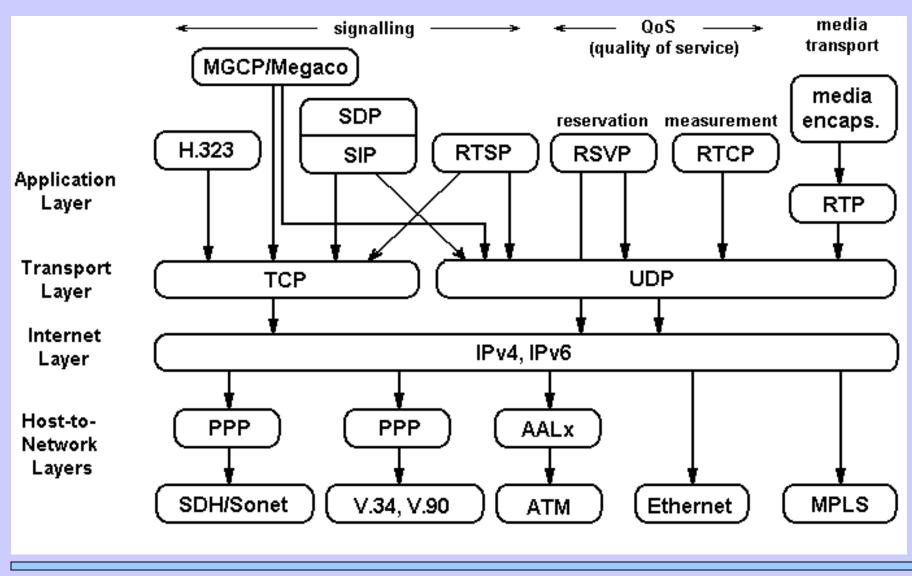
A Practical Evaluation of QoS for Voice over IP


Daniel Zinca, Virgil Dobrota, Mihai Vancea, Gabriel Lazar

Technical University of Cluj-Napoca, Romania Department of Communications {Daniel.Zinca, Virgil.Dobrota, Mihai.Vancea, Gabriel.Lazar}@com.utcluj.ro

Contents

- Internet Multimedia Protocol Stack
- R-factor and MOS (Mean Opinion Score)
- RTCP and VoIP parameters
- Testbed Demonstrator
- QoS Management Tool
 - Ethereal
 - RTCP Analyzer
 - NDIS Intermediate Driver
 - Microsoft Generic QoS API
 - realtool
- Conclusions and further work

The Internet Multimedia Protocol Stack

R-factor Calculation

R-factor = simple measure of voice quality (0...100)

$$R = 94.2 - I_d - I_{ef}$$

Id = the impairment associated with the mouth-to-ear delay of the pathd = one-way delay (coding delay + network delay + de-jitter delay)

 $I_d = 0.024d + 0.11(d - 177.3)H(d - 177.3)$

H(x) = 0 for x < 0 $H(x) = 1 \text{ for } x \ge 0$

Ief = the equipment impairment factor

 $I_{ef}(G.711, concealment, bursty) \cong$ $\cong 30 \ln(1+15e)H(0.04-e) + 19 \ln(1+70e)H(e-0.04)$

Mean Opinion Score (MOS)

R-factor	Quality of voice	MOS
90 < R < 100	Best	4.34 4.50
80 < R < 90	High	4.03 4.34
70 < R < 80	Medium	3.60 4.03
60 < R < 70	Low	3.10 3.60
50 < R < 60	Poor	2.58 3.10

RTCP (RTP Control Protocol)

- periodic transmission of control packets
- same paths & different UDP ports as data packets
- RTCP packets: SDES (Source Description)

SR (Sending Report) RR (Receiver Report) BYE

APP

Example of Sender Report

```
🗆 Real-time Transport Control Protocol
  version: RFC 1889 Version (2)
  Padding: False
  Reception report count: 1
  Packet type: Sender Report (200)
  Length: 12
  Sender SSRC: 2129287575
  Timestamp, MSW: 3224588906
  Timestamp, LSW: 3198720832
  RTP timestamp: 144000
  Sender's packet count: 601
  Sender's octet count: 144240
ElSource 1
    Identifier: 793046859
   □ SSRC contents
       Fraction lost: 0 / 256
       Cumulative number of packets lost: 0
   Extended highest sequence number received: 0
       Sequence number cycles count: 0
       Highest sequence number received: 0
     Interarrival jitter: 49
    Last SR timestamp: 0
    Delay since last SR timestamp: 0
```

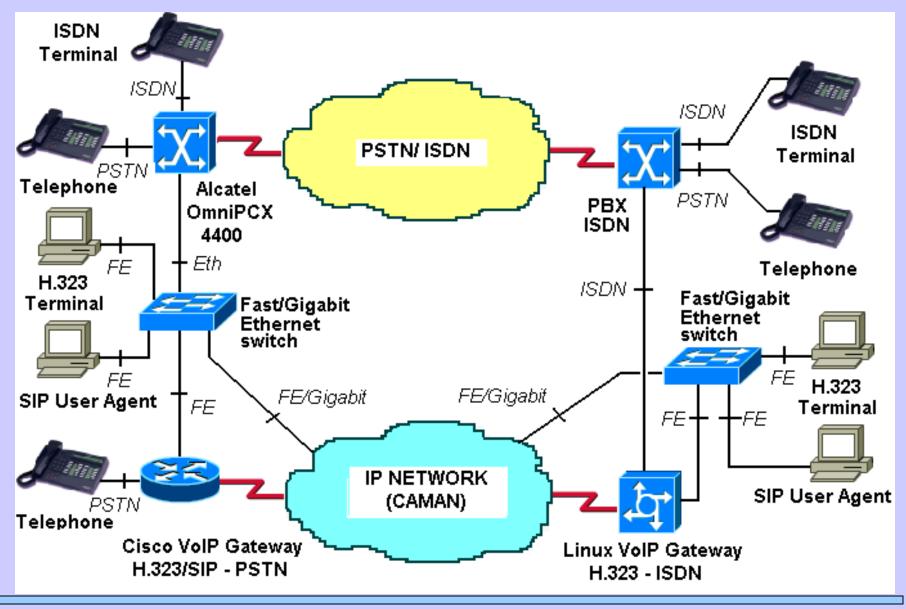
Interarrival jitter

J = J + (|D(i-1,i)| - J) / 16

D(i-1,i) = [R(i) - R(i-1)] - [S(i) - S(i-1)]

- D(i-1,i) = mean deviation of RTP timestamps for two consecutive packets
- R(i) = reception RTP timestamp
- S(i) = transmission RTP timestamp
- 1/16 = gain parameter

Return transfer delay


RTT = A - LSR - DLSR

- A = arrival time of the reception report
- LSR (Last SR Timestamp) = middle 32 bits out of 64 in the NTP

timestamp within the most recent SR

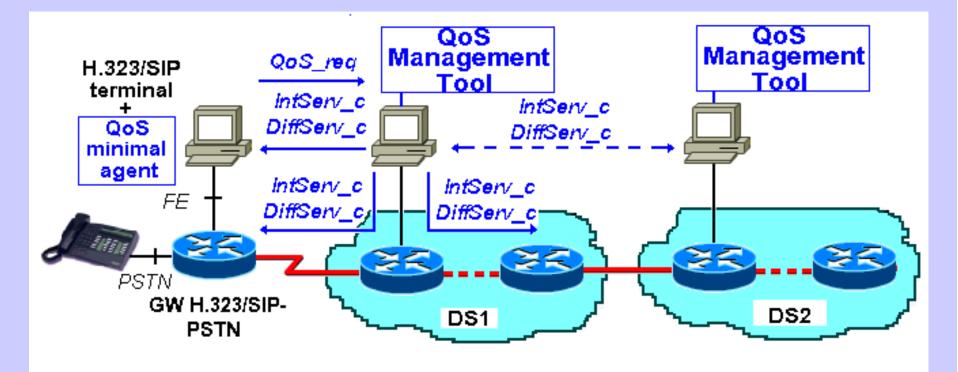
• DLSR (Delay since Last SR)

VoIP Testbed Demonstrator

EXPERIMENTS

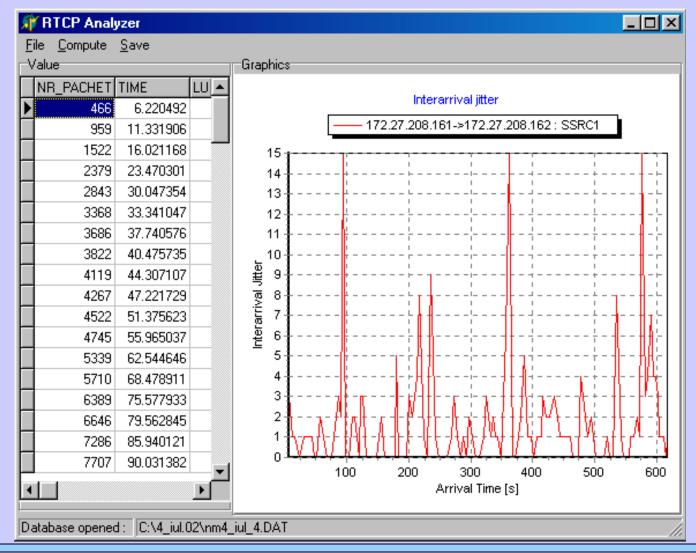
PC-to-Phone:

- Experiment 1: H.323 Cisco GW H.323 PSTN terminal
- Experiment 2: H.323 Linux GW H.323 ISDN terminal
- Experiment 5: SIP User Agent Cisco GW SIP PSTN PC-to-PC:
- Experiment 3: H.323 terminal H.323 terminal
- Experiment 6: SIP User Agent SIP User Agent
- Experiment 7: SIP User Agent Cisco GW SIP -Cisco GW H.323 - H.323 terminal


Phone-to-Phone:

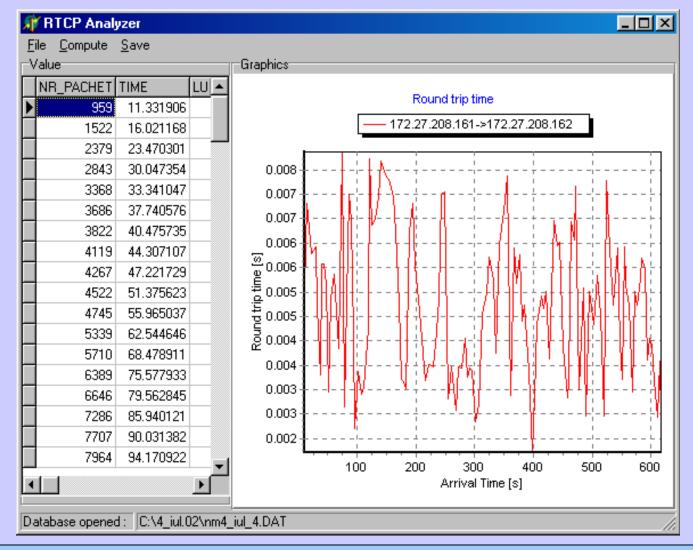
• Experiment 4: PSTN terminal - Cisco GW H.323 -Linux GW H.323 - ISDN terminal

Experimental results


Exp.	Application	Type/	Jitter	Packet	RTT	Int	Diff
DAP.	пррисамон	Operating System	516661	lost	1011	Serv	Serv
1.0	37.13.5		17		37		DELA
1,2,	NetMeeting	H.323 terminal/	x	x	x	x	-
3,7	3.0.1	Windows					
1,2,	OpenPhone	H.323 terminal/	Х	X	X	-	X
3,7		Windows/Linux					
1,4,7	Cisco 1750	H.323-PSTN	X	X	X	X	X
	Gateway	gateway/					
	-	Cisco IOS					
2,4	RedHat 7.2	H.323-ISDN	Х	X	-	-	-
	Gateway	gateway/					
	-	Linux					
2,4	CAPI-based	ISDN terminal/	Х	Х	-	-	-
	application	Windows/Linux					
5, 6,7	eStara	SIP User Agent/	-	-	-	-	-
	SoftPhone	Windows					
5, 6,7	Helmsmann	SIP User Agent/	-	-	-	-	-
		Windows					
5,7	Cisco 1750	SIP-PSTN gateway/	Х	Х	-	Х	X
	Gateway	Cisco IOS					
7	Cisco 1750	PSTN-H.323-	X	X	X	X	X
	Gateway	SIP-PSTN gateway/					
		Cisco IOS					

QoS Management Tool + QoS Minimal Agents

- QoS_req: QoS request for VoIP parameters + QoS scheme
- IntServ_c: IntServ configuration (RSVP)
- **DiffServ_c:** DiffServ configuration (DSCP)


Experiment 3: H.323 <=> H.323 terminal Interarrival jitter (4_iul, fig.11) - without QoS

Experiment 3: H.323 <=> H.323 terminal Packet lost (4_iul, fig.13) - without QoS

/alue				-Graphic	s					
NR_P/	ACHET		<u>LU –</u>			Cumulative n	umber of p	acket lost		
<u> </u>	466		_							
	959	11.331906				- 172.27.208.1	161->172.2	7.208.162 :	SSRC1	
	1522	16.021168		- I						
	2379	23.470301						1		
	2843	30.047354								
	3368	33.341047		ğ		1	1	1		
	3686	37.740576		Cumulative number of packet lost	1	1	1	1		
	3822	40.475735		ack				1		
	4119	44.307107		ъ Т				1		
	4267	47.221729		۔ ق			i	i		
	4522	51.375623		Ë	1	1	1	1	1	
	4745	55.965037		e V			1	1		
	5339	62.544646		ulati						
	5710	68.478911		Ē				i		
	6389	75.577933		о О	I I		1	1	l l	
	6646	79.562845			1	1	1	1		
	7286	85.940121						1		
	7707	90.031382			100		; . 300		500	6
			ÞÉ		.00		Arrival Time		000	

Experiment 3: H.323 <=> H.323 terminal *RTT evaluation (4_iul, fig.15) - without QoS*

CONCLUSIONS

- 1. Qos Management Tool for IntServ and DiffServ
- 2. IntServ Approach is based on capturing, analyzing and generating of RTCP and RSVP packets
- 3. Some SIP User Agent implementations have difficulties to perform QoS measurements (RTCP) or QoS reservations (RSVP).

FURTHER WORK

- 1. Under progress: Phone-to-Phone experiments, H.323 to SIP gateways, QoS mechanisms for LAN-to-WAN interworking
- 2. DiffServ aproach
- 3. Security aspects may request firewalls.
- 4. Potential return of investment (ROI)? See Cisco's financial modeling tool called CNIC (Converged Network Investment Calculator).

REFERENCES

[1] R.G. Cole and J.H. Rosenbluth, "Voice over IP Performance Monitoring", *Computer Communication Review*, ACM-SIGCOMM, Vol.31, No.2, April 2001, pp. 9-24.

[2] F. Kettler et al., "End-to-End Speech Quality Testing in a Complex Transmission Scenario", HEAD acoustics GmbH, 2002.

[3] Johnston, Alan B., SIP: Understanding the Session Initiation Protocol, Artech House, Boston, London, 2001.

[4] SIP WG et al., "SIP: Session Initiation Protocol", draft-ietf-siprfc2543bis-09.txt, IETF, February 2002

[5] V. Fineberg, "A Practical Architecture for Implementing End-to-End QoS in an IP Network", IEEE Communications Magazine, Vol.40, No.1, January 2002, pp.122-130

[6] Black, Uyless, Voice over IP, Second Edition, Prentice Hall, 2002