An on Demand IPv4/IPv6 Multicast Translator

Tudor Mihai BLAGA, V.DOBROTA, F.SZASZ & R.VI DRASCU
Technical University of Cluj-Napoca, Romania
email: tudor.blaga@com.utcluj.ro
AGENDA

- INTRODUCTION
- EXISTING PROPOSALS
 - MTP
 - UNINETT
- TRANSLATOR ARCHITECTURE
- IMPLEMENTATION DETAILS
- CONFIGURATION ISSUES
- TEST ARCHITECTURE
- TRANSLATION DELAY
- CONCLUSION
1. INTRODUCTION
INTRODUCTION

- Context transition to IPv6
 - IPv4/IPv6 nodes
 - only IPv4 nodes
 - only IPv6 nodes

- Mechanism for direct communication between IPv4 and IPv6 nodes

- Unicast - dual-stack servers

- Multicast - source streams to both IPv4 and IPv6 group

- Translation device on the path between the source and destination
2. EXISTING PROPOSALS
EXISTING PROPOSALS

- **Transport Relay Translator (TRT)**
 - “An IPv6-to-IPv4 Transport Relay Translator” RFC 3142 2001
 - only TCP => unicast

- **Stateless IP/ICMP Translation Algorithm (SIIT)**
 - RFC 2765 E. Nordmark 2000
 - IPv4 embedded IPv6 address 0::ffff:0:a.b.c.d => unicast

- **Multicast translation mechanisms:**
 - Multicast Translator Proxying (MTP)
 - UNINETT
 - “An IPv4-IPv6 Multicast Gateway” S. Venass 2003
MTP-MULTICAST TRANSLATOR PROXY

Uses:
- IGMP – Internet Group Management Protocol for IPv4
- MLD – Multicast Listener Discovery for IPv6
- "IPv4-compatible" IPv6 multicast group address
 \[ffxy::IPv4multicast_address/96 \]

Two translation modes:
- gateway
- header conversion router

Disadvantages
- configuration by the domain administrator
- only small-scale networks
UNINETT

Uses:

- IGMP – Internet Group Management Protocol for IPv4
- MLD – Multicast Listener Discovery for IPv6
- "IPv4-compatible" IPv6 multicast group address
 \[ffxy::IPv4multicast_address/96\]
- PIM-SM (Protocol Independent Multicast – Sparse Mode) for IPv6

Translates SAP/SDP (Session Announcement Protocol / Session Description Protocol) messages

Disadvantages:

- IPv6 multicast is translated even if there are no IPv4 receivers for it
3. TRANSLATOR ARCHITECTURE
TRANSLATOR ARCHITECTURE

Uses:
- IGMP – Internet Group Management Protocol for IPv4
- MLD – Multicast Listener Discovery for IPv6
- PIM-SM for both IPv6 and IPv4 domains

Multicast address:
- "IPv4-compatible" IPv6 multicast group address
- arbitrary mappings between IPv4-IPv6 group addresses

SAP/SDP messages are also translated

Translator location:
- on the edge between IPv4/IPv6 domains
- on the same link as the RP (Rendezvous Point)
TRANSLATOR ARCHITECTURE

IPv6 Domain

Multicast IPv6 data

SAP/SDP

IPv4 Domain

Multicast IPv4 data

SAP/SDP

Tudor Mihai BLAGA - An on Demand IPv4/IPv6 Multicast Translator
4. IMPLEMENTATION DETAILS
IMPLEMENTATION DETAILS

Separate modules:

- IPv4 to IPv6 translation
- IPv6 to IPv4 translation
- can be used independently
- bidirectional translation requires the use of both modules
 - on the same node
 - on different nodes => fault tolerance

Implementation under Windows OS using Microsoft Visual Studio 2005

Windows service functionality
IMPLEMENTATION DETAILS

IPv6 translator

```
static class Program

setupserver64

Installer

public partial class service64 : ServiceBase

Thread

public void verifyClient()

Thread

public void receivesendUDP()

Thread

public void receivesendSAP()
```
IMPLEMENTATION DETAILS

IPv4 translator

IPv4 multicast \(\rightarrow\) IPv4 SAP/SDP \(\rightarrow\) Translator

IPv6 multicast \(\rightarrow\) IPv6 SAP/SDP \(\rightarrow\) Translator

IPv6 Client

IPv6 Client \(\rightarrow\) ICMPv6 \(\rightarrow\) Router DR

Manager

Monitor

PIM-SM Message Generator

PIM-SM Join/Prune

PIM

Packet Analyzer
5. CONFIGURATION ISSUES
CONFIGURATION ISSUES

Configuration file *fisierod.conf*

(Configuration file of the service. Do not change the order of the parameters)

IPv6 local address: 2001::1:3
IPv6 multicast address: FF0E::4444
IPv4 local address: 172.10.1.3
IPv4 multicast address: 233.11.11.11
IPv6 Port: 4444
IPv4 Port: 5555
IPv6 SAP address: FF0E::2:7FFE
IPv4 SAP address: 224.2.127.254
SAP Port: 9875
PIM address: 224.0.0.13
PIM Listener Port: 3333
6. TEST ARCHITECTURE
TEST ARCHITECTURE

IPv6 to IPv4 translator testbed
- two IPv4 PIM-SM routers with XORP (eXtensible Open Router Platform)
- VLC Media Player to send multicast content
- Wireshark 0.99.6 for traffic capture

Correct translation checked by comparing original IPv6 packet with IPv4 packet for:
- multicast data
- SAP/SDP messages

Similar testbed for IPv4 to IPv6 translation
TEST ARCHITECTURE

IPv6 Domain

Multicast source

FF0E::4444

2001::1/3/120

IPv6 -> IPv4
TRANSLATOR

IPv4 Domain

RP

172.10.1.1/24

172.10.1.2/24

172.10.1.3/24

172.10.2.1/24

172.10.2.2/24

233.11.11.11

SAP/SDP

Tudor Mihai BLAGA - An on Demand IPv4/IPv6 Multicast Translator
7. TRANSLATION DELAY
Translation delay = the time elapsed from the moment a packet is received by the translator to the moment the packet is sent using a different IP version.

Average values:
- IPv6 to IPv4
 - multicast data 0.598 ms
 - SAP/SDP messages 0.604 ms
- IPv4 to IPv6
 - multicast data 0.987 ms
 - SAP/SDP messages 2.023 ms

Difference between the two cases due to the use of two separate software modules.
8. CONCLUSION
CONCLUSION

- New on demand translation mechanism
 - design
 - implementation
- Translation is started only on demand if IPv4/IPv6 receivers request it
- Windows implementation, previous proposal were implemented under Linux/FreeBSD
- Translation delay was determined
 - slight differences between the two software modules
 - values are negligible