
Buletinul Stiintific al Universitatii "Politehnica" din Timisoara

Seria ELECTRONICA si TELECOMUNICATII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 47(61), Fascicola 1-2, 2002

Developing QoS-aware Applications in LANs
Daniel Zinca1, Virgil Dobrota1, Cristian Mihai Vancea1, Gabriel Lazar1

1 Technical University of Cluj-Napoca, Department of Communications,
 26 Baritiu Street, 3400 Cluj-Napoca, Romania, Tel/Fax:+40-264-197083
 e-mail: {Daniel.Zinca, Virgil.Dobrota, Mihai.Vancea}@com.utcluj.ro, gabi_l@email.ro

Abstract – One of the methods used towards End-to-end
QoS (Quality of Service) is to develop QoS-aware
applications. The purpose of this paper is to investigate
how feasible this solution is with tools available today
and to draw some conclusions from the testbed used.
Keywords: QoS, IntServ, RSVP, DiffServ

I. INTRODUCTION

In addition to data-only applications, LANs are
now facing the convergence of video and voice
applications. There is the need to ensure a minimum
sustenable rate and low delay and delay variation for
certain applications. One possible method for solving
these requirements is overprovisioning. When
overprovisioning is not possible, more efficient
methods can be used, grouped in two main QoS
categories, as defined by IETF:

Integrated Services (or IntServ)
Differentiated Services (or DiffServ).

There are two important issues towards the
process of QoS implementation in today’s LANs.
The first one is to ensure the support from the network
infrastructure (routers running appropriate routing
protocols, other network equipment like Layer 2
switches with IEEE 802.1D Class of Service).
The second is the development of QoS-aware
applications and the need for a specification (QoS
API) enabling the programmers to request specific
parameters from the network. Several QoS API were
developed, mainly as extensions of classical socket
implementations. For the Linux environment, one of
the proposed implementations of a QoS API is
described in [11]. Another QoS API was proposed by
Microsoft as an extension to Windows Sockets [9]
running on Windows 2000 operating software.
Support for QoS exists in MS Windows 98 and
Windows XP but in a simpler implementation. This
paper is focused on describing the steps for the
development of QoS applications using Microsoft’s
implementation.

Generally there are three perspectives of Quality
of Service: the application perspective, the network
perspective and the business perspective[10].

From the application perspective, QoS represents the
ability to serve an application without affecting its
performance or functionality.
From the network perspective, QoS is represented by
several parameters that can be influenced and
measured: bandwidth, delay, jitter and packet loss.
From the business perspective, QoS represents the
resources that can be guaranteed to each user.
This paper focuses on the application perspective,
enabling the application/user to request specific
values of QoS parameters .

The remainder of the paper is organized as
follows:
Section II- Developing a QoS application using
Windows Sockets describes the steps towards creating
a QoS application, Section III- Implementing the QoS
solution, describing the network testbed and
commands implemented on the router and Section IV-
Conclusions presenting observations based on the
results for the tests performed.

II. DEVELOPING A QoS APPLICATION USING
WINDOWS SOCKETS

The Microsoft implementation of QoS in
Windows 2000 has three categories of components:

- Application-Driven QoS Components
- Network-Driven QoS Components
- Policy-Driven QOS Components

The QoS support in MS Windows 2000 is based on
RSVP signalling and Admission Control Service
(ACS) therefore implements IntServ. It also makes
use of the IEEE 802.1D user_priority field. Also a
policy-driven QoS is available. Multimedia
applications make use of PATH respectively RESV
RSVP messages. One example is Microsoft
NetMeeting.

The RSVP SP (Service Provider) is available to
the user by the means of QoS API, mainly used for
creating a flow of data transmitted preferentially
through the network. Therefore the preferred solution
in Microsoft Windows 2000 is IntServ but is possible
to use DiffServ by modifying the Flowspec structure.

In case of using DiffServ, the client application
requests a certain value of DSCP (DiffServ
CodePoint) to be inserted in the IPv4 or IPv6 header.
The edge router performs several tasks after receiving
the packets. These tasks are implemented usually by
the TCB (Traffic Conditioner Block). The first
component of TCB is the Classifier that identifies
packets for assignment to classes. The second
component is the Meter that checks commpliance to
traffic parameters. The third component is the Marker
that writes or rewrites the DSCP value. The
Shaper/Dropper delays or drops packets, according to
the profile, before sending data to the next router.

There are several queuing techiques that provide
different levels of handling the classes of traffic and
also there are several congestion avoidance
algorithms. Among the most used queuing techniques
in routers are: Weighted Fair Queuing (WFQ),
Distributed Weighted Fair Queuing (DWFQ), Class
Based Weighted Fair Queuing (CBWFQ), Low
Latency Queuing (LLQ), Custom Queuing (CQ) and
Priority Queuing (PQ). The most used congestion
avoidance techniques are Random Early Detection
(RED), Weighted Random Early Detection (WRED),
Distributed Weighted Random Early Detection
(DWRED) and Tail Drop.
LLQ provides strict priority queuing for CBWFQ for
real-time traffic, for example RTP packets containing
voice packets belonging to a VoIP conversation.
WRED drops packets based on Precedence or DSCP
fields and usually is implemented in core routers.

Because the QoS requirements of the applications
are different, we choose to implement a Voice over IP
(VoIP) application that has requirements in terms of
Bandwidth, Delay and Jitter.
We implemented a VoIP application that uses RTP
over UDP for transmitting G.711, A-Law coded voice
packets and uses SIP protocol for call-setup[6]. The
majority of software-based VoIP applications are not
using any QoS mechanism. Several applications are
using IntServ (for example, Microsoft NetMeeting).
The applications that are using SIP usually are not
implementing QoS at the moment.

The necessary steps for creating a QoS
application are described next.
First, on the local machine a protocol with QoS
support must be identified, using the
WSAEnumProtocols() socket call, searching for the
flag XP1_QOS_SUPPORTED. Having the identifier
of the service provider, the call to WSASocket() with
the WSA_FLAG_OVERLAPPED flag set will return
the socket that will be used on subsequent calls. The
next function call is bind() that has no specific QoS
options.

Next, a QoS structure must be filled, setting the
ReceivingFlowspec and SendingFlowspec as desired.
One option that can be used for the service type is
SERVICETYPE_GUARANTEED.

The WSAIoctl() call with the SIO_SET_QOS will
cause the RSVP packets to flow between the source
and destination. Send and receive operations are

performed using the classical send() or sendto()
respectively recv() and recvfrom(). Fig. 1 presents the
most important lines of code written in C language
that are performing the operations described above.

LPWSAPROTOCOL_INFO Pro;
dword enumPro = WSAEnumProtocols (NULL,
NULL, &bufSize);
for(int i=0 ;i<enumProt ; Pro++, i++)
{

if((Pro>dwServiceFlags1&XP1_QOS_SUPPO
RTED)&&(Pro->iAddressFamily==AF_INET))
 {
 break;
 }
}
SOCKET QoSSocket = WSASocket(0,
SOCK_DGRAM,0,Pro,0,WSA_FLAG_OVERLAPPED);
QOS VoiceQ;
VoiceQ.SendingFlowspec.ServiceType
= SERVICETYPE_GUARANTEED;
VoiceQ.SendingFlowspec.TokenRate
= 8192;
VoiceQ.SendingFlowspec.TokenBucketSize
= 1000;
VoiceQ.SendingFlowspec.PeakBandwidth
= 65535;
dword ret;
WSAIoctl(QoSSocket,SIO_SET_QOS,&VoiceQ,s
izeof(VoiceQ),NULL,0,&ret, NULL,NULL);

Figure 1. Source code using QoS calls

For tracing the flow of RSVP messages, Ethereal
network monitor tool (http://www.ethereal.com) was
used. The sending UDP client has the IPv4 address
192.168.0.252 and the receiving UDP client has the
IPv4 address 192.168.0.249. Two of the captured
RSVP packets are presented in Fig. 2 and Fig. 3
respectively. In Fig. 2 is presented a RSVP PATH
message, containing the requested parameters. In Fig.
3 is presented a RSVP RESV message containing the
accepted parameters, being sent from the receiver to
the sender along the reverse data path. For closing the
QoS flow, a RSVP PATH TEAR message is sent.

Figure 2. RSVP PATH message captured

Figure 3. RSVP RESV message captured

Of particular interest is to add QoS support to
existing applications. If IntServ is used, the support
can be in a form of a separate module that starts the
RSVP protocol, negotiating the necessary parameters
on the sending and receiving ports of the applications,
generating the RSVP PATH and RESV messages.
Using DiffServ on the client computer is more
difficult because of the need to mark every packet
sent by the selected application. We developed a
solution that consists of installing a driver that
captures all packets that are sent over one network
interface and marks certain packets according to
predefined rules, for example the destination IP
address, source/destination port, DSCP value. We
built a NDIS 5.0 Intermediate Driver, modifying the
NDISSend() function call to replace the DSCP value
at the corresponding offset, depending if the packet is
an IPv4 or IPv6 one. NDIS Intermediate Driver acts
as a Miniport Driver for Transport Protocols and as a
Transport Protocol for Miniport Drivers.
If the packet is IPv4 and the network interface card
belongs to the Ethernet family, the offset for DSCP/
Type of Service is 120 bits from the start of frame if
the card is not using IEEE 802.1p and 152 bits from
the start of frame if the card is using IEEE
802.1p/802.1Q header. If the packet is IPv6, the offset
from the start of frame is 116 bits if the card is not
using IEEE 802.1p and 148 bits if the card is using
IEEE 802.1p. The Version field is the first of the IP
header and is used to apply the DSCP at the proper
offset [5].

III. IMPLEMENTING THE QoS SOLUTION

In addition to develop a QoS application there is
the need to setup the network configuration.
The network testbed is presented in Fig. 4. The router
(CISCO 1750) is used to test its RSVP
interoperability with Microsoft implementation in
Windows 2000. The Layer 2 switch (AT 8224XL)
implements IEEE 802.1D, having CoS (Class of
Service) enabled. The stations connected to the Fast
Ethernet Hub are used for baseline reference (no CoS
provided). In order to test the effect of the QoS
settings, a traffic generator is used. The network
configuration is "router on a stick”. On the Win2000
workstations the QoS VoIP software is running and
on the Cisco 1750 router different configurations were
tested, IntServ as well as DiffServ. The router is a

VoIP gateway and is also used as an terminal in VoIP
calls.

Figure 4. Testbed configuration

For DiffServ configuration of the router with
DSCP=46, EF (Expedited Forwarding), WRED, the
commands are presented in Fig. 5.

R1750(config)#class-map match-all
premium
R1750(config-cmap)# match ip dscp 46
R1750(config-cmap)#exit
R1750(config)#policy-map VOIP
R1750(config-pmap)#class premium
R1750(config-pmap)#priority 500
R1750(config-pmap)#exit
R1750(config)#interface FastEthernet0
R1750(config-if)#random-detect dscp ef
R1750(config-if)#exit
R1750(config)#dial-peer voice 1 voip
R1750(config-dial-peer)#ip qos dscp ef

Figure 5. Router settings for DiffServ configuration

The commands for using IntServ on the router are
presented in Fig. 6 (RSVP protocol, fair queue,
Bandwidth=50 Mbps).

R1750(config)#call rsvp-sync
R1750(config)#interface FastEthernet 0
R1750(config-if)#fair-queue
R1750(config-if)#rsvp bandwidth 50000
50000
R1750(config-if)#exit
R1750(config)#dial-peer voice 770 voip
R1750(config-dial-peer)#destination-
pattern 0264
R1750(config-dial-peer)#session target
ipv4:193.226.6.171
R1750(config-dial-peer)#req-qos
guaranteed-delay
R1750(config-dial-peer)#acc-qos
guaranteed-delay

Figure 6. Router settings for IntServ configuration

In the first set of experiments the workstations had
IPv4 addresses in the same network in order to
determine the traffic where the quality of the voice
call drops below the acceptable level. In the second
set of experiments the workstations had IPv4
addresses in different networks, with the router
linking the two networks in order to investigate the
efficiency of the QoS settings made on the router
configuration.

10/100 HUB
Router with QoS

10/100 Switch,
IEEE 802.1D

Win2000

IV. CONCLUSIONS

A VoIP application was developed using
Microsoft QoS API on Windows 2000 environment.
A testbed was implemented and different QoS settings
on the router were experimented.

The QoS method (IntServ or DiffServ) depends
on the type of application. IntServ is considered to
have scalability problems for large networks. For
VoIP applications, a combination between DiffServ in
the local domain and IntServ (RSVP messages
between the endpoints) offers the best results.

If DiffServ is used for VoIP applications, the best
results are obtained with DSCP set to EF (Expedited
Forwarding), LLQ and WRED.
If IntServ is used, the best combination is with LLQ.

One possible solution in order to avoid user
applications to request QoS that cannot be delivered
by the network is using COPS (Common Open Policy
Service) to obtain network traffic policy information
from a central location in the DiffServ domain.

REFERENCES

[1] S. Blake et al, “An Architecture for Differentiated Services”,
RFC 2475, December 1998
[2] D. Grossman, “New Terminology and Clarifications for
Diffserv”, RFC 3260, April 2002
[3] J. Wroclawski, "The Use of RSVP with IETF Integrated
Services” , RFC 2210, September 1997
[4] S. Shenker et al, "Specification of Guaranteed Quality of
Service”, RFC 2212, September 1997
[5] V. Dobrota, “Retele digitale în Telecomunicatii., Volumul 3.
OSI si TCP/IP”, Editura Mediamira Cluj-Napoca 2002
[6] V. Dobrota, D. Zinca, C. M. Vancea, G. Lazar, “Voice over IP
Solutions for CAMAN: H.323 versus SIP”, The First RoEduNet
International Conference, Cluj-Napoca, April 2002, pp. 37-43
[7] D. Zinca, V. Dobrota, C.M. Vancea, G. Lazar, "A Practical
Evaluation of QoS for Voice over IP”, 12th IEEE Workshop on
Local and Metropolitan Area Networks LANMAN 2002, Stockholm,
Sweden, August 2002, pp.65-69
[8] V. Fineberg “A Practical Architecture for Implementing End-to-
End QoS in an IP Network”, IEEE Communications Magazine,
January 2002, pp. 122-130
[9] http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/qos/qosstart_2cdh.asp
[10] http://www.cisco.com/warp/public/732/Tech/qos/
[11]http://www.ittc.ukans.edu/~pramodh/courses/linux_qos/mainpa
ge.html

