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Abstract. This chapter describes specific, texture-based methods for the detec-
tion, characterization and recognition of some severe affections and of their
evolution phases, using only information from ultrasound images. We perform
the recognition of the considered affections in supervised manner, and we also
discover the disease evolution phases in unsupervised manner. In both cases,
the imagistic textural model is defined, consisting of: the relevant features for
the characterization of the disease, respectively of its evolution phase; the spe-
cific values of the relevant textural features: arithmetic mean, standard devia-
tion, probability distribution. Advanced texture analysis techniques, consisting
of textural microstructure co-occurrence matrices based on Laws’ features, are
involved in this process. At the end, the imagistic textural model is validated
through powerful, supervised classifiers, the resulting accuracy being around
90%.

1 Introduction

The research described in this paper was performed in the context of a post-
doctoral scholarship, part of the “PARTING – Inter-university partnership for excel-
lence in engineering” project, co-financed from the European Social Funds through
the Sectorial Operational Program for Human Resource Development (2007-2013).
Our entire research is performed in the context of the collaboration with the medical
imaging specialists from Iuliu Hatieganu University of Medicine and Pharmacy of
Cluj-Napoca, the purpose being to develop non-invasive, computerized methods for
the prevention and automatic diagnosis of some severe abdominal diseases such as
cirrhosis or malignant tumors.



Cancer is a lethal diseases, one of the most frequent affections nowadays. The ab-
dominal malignant affections, such as the hepatocellular carcinoma [1], [2] and the
colorectal tumors [3], occur very often. Also, other diseases that precede these affec-
tions, such as cirrhosis, present a major importance. The detection of the cirrhosis
severity grades and of the HCC development phases is also important, the objective
being the early detection and prevention of the malignancy evolution. The golden
standard for the diagnosis of these affections is the biopsy, but it is invasive, danger-
ous. In order to detect the severity grades of the diseases various clinical methods
exist, but none of them is scientifically objective [1]. We aim to develop non-invasive,
computerized methods for the automatic diagnosis and grading of the above men-
tioned, severe abdominal affections, based only on the information from ultrasound
images. The ultrasonography is a safe method for patient examination, easy to apply,
inexpensive and repeatable. Other equivalent methods, such as the computer tomogra-
phy (CT), the magnetic resonance imaging (MRI), the endoscopy or the contrast en-
hanced ultrasonography are irradiating or expensive [2], [3]. We defined the imagistic
textural model of the considered abdominal affections and of their evolution phases,
consisting of the most relevant textural features for their characterization and of the
specific values of the relevant textural features (arithmetic mean, standard deviation,
probability distribution). The texture is an important property of the body tissues, able
to provide subtle information upon the pathology and to overpass the sensitivity of the
medical experts’ eyes. Besides the classical methods for texture analysis, we devel-
oped and experimented, in the above mentioned context, superior order generalized
co-occurrence matrices [4], [5], [6]. In this work, we synthesize the role that the co-
occurrence matrices of textural microstructures, computed after applying the Laws
convolution filters [7], [8], [9], have in the previously described applicative domain.
The texture analysis methods, in combination with classifiers, have been widely im-
plemented in the nowadays research, in order to perform the recognition, in supervised
or unsupervised manner, of some severe diseases, based on the information obtained
from medical images [10], [11], [12], [13]. The generalized co-occurrence matrices,
were also defined and experimented in [14], [15], in the form of the texton co-
occurrence matrices [15] and LBP co-occurrence matrices of order two [14]. Howev-
er, no significant study exists, which performs a systematic study of the considered
affections based on ultrasound images and defines a unified, imagistic textural model
of these affections.  Also, the textural microstructure co-occurrence matrices, based on
Laws’ features, were not approached before.

2. Medical considerations. The aspect of the considered affections
in ultrasound images

Cirrhosis is a lethal diffuse liver diseases which constitutes the first phase of liver
parenchyma restructuring. The main characteristics of this affection are the association
of fibrosis, regeneration nodules and necrosis, leading to important changes in the
structure of the hepatic parenchyma. Cirrhosis constitutes the end stage of multiple
liver diseases and sometimes it leads to death by itself. The regeneration nodules,
specific to cirrhosis, can transform into dysplastic nodules, evolving towards hepato-



cellular carcinoma (HCC). Within ultrasound images, cirrhosis is featured mainly by
the tissue homogeneity decrease, due to the fact that the nodules continuously appear
and evolve. These nodules could be hypo-echogenic, or even unapparent. Other
changes that could occur are: increased volume, in the case of toxic cirrhosis; de-
creased volume, in the case of viral cirrhosis; shape and contour modification; vessel
structure modifications. As cirrhosis is a very serious disease, monitoring its severity
presents a great importance. The Metavir classification system assimilates cirrhosis
with the fourth evolution phase of liver fibrosis, a preliminary medical assessment
revealing the next evolution stages for cirrhosis: Stage A – incipient, "compensated";
Stage B – intermediate phase, beginning to decompensate; Stage C – final stage, "de-
compensated". However, no objective study exists, for establishing the cirrhosis sever-
ity grades, using the information derived from ultrasound images [1]. The hepatocellu-
lar carcinoma (HCC) is the most frequent malignant liver tumor, occurring in 70% of
the liver cancer cases. It evolves from cirrhosis, after a phase of liver parenchyma
restructuring, at the end of which sometimes dysplastic nodules result, which evolve
into HCC [1], [2].

(a.)

(b.) (c.)

(d.) (e.)

Fig. 1. Ultrasound images illustrating the considered affections: (a) – cirrhosis; (b) – HCC
(marked contour); (c) – Hemangioma (marked contour); (d.)- Colorectal tumor (marked con-
tour); (e.) - IBD example (Crohn disease)

The colorectal tumors are abdominal malignant structures that frequently occur in
the population in the modern era. Concerning the aspect of the considered tumors in



ultrasound images, they usually have a hyperechogenic and heterogeneous aspect, due
to the presence of multiple tissue types (fibrosis, necrosis, fat cells and active growth
tissues), as well as to the complex structure of vessels. However, it is difficult to dis-
tinguish these tumors within the ultrasound images, as the HCC tissue resembles the
surrounding cirrhotic parenchyma and also the hemangioma benign tumor, which is a
collection of blood vessels and usually has a homogeneous, hyperechogenic visual
appearance. The colorectal tumors are similar in aspect with the Inflammatory Bowel
Diseases (IBD) as both classes of disease lead to bowel layer inflammation and some-
times to the loss of the stratification [3]. Some eloquent examples of B-mode ultra-
sound images representing these affections are provided in Fig. 1.

3. The state of the art

The texture-based methods were widely used in nowadays’ research, in combina-
tion with classifiers, in order to perform the automatic recognition of various diseases
and of their evolution phases from medical images [10], [11], [12], [13]. Concerning
the supervised recognition of the malignant tumors, the run-length matrix parameters,
in combination with the Haralick features derived from the GLCM matrix, were em-
ployed together with ANN classifiers, Support Vector Machines and Fisher Linear
Discriminants, for the automatic diagnosis of the liver lesions from ultrasound images
[10]. Methods like the Wavelet was used in conjunction with Artificial Neural Net-
works (ANN) for the recognition of the liver tumors from ultrasound images [11]. The
fractal-based methods were adopted for the recognition of the salivary gland tumors in
the research described in [12]. In [13] the authors implemented the Gray Level Co-
occurrence Matrix (GLCM) in combination with morphologic features referring to
shape and orientation, in order to separate the malignant and benign tissues for pa-
tients affected by colorectal cancer. These features were derived from biopsy slides.
Concerning the automatic recognition of the disease evolution phases in a supervised
manner, an important approach regarding the detection of  the diffuse liver diseases
and of their severity grades from ultrasound images  is described in [16]. For this
purpose, the authors employed a hierarchical tree, structured in the following manner:
at the first level, the differentiation between the normal and the unhealthy liver was
performed, using textural features such as the GLCM mean and energy; at the second
level, the difference between steatosis and cirrhosis was highlighted, by using features
such as the GLCM mean and variance; at the last level, the authors differentiated
between multiple severity grades of steatosis and cirrhosis, using GLCM features such
as the variance, entropy, sum entropy, difference entropy. For supervised classifica-
tion, a Multilayer Perceptron (MLP) classifier was employed. An important work is
presented in [17], where the authors determined the evolution stages of HCC from
histological images, using newly defined textural features, based on multifractal analy-
sis. A supervised, bag-of-feature classifier was used in order to identify one of the five
evolution stages of HCC (four taken from the Edmondson and Steiner grading system,
and also an additional stage, preceding the malignity). The final resulted accuracy was
95%. Another significant approach refers to the combination between the supervised
and unsupervised classification methods, the purpose being to detect the HCC tumor



in incipient phase, based on histological features [18]. Regarding the unsupervised
classification of the disease evolution stages, the authors performed in [19] the detec-
tion of the cirrhosis severity grades based on Magnetic Resonance Images (MRI). For
this purpose, they employed textural features derived using the finite differences of the
image intensity function and also an improved k-means clustering method. The au-
thors determined, in this manner, the existence of four cirrhosis severity grades, the
achieved performance, assessed through the area under the ROC curve, being 0.704.
Concerning the activity of grading other affections, in unsupervised manner, the most
important approach involves detecting the evolution stages of the glioma tumors, by
combining hierarchical classification methods and dimensionality reduction tech-
niques [20]. The method of Laplacian Eigenmaps, applied before some unsupervised
classification methods such as k-means clustering or hierarchical agglomerative clus-
tering, provided better results than the Independent Component Analysis (ICA) meth-
od applied in the same manner.  The finally obtained classification accuracy was situ-
ated above 91%. Concerning the generalized co-occurrence matrices, they were re-
cently employed, in the form of the Local Binary Pattern (LBP) Co-occurrence Matrix
[14], respectively of the texton and texture orientation co-occurrence matrix [15].
These methods were experimented on the Vistex and Gabor standard textures and
provided a recognition accuracy situated between 89% - 98.8%. From the above de-
scribed approaches, it results that it doesn’t exist any relevant work referring to a co-
occurrence matrix based on extended textural microstructures determined after apply-
ing the Laws’ convolution filters. Also, there doesn’t exist any significant study that
defines an imagistic textural model of the previously mentioned diseases and of their
evolution phases, putting into evidence the relevant textural features and their specific
values. We performed these studies in our research, the corresponding techniques
being detailed below.

4. The Adopted Solutions

4.1. The imagistic textural model

4.1.1. The definition of the imagistic textural model

The imagistic textural model of the considered affections and of their evolution
phases consists of: the complete set of the relevant textural features which characterize
each disease or disease evolution stage and thus can distinguish the corresponding
class from the similar existing classes; the specific values of the relevant textural fea-
tures: arithmetic mean, standard deviation, probability distribution [4].

In order to define the imagistic textural model, we start from an initial set of poten-
tially relevant textural features, as indicated in (1):



(1)

The set of the relevant textural features, FR,  constitute a sub-set of F,  as indicated
in (2), derived by using the most appropriate dimensionality reduction methods, the
final purpose being to obtain the optimum classification performance, aiming first an
increased accuracy. The dimensionality reduction techniques consist mainly of feature
selection methods, which separate the relevant textural features from the non-relevant
ones, while preserving the original features unchanged [21].

FFR  (2)

The final form of the imagistic textural model is depicted in (3). Thus, the textural
model (TM), consists of the vectors Vfr composed by the specific values associated to
the relevant textural features (the value of the relevance index, the arithmetic mean,
the standard deviation and the probability distribution).

(3)

4.1.2. The phases due in order to build the imagistic textural model

In order to build the imagistic textural model, a preliminary phase of image gather-
ing for training set building is due firstly. Then, the image analysis phase is per-
formed, assuming the application of the texture analysis methods in order to obtain the
potentially relevant textural features. Both classical and newly defined, advanced
texture analysis methods are considered in this phase. The following classical texture
analysis techniques were taken into account: first order statistics of the gray levels
(arithmetic mean, maximum and minimum value); second order statistics such as the
autocorrelation index, the Gray Level Co-occurrence Matrix (GLCM ) and the associ-
ated Haralick features, edge based statistics and gradient features, the Hurst fractal
index, the density and frequency of the textural microstructures obtained after apply-
ing the Laws’ convolution filters,  the Shannon entropy computed after applying the
Wavelet transform recursively, twice [22]. Generalized, superior order co-occurrence
matrices were also developed and analyzed in our previous research, in the form of the
superior order GLCM [4], of the third order Edge Orientation Co-occurrence Matrix
(EOCM) [4], respectively of the multiresolution versions of these matrices [5], [6].
The newly defined texture analysis methods, described in this work, were based on
textural microstructure co-occurrence matrices, of order two and three and also of
their multiresolution versions, as detailed in the next sections. The learning phase
follows next. In the case of the unsupervised approach, automatic class discovery is
performed during this phase, through clustering techniques, as described within the
next sub-sections. In both unsupervised and supervised approaches, the feature selec-
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tion methods are also applied during the learning phase. The validation phase is em-
ployed at the end in order to assess the classification performance due to the previous-
ly built imagistic textural model. During this phase, the relevant textural features are
provided as inputs to powerful, supervised classifiers and meta-classifiers.

4.2. Advanced texture analysis techniques employed during the image analysis
phase

4.2.1. The superior order, generalized co-occurrence matrices
The second order, generalized co-occurrence matrix was firstly defined by

Davis [23]. In our work, we defined the superior order, generalized co-occurrence
matrix. The definition for the elements of this matrix is provided in (4):

)}sgn()))(sgn((,

),..sgn()))(sgn((

|,||||,..,||||,|||

|,||||,..,|||,|||

,),(,..,),(,),(

:)),(),..,,(),,(),,{((#),..,,,(

1111

111212

11213112

11213112

222111

332211321


















nnnn

nn

nn

nnn

nnnD

ydxdyyxx

ydxdyyxx

ydyyydyyydyy

xdxxxdxxxdxx

yxAyxAyxA

yxyxyxyxC












(4)

In the formula (4), #S represents the size of the set S. Each element of this matrix is
equal with the number of n-tuples of pixels, having the spatial coordinates (xi, yi),
respectively the value ʋi for the attribute A. The spatial relation between the pixels (xi,
yi) was defined by the set of the displacement vectors, depicted in (5):

)),(),..,,(),,(( 112211  nn ydxdydxdydxdd


(5)

The attribute A represents the image features taken into consideration in or-
der to define the co-occurrence matrix in a particular case: the gray level of the pixel
in the case of the superior order GLCM matrix [7], the edge orientation in the case of
the Edge Orientation Co-occurrence Matrix (EOCM) [7], the value obtained after
applying a certain Laws’ convolution filter in the case of the Textural Microstructure
Co-occurrence matrix, and the label associated to the complex and complex extended
textural microstructures, in the case of the Complex Textural Microstructure Co-
occurrence Matrix (CTMCM), respectively of the Complex Extended Textural Micro-
structure Co-occurrence Matrix (CETMCM).  The superior order GLCM and EOCM
matrices were defined and detailed in [4].

The TMCM, CTMCM and CETMCM matrices will be described in the next para-
graphs. The second order co-occurrence matrices were computed for the following
directions of the displacement vectors: 0°, 90°, 180°, and 270°.  For the third order
co-occurrence matrices, the following direction combinations were taken into account:
(0°, 180°), (90°, 270°), (45°, 225°), (135°, 315°) in this case the pixels being colline-



ar, the current pixel being situated in the central position; respectively (0°, 90°), (90°,
180°), (180°, 270°), (0°, 270°), (45°, 135°), (135°, 225°), (225°, 315°), (45°, 315°), in
this case the pixels forming a right angle triangle, the current pixel being situated in
the position of the right angle vertex. The direction combinations considered in the
case of the third order matrices are illustrated in Fig. 2. For these matrices, the extend-
ed Haralick features were computed as described in [4], for each direction or direction
combination, the final resulting values being averaged. Also, features referring to the
shape of the 2D and 3D histograms associated to the co-occurrence matrices, were
derived. These features were: cluster shade, standing for histogram skewness; cluster
prominence, standing to histogram kurtosis; the maximum area corresponding to the
intersection of the histogram with a horizontal plane in the bi-dimensional case and its
extension for superior order cases. These features were computed as described in [9].

Fig. 2 The combination of the displacement vector directions in the case of the third order
generalized co-occurrence matrices

The Textural Microstructure Co-occurrence Matrix (TMCM)

In the case of the Textural Microstructure Co-occurrence Matrix (TMCM), the at-
tribute A represents the value obtained after applying a Laws’ convolution filter,
which puts into evidence a certain textural microstructure: level, edge, spot, wave or
ripple [24]. In our work, the bi-dimensional, 5x5 versions of these convolution filters
(L5L5, E5E5, S5S5, W5W5, R5R5), were considered. Also, the S5R5 and R5S5 combined
convolution filters were taken into account, as they provided good results in our for-
mer experiments [4], [5], [6].

The Complex Textural Microstructure Co-occurrence Matrix (CTMCM)

Concerning the Complex Textural Microstructure Co-occurrence Matrix
(CTMCM), the values of the attributes A are the labels, assigned to each pixel, associ-
ated to the clusters formed by the vectors of textural microstructures, which could also
be assimilated with the concept of textons [15]. The feature vector associated to each



pixel consisted of the values resulted after the application of the considered Laws’
convolution filters in the neighborhood of this pixel. The clusters resulted after the
application of an improved k-means clustering method, performed in the following
manner: (1) We started from a minimum number of cluster centers (k=50); (2) We
applied the classical k-means clustering algorithm and increased the number of centers
by splitting the corresponding centers in two other centers, if the standard deviation of
the items within the corresponding class (cluster) was greater than ¾ of the average
standard deviation of all the existing classes. The values of the first new center were
determined as being ½ of the values associated to the old center; the second new cen-
ter was ¾ of the old center. (3) All the labels of the pixels from the ROI were re-
assigned after splitting the old centers. The condition for the algorithm to finish was
the convergence, the maximum number of centers being also established to 200.

The Complex Extended Textural Microstructure Co-occurrence Matrix (CETMCM)

The Complex Extended Textural Microstructure Co-occurrence Matrix
(CETMCM) was computed in the same manner as the CTMCM matrix, but the initial
feature vector associated to each pixel resulted as the union between the results of the
Laws’ convolution filters and the results of representative edge detection convolution
filters. In order to perform edge point detection,  we considered the Sobel filters for
identifying horizontal and vertical edges, the Kirsch Compass filters for finding edges
with different orientations, as well as the Laplacian convolution filter, in order to
compute the second order derivative of the image intensity function [22].

4.2.2. The multi-resolution, generalized co-occurrence matrices
The multi-resolution, generalized co-occurrence matrices are computed at two reso-

lution levels, after applying the Wavelet transform, in the following manner: (1) First,
the Haar Wavelet transform was applied on the original image; (2) then, the desired
co-occurrence matrix was computed on each resulted component: low-low
(smoothed), low-high (vertical edges), high-low (horizontal edges), and high-high
(diagonal edges); (3) The Haar Wavelet transform was applied on each resulted com-
ponent and the co-occurrence matrices of the desired type were computed on the new
resulted components.  In our research, the multiresolution GLCM and EOCM were
previously approached [5], [6]. In this work, we highlighted the role of the multireso-
lution, third order CTMCM concerning the improvement of the abdominal tumor
recognition accuracy. In order to determine the multiresolution CTMCM
(MCTMCM), the following steps were performed (1) The improved k-means cluster-
ing method was applied on the original image, considering that each pixel had associ-
ated a feature vector formed by the values resulted of the application of the considered
Laws’ convolution filters.  A clustered (texton) image. (2) The Haar Wavelet trans-
form was applied on the clustered image recursively, twice. (3)The co-occurrence
matrix, CTMCM, was computed on each component.



4.3. The techniques applied during the learning phase

4.3.1. Relevant feature selection in the case of the supervised classification
Specific feature selection methods of both filter and wrapper type [21] were

experimented in our research in order to separate the relevant textural features from
the non-relevant ones. The methods from the category of filters provided the best
results. Thus, the techniques of Correlation-based Feature Selection (CFS), Con-
sistency based Feature Subset Evaluation, Information Gain Attribute Evaluation and
Gain Ratio Attribute Evaluation provided the best results in most of the cases.  The
first two techniques, which performed the assessment of feature subsets, were usually
combined with genetic search, while the last two techniques, which performed the
evaluation of individual attributes, were combined with the Ranker method. [21] The
final relevance score for a certain attribute was computed as the arithmetic mean
between the individual relevance indexes provided by each on the employed method.

4.3.2. The case of the unsupervised classification

Class discovery within the data derived from ultrasound images

In order to perform automatic discovery of the classes within the data derived from
ultrasound images, aiming to detect the evolution stages of the considered diseases,
we applied clustering (grouping) methods.  The following specific techniques were
implemented individually:  Expectation Maximization (EM), k-means clustering, X-
means clustering, Particle Swarm Optimization (PSO) in conjunction with k-means
clustering. The final results of these methods were combined, for establishing the
number of classes. In order to assess the performance in each case, the metrics specific
to each method were taken into account, and also other parameters were considered,
such as the average difference between the cluster proportions and the number of
insignificant clusters (clusters of small size, containing less than 10% of the data). We
provide below a brief description of each adopted technique.

The Expectation Maximization (EM) technique is a well-known, powerful method
that iteratively estimates the desired parameters, by maximizing the log-likelihood
value. The likelihood of the model is determined by formula (10), while the log-
likelihood is the natural logarithm of the likelihood [25]:
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Within the formula (6), n stands for the number of instances, m represents the
number of clusters, pj stands for the cluster priors and Pr[xi|j] is the conditional prob-
ability for the instance xi to be belong to the cluster j. The parameters estimated in our
research were the number of clusters and the sample distributions within the clusters.
In the case of the EM method, the performance was estimated using a score defined as
a weighted mean that considered the log-likelihood, the number of small (insignifi-
cant) clusters, respectively the maximum difference between the cluster proportions:



Score= 0.5*log_likelihood +0.3*(1- no_insignifiant_clust)+0.2*(1-max_dif_clust_prop).
Al the terms were normalized between 0 and 1.

The k-means clustering technique [25] is often employed for unsupervised classifi-
cation, due to its reduced computational complexity and accelerated convergence.
The k-means clustering algorithm consists of the following steps: (1) randomly initial-
ize the cluster centers μ1, μ2,…, μc, where c is the number of clusters, considering the
available data, containing n instances; (2) assign each instance to the cluster that cor-
responds to the nearest center, μi; (3) compute again the cluster centers, by employing
the arithmetic mean for this purpose; (4) if the position of the cluster centers has re-
markably changed, go to step 2, otherwise, return μ1, μ2,…, μc. Thus, given a set of
observations (x1, x2, …, xn), each observation being a d-dimensional vector, the k-
means clustering algorithm partitions the n observations into k sub-sets (k ≤ n)
S = {S1, S2, …, Sk}, using the algorithm described above. In our study, the perfor-
mance of this method was measured by a weighted mean that considers the within-
cluster sum of squared errors (WCSS) of the resulted model, besides the maximum
difference between the cluster proportions and the number of insignificant clusters, all
the corresponding values being normalized in the interval [0,1]: Index = 0.5*WCSS +
0.2*max_dif_clust_prop + 0.3*no_insignifiant_clust.

The X-means clustering technique represents an improved version of the k-means
clustering method. The classical k-means clustering technique [25] has some draw-
backs, the most important being the execution speed, and also the fact that a fixed
value k has to be provided a-priori. The X-means clustering technique expects a max-
imum and a minimum value for the k parameter and it consists of the following steps:
(1) Run conventional k-means clustering to convergence, for a fixed value k; (2) De-
cide whether new cluster centroids should appear, by splitting the old centroids into
two; (3) If k>kmax, then stop and report the best model found by the algorithm, identi-
fied using the Bayesian Information Criterion – BIC [25].  The BIC criterion is used
both in order to decide which centroids have to be split, and also for identifying the
best resulted model. The final algorithm performance is estimated by the distortion
measure, expressing the average squared distance from the points to their centroids,
for the best resulted model (Pelleg, 2000). In the case of the X-means clustering tech-
nique, the distortion measure was estimated and an index was computed as follows:
Index= 0.5*distortion +0.3*no_insignifiant_clust+0.2*max_dif_clus_prop. All the
terms were normalized between 0 and 1. The smallest index value indicated the best
solution in this situation.

Being inspired from the bird flocks behavior, the Particle Swarm Optimization
(PSO) method aims to optimize the solution of a problem by simulating the movement
of a particle swarm and by determining then the best position for each particle (Das,
2008). Each particle has assigned a position and a velocity. The velocity (speed) is
influenced by a cognitive component, referring to the distance from the personal best
position, as well as by a social component, referring to the distance from the best
global position. The best particle positions are determined through an evaluation func-
tion, which is defined according to the specific of each problem [26]. In our case of
unsupervised classification through clustering (grouping), a particle is represented by
a certain cluster configuration, respectively by the way the cluster labels are assigned
to the input data, for a given number of clusters. We combined the PSO technique
with k-means clustering.  Thus, the initial configuration of the swarm resulted after the



application of the k-means method upon the initial data. We defined the evaluation
function using the same metric employed in the case of the k-means clustering.

Relevant feature selection in this case
The methods for relevant feature selection, in the case of unsupervised classifica-

tion, aim to provide best separation among the resulted clusters. The overlapping area
between two neighboring clusters must be as small as possible. For each textural fea-
ture f, a relevance score was defined, as described in (7):
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In (7), i and j represent neighboring clusters. The relevance of each feature f de-
pends on the sum of the overlapping region sizes that exist between each pair of
neighboring clusters. The overlapping region size was determined according to (8); we
assumed a Gaussian distribution for the textural features:
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Fig. 3. The overlapping region size between two neighboring clusters (S>0)

In (9), μ_min_f represents the minimum value for the arithmetic mean of f, con-
sidering the clusters i and j; σ_min_f is the standard deviation of the textural feature f for
the cluster where μ has minimum value, μ_max_f stands for the maximum arithmetic
mean of the feature f, considering the clusters i and j, and σμ_max_f is the standard devi-



ation of f within the cluster where μ is  maximum [9]. If S≤0, no overlapping region
exists between the two clusters. If the two centers of the clusters i and j are the same
with respect to f (the arithmetic means, μi and μj are equal), then the overlapping region
size will be the double of the minimum standard deviation. The graphical representa-
tion for the classical case, S>0, is provided in Fig. 3.

4.3.3. Computing the specific values of the relevant textural features
The arithmetic mean and the standard deviation of each relevant textural feature

were computed for each class. In the case of disease evolution phase analysis, the
graphical representation of the relevant textural feature arithmetic mean as a function
of the evolution stage was performed. In order to determine the probability distribu-
tion for each relevant textural feature, with respect to each considered class, the
Bayesian Belief Networks technique [25] was adopted. The method of Bayesian Be-
lief Networks detects influences among the features, by generating a dependency net-
work, represented as a directed, acyclic graph (DAG). In this graph, the nodes repre-
sent the features, while the edges stand for the causal influences between these fea-
tures, having associated the values of the corresponding conditional probabilities.
Each node X in this graph has a set of parents, P and a set of children, C. The
probabilities of the nodes are computed using a complex inference mechanism. Within
a Bayesian Belief Network, each node has assigned a probability distribution table,
indicating the specific intervals of values for that node, given the values of its parents.
Considering the textural features that influence the class, the technique of Bayesian
Belief Networks provides the most probable variation intervals for them.

4.4. Validation of the imagistic textural model

In order to evaluate the imagistic textural model, the values of the relevant textural
features were provided at the supervised classifier inputs and the resulting classifica-
tion performance was assessed. The following supervised classifiers, well known for
their efficiency, were employed for this purpose: the Multilayer Perceptron (MLP),
the Support Vector Machines (SVM), the Random Forest (RF) method, the C4.5
method of decision trees and also the AdaBoost meta-classifier combined with the
C4.5 classification technique, the latter being validated in the literature as a powerful
classifier combination [25]. The case of binary classification was taken into account
for the supervised approach. In the case of the unsupervised approach, when multiple
disease evolution phases were analyzed at once, the multiclass classification methods
were taken into account. Both the natural extensions of the usual classification meth-
ods to the case of multiple classes, as well as specific combination strategies of the
binary classification results were employed for this purpose [25]. The Exhaustive
Correction Code strategy [27] was considered in the latter case. For classification
performance assessment, the following metrics were adopted: the recognition rate
(accuracy), sensitivity (TP rate), specificity (TN rate) and the area under ROC (AUC).
The method of Self Organizing Maps (SOM) [28] was also employed, for performing
data representation, in order to visualize the existing classes (clusters).



5 Experiments and discussions

5.1. The experimental dataset and the experimental environment

The experimental datatset consisted of 300 cases of HCC, 100 cases of
hemangioma, 65 cases of colorectal tumors, 65 cases of IBD, respectively 75 cases of
cirrhosis. Three ultrasound images, corresponding to various orientation of the
transducer, were included for each case (patient). All the images were acquired by a
Logiq 7 ultrasound machine using the same settings: frequency of 5.5 MHz, gain of
78, depth of 16 cm. The following pairs of classes were considered for the case of
supervised classification: HCC/cirrhotic parenchyma on which HCC had evolved;
HCC/hemangioma; colorectal tumors/IBD. The classes of a certain pair contained the
same number of items. On each image, regions of interest (ROI) were selected on the
desired tissue. The textural features were computed on each ROI, using our own mod-
ules, implemented in Visual C++. The textural features were derived after the
application of a median filter for noise reduction, independently on orientation,
illumination and region of interest size. An item in the data set consisted of the
textural feature values computed on the corresponding ROI, having also associated the
class parameter in the case of supervised classification. In the case of supervised clas-
sification, the methods for relevant feature selection, respectively the classifiers, were
implemented using the Weka 3.6 library [27]. The CfsSubsetEval, the Weka 3.6 corre-
spondent of the CFS technique and the ConsistencySubsetEval method of the same
library, both described in Section 4, were employed in conjunction with Genetic
Search. Also, the InfoGainAttributeEval and the GainRatioAttributeEval techniques
of Weka 3.6, in combination with the Ranker method were implemented, according to
the previous descriptions. In order to compute the probability distributions for the
relevant textural features, the Bayesian Belief Networks (BayesNet) method of Weka
3.6 was adopted, with Bayesian Model Averaging (BMA) estimation and K2 search.
Regarding the classification methods, the John’s Platt Sequential Minimal Optimiza-
tion Algorithm (SMO) of Weka 3.6, was applied for implementing the SVM method,
with polynomial kernels of second and third degree, which provided the best results in
our former experiments; the input data was normalized in this case. For the classifier
of Multilayer Perceptron (MLP), the corresponding method of Weka 3.6 (Multi-
layerPerceptron) was considered, containing, within the single hidden layer, a number
of nodes equal with a = (number_of_features + number_of_classes)/2, the learning
rate being tuned to 0.2, respectively the momentum α being 0.8.  The RandomForest
classification method of Weka 3.6, standing for the RF classifier, with 10 trees, was
also adopted. The AdaBoostM1 meta-classifier of Weka was employed as well, using
the J48 method (equivalent of the C4.5 technique) as a basic learner. For classification
performance assessment, the strategy of cross-validation with 5 folds was applied. For
the case of multiclass classification, the MultiClass meta-classifier of Weka 3.6 was
employed, together with the Exhaustive Correction Code strategy. In the case of un-
supervised classification, the feature selection method, described in sub-section 4.3.2,
and the Particle Swarm Optimization (PSO) technique combined with k-means clus-



tering were implemented in Matlab, using a specific framework in the latter situation
[29]. The other unsupervised classification methods (classical k-means clustering, X-
means clustering, Expectation Maximization) were employed using the Weka 3.6
library [27]. The SOM method was implemented in the Matlab environment using a
specific library [28].

5.2. The role of the textural microstructure co-occurrence matrices in the
supervised classification of the abdominal tumors

5.2.1. The Textural Microstructure Co-occurrence Matrix (TMCM) in the
context of abdominal tumor classification

The following pairs of classes were considered in this situation: HCC/cirrhotic pa-
renchyma on which HCC had evolved, colorectal tumors/IBD. The second and third
order TMCM matrices were determined and the resulted Haralick features were com-
bined with the previously computed textural features. Concerning the most relevant
textural features obtained in the case of the comparison between HCC and the cirrhot-
ic parenchyma on which HCC had evolved, we noticed the importance of the second
order TMCM based features, as well as of the third order TMCM based features,
computed after the application of the Laws’ ripple and combined filters, respectively
after the application of the Laws’ filter for spot detection, in the case of the third order
TMCM entropy. All the detected relevant textural features denote the complex, inho-
mogeneous, chaotic character of the HCC tumor, as well as differences in granularity
between HCC and the cirrhotic parenchyma, through the second and third order
GLCM and TMCM correlation. In the second case, when the colorectal tumors and
the IBD classes were compared, the following relevant textural features resulted: {Au-
tocorrelation_index, EOCM3_Homogeneity, EOCM3_Contrast, GLCM3_ Homoge-
neity, GLCM3_Correlation, TMCM3_Homogeneity_ripples, TMCM3_S5R5_Entropy,
TMCM_Spots_Entropy, TMCM_R5S5_Contrast, TMCM3_Spots_Energy, TMCM3_
S5R5_Correlation}. We can notice the presence of the second and third order TMCM
features: homogeneity, contrast, entropy, energy and correlation, referring to all the
considered microstructures (spots, ripples and combined). These textural features
denote the heterogeneous, complex, chaotic structure of the colorectal tumors, con-
cerning the gray levels, the edge orientation variability, respectively the textural mi-
crostructures. At the end, the classification accuracy due to the set formed only by the
old textural features was compared, in both cases, with the accuracy provided by the
set formed by the old textural features and by the newly defined, TMCM features. The
experiments were performed after feature selection (FS). The TMCM textural fea-
tures led, in most of the considered situations, to a classification accuracy improve-
ment, in comparison with the old textural features. In the case of HCC/cirrhotic paren-
chyma comparison, the maximum accuracy, of 82.14%, the maximum sensitivity, of
82,12% and the maximum specificity, of 82.35%, resulted for the combination be-
tween AdaBoost and the J48 basic classifier, while the maximum AUC, of 85.35%,
resulted for the J48 classifier. Concerning the comparison between the colorectal
tumors and the IBD class, the maximum accuracy, of 94.78%, the maximum sensitivi-



ty, of 95.90% and the maximum specificity, of 96.99%, resulted in the case of the
combination between the AdaBoost meta-classifier and the J48 technique, while the
maximum AUC, of 96%, resulted for the RF classifier.

5.2.2. The role of the CTMCM matrix in the recognition of the abdominal
tumors

In the case of the differentiation between HCC and the cirrhotic parenchyma on
which HCC had evolved, regarding the set of the relevant textural features, selected by
the CFS method, combined with genetic search, we noticed the presence of the con-
trast and variance derived from the third order CTMCM matrix, denoting the com-
plex character of the malignant tumor tissue. The comparison between the classifica-
tion accuracy obtained when using only the old textural feature set, respectively that
obtained by using the combination between the old textural features and the CTMCM
features, in the case of the differentiation between HCC and the cirrhotic parenchyma
on which HCC had evolved, was also performed. An increase in accuracy was noticed
in most of the cases. The maximum recognition rate, of 84.09%, was obtained for the
AdaBoost meta-classifier in combination with the J48 method of decision trees, being
higher than that obtained when employing TMCM matrix. In the case of the differen-
tiation between HCC and the benign liver tumors (hemangioma), for the same textural
features, we noticed an increase in accuracy, due to the newly defined textural fea-
tures, for all the classifiers. The comparison was performed after the selection of the
relevant textural features. The maximum recognition rate, of 98.141%, was obtained
in the case of the SVM classifier. In the case of the differentiation between the colo-
rectal tumors and the IBD class, concerning the set of the relevant textural features,
we noticed the homogeneity and contrast features based on the second order CTMCM
matrix, respectively the contrast derived from the third order CTMCM matrix. These
features denoted the complex, inhomogeneous character of the colorectal tumors.
After providing the set of the relevant textural features at the classifier inputs, the
following values were obtained for the classification performance parameters: the
maximum accuracy, of 98.33%, resulted in the case of the SVM classifier, all the
values of the classification performance parameters overpassing those achieved in the
case of the TMCM matrix. Concerning the comparison between the classification
accuracy due to the relevant CTMCM features combined with the old textural features
and that due only to the set of the old relevant textural features, in the case of differen-
tiation between the colorectal tumors and IBD, we noticed, always, an improvement
due to the newly defined textural features [7]. These results can be visualized in Fig.
6, Fig.7 and Fig.8.

5.2.3. The role of the MCTMCM in the classification of the abdominal tumors
In the case of the differentiation between HCC and the cirrhotic parenchyma on

which HCC had evolved, within the set of the relevant textural features that perform
the differentiation between these classes, we noticed the presence of the following
textural features, derived from the third order MCTMCM matrix: the contrast, com-
puted at the second level, on the components  resulted after the second application of
the Wavelet transform, on the image of the vertical edges; the homogeneity, computed
on the fourth component, after the second application of the Wavelet transform, on the



image of the diagonal edges. These features expressed the difference in homogeneity
between the cirrhotic parenchyma and the tissue affected by malignity, as well as the
complex character of the HCC tissue. The improvement of the classification accuracy,
due to the relevant textural features derived from the MCTMCM matrix, in compari-
son with that due to the old features, was also analyzed.  An obvious classification
accuracy increase was noticed in the cases of the MLP and RF classifiers, a slight
increase in recognition rate was remarked for the AdaBoost meta-classifier employed
in conjunction with the J48 technique, respectively a decrease of the recognition rate
was noticed concerning the SVM classifier. The maximum recognition rate obtained
in this case was 83.84%, for the AdaBoost meta-classifier combined with the J48
technique. This result was inferior to that obtained in the case of the CTMCM matrix.
Thus, the textural information lost in relevance as the result of compressing and filter-
ing, due to the application of the clustering method followed by the Wavelet trans-
form. Regarding the comparison between the colorectal tumors and the IBD class,
the following third order MCTMCM features resulted as being relevant: the contrast,
the variance, the correlation determined on the sub-image of vertical edges, the ho-
mogeneity determined at the second level on the sub-image of the horizontal edges, as
well as on that of the diagonal edges. These features highlighted the complex, heter-
ogeneous character of the malignant tumor tissue, as well as differences in granularity
between the malignant tumor tissue and the other class (through the third order
MCTMCM correlation).

Fig 4. The increase in accuracy due to the MCTMCM features, in the case of colorectal
tumors/IBD differentiation

Fig.4 illustrates the comparison between the recognition rates resulted before and
after taking into account the MCTMCM features. An obvious accuracy increase, due
to the newly defined, MCTMCM features, resulted in most of the cases. The maxi-
mum recognition rate resulted in this case was 96.36%, corresponding to the SVM
classifier. This result was inferior to that obtained when considering the CTMCM
textural features, for the same pair of classes [7].



5.2.4. The role of the textural Complex Extended Textural Microstructure Co-
occurrence Matrix (CETMCM) in the recognition of the abdominal tumors

In the case of the comparison between HCC and the cirrhotic parenchyma on
which HCC had evolved, the ranking, according to the relevance parameter, of the
most significant textural features which were part of the imagistic textural model is
provided in Fig. 5. We notice the presence of the contrast derived from the third order
CETMCM among the first three most relevant textural features.

Fig. 5. The ranking of the relevant textural features in the case of HCC/cirrhotic parenchyma
differentiation

The comparison of the classification accuracies resulted when considering only the
old textural features, respectively after adding the newly defined textural features, is
illustrated in Fig.6, Fig.7 and Fig.8, for all the considered class pairs. These figures
also illustrate the classification accuracy obtained when considering the set formed by
the old textural features and the CTMCM features. It results that the both the CTMCM
and the CETMCM features led to an obvious classification accuracy increase in com-
parison with the old textural feature set, while the CETMCM feature led to a slight
improvement in comparison with the set containing the CTMCM features. The com-
parison between the classification accuracies obtained when using the old textural
features, the combination between the old textural features and the CTMCM features,
respectively the combination between the old textural features and the CETMCM
features, assessed in the case of the HCC/cirrhotic parenchyma differentiation, is de-
picted in Fig.6. The maximum recognition rate, of 84.33%, resulted in the case of the
AdaBoost meta-classifier combined with the J48 method, when taking into account the
CETMCM features together with the old textural features [8].



Fig. 6. The classification accuracy improvement, due to the CTMCM and CETMCM textural
features, in the case of HCC/cirrhotic parenchyma comparison

Fig. 7. The classification accuracy improvement, due to the CTMCM and CETMCM textural
features, in the case of HCC/hemangioma

Fig. 8. The classification accuracy improvement, due to the CTMCM and CETMCM textural
features, in the case colorectal tumors/IBD comparison



As it results from Fig. 7, in the case of HCC/hemangioma differentiation, the max-
imum recognition rate, of 98.8%, resulted in the case of the SVM classifier, when
taking into account the newly defined, CETMCM textural features.

In the case of the comparison between the colorectal tumors and the IBD class, il-
lustrated in Fig.8, the maximum recognition rate, of 98.33%, resulted in the case of
the SVM classifier, for the feature set containing the CETMCM textural features [8].

5.3. The role of the textural microstructure co-occurrence matrices in the
unsupervised detection of the abdominal disease evolution phases

5.3.1. The role of the textural microstructure co-occurrence matrices in the
discovery of the cirrhosis severity grades

First, the textural features derived from the TMCM matrix were taken into account.
After the application of the EM and X-means clustering techniques and performing the
evaluation as shown in sub-section 4.3.2, four clusters were discovered within the
data. These clusters corresponded to the cirrhosis severity grades: an incipient evolu-
tion phase, an advanced evolution phase and two intermediate stages. In this case, the
most relevant parameters were the frequency of the textural microstructures detected
by using the Laws’ convolution filters, together with the Haralick features derived
from the second and third order TMCM matrix. These features highlighted the im-
portance of the first, second and third order statistics based on textural microstructures
in characterizing the evolution of cirrhosis.

Fig. 9. The specific values of the most relevant textural features, for each cluster (cirrhosis
severity grade)

The arithmetic means of the most relevant textural features, in correlation with the
evolution phase, are depicted in Fig.9. As it results from Fig.9, the cluster c0 corre-
sponded, most likely, to the incipient phase of cirrhosis, as the GLCM homogeneity
had maximum value, while the entropy, contrast and variance derived from the second
and third order TMCM matrices had minimum values. The cluster c3 corresponded,
most likely, to the most advanced stage of this affection (when the tumors begin to



appear), as the GLCM homogeneity had a minimum value, the entropy computed from
the TMCM matrix based on spot microstructures had high values, while the contrast
and variance based on the second and third order TMCM had maximum values, de-
noting an increased structural complexity, due to the advanced restructuring process.

The clusters c1 and c2 corresponded to intermediate evolution stages. In the case of
cluster c2, the entropy derived from the TMCM matrix based on spot microstructures
had an increased value, so, class c2 probably corresponded to a more advanced evolu-
tion stage, preceding the final stage.

(a.) (b.)

Fig.10. The U-Matrices corresponding to the Self Organizing Maps (SOM) obtained before (a.)
and after (b.) feature selection.

The SOM technique was also applied for class visualization within the data, before
and after relevant feature selection. According to Fig. 10, a better cluster differentia-
tion can be observed after the feature selection operation. At the end, for the valida-
tion of the results, supervised classification methods were applied, the values of the
relevant textural features being given at their inputs. The class labels of the instances,
as resulted after the application of the EM method, were also provided. The most
increased accuracy, of 93.75%, resulted in the case of the MLP method. We also
compared the classification accuracy results obtained before and after adding the
TMCM features to the old feature set.  An accuracy increase, due to the newly defined
textural features, resulted in all the considered cases.

Then, the CTMCM and CETMCM textural features were added to the old textural
feature set, as well, and the number of clusters within the data was assessed again.
Four clusters, corresponding to fours cirrhosis evolution phases, resulted also in this
case. The newly considered textural features were part of the relevant textural feature
set and implicitly of the imagistic textural model of the cirrhosis evolution stages. The
supervised classifiers were applied again in order to assess the resulted model. The
maximum recognition rate, of 97.87%, resulted for the J48 classifier, when consider-
ing the CETMCM features, overpassing the maximum accuracy, of 97.5%, resulted in
the case when the CTMCM features were taken into account. We can notice that these
values of the classification accuracy also overpassed the recognition rate resulted
when considering the TMCM features.



5.3.2. The role of the textural microstructure co-occurrence matrices in the
discovery of the HCC evolution phases

In order to perform the discovery of the HCC evolution phases, when taking into
account the CTMCM, respectively the CETMCM textural features, the results of the
following methods were combined, in order to determine the number of clusters: EM,
X-means clustering and PSO combined with k-means clustering.

Fig. 11. The mean values of the relevant textural features for the  HCC evolution stages

Thus, five clusters, corresponding to five HCC evolution stages (an incipient phase,
an advanced phase and three intermediate phases), resulted after the data analysis. The
CTMCM and the CETMCM textural features were part of the relevant feature set
derived using the technique described in sub-section 4.3.2. The graphical representa-
tion for the values of the arithmetic means of some of the most relevant textural fea-
tures, which corresponded to the cluster centers, is provided in Fig. 11. According to
the a-priori knowledge, which reveales a decrease in homogeneity, respectively an
increase in echogenicity during the evolution of HCC, the second cluster (c2)
corresponded to the incipient phase, having the most decreased value for the gray
levels, respectively the maximum GLCM homogeneity, while cluster c5 corresponded
to the most advanced evolution phase for the HCC tumor, presenting the most
increased value of the gray levels, respectively the minimum value of the GLCM
homogeneity. The other clusters, c1, c3 and c4 corresponded to intermediate evolution
phases: c1 was closer to the incipient evolution phase, while c3 and c4 were closer to
the advanced evolution phases. The arithmetic mean values of other features, such as
the energy derived from the third order CETMCM and the cluster promminence
derived from the second order CETMCM, were also analyzed. We notice, from Fig.
11, that the third order CETMCM energy had low values for the incipient phases and
higher values for more advanced evolution phases, denoting an increase in the density
of the complex extended textural microstructures during the HCC evolution. The
cluster promminence derived from the CETMCM matrix, corresponding to the 3D
histogram kurtosis,  had maximum values during the incipient evolution phase and
small values during the advanced evolution phases of HCC. The probability
distributions generated using the Bayesian Belief Networks confirmed these results.



After instance labeling using the PSO method combined with k-means clustering,
the model assessment through supervised classification was performed. The maximum
recognition rate, of 93.35%, together with the maximum sensitivity (average TP rate),
of 93.14%, respectively the maximum value of the AUC, of 98.3%, were obtained in
the case of the MLP classifier, when considering the set formed by the old textural
features and the CETMCM features, for the hypohesis of five clusters within the data.
The accuracy results obtained when taking into account the combination between the
old textural features and the CETMCM features in the five clusters hypothesis were
compared with those obtained for the same feature set in the six cluster hypothesis,
and also with the results obtained when considering the feature set formed by the old
textural features combined with the CTMCM features, in the five cluster hypothesis.
These results are depicted in Fig. 12. As it results from Fig.12, the newly defined
CTMCM and CETMCM textural features, in combination with the old textural
features, always led to a classification accuracy increase in comparison with the the
formerly defined textural features. Also, in the case when taking into account the
CETMCM features, the classification accuracy was superior, in most of the cases, to
that obtained in the case when taking into account the CTMCM features. The accuracy
results were also superior when considering five evolution phases, in comparison to
those obtained when considering six stages of HCC evolution [9].

Fig. 12. Evaluation of the CTMCM and CETMCM textural features through supervised
classification methods [9]

6. Conclusions and future work

The newly defined textural features, derived from the textural microstructure
co-occurrence matrices, based on Laws’ features, proved to be useful for the charac-
terization and automatic diagnosis of the considered abdominal diseases and of their



evolution phases. The classification accuracy was about 85% in the case of
HCC/cirrhotic parenchyma differentiation, respectively it was above 90% when dis-
tinguishing between HCC and the benign tumors, between the colorectal tumors and
the IBD class, and also when performing supervised recognition of the cirrhosis and
HCC evolution stages. Concerning our future research, we intend to validate our
methods on larger datasets. We also aim to analyze the role of the textural microstruc-
ture co-occurrence matrices in the recognition of the real-world textures and to com-
pare the efficiency of these techniques with co-occurrence matrices based on other
features, such as the Local Binary Pattern (LBP).
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