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     ~Theory of electric circuits ~

 



➢ Electric circuit theory and electromagnetic field theory are the 

two fundamental theories upon which all branches of electrical 

engineering are built.

➢ Many branches of electrical engineering, such as energy 

production, electric machines, control, electronics, communications 

and instrumentation, are based on electric circuit theory.

The basic electric circuit theory course 

– an excellent starting point for a 

beginning student in electrical 

engineering education  ☺ 
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The objectives of the Course

1. To present systematically the basic theory of the electric circuits

2. To introduce electrical components and the fundamental laws that 

govern the behavior of an electrical circuit in case of: 

- DC and AC circuits;

- two-ports networks;

- steady-state periodic non-sinusoidal regime;

- transient regime of liniar circuits;

- three-phase circuits; 
          - transmission lines.
3. To practice specific methods of analysis.

➢ On successful completion of this course, students will be able to: 

analyze the operation of linear circuits in response to DC, sinusoidal,

non-sinusoidal and transient waveforms.
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Assessment Details:

Exam, 2 hours, 100%
(ANSWER TO MULTIPLE CHOICE 

TEST + SOLVE PROBLEMS)

Number of ECTS credit points: 4  

Teaching details:

▪ 14 lectures 

(2 hours/lecture)

▪ 14 seminars 
(2 hours/seminar)
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Reading and References

✓ Students are provided with set of notes:   posted on TEAMS

✓ Students requiring extra material are recommended:

Ed. U.T.Press Cluj-Napoca, 2016 

ISBN 978-606-737-140-6

Ed. Casa Cartii de Stiinta, 1998 

ISBN 973-9204-98-8
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Chapter 1 - DC CIRCUITS (recap from semester I)

Chapter 2 – AC CIRCUITS

Chapter 3 – THREE PHASE CIRCUITS

Chapter 4 – TWO PORT NETWORKS

Chapter 5 – STEADY-STATE PERIODIC NON-SINUSOIDAL REGIME

Chapter 6 – TRANSIENT REGIME
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Course content:



  CHAPTER 1: DC Circuits 
1. Basic concepts



• An electrical circuit is an interconnection of electrical elements

A simple electrical circuit

Electric circuit of a radio transmitter

Electric circuits are used in numerous electrical systems to  accomplish different tasks. 

Our objectives in this course is not the study of various uses and applications of the circuits.

❑ Rather, our major concern is the analysis of the circuits (study of the behavior of 

the circuit):

- How does it respond to a given input

- How do the interconnected elements and devices in the circuit interact etc.

1.1 INTRODUCTION
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1.2 SYSTEM OF UNITS

➢ International System of Units (SI) adopted 

by the General Conference on Weights and 

Measures in 1960
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1.3 CHARGE AND CURRENT

• The most basic quantity in an electric circuit is the electric charge.

Charge is an electrical property of the atomic particles of which matter 

consists, measured in coulombs (C)
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1.3 CHARGE AND CURRENT

• The motion of charges creates electric current 

- It is conventional to take the current flow as the 

movement of positive charges. That is, opposite to the 

flow of negative charges. 
(This convention was introduced by Benjamin Franklin (1706-1790), the 

American scientist and inventor)

Electric current due to flow of 

electronic charge in conductor - Because the current in metallic conductors is due to 

negatively charged electrons, we will follow the universally 

accepted convention that current is the net flow of positive 

charges.

Electric current is the time rate of change of charge, measured in amperes (A)

The charge transferred between time t0 and t
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1.3 CHARGE AND CURRENT

A direct current (DC) is 

a current that remains 

constant with time.

An alternating current (AC) is a 

current that varies sinusoidally with 

time.

- The direction of current flow is

conventionally taken as the direction of

positive charge movement.

a) Positive current flow b) negative current flow
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1.3 CHARGE AND CURRENT
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1.3 CHARGE AND CURRENT

PRACTICE PROBLEM 1.1. 

EXAMPLE 1.1. 
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1.3 CHARGE AND CURRENT

EXAMPLE 1.2. 

PRACTICE PROBLEM 1.2. 
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1.3 CHARGE AND CURRENT

EXAMPLE 1.3. 

PRACTICE PROBLEM 1.3. 

17



1.4 VOLTAGE

- To move the electron in a conductor in a particular

direction requires some work or energy transfer: an

external electromotive force (emf) also known as

voltage or potential difference. 

Voltage (or potential difference) is the energy required to move a unit charge

through an element, measured in volts (V)

- w is energy in joules (J)

- Q is charge in coulombs (C)

Polarity of voltage uab
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1.4 VOLTAGE

A DC voltage: voltage that remains constant with time (is represented by U).

Is commonly produced by a battery.

An AC voltage: voltage that varies sinusoidally with time (is represented by u).

Is commonly produced by an electric generator.

On the left: the voltage increases by 9V from the – sign to the + sign

On the right:  the voltage decreases by 9V from the – sign t the + sign
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1.4 VOLTAGE
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✓ Current and voltage are the two basic variables in electric circuits.

✓ The common term signal is used for an electric quantity such as a current or a

voltage (or even electromagnetic wave) when it is used for conveying information.

✓ Engineers prefer to call such variables signals rather than mathematical functions

of time becuase of their importance in communications and other disciplines.

1.4 VOLTAGE

Electric current is always through an element and

electric voltage is always across the element

between two points.

KEEP IN MIND:
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1.5 POWER AND ENERGY

Power is the time rate of expending or absorbing energy, measured in 

watts (W)

or

- p is power in watts (W)

- w is energy in joules (J)

- t is time in seconds (s)

- The power p is a time-varying quantity called the 

instantaneous power.

- If p has a + sign, power is being delivered to or 

absorbed by the element.

- If p has a - sign, power is being supplied by the 

element.

Reference 

polarities for 

power using the 

passive sign 

convention
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1.5 POWER AND ENERGY

Law of conservation of energy: the algebraic sum of 

power in a circuit, at any instant of time, must be zero.

Energy is the capacity to do work, measured in joules (J).

The electric power utility companies measure 

energy in watts-hours (Wh), where:
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1.5 POWER AND ENERGY

EXAMPLE 1.4. 

PRACTICE PROBLEM 1.4. 
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1.5 POWER AND ENERGY

EXAMPLE 1.5. 

PRACTICE PROBLEM 1.5. 



1.5 POWER AND ENERGY

EXAMPLE 1.6. 

PRACTICE PROBLEM 1.6. 
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1.6 CIRCUIT ELEMENTS

There are two types of elements found in electric circuits:

➢ PASSIVE ELEMENTS which are not capable to generate energy 

(resistors, capacitors and inductors)

➢ ACTIVE ELEMENTS which are capable to generate energy (generators, 

batteries, operational amplifiers)

Source: [https://powerinception.com/]

Passive circuits and active circuits
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An ideal independent source is an active element that provides a specified 

voltage or current that is completely independent of other elements.

An ideal independent VOLTAGE source is an active element that delivers

to the circuit whatever current is necessary to maintain its terminal

voltage. 

Element dipolar ideal, capabil să menţină între bornele sale o tensiune electrică independentă de

curentul debitat

1.6 CIRCUIT ELEMENTS

Voltage – current characteristic

Ideal → source has zero internal resistance
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1.6 CIRCUIT ELEMENTS

An ideal independent CURRENT source is an active element that provides

a specified current completely independent of the voltage across the source. 

Element dipolar ideal care debitează un curent de intensitate precizată independentă de tensiunea

între bornele sale.

- The ideal current source delivers to the circuit whatever voltage is necessary to

maintain the designated current.

Voltage – current characteristic

The arrows indicates the direction of current
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1.6 CIRCUIT ELEMENTS

An ideal dependent (or controlled) source is an active element in which the

source quantity is controlled by another voltage or current.

- Dependent sources are useful in modeling

elements such us transistors, operational

amplifiers and integrated circuits.
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SUMMARY
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REVIEW QUESTIONS
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CHAPTER 1: DC CIRCUITS 
2. BASIC LAWS



2.1 OHM’S LAW

- Materials in general have the characteristic behavior of resisting the flow of electric

charge. This physical property, or ability to resist current is kown as resistance (R).

- ρ is known as resistivity of the material (ohm/m)

- A cross section area of the material (m·m)

- L is the lenght of the material (m)

The resistance R of an element

denotes its ability to resist the

flow of electric current; it is

measured in ohms (Ω).
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2.1 OHM’S LAW
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Ohm’s Law states that the voltage V across a resistor is directly 

proportional to the current I flowing through the resistor.

2.1 OHM’S LAW

- Since the value of R can range from zero to infinity, it is important that we

consider the two extreme possible values of R.

A short circuit is a circuit element with

resistance approaching to zero.

An open circuit is a circuit element

with resistance approaching infinity.
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2.1 OHM’S LAW

- A resistors that obeys Ohm’s Law is kown as a linear resistor.

The current – voltage 

characteristic of a linear resistor

The current – voltage characteristic 

of a nonlinear resistor

- A resistors that not obeys Ohm’s Law is kown as a nonlinear resistor (its

resistance varies with current).

Linear circuits and non-linear circuits
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2.1 OHM’S LAW
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2.1 OHM’S LAW

Conductance G is the ability to conduct the flow of electric current; it

is measured in siemens (S).

- The power disipated by a resistor can be expressed in terms of R:

- The power disipated by a resistor can be expressed in terms of G:
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EXAMPLE 2.1.

PRACTICE PROBLEM 2.1. 
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EXAMPLE 2.2.
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PRACTICE PROBLEM 2.2. 
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2.2 NODES, BRANCHES and LOOPS

A branch (b) is the connections between two nodes. 

A node (n) is the point of connection between more than two branches.

A loop (l) is any closed path in a circuit.

b=4

l=3

n=2
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2.3 KIRCHHOFF’S LAW

(there are l – n + 1 independent loops or equations)

   

Kirchhoff’s current law (KCL) applies to the nodes of a network and states 

that the algebraic sum of the currents at a node is zero.

(there are n – 1 independent nodes or equations)

- We shall assign positive polarity (+) to a current leaving a node, and 

negative polarity (-) to a current entering a node.

Kirchhoff’s voltage law (KVL) the algebric sum of all voltages around a

closed path (or loop) iz zero.

Sum of voltage drops = sum of voltage rise
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2.3 KIRCHHOFF’S LAW

For Examples and Practice problems 

using Ohm’s Law, KCL and KVL, see SEMINAR 1
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2.4 SERIES RESISTORS and VOLTAGE DIVISION

The equivalent resistance of any number of resistors connected in series

is the sum of the individual resistances.

Principle of voltage division
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2.5 PARALLEL RESISTORS and CURRENT DIVISION

The equivalent conductance of resistors connected in parallel is the sum

of their individual conductances.

Principle of  current division
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2.6 WYE – DELTA TRANSFORMATIONS

- This situasions arise in circuits analysis when the resistors are neither in parallel nor in

series.

- Many circuits of the type shown in Fig.1 (a bridge network), can pe simplified by using

three-terminal equivalent networks such: the wye (Y) or tee (T) network, and delta (Δ) or pi

(Π) network.

Wye (Y) network Tee (T) network Delta (Δ) network Pi (Π) network

Fig.1 The bridge network 

- They are used in three-phase networks,

electrical filters and matching networks
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2.6 WYE – DELTA TRANSFORMATIONS

➢ DELTA TO  WYE CONVERSION

Wye (Y) networkDelta (Δ) network

- We not need to memorize equations; to

transform Δ in Y, we create an extra node n and

follow this conversion rule:

Each resistor in the Y network is the

product of the resistors in the two

adiacent Δ branches, divided by the sum

of the threeΔ resistors.
Supeposition of Y and Δ

networks as an aid in 

transforming one to another
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2.6 WYE – DELTA TRANSFORMATIONS

➢ WYE TO DELTA CONVERSION

- We not need to memorize equations; to transform Δ in Y, we create an extra node n and

follow this conversion rule:

Each resistor in the Δ network is the sum of the all possible products of Y

resistors taken two time, divided by the opposite Y resistor.
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2.6 WYE – DELTA TRANSFORMATIONS

The Δ and Y networks are said to be balanced when:

Under this conditions, conversion formula become:

In making Δ/Y transformation, we do not take anything out of the circuit or

put anything new. We are merely substituting different but mathematically

equivalent three-terminal networks patterns to create a circuit in which

resistors are either in series or in parallel, allowing us to calculate Req if

necessary.

KEEP IN MIND:
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For Examples and Practice problems 

regarding calculation of Req, Geq and Δ/Y conversion, see 

SEMINAR 1
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SUMMARY
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SUMMARY
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SUMMARY
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SUMMARY
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REVIEW QUESTIONS
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REVIEW QUESTIONS
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BASES OF ELECTROTECHNICS I.
Faculty of Electronics, Telecommunications and Information Technology
Specialization: IETTI
Academic year: 2023-2024



Content of this Subchapter:
1. Nodal Analysis
2. Mesh Analysis

!!! With this two techniques, any linear circuit can be analyzed by obtaining a 
set of simultaneous equations that are then solved to obtain the required 
values of current or voltage.
 



- Nodal analysis is possible when all the circuit elements' branch constitutive relations 
have a conductance representation. Nodal analysis produces a compact set of equations 
for the network, which can be solved by hand for “small circuits”, or can be quickly solved 
using linear algebra by computer. 

- Because of the compact system of equations, many circuit simulation programs 
(e.g. SPICE Module from ORCAD software) use nodal analysis as a basis. 

Nodal Analysis, Node-Voltage Analysis, or the Branch Current Method
Nodal Analysis

-  Nodal analysis provide a general procedure 
for analyzing circuits using node voltages as the 
circuit variables.

-  Choosing node voltages instead of element 
voltages as circuit variables is convenient and 
reduces the number of equations one must 
solve simultaneously.

https://en.wikipedia.org/wiki/SPICE


3.1 Nodal Analysis

Steps to compute currents using Node Analysis:

1. Select a node as the reference node. Assign voltages V1,  V2, . . . , V(N-1) to the 
remaining (N-1) nodes. 

 Take as reference node the node with most branches 
connecting to it.

 If a voltage source is connected between the 
reference node and a non-reference node, we simply 
set the voltage at the non-reference node equal to the 
voltage source. 



2. Write the system of equations specific to the Node Analysis.
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Gaa   - the self-conductance of node a
Gab  - the mutual conductance between node a and node b

             - sum of the currents due to current sources connected to node k

         - sum of the currents due to voltage sources connected to node k∑ kI

∑ jj EG

(sign + for currents that enters node; sign – for currents that leaves node)

3.1 Nodal Analysis



3. Compute the above system of equations in order to compute de Node 
Voltages.

4. Compute the currents by applying Omh’s Law for each branch of the 
circuit.

3.1 Nodal Analysis







Loop Analysis, Mesh Current Method or Maxwell´s Circulating Currents Method
Mesh Analysis

-  Is a method that is used to solve planar circuits for 
the currents (and indirectly the voltages) at any 
place in the electrical circuit.

- Using mesh currents instead of directly applying 
KCL and KVL can greatly reduce the amount of 
calculation required. 

This is because there are fewer mesh currents than there are physical branch currents. 

- Mesh Analysis is a very handy tool to compute current within electronic circuits. From 
knowing the current within each mesh (section), we can solve for voltage and power 
(watts) at each component. 

     Ex: Engineers and designers use this information to select correct parts that won’t emit the magic      
white smoke when power is applied.

Magic smoke is a humorous name for the caustic smoke produced by burning out electronic circuits or components (usually by 
overheating, overdamping, or incorrect wiring configurations), which is held to contain the essence of the component's function. 
The smoke typically smells of burning plastic and other chemicals, and sometimes contains specks of sticky black ash. The color 
of the smoke depends on which component is overheating, but it is commonly white or grey. Simple overheating eventually 
results in component failure, but does not release smoke. Real smoke is almost always the result of incorrect wiring or a 
manufacturing failure in the component.



 Mesh Analysis is not as general as Nodal Analysis because is it only applicable to a 
circuit that is planar 

3.2 Mesh Analysis

Planar circuit = circuit that can be drawn on a plane surface with no wires crossing each 
other; otherwise is nonplanar circuit.

- A circuit may have crossing branches and still 
be planar if it can be redraw such that it has no 
crossing branches.

Example of a nonplanar circuit

Mesh = loop which does not contain any other loops within it.



3.2 Mesh Analysis

Steps to compute currents using Mesh Analysis:

- The direction of the mesh current is arbitrary (clockwise or counterclockwise) 
and does not affect the validity of the solution.

 As a general rule of thumb, only label inside loops in a clockwise 
direction with circulating currents as the aim is to cover all the 
elements of the circuit at least once.

 If the assumed direction of a mesh current is wrong, the answer 
for that current will have a negative value.



KEEP IN MIND:

Before you chose the mesh currents check in which of those 3 possible cases your 
circuit is fit:

 CASE 1: Circuit with no current sources

 CASE 2: When a current source exists only in one mesh

 CASE 3: When a current source exists between two meshes

Take into account in choosing mesh currents the rule of thumbs for each case.

3.2 Mesh Analysis

In this case we must reconsider the meshes
(CASE 3)



STEP_2: Write the system of equations specific to the Mesh Analysis.

RNN   - self-resistance (the total resistance) of the Nth loop

Rab  - the mutual resistance between loop a and loop b

∑ kE

∑ jj IR

(with sign + if the mesh currents through the common resistance have the same 
direction, with sign – otherwise)
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- sum of the sources contained by the mesh 

 - sum of the voltages due to voltage sources contained by the mesh 

3.2 Mesh Analysis



STEP_3: Compute the above system of equations in order to compute de 
Mesh Currents.

STEP_4: Compute the currents through branches based on Mesh (loop) Currents.

3.2 Mesh Analysis

For Examples and Practice problems 
Mesh Analysis see SEMINAR 2 



SUMMARY
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1. Superposition Theorem
2. Source Transformation
3. Thevenin’s Theorem
4. Norton’s Theorem
5. Milman’s Theorem
6. Maximum Power Transfer Theorem

For the following analysis methods:
 Superposition Theorem
 Thevenin’s Theorem
 Norton’s Theorem

PLEASE CHECK THE COURSE FROM SEMESTER 1:
Passive Electronic Components and Circuits (PECC)

Content of this Subchapter:



Superposition Theorem

Superposition Theorem is one of those strokes of genius that takes 
a complex subject and simplifies it in a way that makes perfect sense.

- The theorem is applicable to linear networks (time varying or time invariant) 
consisting of independent sources, linear dependent sources, linear passive 
elements (resistors, inductors, capacitors) and linear transformers.

- Superposition works for voltage and current but not power. In other words, the sum 
of the powers of each source with the other sources turned off is not the real 
consumed power. To calculate power we first use superposition to find both current 
and voltage of each linear element and then calculate the sum of the multiplied 
voltages and currents.

Superposition theorem states that for a linear system the response 
(voltage or current) in any branch of a bilateral linear circuit having more 
than one independent source equals the algebraic sum of the responses 
caused by each independent source acting alone, where all the other 
independent sources are replaced by their internal impedances.



Steps to Apply Superposition Principle:

1. Turn off (set to zero) all independent sources except one by:

- Replacing all other independent voltage sources with a short circuit (thereby 
eliminating difference of potential i.e. U=0; internal impedance of ideal voltage source is 
zero (short circuit)).

 - Replacing all other independent current sources with an open circuit (thereby 
eliminating current i.e. I=0; internal impedance of ideal current source is infinite (open 
circuit)).
         - Dependent sources are left intact because they are controlled by circuit variables.

2. Find the output (voltage or current) due to that active source using any techniques

3. Repeat steps 1 and 2 for each of the other independent source.

4. The total current through any portion of the circuit is equal to the algebraic sum of the 
currents produced by each independent source.

4.1 Superposition Theorem



https://www.youtube.com/watch?v=UwiaDe01s60

Acces s  the below link to watch a  video who explains  with a  numerical example 
Superpos ition Theorem:

4.1 Superposition Theorem

20/27



Source Transformation for Independent Sources

KEEP IN MIND:

A source transformation does not affect the remaining 
part of the circuit.

- When is applicable, source transformation is a powerful tool that allows circuit 
manipulations to ease circuit analysis.

A source transformation is the process of replacing a voltage source Us in 
series with a resistors R by a current source is in parallel with a resistor 
R, or vice versa.



When dealing with source transformation, we should keep the following 
points in mind:

- The arrow of the current source is directed toward the positive terminal of 
the voltage source.

- Source transformation is not possible when R=0, which is the case with an 
ideal voltage source (for a practical, nonideal voltage source, R≠0).

- An ideal current source with R=∞ cannot be replaced by a finite voltage 
source. 

4.2 Source transformation

or



Thevenin’s Theorem
- Thevenin’s Theorem is especially useful in analyzing power systems and 
other electronic circuits where one particular resistor in the circuit (called 
the “load” resistor) is subject to change, and re-calculation of the circuit is 
necessary with each trial value of load resistance, to determine voltage 
across it and current through it. 

Thevenin’s Theorem states that it is possible to simplify any linear circuit, no 
matter how complex, to an equivalent circuit with just a single voltage source 
and series resistance connected to a load.



Steps to Apply Thevenin’s Theorem:

1. Find the Thevenin source voltage by removing the load resistor from the original circuit 
and calculating voltage across the open connection points where the load resistor used to 
be.

2. Find the Thevenin resistance by removing all power sources in the original circuit (voltage 
sources shorted and current sources open) and calculating total resistance between the open 
connection points.

With the load disconnected and terminals a-b 
open-circuited, we turn-off all independent 
sources.
RTH – is the input resistance at the terminals 
when the independent sources are turned off.

4.3 Thevenin’s Theorem

If terminals a-b are made open-circuited, no 
current flows, so that the open circuit voltage 
across the terminals a-b must be equal with 
the voltage source UTH .



2. Analyze voltage and current for the load resistor following the rules for series circuits.

3. Draw the Thevenin equivalent circuit, with the Thevenin voltage source in series with the 
Thevenin resistance. The load resistor re-attaches between the two open points of the 
equivalent circuit

See in the figure that the Thevenin 
equivalent is a simple voltage divider.

4.3 Thevenin’s Theorem



4.3 Thevenin’s Theorem

https://www.youtube.com/watch?v=Zqfi8SjmaBo

Acces s  the below link to watch a  video who explains  with a  numerical example 
Thevenin’s  Theorem:



Norton’s Theorem

Thevenin’s Theorem states that it is possible to simplify any linear circuit, 
no matter how complex, to an equivalent circuit with just a single current 
source and parallel resistance connected to a load.

- In 1936, about 43 years after Thevenin publish his theorem, E.L. Norton, an American 
engineer at Bell Telephone  Laboratories, proposed a similar theorem. 



Steps to Apply Norton’s Theorem

1. Find the Norton source current by removing the load resistor from the original circuit and 
calculating current through a short (wire) jumping across the open connection points 
where the load resistor used to be.

2. Find the Norton resistance by removing all power sources in the original circuit (voltage 
sources shorted and current sources open) and calculating total resistance between the 
open connection points.

As with Thevenin’s Theorem, everything in the original circuit except the load resistance has 
been reduced to an equivalent circuit that is simpler to analyze. Also similar to Thevenin’s 
Theorem are the steps used in Norton’s Theorem to calculate the Norton source current 
(INorton) and Norton resistance (RNorton).

4.4 Norton’s Theorem



4.4 Norton’s Theorem

4. Analyze voltage and current for the load resistor following the rules for parallel circuits.

3. Draw the Norton equivalent circuit, with the Norton current source in parallel with the 
Norton resistance. The load resistor re-attaches between the two open points of the 
equivalent circuit.



4.4 Norton’s Theorem

 The Thevenin and Norton equivalent circuits are related by a source 
transformation which is often called Norton-Thevenin transformation.

 Since VTH, IN and RTH are related according above equation, to determine the Thevenin 
or Norton equivalent circuit requires that we find:



4.4 Norton’s Theorem

Acces s  the below link to watch a  video who explains  with a  numerical example 
Norton’s  Theorem:

https://www.youtube.com/watch?v=bu4HR8b_QKI



Millman’s Theorem

Millman’s Theorem  states that – when a number of voltage sources (E1, 
E2, E3…En) are in parallel having internal resistance (R1, R2, R3...Rn) 
respectively, the arrangement can replace by a single equivalent voltage 
source V in series with an equivalent series resistance R.  

- A theorem which helps in simplifying electrical networks with a bunch of parallel branches. 
- Can be used to find the potential difference between two points of a network which contains only 

parallel branches.



4.5 Millman’s Theorem

https://www.youtube.com/watch?v=8M1E3rn26Eg

Acces s  the below link to watch a  video who explains  with a  numerical example 
Millman’s  Theorem:



Maximum Power Transfer Theorem 

- The Maximum Power Transfer Theorem is not so much a means of analysis as it is an 
aid to system design. 
- The theorem results in maximum power transfer, and not maximum efficiency. If the 
resistance of the load is made larger than the resistance of the source, then efficiency is 
higher, since a higher percentage of the source power is transferred to the load, but the 
magnitude of the load power is lower since the total circuit resistance goes up.

- This is essentially what is aimed for in radio transmitter design, where the antenna or transmission 
line “impedance” is matched to final power amplifier “impedance” for maximum radio frequency power 
output. Impedance, the overall opposition to AC and DC current, is very similar to resistance, and 
must be equal between source and load for the greatest amount of power to be transferred to the 
load. A load impedance that is too high will result in low power output. A load impedance that is too 
low will not only result in low power output, but possibly overheating of the amplifier due to the power 
dissipated in its internal (Thevenin or Norton) impedance.

The maximum amount of power will be dissipated by a load resistance 
when that load resistance is equal to the Thevenin/Norton resistance of 
the network supplying the power



4.6 Maximum Power Transfer Theorem

https://www.youtube.com/watch?v=PCoyrvNnGU0



- Similar to AC power distribution, high fidelity audio amplifiers are designed for a 
relatively low output impedance and a relatively high speaker load impedance. As a 
ratio, “output impedance” : “load impedance” is known as damping factor, typically in 
the range of 100 to 1000.

-  Maximum power transfer does not coincide with the goal of lowest noise. For 
example, the low-level radio frequency amplifier between the antenna and a radio 
receiver is often designed for lowest possible noise. This often requires a mismatch of 
the amplifier input impedance to the antenna as compared with that dictated by the 
maximum power transfer theorem.

4.5 Maximum Power Transfer Theorem

KEEP IN MIND:
The Maximum Power Transfer Theorem is not:

- Maximum power transfer does not coincide with maximum efficiency. 
Application of The Maximum Power Transfer theorem to AC power distribution 
will not result in maximum or even high efficiency. 

 -The goal of high efficiency is more important for AC power distribution, which 
dictates a relatively low generator impedance compared to load impedance.



For more Examples and Practice problems 
using Superposition Theorem, Source Transformation, 

Thevenin’s Theorem, Norton’s Theorem, Millman’s Theorem and Maximum Power 
Transfer Theorem

see SEMINAR 3
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3. Inductors
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5. Power in sinusoidal regime
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7. Characterisation of linear circuits in complex plane

Content of this Subchapter:



Generalities about TIME VARIABLE QUANTITIES

 Instantaneous value: the value of the 
current at any given instant of time: i(t)

 Periodic function: T – period 

 i(t) = i(t + kT)

 Frequency: f [Hz]: 
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• A sinusoid is a signal that has the form of the sine or cosine function.

- A sinusoidal current is refered to an alternating current (AC);
- Such current reverses at regular time intervals and has alternately positive

and negative values;
- Circuits driven by sinusoidal current or voltage sources are called AC Circuits.

2.1 INTRODUCTION

We are interested in sinusoids because:
- Nature itself is characteristically sinusoidal (motion of pendulum, the vibrtaion of a

string, the ripples on the ocean surface etc.
- A sinusoidal signal is easy to generate and transmit, it is the form of voltage generate

throughout the world and supplied to homes, factories, laboratories, and so on.
- Through Fourier analysis, any practical periodic signal can be represented by a sum of

sinusoids (play an important role in the analysis of periodic signals).
- A sinusois is easy to handle mathematically; the derivative and integral of a sinusoid

are themselves sinusoids.

The sinusoid is an extremely important function in circuit analysis!!!



- the instantaneous value of a sinusoidal 
current:

 Im  - peak value (amplitude)

 ωt + γ  - the argument

 γ  - the (initial) phase 
 

)sin()( γ+ω= tIti m

- phase shift, phase displacement

0)()( 212112 ≠γ−γ=γ+ω−γ+ω=ϕ tt
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The average value (it cannot be used for sinusoids):
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The RMS (effective) value :

…

 The root mean square (RMS) value of an alternating current is numerically
equal to the magnitude of the steady direct current that would produce the same
heating effect, in the same resistance, in the same period of time.

2.1 INTRODUCTION
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Mathematical operations with sinusoidal quantities :

 The multiplication of a sinusoid with a scalar:

 The addition of a sinusoidal time function:

2.1 INTRODUCTION



 The derivation of a sinusoidal current

There results a sinusoidal current having the same frequency, having the amplitude 
multiplied by ω and which leads the initial current by π/2.

 The integration of a sinusoidal current

There results a sinusoidal current having the same frequency, having the amplitude divided 
by ω and which lags behind the initial current by π/2.
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2.2. CAPACITORS

- In both digital and analog electronic circuits a capacitor is a fundamental element. 
- It enables the filtering of signals and it provides a fundamental memory element. 
- The capacitor is an element that stores energy in an electric field. 

A capacitor consists of two conducting plates
separated by an insulator (or dielectric).

- In many practical applications, the plates may be
aluminum foil while the dielectric may be air, ceramic,
paper or mica.

u u



- When a voltage source is conected to the
capacitor, the source deposits a positive
charge q on one plate and a negative
charge -q on the other. The capacitor is said
to store the electric charge.

Capacitance is the ratio of the charge on one plate of a capacitor to the
voltage difference between the two plates, measured in farads (F).

1 farad = 1 coulomb/volt

2.2. CAPACITORS

u



If the plates have an area A and 
are separated by a distance d, the 
electric field generated across the 
plates is:

and the voltage across the capacitor 
plates is:

The current flowing into the capacitor is the rate of change of the charge across the capacitor 
plates i = dq/ dt:

The constant of proportionality C is referred to as the capacitance of the capacitor. It is a 
function of the geometric characteristics of the capacitor - plate separation (d) and plate 
area (A) - and by the permittivity (ε) of the dielectric material between the plates.

2.2. CAPACITORS

u
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The current-voltage relationship of a capacitor is

Note that:
- for DC (constant in time) signals ( du/dt = 0) the capacitor acts as an open 

circuit (i=0). 
- the capacitor does not like voltage discontinuities since that would require 

that the current goes to infinity which is not physically possible. 

2.2. CAPACITORS



PRACTICE PROBLEM 2.1. 

EXAMPLE 2.1. 

2.2. CAPACITORS



PRACTICE PROBLEM 2.2. 

EXAMPLE 2.2. 

2.2. CAPACITORS



Figure 1

Figure 1

Figure 2
Figure 2

EXAMPLE 2.2. 2.2. CAPACITORS
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Figure 2

Figure 2 a).

EXAMPLE 2.4. 
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Parallel capacitors

The equivalent capacitance of N parallel-conected capacitors is the sum of
the individual capacitances.

2.2. CAPACITORS

u u



Series capacitors

2.2. CAPACITORS



The equivalent capacitance of N series-conected capacitors is the
reciprocal of the sum of the reciprocal of the individual capacitances.

In case of 2 capacitors (N=2)

2.2. CAPACITORS



2.3. INDUCTORS

- Is a passive element designed to store energy in magnetic field.
- Inductors are used in numerous applications in electronic and power system (power

supplies, transformers, radios, TVs, radars, electric motors etc.)

An inductor consists of a coil of
conducting wave.

- Any conductor of electric current has inductive
properties and may be regarded as an inductor.
But in order to enhence the inductive effect, a
practical inductor is usually formed into
cylindrical coil with many turns of conducting
wire.

u u u



- If current is allowed to pass through an inductor, it is found
that the voltage across the inductor is directly proportional
to the time rate of change of the current.

- L is the constant of proportionality called inductance of the
inductor

Inductance is the property whereby an inductor exhibit opposition to the
change of current through it, measured in henrys (H).

- N is number of turns
- l is the lenght
- A is the cross-sectional area
- µ is the permeability of the core

2.3. INDUCTORS
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The power delivered to the inductor:

The energy stored in the inductor:

2.3. INDUCTORS



Note that:
- for DC (constant in time) signals the inductor 

acts as an short-circuit (u=0). 
- the current through an inductor cannot 

change instantaneously.
-  like the ideal capacitor, the ideal inductor 

does not dissipate energy.
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EXAMPLE 2.2.  
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EXAMPLE 2.6.  
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EXAMPLE 2.7.  

2.3. INDUCTORS



Series inductors

The equivalent inductance of N series-conected inductors is the sum
of the individual inductances.

2.3. INDUCTORS



Series and parallel inductors

2.3. INDUCTORS



The equivalent inductance of N parallel-conected inductors is the
reciprocal of the sum of the reciprocal of the individual inductances.

In case of 2 inductors (N=2)

2.3. INDUCTORS



2.4. RLC circuits

Important characteristics of the basic elements:
Relation Resistor (R) Inductor (L) Capacitor (C)

Series:

Parallel:

At DC: same short circuit open circuit
Circuit variable 
that cannot 
change abruptly:

Not applicable i u



In contrast to a resistor, which spends or dissipates
energy ireversibly, an inductor or capacitor, stores or
releases energy.

KEEP IN MIND:

2.4. RLC circuits



 R, L, C series circuit

)sin(2)( βω += tUtu

where I and γ are unknown. 

)()()()( tutututu CLR ++=
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-the phase displacement between a voltage and the associated current
γβϕ −=

)sin(2)( γω += tIti
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-There are two possibilities:

a) If                   then                 

  
b) If                    then                             

Remark: solving the problems, we will choose as having the initial phase 
angle equal to zero the quantity (current or voltage) which is more often 
encountered in the functioning equation of the circuit.
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By identification:

                is called the active component of the voltage,

                is called the reactive component of the voltage
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where:                                                    is the impedance of the circuit

   
                    is the reactance,

 is the inductive reactance,

 is the capacitive reactance
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The impedance triangle:

2.4. RLC circuits



 R, L, C parallel circuit

where I and φ are unknown. 
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By identification:   

  I cos φ  - is called the active component of the current

  I sin φ   - is called the reactive component of the current

                                                        

   

                                                       is  the admittance of the circuit,

                       is the susceptance.                
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Obs: Admittance, Y, is the reciprocal 
of impedance Z.

2.4. RLC circuits



POWER IN SINUSOIDAL REGIME

)2cos(cos)sin(sin2 ϕωϕϕωω −−=−= tUIUIttUIp

1) The instantaneous power:

        p(t) = u(t)·i(t)

- The instantaneous power is the sum of a fundamental component and a 
harmonic component whose angular frequency is twice the angular 
frequency of the voltage and current.
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The meaning of a negative instantaneous power is that the circuit returns 
power to the source. This happens when the circuit contains reactive (or 
energy-storing) elements.

2.5. POWER IN SINUSOIDAL REGIME



2) The active power - is the average power over a cycle:

        

  P = UI cos φ      [W]

3) The total or apparent power :

  S = UI    [VA]                       - the power factor   

4) The reactive power : 

                         [VAr]    

ϕϕωϕ cos)2cos(1cos11

000
UIdttUI

T
dtUI

T
pdt

T
P

TTT
=+−== ∫∫∫

ϕUIsinQ = 22 QPS +=

2.5. POWER IN SINUSOIDAL REGIME



PHASORS
REPRESENTATION OF SINUSOIDAL TIME FUNCTIONS BY 

VECTORS AND COMPLEX NUMBERS 

• A phasor is a rotating vector representing a quantity, by means of a line 
rotating about a point in a plane, the magnitude of the quantity being 
proportional to the length of the line and the phase of the quantity 
being equal to the angle between the line and a reference line

- Sinusoids are easily expressed in terms of phasors, which are more convenient to work with 
that sine and cosine functions.

- The origin of the term phasor rightfully suggests that a (diagrammatic) calculus somewhat 
similar to that possible for vectors is possible for phasors as well.

- An important additional feature of the phasor transform is that differentiation and integration 
of sinusoidal signals (having constant amplitude, period and phase) corresponds to simple 
algebraic operations on the phasors; the phasor transform thus allows the analysis 
(calculation) of the AC steady state of RLC circuits by solving simple algebraic equations 
(with complex coefficients) in the phasor domain instead of solving differential equations 
(with real coefficients) in the time domain.

- The originator of the phasor transform was Charles Proteus Steinmetz working at General 
Electric in the late 19th century.



2.6. PHASORS



(Eq. 1)

(Eq. 2a)
(Eq. 2b)

(Eq. 3)

(Eq. 2a)
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A) Geometrical (phasorial) representation.

2IOA =

γ+ω=
∧

tAOx0

Vector:
- its projection onto the vertical 
axis Oy represents the 
instantaneous value of i(t) to the 
scale chosen. 
- Ox axis is called reference axis.

)sin(2 γ+ω= tIi

KEEP IN MIND:

The phasor  is not an electric current (voltage), it is only a symbol for it.

2.6. PHASORS



Mathematical operations in phasorial representation.

a) The multiplication of a sinusoid by a scalar „a”: 

The resulting phasor has its peak value „a” 

times bigger and the same phase angle.

b)   The addition : 22112121 /2/2 γ+ω+γ+ω=++ →
← tItIOAOAii
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c) The derivation :

)cos(2 γωω += tI
dt
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2
2 π

+γ+ωω→
← tI

The derivation of a sinusoid corresponds to the multiplication of the peak 
value by ω and counter-clockwise rotation of the phasor with π/2

2.6. PHASORS



d) The integration:

The integration of a sinusoid corresponds to the division of the peak value 
by ω and clockwise rotation of the phasor with π/2

Important remark: in practical work, the Argand (phasorial) diagram is 
simplified by omitting  the axes.
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B) Analytical (or complex) representation.

)sin(2 γ+ω= tIi

- The complex time function 
(complex instantaneous value):
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Mathematical operations in complex representation.

a) The multiplication by a scalar „a”: 

                  

b) The addition :   

c) The derivation:  

demonstration:    
                          

where: 
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d) The integration : 
            
                                              
       

where:

The simplified complex representation:

 
It is called complex effective value.
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2.7. CHARACTERISATION OF LINEAR CIRCUITS IN COMPLEX PLANE

   

    
2.7.1. The complex impedance

         

               is the resistive or in-phase component,  

X = Z sinφ  is the reactive or quadrature component.
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2.7.2. The complex admittance

               is the conductance (the real part of Y),

                is the susceptance (the imaginary part of Y).
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- the current: 
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- it should be noted that            and              because: 
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2.7.3. The complex power

Let       and  

- the complex power:     S U I∗=

( ) (cos sin )j j j j jS Ue Ie UIe UIe Se UI j P jQβ γ β γ ϕ ϕ ϕ ϕ− −= = = = = + = +

* * cos sinjS U I UIe UI jUI P jQϕ ϕ ϕ−= = = − = −





  Magnetically coupled circuits

BASES OF ELECTROTECHNICS I.
Faculty of Electronics, Telecommunications and Information Technology
Specialization: IETTI 
Academic year: 2023-2024

  Chapter 2: AC Circuits 

Magnetically coupled circuits



When two coils with or without contacts between them affect each other 
through the magnetic field generated by one of them, they are said to be 
magnetically coupled.

Inductive coupling is widely used throughout 
electrical technology; examples include:
 Electric motors and generators
 Inductive charging products
 Induction cookers and induction heating 

systems
 Induction loop communication systems
 Metal detectors
 Radio-frequency identification
 Transformers
 Wireless power transfer

NFC (Near Field Communication) works base d  on the  p rincip le  
of inductive coupling, whe re  loose ly coup le d  inductive  c ircuits share  
powe r and  data  ove r a  d istance  of a  fe w ce ntim e te rs. All NFC de vice s 
ope rate  a t 13.56MHz. NFC devices share the basic technology with 
proximity (13.56MHz) RFID (Radio-Frequency Identification) tags and 
contactless smartcards, but have a number of key additional features.

Working principle of inductive coupling in NFC devices

Source: [www.wireless.intgckts.com]

1. INTRODUCTION



When two coils are in a close proximity to each other, the magnetic flux caused by current 
in one coil links with the other coil and inducing voltage in the latter. This phenomenon is 
known as mutual inductance.

- Consider a coil with N turns, when current i flows through the coil, a magnetic flux φ is produced around it. 
According to Faraday’s law, the voltage v induced in the coil is proportional to the number of turns N and the time 
rate of change of the magnetic flux Φ; that is, 

2. MUTUAL INDUCTANCE



2. MUTUAL INDUCTANCE



2. MUTUAL INDUCTANCE



2. MUTUAL INDUCTANCE

• Mutual inductance is always a positive quantity, the mutual 
voltage M di/dt may be negative or positive, just like self-
induced voltage L di/dt.



Examples illustrating how to apply the dot convention:
2. MUTUAL INDUCTANCE



2. MUTUAL INDUCTANCE

Example:



2. MUTUAL INDUCTANCE

Example:



2. MUTUAL INDUCTANCE

2.1. Series-Aiding Connection



2. MUTUAL INDUCTANCE

2.2. Series-Opposing Connection



2. MUTUAL INDUCTANCE

2.3. Energy in a Coupled Circuit



2. MUTUAL INDUCTANCE

2.4. Coupling Coefficient

The coupling coefficient k is a measure of magnetic coupling between two coils; 
0 ≤ k ≤ 1.



Figure 1- Loose coupling Figure 2 – Tight coupling



2. MUTUAL INDUCTANCE

Example:



3. LINEAR TRANSFORMER

A transformer is a magnetic device that takes advantage of the phenomenon of mutual inductance. 
 The coil that is directly connected to the voltage source is called the primary winding. 
 The coil connected to the load is called the secondary winding. 
 The resistances R1 and R2 are included to account for the losses (power dissipation) in the coils. 
 The transformer is said to be linear if the coils are wound on a magnetically linear material. 



4. IDEAL TRANSFORMER

 An ideal transformer is one with perfect coupling (k = 1). It consists of two (or more) coils 
with a large number of turns wound on a common core of high permeability. Because of this 
high permeability of the core, the flux links all the turns of both coils, thereby resulting in a 
perfect coupling.



4. IDEAL TRANSFORMER



4. IDEAL TRANSFORMER



  Chapter 2: AC Circuits 

Sinusoidal Steady State Analysis



Content of this Subchapter:

1. The Ohm’s law in complex notation
2. Kirchhoff’s law
3. The superposition theorem
4. Thévenin - Norton equivalent network theorem 
5. The equivalence theorem between a voltage source and a 

current source
6. The  reciprocity  theorem
7. Mesh (or loop) analysis of linear networks
8. Node analysis of linear networks



1. The Ohm’s law in complex notation
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In complex notation: 

- the impedance if the branch k

- the mutual impedance between the  branches k and j 



2.1 Kirchhoff’s current law (KCL)

For any lumped electric circuit, for any nodes, and at any time, the 
algebraic sum of all branch currents leaving the node is zero.

     ,  ,

2.2 Kirchhoff’s voltage law (KVL)

For any lumped electric circuit, for any of its loops, and at any time, the 
algebraic sum of the branch voltages around the loop is zero.

    or   
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3. THE SUPERPOSITION THEOREM

The superposition theorem: for a linear network, the zero-state response 

caused by several independent sources is the sum of the zero-state response 

due to each independent source acting alone.

        or ∑
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According to the superposition theorem : ″+′= 333 III



For Examples with Superposition Theorem
See the SEMINAR 



4. THÉVENIN - NORTON EQUIVALENT NETWORK THEOREM 

- Powerful tool,
- A very general theorem

A) The Thevenin theorem.
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AB ZZ
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AB ZZ
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- UAB0   the open-circuit voltage of the network (the voltage across the terminals 

A and B when the load is disconnected). 

-             is obtained from the network by setting all independent sources to zero 

(i.e., by replacing every independent voltage source by a short circuit and every 

independent current source by an open circuit), without the load impedance Z.

0ABZ



For Examples with

Thevenin’s Theorem see the SEMINAR 



B) The Norton theorem.
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 is the current delivered by the circuit when the terminals A 
and B are short-circuited (Z = 0).
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For Examples with

Norton’s Theorem see the SEMINAR 



C) The equivalence theorem between a voltage source and a current source.
    

i
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5. THE  RECIPROCITY  THEOREM

13 II =

The input and the output can be interchanged without altering the response of the 
system to a given input waveform.

- In electric circuits, reciprocity applies to a subset of all linear  time-invariant 
networks. 



6. MESH (OR LOOP) ANALYSIS OF LINEAR NETWORKS

- New network variables are used: the mesh currents (or loop currents)
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The network has N nodes and L branches; consequently it has 
  B = L – N +1 meshes



a) Zpp is called the self impedance of mesh p; it can be calculated as follows :

Zpp is the sum of all the impedances of branches in mesh (p), plus the         

algebraic sum of the mutual impedance between branches k and m, both of 

them belonging to the mesh (p).

Remarks : 
-in         all terms are positive; 

-because Lkm = Lmk, in the second term of Zpp, each mutual inductance has to be 

taken twice (i.e., ±2jωLkm). The sign depends on the association of  the mesh 

current JP to the marked terminals of the mutual inductance.
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b) Zpq is called the mutual impedance between mesh p and mesh q; it can be 
calculated as follows :

Zpq  is the sum of all impedances of the branches which are in common with 
meshes (p) and (q) plus a sum of the mutual impedances between the branch 
k∈(p) and the branch m∈(q)

Remarks : 
- in the first sum of the right member of Zpq  the impedance  is positive if the mesh currents 
Jp and Jq have the same direction through the common impedance of the (p) mesh and (q) 
mesh, otherwise the sign is negative;
 - in the second sum of the right member of Zpq  the sign depends on the association of the 
mesh currents Jp and Jq to the marked terminals of the two inductances situated in the 
branch k∈(p) and branch m∈(q), respectively.
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c) Ep is the algebraic sum of all the source voltages in mesh (p)
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Example:



For Examples with MESH (OR LOOP) ANALYSIS
see SEMINAR 



7. NODE ANALYSIS OF LINEAR NETWORKS

- New network variables are used: the node voltages.

- Reference node (ground) : N – 1 independent nodes

a) Yaa - the self-admittance of node a

b) Yab  - the mutual admittance between node a and node b

c) Isca - the short-circuit current entering the node a.
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Example: Kirchhoff’s theorems: 5 eqs.
Mesh currents:  3 eqs.

Node voltages:  2 eqs.



For Examples with NODE ANALYSIS 
See the  SEMINAR 
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1. Maximum Power Transfer Theorem 

Proof of theorem at whiteboard 







 Practice problem



AC
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Three-phase circuits.

Two-wire type

Polyphase systems:

Three-wire type

Single phase systems:

Two-phase three-wire system

Three-phase four-wire system



• Three-phase systems are the most common, although, for certain special jobs,
greater number of phases is also used.

• For example, almost all mercury-arc rectifiers for power purposes are either
six-phase or twelve-phase and most of the rotary converters in use are six-
phase. All modern generators are practically three-phase. For transmitting
large amounts of power, three-phase is invariably used.

• The reasons for the immense popularity of three-phase apparatus are that:
 it is more efficient
 the instantaneous power can be constant (not pulsating) 
 it uses less material for a given capacity
 it costs less than single-phase apparatus etc.

Three-phase circuits.

“Phase” – two meanings (in electrical engineering):
1) a stage of a periodic process,
2) a portion of a polyphase system of electric circuits.



Three-phase circuits.



Three-phase circuits.

 Three-phase voltages are often produced with a three-phase AC generator 
(or alternator).



Three-phase circuits.

Watch: 
https://www.youtube.com/watch?v=RycspJC4OKM

https://www.youtube.com/watch?v=RycspJC4OKM


1. SYMMETRICAL (BALANCED) THREE-PHASE SYSTEMS.

The ends of the phase windings: “starts” or “beginnings”, respectively 

“finishes” or “ends”.

If

it results  a symmetrical (balanced) three-phase system.
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Three-phase circuits.



THREE-PHASE CIRCUITS.

Three-phase circuits.
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1) Positive phase-sequence (direct system)

2) Negative phase-sequence (inverse system)



THREE-PHASE CIRCUITS.

..................... PHASE-SEQUENCE

Three-phase circuits.



The phase operator:

Multiplication by a advances the position of a vector in a counter-clockwise (or 
forward) direction by 2π/3  or in a clockwise (or reverse) direction by 4 π/3.
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KEEP IN MIND:

Three-phase circuits.



Operations – three-phase systems:

a) addition:

b) difference: 

321321 0 IIIIII −=+⇒=++
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21
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Three-phase circuits.



 If the three armature coils of the 3-phase alternator are not interconnected but are kept
separate, then each phase or circuit would need two conductors, the total number of
conductors, in that case, being six. It means that each transmission cable would contain
six conductors which will make the whole system complicated and expensive.

 Hence, the three phases are generally interconnected which results in substantial saving
of copper.

3-phase alternator are not interconnected 

3-phase alternator 

Three-phase circuits.



2. PHASE  INTERLINKAGE
- voltages, currents: symmetrical or unsymmetrical,
-  load impedances: balanced or unbalanced

The general methods of interconnection are:
(a) Star or Wye (Y) connection 

     (b) Mesh or Delta (Δ ) connection.

Three-phase source and 
three-phase load possible 
conections:

Three-phase circuits.



THREE-PHASE CIRCUITS.

n, N – neutral points
n–N – neutral wire
1-1ʹ, 2-2ʹ, 3-3ʹ – line wires
Z1,  Z2,  Z3  – phase impedances

phl UU 3 = phl II =

Three-phase circuits.



Phasor diagrams illustrating the relation- ship 
between line voltages and phase voltages.



THREE-PHASE CIRCUITS.



Phasor diagram illustrating the relationship
between phase and line currents.



THREE-PHASE CIRCUITS.

phl II 3 = 

phl UU =



THREE-PHASE CIRCUITS.
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4. CALCULATION OF UNBALANCED THREE-PHASE CIRCUITS.
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332211 the Millman Theorem

a) Symmetrical voltages (i.e. U1 = U ,   U2 = a2U ,   U3 = aU) :

b) Symmetrical (balanced) load (i.e. Y1 = Y2 = Y3 = Y) :

c) Symmetrical circuit :
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d) In the absence of the neutral wire: 0=→∞= NN YZ
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5. MEASUREMENT OF POWER IN THREE-PHASE SYSTEMS

 The total active power in a polyphase circuit with n conductors is equal to
the sum of single-phase powers and, consequently, can be measured with
the help of wattmeters, connected so that the current coil is traversed by the
line current and the voltage coil is or connected between the conductor of
the respective phase and a common N point taken as a reference. 



ONE-WATTMETER METHOD FOR A 
BALANCED LOAD



TWO-WATTMETER METHOD FOR A BALANCED OR 
UNBALANCED LOAD



THREE-WATTMETER METHOD FOR A THREE-PHASE, 4-WIRE 
SYSTEM FOR BALANCED AND UNBALANCED LOADS.



THREE-WATTMETER METHOD FOR A THREE-PHASE, 4-WIRE 
SYSTEM FOR BALANCED AND UNBALANCED LOADS.



Comparison of star and delta connections

 Loads connected in delta dissipate three times more power
than when connected in star to the same supply.

 For the same power, the phase currents must be the same for
both delta and star connections (since power = 3Ip 2Rp), hence
the line current in the delta-connected system is greater than
the line current in the corresponding star-connected system. To
achieve the same phase current in a star-connected system as
in a delta-connected system, the line voltage in the star system
is p3 times the line voltage in the delta system.
Thus for a given power transfer, a delta system is associated

with larger line currents (and thus larger conductor cross-
sectional area) and a star system is associated with a larger line
voltage (and thus greater insulation).



ADVANTAGES OF THREE-PHASE SYSTEMS

Advantages of three-phase systems over single-phase
supplies include:
 For a given amount of power transmitted through a system,

the three-phase system requires conductors with a smaller
cross-sectional area. This means a saving of copper (or
aluminium) and thus the original installation costs are less.

 Two voltages are available.
 Three-phase motors are very robust, relatively cheap,

generally smaller, have self-starting properties, provide a
steadier output and require little maintenance compared
with single-phase motors.





Practice on Problems proposed in: 

Charlews K. Alexander, Matthew N.O.Sadiku, Fundamentals of 
Electric Circuits (Fifth Edition), published by McGraw-Hill, 2013

Pages 544 - 553
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Chapter 3. Non-sinusoidal regime.

Not all signals in electrical and computer engineering are sinusoidal. 

 Most digital systems use square waveforms. Although at high switching 
speeds, these waveforms are starting to look trapezoidal. 

 Most bioelectric signals are non-sinusoidal, many are composite ramp 
functions. 

 When a switch is opened or closed, the time required for the signals to 
return to steady state is accompanied by sinusoidal and non-sinusoidal 
transients.



Chapter 3. Non-sinusoidal regime.
Samples of non-sinusoidal signals: 



Chapter 3. Non-sinusoidal regime.
Samples of non-sinusoidal signals: 



Chapter 3. Non-sinusoidal regime.

3.1  FOURIER  EXPANSION.

            A0 – a constant (the average value),

 
   - the k-th order harmonic (for k=1: fundamental),

   - the amplitude of the k-th harmonic,

   φk   - the phase of the k-th harmonic
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Chapter 3. Non-sinusoidal regime.

Finding the Coefficients of the Fourier Series.

1) A0

         - the average value of the function over a period
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Chapter 3. Non-sinusoidal regime.
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Chapter 3. Non-sinusoidal regime.
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3.2  EVEN AND ODD SYMMETRY.

1) Even function:  f(t) = f(-t)     or     f(α) = f(-α)

         

   sin( ) sink kα α− = −

cos( ) cosk kα α− =

0
1 1
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k k
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Even function: the Fourier series does not contain sin harmonics 
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2) Odd function:  f(t) = - f(-t)     or     f(α) = - f(-α)

         

   sin( ) sink kα α− = −

cos( ) cosk kα α− =

Odd function: the Fourier series contains only sin harmonics 
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3) Half-wave symmetry:           or     f(α) = – f(α + π)

         

   

Half-wave symmetry: the Fourier series contains only odd sin and cos harmonics 
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3.4 CHARACTERISTIC  VALUES  FOR  PERIODIC  NON-
 SINUSOIDAL   FUNCTIONS.

a) The maximum value (or the peak value): the biggest value of periodic non-
sinusoidal function over a period.

b) The average mean value :

         
c) The effective value (or r.m.s. value) :   
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More information about non-sinusoidal periodic functions:

a) The form factor  - kf  : the ratio of the r.m.s. value of a quantity to its half-period 
average value. 

  ,      for sinusoids 

b) The peak factor - kp : the ratio of the peak value of a quantity to its r.m.s. value.
 ,      for sinusoids    

c) The distorsion factor - kd : the ratio of the r.m.s. value of the harmonics to the 
r.m.s. value of the function as a whole, neglecting the constant component
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3.6 POWER FOR NON-SINUSOIDAL PERIODIC VARIABLES.

a) The instantaneous power p(t):

b) The active power P: 
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where 
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c) The reactive power Q : 

    [VAR]

d) The apparent power S : 

        [VA]

 
e) The distorsion power D :   , 

         [VAD] 
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3.7. NETWORK ANALYSIS IN NON-SINUSOIDAL REGIME
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3.7. NETWORK ANALYSIS IN NON-SINUSOIDAL REGIME.

a) Ideal resistor .

   The voltage and the current are in phase.
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b) Ideal inductor.

  

Important remark: Assuming                   :

It is forbidden to apply d.c. voltage across an inductance (having negligible 

resistance, an ideal inductance represents a short circuit). 
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c) Ideal capacitor.
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d) R, L, C circuit.

              if

             then:

where:     ,

The resonance condition: 
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 One of the most frequent tasks to which networks are applied is the
process of shaping (or filtering) some electrical signal information.

 Another examples are: coupling and matching networks, alternators,
phase-shifter, amplifiers etc.

 Such networks are useful in communications, control system, power
systems and electronics and to facilitate cascades design.

 Knowing the parameters of a two-port network enables us to treat it as a
“black box” which is embedded within a larger network.
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 A single phase transformer is an ideal example of two port network.

 The relation between input and output signals of the network can
be determined by transferring various network parameters, such
as, impedance, admittance, voltage ratio and current ratio .

https://www.electrical4u.com/single-phase-transformer/
https://www.electrical4u.com/electrical-impedance/
https://www.electrical4u.com/admittance/
https://www.electrical4u.com/voltage-and-turn-ratio-test-of-transformer/
https://www.electrical4u.com/voltage-and-turn-ratio-test-of-transformer/
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Definitions:
- input port
- output port
- linear
- passive
- reciprocity

- symmetrical: 
- balanced:

- port: a pair of terminals through which a current may enter or 
leave a network (an access to the network and consists of a pair of terminals; the 
current entering one terminal leaves thtough the other terminal so that the net current 
entering the port equals zero)
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1. TWO-PORT NETWORK. EQUATIONS AND PARAMETERS.

1.1. The fundamental equations. ABCD parameters (Transmission 
parameters).

where       A, B, C, D are called fundamental (or transmission) parameters
(A and D – dimensionless,  B is impedance, C is admittance)

- is the reciprocal of the open-circuit voltage transfer ratio 
from port 1 to port 2

- is the reciprocal of the open-circuit transfer impedance
from port 1 to port 2
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- is the reciprocal of the short-circuit  transfer  admittance  
from  port  1  to port 2.

- is the reciprocal of the short-circuit current transfer  ratio   
from  port  1  to port 2.

- the condition of reciprocity 
(if the network is symmetrical : A = D)
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1.2.Impedance parameters.

where Zij are called the Z parameters.
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- for a reciprocal network:
Z12 =  - Z21    

- for  symmetrical network:

Z11 = - Z22
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1.3. Admittance parameters.

where Yij are called the Y parameters.
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1.4. Hybrid parameters.
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The hybrid parameters result when I1 and U2 are chosen as independent 
variables. 

 The h terms are known as the hybrid parameters (or, simply, h parameters) because 
they are a hybrid  combination  of  ratios. 

 They are very useful for describing electronic devices such as transistors; it is much 
easier to measure experimentally the h parameters of such devices than to measure 
their z or y parameters.

 The ideal transformer can be also described by the hybrid parameters
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2. EQUIVALENT “T” AND “Π” NETWORKS.

2.1 The T - network.

2.2 The Π - network
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2.1 The T - network.
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2.2 The Π - network.
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3. ITERATIVE/IMAGE IMPEDANCES and PROPAGATION CONSTANT

3.1 Iterative impedances.

in general: two iterative impedances, one for each directionCZ
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Particular case: B = C = 0
- what does this mean?

For the T – network:

For the Π – network:

 these conditions are satisfied only for two-port networks build from reactive 

elements (inductors and capacitors) tuned at resonance.
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Reactive two-pot network tuned at resonance
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3.2 The propagation constant.

If the two-port network is symmetrical ( A = D ) and the load impedance is 
an iterative impedance (Zc) we get:

- the propagation constant

α - the damping constant,  β - the phase  constant
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Remarks:

- if α = 0,  the signal pass through the network without damping  (unchanged);

- if α > 0,  the signal is damped at the output port (U2  < U1 );

- if α < 0,  the signal is amplified (U2  > U1 );
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The reciprocity condition: 

If the network is symmetrical:   A = D and 
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The two-port network equations are:
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If the output port is open-circuited and, respectively, short-circuited:

It results: 
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5. THE INTERCONNECTION OF TWO-PORT NETWORKS.

5.1 Cascade connection.
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5.2 Series connection
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5.3 Parallel connection
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Chapter 5. Transient regime.

 Transient regime in electrical circuits are the processes of 
transition from one steady-state regime to another, 
characterized by different parameters. 

 Transient processes are caused by the commutation in the circuit (closing 
and opening of the circuit with electrical switch, the sudden variation of
the circuit parameters due to special functioning conditions).

 Transient process can be define as the process of energy state transition of 
the circuit from prior-commutation state to after-commutation state. 

 Transient processes are very short, usually about a ten-hundredth of 
second. However, it is important to know the transient process length, the 
how the signal changes between the circuits states.

 The study of transient regimes involves the computation of 
currents and voltages as time functions.
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 In some situations, the transient regimes characterize the normal operation 
of the circuits (operation of protection circuits, operation of static 
converters, etc.).

 In other cases, operation of a circuit in transient regime can result in 
increases of voltages or currents that cause dielectric, thermal or 
mechanical stresses that far exceed the stresses corresponding to a 
permanent regime. These can lead to total or partial destruction of some 
electrical appliances, which shows the importance of studying the circuits 
in transient mode.
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5.1  INTRODUCTION

-Transient regime:
  L, C
  moment: t = 0, or modification of circuit parameters values
  

where: ip  is the forced response (or the steady-state response)                            

il  is the natural response (or the transient response). 

Check the notes from 
the whiteboard 
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5.2  CONTINUITY CONDITIONS

There is a problem : how does the transition between initial and final 
states take place?

Is it possible for the capacitor voltage or for the inductor current 
simply to jump up to their final values immediately ?



Chapter 5. Transient regime.

a) The first continuity condition (for circuits containing inductors)

)0()0()0(

)0()0()0(

Φ=+Φ=−Φ

=+=−

LL

LL iii

The current and the magnetic flux are 
continuous functions of time :

If there is a sudden jump in an inductor current:

( ) ∞→





=






 Φ

=+
++ 00

0
dt
diL

dt
du LL

L
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b) The second continuity condition (for circuits containing capacitors)

The voltage and the electric charge are 
continuous functions of time :

If there is a sudden jump in a capacitor voltage:

)0()0()0(

)0()0()0(

C

C

qqq

uuu

CC

CC

=+=−

=+=−

( ) ∞→
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++ 00
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dt

duC
dt

dqi cc
c
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5.3  TRANSIENT BEHAVIOUR OF THE R, L CIRCUITS

- first-order circuits: circuits containing a single type of energy-storage 
element  ( )tuuu LR =+

( )tu
dt
diLRi =+

lp iiti +=)(

The natural response - when u(t) = 0 :

,0=+ l
l Ri

dt
diL

L
R-pRLp =⇒=+  ,0

;
t

L
R

l Aei
−

=
t

L
R

p Aeiti
−

+=)(
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- A is determined by the initial conditions: 
t

L
R

p Aeiti
−

+=)(

when t = 0: ( ) ( ) ( )000 lp iii += Aiior p += 00 00 piiA −=

( ) t
L
R

pp eiiii
−

−+= 00

 ip(t) has a form quite similar to the particular form of the excitation function 

being used; it is logically called the particular solution.

 ip0 represents the value of the steady-state current:                               

 i0 represents the value of the current immediately before the switching 

operation: 

( )00 == tii pp

( )−= 00 ii
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The quantity  has the dimension of time: τ=
R
L

[ ]
[ ] [ ] ors

sR
L

R
L

=
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ω
ω

s
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sVH
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⋅
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RL /=τ  is called the time constant of the circuit.

( ) τ
t

pp eiiii
−

−+= 00
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5.3.1 Response to sources with constant excitation. 

a) The switch is closed. 

( ) t
L
R

pp eiiiti
−

−+= 00)(

00 =i

,
R
Eip = R

Ei p =0
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The voltage across the inductance: 

τ
−

τ
⋅⋅==

t

L e
R
EL

dt
diLu 1 τ

t

L Eeu
−
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b) The switch is opened. 

( ) t
L
R

pp eiiiti
−

−+= 00)(

R
Ei =0

,0=pi 00 =pi

τ
t

e
R
Eti

−
=)( There is a problem: how great is the value of the 

voltage across the inductance at t=0 ?
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Let  ρ be the resistance between the 
switch contacts.

∞≤≤ ρ0

( ) ( )
t

L
R

e
RR

E
R

Eti
ρ+

−

ρ+
ρ

+
ρ+

=

( ) t
L
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pp eiiiti
−

−+= 00)(
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The voltage across the inductance:

t
L

R

L Ee
Rdt

diLu
ρ+

−ρ
−==

Overvoltages, for instance if:

)V000.1V100,10( =⇒== E
R

E
R

ρρ

⇒ Solutions for protection
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5.3.2 Response to sources with sinusoidal excitation. 

( ) ( )βω += tte sinE2

Check the notes from 
the whiteboard 
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( ) t
L
R

pp eiiiti
−

−+= 00)(

( ) ( ) t
L
R

lp e
Z

Et
Z

Eiii
−

−−−+=+= ϕβϕβω sin2sin2

a) if          :    the steady-state regime 

appears immediately, without a transient response ! 

b) If  it appears a stroke current:

πϕβϕβ =−=− or0 piti =)(

2
πϕβ =−

)(cos2)( τω
t

etIti
−

−=

Two  cases:
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)(cos2)( τω
t

etIti
−

−=

If the time constant  has a very  high value ( L/R ˃˃ ) :RL /=τ
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5.4  TRANSIENT BEHAVIOUR OF THE RC CIRCUITS.
  

( )tuidt
C

Ri =+ ∫
1

dt
dqi = ∫= idtq

( )tuq
Cdt

dqR =+
1

lp qqtq +=)(

01
=+ l

l q
Cdt

dqR RC
t

l Aeq
−
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RC
t
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For  t = 0: and

thus:

where       is   the time constant of the RC circuit

00 )0(,)0( pp qqqq == 00 pqqA −=

( ) τ
t

pp eqqqq
−

−+= 00

RC=τ

qo is the electric charge immediately before the switching time; 

qp the steady-state electric charge;

qp0 the value of qp for t=0.

[ ] = [RC] =
[R]
1
C

[ ]
=

s
= s-1τ

ω
ω
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5.4.1 Response to sources with constant excitation. 

( ) τ
t

pp eqqqq
−

−+= 00

00 =q

,CEqp = CEq p =0
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τ
−

τ
==

t

eCE
dt
dqi 1

τ
−

=
t

e
R
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If  R  is very small :    will be very high !( )
R
Ei =+0
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5.5  TIME CONSTANT
  









−=

−
τ
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p eqq 1
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=
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( ) ppp q
e
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=−= −
τ

( ) EeEuor 632,01 1 =−= −
τ

If     : 
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means that the time constant represents 
the time required for u to reach 63.2% of its final value  (physical 
significance).

( ) EeEuor 632,01 1 =−= −
τ

Of course, mathematically, the steady state is actually an asymptote: it never truly 
reaches steady state. 
But, unlike mathematicians, engineers don’t sweat over such inconsequential details.  

After 3τ , the circuit will have gotten 
1 − e −3 ≈ 95% of the way, and after 
5τ, more than 99%. 
So, after a few time constants, for 
practical purposes, the circuit has 
reached steady state. 
Thus, the time constant is itself a good 
rough guide to “how long” the 
transient response will take. 
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5.6.1. The General Transient Expression of the Charge and 

Current of an RLC Series Circuit

( )tuidt
C

Ri
dt
diL =++ ∫

1

, ;
dt
dqiidtq == ∫ 2

2

dt
qd

dt
di

=

( ) ,2

2

tu
C
q

dt
dqR

dt
qdL =++ ,lp qqq +=

lp iii +=
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Notations:

L
R

2
=δ

LC
1

0 =ω

2
0

2'
0 ω−δ=ω

,'
0

2
0

2
2,1 ωδωδδ ±−=−±−=p

-the damping constant

- the resonant frequency

- the frequency of oscillation
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Because there are 2 roots (usually distinct values):

tptp
l BeAeq 21 +=
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dt
dq

i 21 21 +==

At  t = 0 :
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( ) ( )t
BeAeq t

l
0

0
ωδωδ ′−−

+=⇒ ′+−

( )ttt
l BeAeeq 00 ω′−ω′δ− +=

tshtchetshtche tt
0000

00     ; ωωωω ωω ′−′=′+′= ′−′

Euler formulas:

( ) ( )[ ]tshBAtchBAeq t
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Replacing A and B :

( ) ( ) ( ) 
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The final expressions are:
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5.6.2. The transient response of the second order circuits.

( ) Ete =

CEq CEq q p0p === ;;00

0;0;00 === p0p i i i

( )



 ′+′

′
−= − αω
ω
ω δ tsheCEtq t

0
01)(

tsheCEti t
0

0

2
0)( ω

ω
ω δ ′
′

= −

It results:
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The roots of the characteristic equation assume three possible conditions:

,'
0

2
0

2
2,1 ωδωδδ ±−=−±−=p

( where            and  )
L

R
2

=δ
LC
1

0 =ω

1) two real and distinct roots,   when

 →    the circuit is said to be overdamped

2)     two real, equal roots,   when

  →    the circuit is said to be critically damped

3) two complex roots,   when

 →    the circuit is said to be underdamped

2
0

2 ωδ >

2
0

2 ωδ =

2
0

2 ωδ <
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1) An overdamped response is the response that does not oscillate about the 
steady-state value but takes longer to reach than the critically damped case. 

tsheCEti t
0

0

2
0)( ω

ω
ω δ ′
′

= −

-  the current is only positive

-  the maximum of the current 
occurs at the instant t1, when the 
first derivative of the current is 
zero:

0=t che+t she=
t
i t-t-

000 - ωωωδ δδ ′′′
∂
∂

0
1 ω

α
′
′

=⇒ t
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2) A critically damped response is that response that reaches the steady-state 
value the fastest without being underdamped. It is related to critical points in the 
sense that it straddles the boundary of underdamped and overdamped 
responses. Here, damping ratio is always equal to one. There should be no 
oscillation about the steady state value in the ideal case.

tsheCEti t
0

0

2
0)( ω

ω
ω δ ′
′

= −

-  the current is only positive

-  the maximum of the current occurs at the instant t2, when the first derivative 
of the current is zero:

0=e+te=
t
i t-t- δδδ ⋅
∂
∂ -

0
2

11
ωδ

==t

tCEe=t sh
lim CEe=i t-2
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0

0

0

t-2
0

0
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→′

δ

ω

δ ω
ω
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3) An underdamped response is one that oscillates within a decaying envelope. 
The more underdamped the system, the more oscillations and longer it takes to 
reach steady-state. Here damping ratio is always <1.

tsheCEti t
0

0

2
0)( ω

ω
ω δ ′
′

= −

-the period of the 
damped oscillations:

( ) teCEti t
0

0

2
0 sinω

ω
ω δ ′′
′′

= −

0

2
ω
π
′′

=T

It can be shown that   →   logarithmic decrement

where         and  are the amplitude of two succesive peaks.  

2

1ln
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M

i

i
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Laplace transform definition:  

where         (complex quantity)  
  

( )sFdtef(t)=L[f(t)] st-

0
=∫

∞

ωσ js +=

 The Laplace transform is an integral transform perhaps second only to 
the Fourier transform in its utility in solving physical problems. 

 The Laplace transform is particularly useful in solving linear ordinary 
differential equations such as those arising in the analysis of electronic 
circuits.

 In other words it can be said that the Laplace transformation is nothing but a 
shortcut method of solving differential equation.

5.7. THE LAPLACE TRANSFORM

https://mathworld.wolfram.com/IntegralTransform.html
https://mathworld.wolfram.com/FourierTransform.html
https://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
https://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
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1=∫
∞

(t)dte=(t)]L[ st-

0
δδ

1) The impulse function 

2)The step function 

   
s
1=dte=F(s)=(t)]L[ st-

0
∫
∞

γ
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3) The transform of the first derivative of f(t) :
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4) The transform of the integral of f(t) : 

F(s)
s

=]f(t)dtL[ 1
0
∫
∞



Chapter 5. Transient regime.
Properties of the Laplace transform:

 linearity :

 superposition: 

L L[af(t)] = a [f(t)] = aF(s)

)(sF(s)F=(t)]f[(t)]f[=(t)]f(t)f[ 212121 ±±± LLL
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Network analysis by Laplace transform.

 the voltage-current relationship for a resistance
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Network analysis by Laplace transform.

 the voltage-current relationship for an inductance carrying initial current i0 
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Network analysis by Laplace transform.

 the transform corresponding to the voltage-current relationship for 
capacitance, charged to an initial voltage u0 
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Example of circuit transformation.

Applying Kirchhoff's voltage law to the s-domain circuit:

or 

















Li+
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U=I(s)R+R+
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0
21 -

R+R+1/sC+sL
)Li+/sU(-=I(s)

21

00



Chapter 5. Transient regime.

Inverse Laplace transform :

where   are the roots of   (poles !)

- the original function:        
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Ohm’s Law and Kirchhoff’s Laws (using the Laplace transform):
      

dt
d

dt
diLidt
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dt
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 ;1 0

0
where: 

( ) ( ) ( ) ( ) ( )∑
≠
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g sIZsZsI
s

U
sEsU

1
0

0

Applying the Laplace transform it results the Ohm’s law:
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( ) ( ) ( ) ( ) ( )∑
≠
=

⋅+⋅=−φ++
L
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g sIZsZsI
s

U
sEsU

1
0

0

The corresponding circuit is:
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Kirchhoff’s Laws (using the Laplace transform):

1) Kirchhoff’s Current Law (KCL)
      

∑
∈

=
qk

ki 0 ( )∑
∈

=
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k sI 0

2) Kirchhoff’s Voltage Law (KVL)
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