
Buletinul �tiin�ific al Universit��ii "Politehnica" din Timi�oara

Seria ELECTRONIC� �i TELECOMUNICA�II
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 49(63), Fascicola 1-2, 2004

Developing VoIP Applications with QoS Support

Daniel Zinca1, Virgil Dobrota1, Aida-Virginia Gasparel1, Virgil-Ioan Dragomir1

1 Technical University of Cluj-Napoca, Department of Communications, 26 Baritiu Street, 400027 Cluj-Napoca, Romania,

Tel/Fax:+40-264-597083, E-mail: {Daniel.Zinca, Virgil.Dobrota}@com.utcluj.ro

Abstract – This paper describes a VoIP application with
Quality of Service support that was designed and
implemented by the authors. The application runs under
Microsoft Windows 2000/XP/2003 and includes the
modules called Signalling, QoS, Media Transport and
Voice. Whenever the IntServ approach (i.e. RSVP) could
not be involved, an alternative solution based on
DiffServ for IPv4/IPv6-based network applications is
offered. The experiments using the proposed VoIP
application were focused on PC-to-PC trials, as well as
on PC-to-Phone configurations (through a Cisco 1750
router acting as a VoIP Gateway).
Keywords: VoIP, SIP, QoS, RSVP, DiffServ, NDIS
Intermediate Drivers.

I. INTRODUCTION

VoIP (Voice over IP) applications are enabling voice
communication over an IP network, typically over the
Internet. The protocols involved are grouped in three
categories, as in Fig.1: Signalling, Media Transport
and QoS. For the media transport, the RTP (Real
Time Protocol) is usually used, information being
provided by voice codecs. For signalling the trend is
to move towards IETF’s SIP (Session Initiation
Protocol), whilst the recent applications are
investigating also the QoS aspects [1], [2].

Fig.1. Protocols used by VoIP applications [3]

In this paper we present our results in designing and
implementing a VoIP application, based on RTP,
G.711 voice codecs, SIP 2.0 and IntServ solution for
QoS (RSVP). Additionally, we developed a program
that implements DiffServ on the terminal endpoint for
applications that are not QoS-aware. Previously at
ETc’2002 we presented the theoretical aspects, along

with some practical solutions [4]. This time we were
focused on the description of the applications, as well
as on the experimental results. The paper is organized
as follows: Section II describes the components of the
VoIP application and Section III presents the DiffServ
application. Next section is devoted to the
experimental results and finally within Section V we
draw the conclusions.

II. APPLICATION DESCRIPTION

The proposed VoIP application, running under
Microsoft Windows environment, can act either as a
client, i.e. the originator of the VoIP call, either as a
server, i.e. the called part. Written in Microsoft Visual
C++ 6.0, the application has the following modules:

• Voice Encapsulation
• Media Transport
• QoS (RSVP)
• Signalling (SIP)
• User Interface

The Voice Encapsulation Module is based on the
Microsoft DirectX, Direct Sound technology. A
primary streaming buffer is used and the Play() and
Stop() methods are interacting with this buffer. The
Lock() method must be involved before writing data
into the buffer, whilst the Unlock() method is used
before Play() can be called again.

The Media Transport Module consists on a class that
implements the RTP Protocol and supports most of
the payload types, including the Comfort Noise. The
SendRTPPacket() method receives a pointer to the
buffer filled with the voice samples and adds the
header.

The RSVP Module uses Microsoft Windows Sockets
2.0 features to add QoS support to the RTP socket.
This can be done after the two entities are negotiating
the IP addresses and the ports to be used. The
necessary parameters (���������	
 ������
	

�����������	
����
���������) are calculated based
on the codec type. The function calls were described

in details in [4], the correct flow of RSVP messages
being presented in Fig.2.

Fig.2. PATH and RESV RSVP’s messages [5]

The Signalling Module, implementing SIP v2.0 and
SDP protocols, contains a state machine and a
message parser. Fig.3 presents the flow of SIP
messages between two UAs (User Agents).

Fig.3 SIP messages between two User Agents

The last module is the User Interface, used to
determine the user’s requirements for the VoIP
communication, as presented in Fig.4. Both A or �
laws can be selected for G.711 voice coding. Also
QoS parameters can be changed and it can monitor
the operation (number of bytes sent and received, SIP
messages).

Fig. 4 Main interface of the VoIP application

III. SUPPORTING DIFFSERV

A Differentiated Services architecture should "keep
the forwarding path simple, push complexity to the
edges of the network to the extent possible, provide a
service that avoids assumptions about the type of
traffic using it, employ an allocation policy that will
be compatible with both long-term and short-term
provisioning, and make it possible for the dominant
Internet traffic model to remain best-effort" [6]. In the
case of VoIP applications, EF (Expedited Forwarding)
Service should be used because it provides low-loss,
low-latency, low-jitter and assured bandwidth service.
Because of the high importance of this PHB, it is
critical that the forwarding behavior required and
delivered by an EF-compliant node to be specific,
quantifiable and unambiguous [7]. The packets
marked with EF usually encounter short or empty
queues, keeping also packet loss rate at minimum.
Usually, traffic classification is made at the edge
routers of the DiffServ architecture. Our solution
enables traffic marking at the end-user computer,
based on Layer 4 port used by the application.

Fig.5 Positioning of the application within the DiffServ architecture

The following characteristics were implemented:

• support for IPv4 (modification of the ToS/
DSCP field within header) and IPv6
(modification of Traffic Class/ DSCP field)

• re-computation of the IPv4 header’s
checksum

• support for TCP and UDP Transport Layer
protocols and identification of applications
that are using certain ports.

The application was developed using Microsoft
Visual C++ .NET and Windows DDK environment,
running in Windows 2000/XP/2003. The application
has a complex structure, made out of several modules
that interact synchronously (global classes) or
asynchronously (Windows messages, global variables,
global classes).

The actual core of the application performs the
detection of Windows applications that initiate
network communications, the management and the
selection DiffServ-enabled programs, packet capture,
driver communication handling.

However the core is masked by the graphical
interface, which offers a very intuitive control over
these commands, both by mouse and keyboard.

There were five modules: Graphical Module,
Network Applications Detection Module, Driver
Interface Module, Differentiated Services Module and
Packet Capture Module.

The Graphical Module presents to the user all the
details of the currently running applications that have
network connections. There is one window interface
where the applications using network services are
listed and one auxiliary window that offers more
details of the selected process. Fig. 6 presents the
auxiliary window interface showing that the local
administrator can enable DiffServ for a certain
application and can select EF or other Traffic Class
(in our example, AF21 is selected).

Fig.6 Enabling DiffServ and selecting AF21 Traffic Class

within the Graphical Module

The list with all applications that are using TCP or
UDP ports on the local machine is obtained by the
Network Application Detection Module in two steps.
First, by calling two functions present in iphlpapi.dll
(AllocateAndGetTcpExTableFromStack and
AllocateAndGetUdpExTableFromStack), the Process
ID of each application is returned. By using it, two
functions from kernel32.dll (Process32First and
Process32Next) are returning the name of the
corresponding application.

One important module is the Driver Interface Module,
an NDIS 6.0 Intermediate Driver [4] that actually
intercepts all IPv4 or IPv6 outgoing packets of the
hosts. It checks for the proper port value, marks if
appropriate the header and re-computes the checksum
(last for IPv4 only). The Filter Intermediate Driver
was chosen because it is layered between miniport
drivers on the machine and the transport drivers.
When a transport driver sends packets to a virtual
adapter exposed by the intermediate driver, the second

one reads the IP header, modifies if appropriate the
DCSP field and propagates the packet to the
underlying miniport driver. The handler used to
perform all necessary operations to a packet is
MPSendPackets.

The interaction between modules is presented in
Fig.7. Note that 1 is the Packet Modification Module
and 2 is the User-Mode Interface Module, both
belonging to the DiffServ Driver.

Fig.7 Interaction between the modules for the DiffServ Application

The last module is the Packet Capture, used to capture
a selected number of frames for testing purposes. In
the future it can be extended to an application for
complete network monitor. The installation is simple,
using two .inf files: one for the service (protocol) part
of the Intermediate driver (Class = NetService) and
the other for the miniport part of the driver (Class =
Net).

IV. EXPERIMENTAL RESULTS

Two categories of experiments were performed:

• experiments involving the use of the VoIP
application

• experiments involving the use of the
DiffServ Application

The VoIP application was investigated by using two
different testbeds. The first one was a PC-to-PC
configuration. One computer, having the IP address
192.168.1.1 is configured to run as a SIP server
listening on the standard port 5060 and the other
computer, having the IP address 192.168.1.2,
connects as a client. A snapshot of the exchanged
messages is presented in Fig.8a, Fig.8b and Fig.8c.

������
�������������� �!" � �
#�$%� &

����
#�$%� &%'�$
��� �!" � ��(&!&

)��*�
������
+�������������� �!" � �,

���
������
+�������������� �!" � �,

-���.���
(�/"���� �!" � �

-#�0�
�
������

-������.�
���
�����������%�1�

-������.���2�3�
�&

�4&

�4������
(�/"
�&�
��
�$5
��� �!" � �

�4��
�$5
��� �!" � �

*4��1��
6(&&&
��$%7�$
&

Fig.8a. SIP INVITE message sent by the client to the server

#�$%� &
�&&
��
��2

����
#�$%� &%'�$
��� �!" � ��(&!&

)��*�
������
+�������������� �!" � �,

���
������
+�������������� �!" � �,

-���.���
(�/"���� �!" � �

-#�0�
�
������

-������.���2�3�
&

#�$%� &
�&&
89

����
#�$%� &%'�$
��� �!" � ��(&!&

)��*�
������
+�������������� �!" � �,

���
������
+�������������� �!" � �,:��24��65(

-���.���
(�/"���� �!" � �

-�������
+�������������� �!" � �,

-#�0�
�
������

-������.�
���
�����������%�1�

-������.���2�3�
�&

�4&

�4������
�"/!
�&�
��
�$5
��� �!" � �

�4��
�$5
��� �!" � �

*4��1��
6(&&&
��$%7�$
&

Fig.8b. SIP Trying and SIP OK messages sent by the server

7-9
�������������� �!" � �
#�$%� &

����
#�$%� &%'�$
��� �!" � ��(&!&

)��*�
������
+�������������� �!" � �,

���
������
+�������������� �!" � �,:��24��65(

-���.���

(�/"���� �!" � �

-#�0�
�
7-9

Fig.8c. SIP ACK message sent by the client

The RTP flow of packets can start because the ports
on both machines were identified: in this example,
port 35000. The codecs were established too, in this
case being G.711 � law.

Fig. 9 presents a capture from Ethereal showing a
RTP packet that transports 20 ms of speech (a payload
of 160 bytes).

Fig.9 Capture of a RTP packet

IntServ is used to perform QoS, by means of the
Microsoft GQOS. The necessary parameters to be
filled in the QoS structure [2] are computed taking
into account that for about 20 milliseconds of speech,
sampled at 8 kHz with 8 bits per sample, the RTP
payload will be 160 bytes. Fig.10a presents a capture
from a RSVP PATH message and Fig.10b presents a
RSVP RESV message, both captured with Ethereal.
Reservation takes place for the ports 35000 already
established for RTP transfer (TokenBucket=11627,
Maximum packet size=372, Token Bucket size=400,
Peak data rate=17441).

Fig.10a. RSVP PATH message

Fig.10b. RSVP RESV message

The second testbed for the VoIP application is
presented in Fig.11 and involves a CISCO 1750
router, an analogue telephone and the proposed
application running on a PC.

Fig.11. Testbed for the PC-to-Phone configuration

The developed application worked with minor
modifications. For the RTP transmission, we used
fixed-size packets. In the case of the RTP reception,
we observed that the router detects the silence
intervals and in order to preserve the bandwidth it
sends a RTP “Comfort Noise” (Payload Type=19).
Version 0.10.3 of the Ethereal application correctly
detects this type of packet (selecting Statistics/ RTP/
Stream Analysis) as presented in Fig.12. There are
two solutions to this situation. The first solution is to
disable VAD (Voice Activity Detection) at the router
side using the following command:

R1750(config-dial-peer)# no vad

Voice port 0/0

fast ethernet 0

CISCO 1750
172.27.208.100

dial peer 401
POTS 064

The other solution is to detect within the VoIP
application the “Comfort Noise” RTP packet and stop
playing the buffer until a new valid RTP packet
appears.

Fig.12. Detection of the Comfort Noise type of RTP packets

Fig.13. The testbed used for the DiffServ application

���� �����	�
��
� ���
��� ��
������
�� ��� 	�	���
�	�
��
����������
���
��
��	�������	�������	����������������
��
������
�
�������	����
����������������
������� ���

�����!��"#����
����������$��������%&����
�����
�����
$
�����'(����	���

)�����	������%&*���
�����
���)

)
�
�������������������	���� ����
���'���'�������		�����
���
��������������
��'���+�
����
�

Fig.14. Marking ICMPv6 traffic as EF

Other DiffServ experiments were performed with
applications running over IPv4.

V. CONCLUSIONS AND FUTURE WORK

In this paper we described two applications. The first
one was a VoIP application using SIP and RSVP. The
second one was a DiffServ program that enables QoS
even for QoS-unaware applications. We tested the
interoperability of these applications with existing
implementations, mainly with those existent within
the Cisco routers. For future work we intend to add
security to the VoIP application and to add IEEE
802.1p/Q to the NDIS Driver.

REFERENCES

[1] J. Rosenberg et al, “SIP: Session Initiation Protocol”, RFC3261,
June 2002.
[2] J. Handley, V. Jacobson, “SDP: Session Description Protocol”,
RFC 2327, April 1998.
[3] D. Zinca, V. Dobrota, C.M. Vancea, G. Lazar – A Practical
Evaluation of QoS for Voice over IP. 12th IEEE Workshop on Local
and Metropolitan Area Networks, LANMAN 2002, 11-14 August
2002, Stockholm-Kista, Sweden, pp. 65-69.
[4] D. Zinca, V. Dobrota, C.M. Vancea, G. Lazar, “Developing
QoS-aware Applications in LANs”, Buletinul Universitatii
“Politehnica”, Seria Electrotehnica, Electronica si
Telecomunicatii, Tom 47 (61), 2002, Fascicola 1-2, 2002, pp. 150-
153.
[5] J. Wroclawski, "The Use of RSVP with IETF Integrated
Services” , RFC 2210, September 1997.
[6] S. Shenker et al, "Specification of Guaranteed Quality of
Service”, RFC 2212, September 1997.
[7] H. Schulzrinne et al, “RTP: A Transport Protocol for Real-Time
Applications”, RFC 1889, January 1996.
[8] A. Takahashi, H. Yoshino, “Perceptual QoS Assessment
Technologies for VoIP”, IEEE Communications Magazine, July
2004, pp. 28-34.
[9] K. Nichols, V. Jacobson, L. Zhang, “A Two-bit Differentiated
Services Architecture for the Internet”, RFC 2638, July 1999.
[10] A. Charny et al, Supplemental information for the New
Definition of the EF PHB (Expedited Forwarding Per-Hop
behaviour), RFC3247, March 2002.
[11] S. Blake et al, “An Architecture for Differentiated Services”,
RFC 2475, December 1998.
[12] D. Grossman, “New Terminology and Clarifications for
DiffServ”, RFC 3260, April 2002.
[13] K. Nichols et al, “Definition of the Differentiated Service Field
(DS Field) in the IPv4 and IPv6 headers”, RFC 2474, December
1998.
[14] ***, Microsoft Developer Network Library for Visual Studio
.NET 2003
[15] http://www.ndis.com
[16] http://www.ethereal.com

���������	
�
�
�
������

�
���������������
������

���

����������

�����

����������

Local Gateway

Internet

