
SOFTWARE SIMULATOR OF AN ATM STATISTICAL
MULTIPLEXER WITH VARIABLE PARAMETERS

Virgil Dobrota, Daniel Zinca, Mihai Cosma

Technical University of Cluj-Napoca, Department of Communications
26 Baritiu Street, 3400 Cluj-Napoca, Romania

Tel: +40-64-191689, +40-64-197083, Fax: +40-64-194831
E-mail: {dobrota, zinca, mcosma} @ utcluj.ro

Abstract

This paper presents a software simulator of an ATM statistical multiplexer designed to
evaluate the performances of a broadband communication systems at a non-real time
rates from 1 Mbps up to 1000 Mbps. The main objective of the proposed Windows
simulator is to find the optimum design of the four queueing system multiplexer with
priorities scheme using two or three levels.

1. Introduction

The high-speed networks implementation and the evaluation of the performances
imply to setup very expensive trials with equipment which is not always available.
Therefore, the simulating process is becoming an important step. This paper presents a
software simulator of an ATM statistical multiplexer, designed for broadband
communication systems (Windows 3.1x environment), at a non-real time rates from 1
Mbps up to 1000 Mbps. The inputs could provide a continuous flow of ATM cells or
could have a uniform, Poisson or Bernoulli distribution. The data are provided by the
files for each input and the results (meaning the output of the multiplexer) are stored
into proper files, including the demultiplexing process too. The experiments were
focused on evaluating the influence of variable parameters over CLR (Cell Loss
Ratio), calculated for each input and also globally.

Almost similar approach has been presented at ICSE’96 in Las Vegas [1], but the
operating system was Linux and the real-time rates were envisaged. Obviously the
output rate of the ATM multiplexer in this case was not higher than 100 Mbps, so the
results of both simulators could be compared within the common range of throughputs
only.

2. Software simulator of an ATM statistical multiplexer

Fig. 1. presents the functions of the project application. Each Windows-based program
has a WinMain function as an enter point, having the following parameters: two
variables (descriptors) for the current instant and the previous instant, a pointer to a
string of characters for sending arguments to the program and an integer to indicate the
window display type (minimized/maximized) when the application starts. This
function initializes and registers the class of the window which will become available
for all the instants of the application.

Fig. 1. Diagram block of the software simulator for ATM statistical multiplexer

The CreateWindow, ShowWindow and UpdateWindow functions will be used by the
current instant in order to show the application’s window. The external
communication is realized through a queue of messages according to the external
events (pressing a key or a mouse button). Another function, very important one, is
designed for the application’s window, particularly called herein WndProc, which
does not necessarily handle any message addressed to it. At the CreateWindow call,
the WndProc function receives the WM_CREATE message and initiates the global
variables. For a popup menu-oriented execution of an application, the previous
mentioned function receives WM_COMMAND message and an IDM_<command>
identifier (defined within the program or within its header file). The messages which
are not handled by the WndProc function are forwarded to DefWindowProc. The
double-line frame of the window is drawn by PutWin, whilst the number of digits used
for the representation of arguments as integers is provided by Ord function. The
uniform input distribution for the queueing systems needs the Uniform function which
returns an integer value of random number of waiting periods/cell until the next cell
will arrive. A Boolean function called LoadBuff updates the global variable Buffer as

follows: the first argument is the index of the data input and the second one is the
number of ATM cells arrived in the system. It returns either TRUE (if an end-of-file
has been found) or FALSE. The function LoadNextPk reads an ATM cell (53 bytes,
including the header) from the input files, according to its argument which is an index.
It returns FALSE if an end-of-file has been found otherwise the value is TRUE. The
following information are displayed using ClearAll, PutAll, Delay, PutMux functions:
the buffer size, the threshold values, the input rates and distribution, the number of
ATM cells (total and loss), the contents of the first cell in each buffer, the statistics of
the queue length. There are two priority schemes that have been implemented:
PrScheme0 supposes that all the inputs have a low level of priority (1), being served
according to a circulate token ring mechanism. If the number of cells in a queue is
becoming greater than a given threshold L the buffer receives the higher priority level
(0), and the token will not be shared with low priority inputs. As the congestion traffic
cannot be avoided, a study of three level of priorities have been done using
PrScheme1. The conclusion is that the higher the number of levels in the priority
schemes is, the more severe are the constraints for a real-time traffic. Both mentioned
functions call the Serve function to shift the buffer and the PutFmux writes the
received cells in an output file as a proof of the multiplexer behaviour until the input
flow is active. Finally the PutOut function acts as demultiplexer.

3. Simulation of random arrivals

One the most difficult part of the proposed implementation was the simulation of the
random arrival of ATM cells (L = 53x8 = 424 bits/cell). For a better understanding of
the principle adopted let suppose a uniform distribution for the Uniform procedure
previously mentioned. According to the rate-setting condition for probability P(CR)
and the definitions of PCR (Peak Cell Rate) and PBR (Peak Bit Rate), presented in
[2]:

 P(CR)=ct. PCR PBR
L [cells/s] (1)

 CR (Cell Rate) P CR
CR

PCR
()

1

0
 (2)

 0 1 2 3 ... PCR [cells/s]

 Fig.2. Uniform distribution P CR ctPCR() . 1
 (3)

The average number of cells generated by a simulated source measured over a long
interval of time divided by the minimum time between the arrival of two consecutive
cells is called AvCR (Average Cell Rate).

 AvCR CR P CR CRPCR
CR

PCR

CR

PCR

PCR
PCR PCR PCR

 [()]
()1

00

1 1
2

1
2 (4)

and
 PCR AvCR 2 1 (5)

The problem is to find the random number CR for the given range [0,PCR]. Due to the
fact that the C function int random(int) could return (in a specific situation) integer
values far from the limit PCR, a new algorithm had to be proposed. Let CR be the
number to be generated and N1=random(1000) a random value within 0...1000. Let
N2=random(PCR/1000) be a random value between 0 and the integer part of ratio
CR/1000 (two bytes).

 CR N N 2 1000 1, for P CR ct() . , CR PCR [,]0 (6)

The ratio of the peak-to-average traffic generation rate is called (burstiness) and the
ratio PCR/CR represents the number of periods until the next cell arrives. Suppose the

simulation has the input rate IR[i] as a parameter for input i, measured in [103cells/s].
The value returned by the function Uniform is the following:

 AvCR
IR i

PCR
CR[] (7)

Conclusions:
1. If AvCR/IR[i]<1 and because CR is a random value, it is possible to get a returned

value <1. This means that the time until the next cell arrives is less than the cell
period, or that more than one ATM cell should arrive in a period, which is not
possible. In this case it is decided that the time is equal to the cell period
(continuous flow or 1).

2. Due to the previous approximation the average input rate could be less than IR[i].
For these reasons the proposed algorithm should be used within the defined range
[1,1000] Mbps only.

3. Selecting other type of distribution P(CR) the algorithm could be used too.

4. Experimental results

The experiments have been done for different types of distributions: continuous flow
of a given rate, random arrival (uniform, Poisson, Bernoulli). The aim was to
determine the influence over the CLR for each input and over the global CLR of the
following parameters: the variable input/output rates, the average rate of arrivals (for
random case) and the different priority schemes. As the simulator was designed for
general purposes, an ATM cell is sometimes referred as a packet (of 53 bytes), without
a standard header (the routing aspects were not envisaged). Anyway each of the first
five bytes identify the origin of the cell, that is the number of the input line. The
contents of the input files represent an ASCII text (as a test) which is splitted in 48
bytes parts, having as a prefix the previous mentioned type of header. This procedure
is useful for a visual evaluation of the accuracy of multiplexing and demultiplexing
processes (see Fig.4.). Obviously an objective evaluation is possible, as it is presented
in Fig.5.

Fig.3. ATM Multiplexer Simulator: the menu options

Fig.4. Experimental results (demo non-real time)

Fig. 5. Example of experimental results

Conclusions

This paper intended to present the principles for building a software simulator, running
in Windows environment and suitable for evaluation of performances of an ATM
statistical multiplexer. The parameters that could determine an optimum design
(meaning a minimum CLR) are the following: the buffer size, the threshold, the
priority scheme, the input/output rates, the type of traffic (continuous or random
arrivals).

Acknowledgment

The authors would like to acknowledge the contribution to the initial version of the simulator of M. Emilio and B. Suciu
from the Technical University of Cluj-Napoca. In part the work was supported by COPERNICUS #1529 project
“Multimedia services over high-speed networks”.

References

[1] DOBROTA, V., ZINCA, D., COSMA, M., VLAICU, A. - Simulator for a Broadband Communication System
 Based on ATM Statistical Multiplexer/Switch with Fast Ethernet Link. Eleventh International Conference on
 Systems Engineering ICSE’96, University of Nevada, Las Vegas, USA, July 9-11, 1996.
[2] DOBROTA, V., CRISTUREAN, F., COSMA, M., ZINCA, D. - Software Evaluation Tool for ATM Traffic
 Parameters. IEEE Symposium of Electronics and Telecommunications Etc’96, Timisoara, Sept. 26-27, 1996.
[3] DOBROTA, V. - Digital networks in telecommunications. Volume I: digital switching, traffic analysis, ISDN
 (Romanian language). Risoprint Publishers, Cluj-Napoca 1996.
[4] LEE, D-S., SENGUPTA, B. - Queueing Analysis of a Threshold Based Priority Scheme for ATM Networks.
 IEEE/ACM Transactions on Networking, Vol.1, No.6, December 1993, pp.709-717.
[5] MOLDOVEANU, F., HERA, G. - Programming of Windows applications (Romanian language). Teora
 Publishers, Bucharest, 1995

