as transistors; it is much
easier to measure experimentally the h parameters of such devices than to measure

their z or y parameters.

v The ideal transformer can be also described by the hybrid parameters



2. EQUIVALENT “T” AND “II” NETWORKS.

2.1 The T - network.

) L
. TY B
input output
v e s
10— ——0 7
) I
. IT et B s
input output
port _1‘ #sz port
10— 09




2.1 The T - network.
Z

|

{

U,=4U, +BI,
I,=CU, +DI,

u=01+2,Y,)U,*(2Z,+Z,tZ2,-2,-Y,) 1,

[,=Y,U,t(1+Z,Y,) 1,

Azl‘l‘ZlZo T — — 9 Y, =
1
X:_
<§:Z1+Zz+2122Z0 Ull I_IZ |U2 VA
QZZO 1 23*
D=1+2,Y, - SV

o 1OY

m‘b




2.2 The II - network.

~

Ve

S 1O 1% I

U

I
~ N

U

ll!z E]Zg

|
"

+ZO.Y2 [

{Q]Z(l_l_go'Zz)'Qz—i_Zo'lz

Uy=4U, +BI,
1, =CU,+DI,

!1:(Z1+X2+Z1'Z2'Z())'Qz—i_(]—i_go'zz)'!z

+
[~

_|_
IN
I~
I~
I~
IN

Z,=B
D-1
)_71:——
B
_ 4]
L




3. ITERATIVE/IMAGE IMPEDANCES and PROPAGATION CONSTANT

3.1 Iterative impedances.

: I I; 2 1 L I, 2
Z T B U * - = i rov.
i ‘_ Uzt [[Ze1 Z &u U, &
| c2l] {Un *2‘@
{ro— T 0 o
2l
a) b)

—=""=Zc | in general: two iterative impedances, one for each direction

Q1=AU2 +B1,
I =CU-n~ + D] Qz :Zalz
=1 — 2 2




zo =S AlatB 7 v (D-A)Ze-B=0
I, CZo+D

&silﬁ—gw@—é)zwﬁ-gl

Similarly:

z@:%lg—aw@—é)%@-g

If the network 1s symmetrical 4 =D and:

Ley=Ley=Lc=%

NE

- the characteristic impedance

©



Particular case: B=C=0

- what does this mean?

For the T — network:

— —_ 2 —
{B—Z1+Z2+lezyo_2zl+zl Y,=0 itresults |Z,=0 andY, =0

C=Y,=0

For the IT — network:

C=Y,+Y,+Y,-Y,- Z,=2Y,+Y - Z,=0
B=Z7Z,=0

it results Y =0andZ,=0

» these conditions are satisfied only for two-port networks build from reactive

elements (inductors and capacitors) tuned at resonance.

©



— L EE—
wL1-wc1 1-"-*"'
10___AM_.“ "__rv'\f\_o‘z
(z0) | = (z:=0)

1'o I 02'

Reactive two-pot network tuned at resonance



3.2 The propagation constant.

If the two-port network is symmetrical ( A = D ) and the load impedance i1s
an iterative impedance (£,) we get:

U, :AUz +B1, :Q2(4+§(£]—2):Qz(é"‘ﬁ\/%)zgz(ﬁ'F\/EQ)
2 b

I,=CU,+DI, =12<4+g%> =£2(A+Q\/%) _ [,(4++BC)

=2

u, 1, B
U /
In=L=In=L=In(4++B-C)=
! U, ! 1, n(A+yB-C)=x - the propagation constant

y=a+jp o - the damping constant, [ - the phase constant



e94=4+\/§.(_? or y= lni: ln{%ejgﬁ}: IH%H'CD

QZ 2 2
a=In Y Y _ e”
U, U,
B=0 p=p
Remarks:

- if =0, the signal pass through the network without damping (unchanged);

-if > 0, the signal 1s damped at the output port (U, < U, );

-1f <0, the signal is amplified (U, > U, );



The reciprocity condition:

AD—-BC =1

If the network is symmetrical: 4 =D and 42 -BC =1

(A-+/B-C)(4+4B-C)=1

1t results that :

Zc:

NE

The two-port network equations are:

<]1 :ish%+[2ch;é

=C

(Ul =U, chy+1,Z shy







If the output port is open-circuited and, respectively, short-circuited.

-

U,=U,chy
- Uisc=1,Z shy
Lou, ]
Lyy=7"58h¥ Lo =1,chy
L ZC
Zlo — QIO — ZC ZISC — QISC :thhy
_ 1, ch L B
Lo =~\2ZwZisc
) /
It results: thy = | =%
k Ly




S. THE INTERCONNECTION OF TWO-PORT NETWORKS.

5.1 Cascade connection.
I

1

o—>—
U, Ql )
[o,

I_H

17

(QIZQI; I, =1,

v,=u"; I',=1I"

I, = lnz

-

u,=U";

\—

o{—f
|C
[\
[l
I
[\

(NS






5.2 Series connection

I I
U} [z'] U,
L
1 Y Y
o—| o
U,

I I
1, o—>— —>0

U 2] u",
\4 \/

(U, =U", +U",
I =1'y=I"
|1,=1,=1,
U, =U\+U"



] 2] e

[<] el et

z]=[z]+[z"]




5.3 Parallel connection

leglzl"l
I=1'+1"
I,=1I5+1",
U, =U,=U0




[¥]=[r]+[r"]
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Chapter S. Transient regime.

» Transient regime in electrical circuits are the processes of
transition from one steady-state regime to another,
characterized by different parameters.

» Transient processes are caused by the commutation in the circuit (closing
and opening of the circuit with electrical switch, the sudden variation of
the circuit parameters due to special functioning conditions).

» Transient process can be define as the process of energy state transition of
the circuit from prior-commutation state to after-commutation state.

» Transient processes are very short, usually about a ten-hundredth of
second. However, it is important to know the transient process length, the
how the signal changes between the circuits states.

» The study of transient regimes involves the computation of
currents and voltages as time functions.



Chapter 5. Transient regime.

» In some situations, the transient regimes characterize the normal operation
of the circuits (operation of protection circuits, operation of static
converters, etc.).

» In other cases, operation of a circuit in transient regime can result in
increases of voltages or currents that cause dielectric, thermal or
mechanical stresses that far exceed the stresses corresponding to a
permanent regime. These can lead to total or partial destruction of some
electrical appliances, which shows the importance of studying the circuits
in transient mode.

oscilant oscilant
amortizat critic aperiodic ) amortizat critic aperiodic
/ 1 yd e yd

L/ |
Feaa |

He A




Chapter S. Transient regime.

5.1 INTRODUCTION

-Transient regime:
> L, C
» moment: t = 0, or modification of circuit parameters values

k Up
C)/G ? i e ¥ (DL ¥ nw, = g(-l-)

¢ L ) u °
= H —
uc Check the notes from

/N  the whiteboard ©
\ ]
NOERNG R l.'?Et\

where: i, is the forced response (or the steady-state response)

i, is the natural response (or the fransient response).



Chapter 5. Transient regime.

5.2 CONTINUITY CONDITIONS

There is a problem : how does the transition between initial and final
states take place?

Is it possible for the capacitor voltage or for the inductor current
simply to jump up to their final values immediately ?



Chapter 5. Transient regime.

a) The first continuity condition (for circuits containing inductors)

i, DL The current and the magnetic flux are
iL(0-)=iL(O+) continuous functions of time :

P (O-)=2L(0+)

i1(0-) = i(0+) = (0)

-1

OL(0-) = DL(0+) = D(0)

If there is a sudden jump in an inductor current:

(22 4] -

dt dt




Chapter 5. Transient regime.

b) The second continuity condition (for circuits containing capacitors)

The voltage and the electric charge are
continuous functions of time :

1, (0-) = u,(0+) =u.(0)

q.(0-)=¢q.(0+) =¢g.-(0)

If there is a sudden jump in a capacitor voltage:

ic(0+):(dch :C(du"j o
dt 0+ dt 0+
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5.3 TRANSIENT BEHAVIOUR OF THE R, L CIRCUITS

- first-order circuits: circuits containing a single type of energy-storage

element “, i, = u(t)

o R
W U rier %)
u(t) UL( L dt

i()=i,+i,

The natural response - when u(¢) = 0 :

Cl’ll R
+Ri, =0, Lp+R=0, = p=-—
dt / L

R R

— Ae_zt° i(f)zip + Ae *

>



Chapter 5. Transient regime.

R
——1
i(t) = l’p 1+ e L - A is determined by the initial conditions:

whenr=0: i(0)=i,(0)+i(0) or iy=i,+d A=ip—iy

_R,
+ e . . . L

X8 ip(t) has a form quite similar to the particular form of the excitation function
being used; it is logically called the particular solution.

* . . y — 7 —_—

“ 1, represents the value of the steady-state current: Lo =1, (t = O)

X I, represents the value of the current immediately before the switching

operation: I, = i(O —)



Chapter 5. Transient regime.

L
The quantity — =1
R

R| [R] o] Qs

F}_[@] L1 _ {L}_IH_ W -1s

has the dimension of time:

= = =1s
1 1Q-14

R

7 =L/ R iscalled the time constant of the circuit.

¢ e ._. T

t
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5.3.1 Response to sources with constant excitation.

a) The switch is closed.

i(t) =i, +(iy—i,)e

R
——t
L

+ =0
E{} lO
"TRMOTR
E E — E -
(t)=———e " =—|1-e"




Chapter 5. Transient regime.

The voltage across the inductance:




Chapter 5. Transient regime.

b) The switch is opened.

i(t)

_eT

D . lp() =O

There is a problem: how great is the value of the
voltage across the inductance at t=0 ?




_R,
Chapter 5. Transient regime. i()=1i,+ (io ‘ipo)e ’
R
— Let p be the resistance between the
. — i switch contacts.
E |
C> L 0< p <
e
() — /5 pL I3
i(r) + e
R+p R(R+p)
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The voltage across the inductance: UL E
- \
+P

di ——
urp = L— = —BEQ L up t

dt R

p
- EE

Overvoltages, for instance if:

(%:IO,E:IOOV :%E:I.OOOV)

E é) c —> Solutions for protection
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5.3.2 Response to sources with sinusoidal excitation.
oy R
e(t)= V2E sin(ct + ) @D

Check the notes from
the whiteboard ©
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R
——t

i(6) =i, +(iy—i,)e -

R
[=1i,+i = E~2 sin(at + S —@)— V2E sin(8 —¢)e L
y4 y4
TwWO cases:

a) if

i) =1,

P-p=0 or f-p=r :

the steady-state regime

appears immediately, without a transient response !

i(t) = \/El(cos Wt — e_é)

it appears a stroke current:
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i(t) = \/El(cos Wt — e_é)

If the time constant 7 =L/ R hasavery highvalue (L/R>>):

ip = ¥2 | cosot
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5.4 TRANSIENT BEHAVIOUR OF THE RC CIRCUITS.

» R Ri+%jidt=u(t)
u(t) T;( |
ueA T ¢ ._a’q .
T Z_E q—Jldf
RZ‘t]+éq=u(t) q(t)=q, +q,
dg, 1 -
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For t=0: Q(O)Z%,qp(o):qpo and AZQo_qpo

thus:

where

q9=dq, +(qo—qpo)e ‘

7= R(C | is the time constant of the RC circuit

Rl O
1 Q-5
L)C}[(D]

is the electric charge immediately before the switching time;

[t]=[RC] =

the steady-state electric charge;

the value of g, for t=0.
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5.4.1 Response to sources with constant excitation.

4

q=qp+(qo—qpo)€ ‘

E&:D O f— qo:O
) qp:CE , qu:CE
t ( )

g=CE—CEe * =CE

l]—e ©T where T = RC

\ J
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u. = FEe *¢

d | -
z=—q=CE—e T

dt T

r e
I=—e T

R

If R isverysmall: i(O +):% will be very high !
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5.5 TIME CONSTANT

q = qp(l — erj

OA':AA _9p oy
go  iga

0 A‘
tga:(ﬁj _Ir z-zOAr
dt ),_g T

If =17 :

e—1

—1
qr=qp(1—e )=qp ) =0,032¢q,

or u_= E(l — e_l): 0,632F
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-1
u. = E(l — e )Z 0,632E means that the time constant represents

the time required for u to reach 63.2% of its final value (physical
significance).
After 31, the circuit will have gotten V(0T ) K-
1 - e -3 = 95% of the way, and after ~63% of ~95% of
51, more than 99%. [v(0F) —v(c0)] [v(0F) —v(c0)]
So, after a few time constants, for
practical purposes, the circuit has
reached steady state. \
Thus, the time constant is itself a good wv(co) {------------------- = T
rough guide to “how long” the ¢
transient response will take. T 9 - Ar e

Of course, mathematically, the steady state is actually an asymptote: it never truly

reaches steady state.

But, unlike mathematicians, engineers don’t sweat over such inconsequential details. ©
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5.6.1. The General Transient Expression of the Charge and
Current of an RLC Series Circuit

(1]

e 4

L

—-I—Rl-l——jldl‘—

dzq
dt?

g=[idt; i=="

+R

dg q _

— 4+ = =

dt C

dg
dt

u(t) .

di _
dt

dt?

dzq
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Notations: :
S = i -the damping constant

- the resonant frequency

e \/ 62 2 | -the frequency of oscillation
0= ~®o

D5 :—5i\/52—a)§ =Staw,,
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Because there are 2 roots (usually distinct values):

q; = AeP!' + BeP?!
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~S5—wp )t

Sia (
= g, =A%) 4 Be
q; = e % (Ae(”bt + Be_mbt)

Euler formulas:

e™ =chajt+shwjt, e ™ =chojt—shw,t

= g, =e [(4+ B)cholt +(4— B)shwlt]
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Replacing Aand B :

—ot ' O ’ 1 . . ’
q; =e {(610 — 450 )Ch(ﬂof + —,(‘10 — 4 po )””‘O)of + —(lo — 150 )fh@of}
or
_ | O io —1 0
q; =e ot (qo —q o ) chogt +——shogt |+ ' P shoyt
/ ’
/ (l) [ ® [} 6
If tha -0 we can consider:  shal S U and cha' = —



Chapter 5. Transient regime.

The final expressions are:

q; = zg =e _(qo — 4 p0 )9h((x)bt + oc’)+ 0 ;(l)po Sh(x)bf_
I = dgtl _(Do _St[ﬁ)o(qO —qpo)fhﬂ)o +(0 _lpO)Sh (Dof— )]

q(t)=4q, +q,
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5.6.2. The transient response of the second order circuits.

+

>K,c L e(t) =k
E C)

q0=0;9, =CE;q,9 =CE

O

ig =051, =0;1 0

p0 —

It results:

q(t) = CE[I ——L e sh(aft + 05')}
@'

0)2
i(t)=CE —‘Ze_&sh wyt
W
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The roots of the characteristic equation assume three possible conditions:

Pis =—5i\/52—a)§ =-Stwm,,

R ]
(where O0=—— and Oy=—17— )
2L

. 2 2
1) two real and distinct roots, when O > W,

- the circuit is said to be overdamped

2) two real, equal roots, when O° = a)g

- the circuit is said to be critically damped

3) two complexroots, when & < a)g

- the circuit is said to be underdamped




Chapter 5. Transient regime.

1) An overdamped response is the response that does not oscillate about the
steady-state value but takes longer to reach than the critically damped case.

0)2
i(1)y=CE—"Le"shajt
W

- the current is only positive

- the maximum of the current
occurs at the instant t;, when the
first derivative of the current is
zZero:

Oi
= Se”shajt+aw,e”chat=0
[
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2) A critically damped response is that response that reaches the steady-state
value the fastest without being underdamped. It is related to critical points in the
sense that it straddles the boundary of underdamped and overdamped

responses. Here, damping ratio is always equal to one. There should be no
oscillation about the steady state value in the ideal case.

2
: @, _ i
i(t)=CE—"e"shalt ‘\'
ON N
Sh 't \ i
. 2 o . a)O, — 2 -0l \ ~
i=ampe” CE lim—= wyCEe” 't | ~.__e T
a)()'—)o a)or : =~ -
| e -
- the current is only positive iz 1

- the maximum of the current occurs at the instant t,, when the first derivative
of the current is zero:

6i_ -ot -0t _1— 1
= _ .1+ — [, = —
Y 58 [Te 0 2 S 0
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3) An underdamped response is one that oscillates within a decaying envelope.
The more underdamped the system, the more oscillations and longer it takes to
reach steady-state. Here damping ratio is always <1.

a)2
i(1)= CE—e"shat

wCE i
“ N " cee”
W
2 ~ / ®
. @) 5 . N
i(t)=CE—= e sinat : M2
) |

I
|
1

I \,/{MZ\’/
-the period of the T = 27 o
damped oscillations: a)(’)’ #1 1
f

iM1

A -
R¥ i

It can be shown that ol =1n — logarithmic decrement

M2

where iM] and iM2 are the amplitude of two succesive peaks.
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5.7. THE LAPLACE TRANSFORM

The Laplace transform is an integral transform perhaps second only to
the Fourier transform in its utility in solving physical problems.

The Laplace transform is particularly useful in solving linear ordinary
differential equations such as those arising in the analysis of electronic
circuits.

In other words it can be said that the Laplace transformation is nothing but a
shortcut method of solving differential equation.

Laplace transform definition: | L/f(t)] = Tf(t) ¢ dt=F(s)

where s =0+ jw (complex quantity)



https://mathworld.wolfram.com/IntegralTransform.html
https://mathworld.wolfram.com/FourierTransform.html
https://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
https://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
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1) The impulse function

L[5(9)] = [e" S(t)di=1

2)The step function

LIy(0] = F(5) = [e"di="

A
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3) The transform of the first derivative of f(t) :

L[] = sE(s) - f(0)
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4) The transform of the integral of f(t) :

LI ] fivdt] = F
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Properties of the Laplace transform:

> linearity : <Z[af(t)] = al[f(t)] = aF(s)

> superposition: £/ [, [,)] =L[f,)] L[ [,()] = Fi(s) £ F:(s)

fit) L Lr(z)] St L Lr(z)]
) a
it ) ! shat 5 =
T —a
. 1 5
it ) - chat -
5 55 —a”
1 )
e e sin ot - S
s*a s+al +o
1 Era
te & Y, e ¥ cosat - 2 2
s +a) s +al o
2 1
sin o = = I [E':E —e” J —
5+ a+b" (s —als— &)
5 1 ot » Bl aq
A - |t| B
cos ol .32 — [_r;re g™ | G—afs—3)
sinfor + o) i £t sL [#(t)= rlo]]
55+
. 1
. SCosSQ— 6 sin o .
coslwt + o) :]:- = i jﬂ__r it ! L [F(2)]
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Network analysis by Laplace transform.

» the voltage-current relationship for a resistance
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Network analysis by Laplace transform.

» the voltage-current relationship for an inductance carrying initial current i
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Network analysis by Laplace transform.

» the transform corresponding to the voltage-current relationship for
capacitance, charged to an initial voltage u,




Chapter S. Transient regime.

e ift) Is)
B S 1 S =1
UoiCD Lio i %—0
R1 E]Rz R1 R,
a) time-domain b)s-domain

Example of circuit transformation.

Applying Kirchhoff's voltage law to the s-domain circuit:

(SL + LC TR, T szl(s) = ‘(@ +Li0j
S

S

- + 7
or I(s) = (Uy/s+ Liy)
sL+1/sC+R, TR,
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Inverse Laplace transform :  f(t)= <" [F(s)]

-l
_Ps) _aws" Tawis" o tasta

F(s) ;
O@s)  §"tbhyys" Tt hsthy
pre) = ) _ P(s)
Ofs)  (s-s))(s-52)(5-50) (5~ 54)
where 51,87 ...,5, are the roots of Q(S)=O = (poles !)
F(S):P(s): Ar o Ar o A o A
O@s) s-s;1 S-s5 S-Sk S-Sy

n

- the original function: f(t): ZAkeskt

k=1
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Ohm’s Law and Kirchhoff’s Laws (using the Laplace transform):

t . ex
u+e, =Ri+ljidt+Ldl +d¢
C dt dt

—00

u+te, —Rz+U +— jzdt+d¢
dt

0
where: Ucozéjidt; ¢=Li+ "

Applying the Laplace transform it results the Ohm’s law:

UCO

= I(s)- Z(s)+ szj 1 (s)

];ék

U(s)+ Eg(s)+do -
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U(s)+ Eq (s)+ bg ——

S

L
20— 1(s)-Z(s)+ D Zyy -1 ;(s)
oy
The corresponding circuit is:

fies) |
_|:SI|_L<(-WY-\_@
sL

——C—
R D sC '%: E(s)
I(s)4
o U(S) - O
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Kirchhoff’s Laws (using the Laplace transform):

1) Kirchhoff’s Current Law (KCL)

> i =0

keg

Zlk(s):O

keq

2) Kirchhoff’s Voltage Law (KVL)

kep

Z{Egk(sﬁ D,, -

USCO } - Z Zk(S)'[k(S)+ZL:ZkJ(S)'[j(S)

kep j=
J#
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