

PERFORMANCE EVALUATION OF
LAYER 4 SWITCHING IN IPv6 VERSUS IPv4

Daniel ZINCA, Virgil DOBROTA, Cristian Mihai VANCEA

Technical University of Cluj-Napoca, Department of Communications,
26 Baritiu Street, 3400 Cluj-Napoca, Romania, Tel/Fax: +40-64-197083

e-mail: {Daniel.Zinca, Virgil.Dobrota, Mihai.Vancea}@com.utcluj.ro

Abstract: This paper is focused on a Layer 4 switching experiments of IPv6 over Fast Ethernet, running under Windows
2000 Professional. Prior to our studies on IPv4 over ATM with TCP relaying, firstly introduced at IEEE LANMAN’99, we
are trying to evaluate the performances at the interface between the applications and the nonblocking stream-oriented
sockets in TCP/IP. The first major objective is to get consistent results for a IPv6 versus IPv4 debate, even the
implementation phase of this new version of the Internet Protocol is under progress. The second objective is to propose a
method for measuring the round-trip-time RTT at the Application Layer. It will provide 1 nanosecond - accuracy, that is
requested by the new technologies such as Gigabit Ethernet.

Keywords: burst traffic, Fast-Ethernet, Gigabit Ethernet, IPv4, IPv6, Layer 4 switching, NTP, SNTP, TCP/IP

I. INTRODUCTION
To help the industry-wide conversion from IP version 4
(IPv4) to IP version 6 (IPv6), Microsoft has announced a
four-phase execution plan. The current phase (delivery of
a preview IPv6 stack for applications conversion) will be
followed by the delivery of a pre-production version for
laboratory testing and, finally, the production release to
be deployed [9].
 All the experiments, concerning both IPv6 and IPv4
presented herein, involved Fast Ethernet technology and
Windows 2000 Professional. An updated version of the
software tool from [2],[3] offered the facilities to evaluate
the sending time, the receiving time and the elapsed time
at the interface between the application and the non-
blocking stream-oriented socket in TCP/IP. Obviously
each Layer 3 protocol version requested its own TCP
implementation on top of it. Some of the preliminary
results published herein were previously presented in [1].
 Although the types of models applied have a great
influence on the overall performances, it is not the subject
of this paper to present the reasons to choose them. The
reader is kindly advised to read [3],[4] for more details.
 To understand the experiments carried out by
comparing IPv6 implementation to currently running
IPv4, under the same physical and data link testing
conditions, a short note is necessary.
 According to the approved commentaries regarding the
OSI Reference Model, transport relays could not
guarantee the transport service, except under very
constrained circumstances [8]. Therefore it was generally
agreed that the Layer 4 switching is prohibited. Despite of
this statement, the results presented in [2],[3]
demonstrated that the TCP/IP environment should be

exploited by involving scheduling and relaying
mechanisms even at the transport layer.
 Recently, Cisco Systems Inc. has introduced its own
concept of Layer 4 switching, rather different from that
one we are using in this paper. They have implemented a
Server Load Balancing (SLB) over Layer 3 switching for
their Fast-Ethernet/Gigabit-Ethernet Catalyst 4840G.
Cisco’s Layer 4 switch is a re-distributor of the requests
and hits from clients evenly among all the server in the
server farm, in order to achieve a balanced load for each
server. It was mainly designed for increasing Web traffic
and access reliability of multiple Web servers, offering
the appearance of one virtual server, with one IP address
and a single Universal Resource Locator (URL) for an
entire server farm [10].
 In this paper, we are trying to obtain better results in
TCP/IP for burst traffic by involving departure schedules
for TPDUs (Transport Protocol Data Units). This means
that the applications should not send the information
directly to the sockets without taking into account the
non-linear behaviour of the TCP/IP entities within a
broadband network. On the other hand, at the server site,
a pure Layer 4 switching will be performed, by
redistributing the TPDU from the incoming socket to the
outgoing socket, as faster as possible, without any
additional scheduling or checking. As soon as the
optimum model, i.e. a frame departure schedule, will be
determined for a given application, under a given
network, it is for sure that a Layer 4 switching schedule
(or at least a QoS mechanism) has to be added at the
server site, too.

II. TESTING CONFIGURATION AND FILES

Due to the fact that Microsoft’s IPv6 implementation is
based on Windows 2000 technology only and the
available ATM cards drivers (VIRATAlink) were written
for Windows95/98/NT only, we were forced to perform
the experiments on Fast Ethernet, instead of ATM.
 Let us suppose again, as in [3], the most favorable
networking conditions, i.e. there will be no other
workstations connected, except those involved in trial.
The entire bandwidth is at our disposal, without
unexpected collisions or congestion. Therefore the results
presented herein could be considered as the maximum we
can get from the network.
 The testing configuration in Figure 1 included three
workstations connected to the 100 Mbps ports of HP
ProCurve hub. The most powerful station within the
tested network was based on Intel’s Pentium II/400 MHz,
running the server and acting as a Layer 4 switch. The
client software was installed on two different
workstations (with Celeron 366 MHz and Pentium 233
MHz MMX). Note that by the time this experiments were
done, more powerful machines would have been
available, but it was decided to keep the same testing
configuration as in [2],[3] for IPv4 over ATM. The
Testfile1 has 7990 bytes, whilst Testfile 2 has 240,118
bytes.
 The evaluation’s accuracy of the proposed software
tool (client and server) is given by the clock period of the
CPU (2.5 ns. at Pentium II/400 MHz). The measurement
is also dependent on RDTSC (Read Time Stamp Counter)
and other instructions included in the loop. Obviously the
processes are guided by the TCP/IP entity, as we rely on
the Windows Sockets select function to determine the
status of the sockets and to perform synchronous I/O [3].

Figure 1. The testing configuration

Figure 2. Screen capture of the client’s GUI used as
Testfile2 (240,118 bytes)

III. PROTOCOL DESIGN FOR MEASURING

ROUND-TRIP-TIME IN APPLICATION LAYER
The time synchronization protocols currently in use for
TCP/IP are NTP (Network Time Protocol) and its
simplified version, SNTP (Simple Network Time
Protocol). They involve two synchronization processes.
The first is the synchronization with a reference time
device (cesium clock, GPS receiver, etc.), offering a
theoretical accuracy of less than 1 nanosecond. The
second process is the synchronization between the
external reference and the computer’s internal clock
(using standard operating system calls). Unfortunately the
existing implementations are providing about 1
millisecond accuracy only, determining the overall value.
Note that NTP is using absolute time synchronization
between servers and clients in order to distribute time
across the Internet [5]. In many other applications, we
need rather a relative synchronization between the hosts.
Therefore in this paragraph we are proposing two
methods for improving the overall accuracy used for the
timestamps. The first method is devoted to SNTP and the
second one is an original proposal of a new protocol.
Both of them are based on Intel’s microprocessors family
and RDTSC instruction [6]. The number of clock periods
since the computer was powered on is the resulting 64-bit
timestamp.
 The first method calls the RDTSC instruction, the
timestamp being multiplied by the microprocessor’s
clock. The least significant 32 bits represent subdivisions
of the current second, to be used by SNTP.
 The second method envisaged describes a new protocol
for measuring the RTT (Round Trip Time) at the
Application Layer. As in [7], no corrections are
performed against the local clocks. The timestamps are
used to synchronize the sending moments according to
the packet delays on the network at that time. The main
requirements of this protocol are the following:

 accuracy of hundreds of picosecond up to 1
nanosecond, depending on the microprocessor’s
clock

 minimum packet size of the packet will
accommodate several technologies, including ATM

 IPv4/IPv6, TCP/UDP support
 multicast support

 socket-based implementation (Microsoft Windows/
Linux/UNIX operating systems)

 minimum time between timestamp reading
operations and network operations

 minimum time to fill-in the fields

 Byte 0 Bytes 1 … 8 Bytes 9 and 10 Bytes 11 … 18 Bytes 19 and 20 Bytes 21 … 24 (Bytes 25 … 1023)

Type

 (8 bits)

Sending
Timestamp

(64 bits)

Sending
Sequence
Number

(16 bits)

Receiving
Timestamp

(64 bits)

Receiving
Sequence
Number

(16 bits)

Sending
Processor’s
Frequency

(32 bits)

PAD
(optional)

(0 or 7992 bits)

Figure 3. Application Protocol Data Unit (APDU) determining RTT at Layer 7

 This protocol is carried out on the signalling socket,
involving an exchange of APDUs, with the following
significance of the fields presented in Figure 3:

 Type (8 bits) is similar to the field Stratum used by

NTP. It also specifies a multicast (MSB=1) or unicast
(MSB=0) transmission

 Sending Timestamp (64 bits) represents the
timestamp before starting the sending of the packet

(as its _12 in Figure 4) to the corresponding client

 Sending Sequence Number (SSN) (16 bits) represents
a sequence number used by the transmitter The UDP-
based applications use this value, whilst the TCP-
based ones may ignore it.

 Receiving Timestamp (64 bits) represents the
timestamp before starting the receiving of the last

packet (as fts _12 in Figure 4) from the

corresponding client
 Receiving Sequence Number (RSN) (16 bits)

represents the sequence number of the last received
packet from the corresponding client. The UDP-
based applications use this value, whilst the TCP-
based ones may ignore it.

 Sending Processor’s Frequency (32 bits) is given in
MHz.

 PAD (0 or 7992 bits) represents additional 7992 bits
of 00h for Ethernet frame-based technologies
because the 1024-byte APDU gives a more accurate
evaluation of the overall RTT throughput. The 25-
byte APDU (0 bits of PAD) is recommended for
technologies such as ATM.

 In multicast transmissions, the server sends only the
first three fields, because its microprocessor’s frequency
is known from previous messages.
 There are two memory tables for each host that uses
this protocol. The first table is dedicated to the sent

messages and stores the timestamps: its _12 (initial

moment of the sending from client 1 to client 2), with

associated 12SSN ; together with the returned value

fts _12 (the timestamp when the message was actually

received by the client 2), with associated 12RSN . The

second table is dedicated to the received messages and

stores the timestamps: its _21 (initial moment of the

sending from client 2 to client 1) with associated 21SSN ,

together with the returned value fts _21 (the timestamp

when the message was actually received by client 1), with

associated 21RSN . Note that the microprocessor’s

frequency is stored for each host (1CPUf for Client 1,

2CPUf for Client 2).

 Client 1 Client 2

 its _12 12SN

 fts _12

 21SN its _21

 fts _21

Figure 4. Four timestamps for measuring the RTT

 at the Application Layer

2

_12_21

1

_12_21

CPU

fi

CPU

if

f

tt

f

tt
RTT





 (1)

 On the data socket the elapsed time at the client could
be evaluated only if the sending and receiving entities are
on the same machine.

Elapsed time

 Sending time
 Receiving time

 is ir fs fr

Figure 5. Four time stamps for measuring the sending,
receiving and elapsed times at the client site

 At the server site, the switching time is defined as the
interval since the reception of the first TPDU started and
the transmission of the last TPDU ended.

Elapsed time

 Receiving time
 Sending time

 ir is fr fs

Figure 6. Four time stamps for measuring the sending,
receiving and elapsed times at the server site

IV. EXPERIMENTAL RESULTS

The first experiments are dedicated to the influence of the
application’s buffer size (see Table1 and Table2). All
results were validated without employing any protocol
described in Section III.

Applica-
tion’s

buffer size

[Bytes]

Average
switching

time
(IPv4)
[ s]

Average
switching

speed
(IPv4)
[Mbps]

Average
receiving

time
(IPv4)
[ s]

8192 111 575.84 217
5000 266 240.30 721
3000 333 191.95 1074
1500 617 103.59 2458
750 937 68.21 4945
375 1738 36.77 9502

Table 1. Testfile1, point-to-point, Client 1->server ->

Client 1, without model. The average sending time/
throughput was 165  s/387.39 Mbps for IPv4.

 The results for the application’s buffer size of 8192
bytes are very important for evaluating the highest Layer
4 switching speed of about 575 Mbps (IPv4), respectively
1083 Mbps (IPv6). In general, supposing a theoretical
transmission throughput of 100 Mbps (Fast Ethernet), it

seems that the speed advantage is greater than 1 for a
buffer size of at least 1500 bytes.
 Due to the protocols stack the actual sending or
receiving throughput at the lower layers cannot reach the
upper bound of 100 Mbps.

Applica-

tion’s
buffer size

[Bytes]

Average
switching

time
(IPv6)
[ s]

Average
switching

speed
(IPv6)
[Mbps]

Average
receiving

time
(IPv6)
[ s]

8192 59 1083.38 102
5000 317 201.64 565
3000 486 131.52 1371
750 1249 51.17 5498
375 2601 24.57 10843

Table 2. Testfile1, point-to-point, Client 1->server->
Client 1, without model. The average sending time/

throughput was 264  s/242.12 Mbps for IPv6.

Figure 7. Switching time for application’s buffer size of
750 bytes, Testfile1, point-to-point, Client 1->server ->

Client 1, without model

 Apparently, there is no advantage of using IPv6 instead
of IPv4, as shown in Figure 7. This is a preliminary
conclusion because several additional experiments should
be performed. Let us involve now departure schedules
(see Figure 8).
 Note that there are two entities for each ON+OFF
period. The first entity represents the number of bytes
during the burst (for example 15582 bytes in Model 1,
209 bytes in Model 2, 62487 bytes in Model 100). The
second entity is the total duration of the ON+OFF period
(for example 0.005947 seconds in Model 1, 0.000016
seconds in Model 2, 0.005995 seconds in Model 100).
Actually Model 1 was designed for 25.6 ATM, as in

[2],[3], but it seems that it is also suitable for Fast
Ethernet.

Figure 8. Model 1, Model 2, Model 100 for burst traffic

Figure 9. Model 2 for IPv6, Client 1 ->server-> Client 1,
testfile1. The sending TCP entity cannot follow Model 2

Interval

Measured
time [ s]

Throughput
[Mbps]

fs - is

SENDING

18543…18877
(CLIENT 1)

101.76..103.59

SWITCHING

74493…74643
(SERVER)

25.73…25.78

fr - ir

RECEIVING

82671…84942
(CLIENT 2)

22.61…23.23

Table 3. Model 100 for IPv4, point-to-point, Client 1 ->
server-> Client 2, Testfile2, application’s buffer size of

5000 bytes. The planned sending time/ throughput were
19209 s/100 Mbps without model and for Model2,

respectively 22202 s/86.52 Mbps for Model100

 Model 100 is the 100 Mbps-updated version of Model
1, but it is rather difficult to be accurately followed by the
sending TCP entity.
 Due to implementation difficulties, the experiments
involving NTP, SNTP or the new proposed protocol are
under progress and no preliminary results are considered
to be included in this paper. However, we can estimate
that more sophisticated trials still have to be performed.
The APDU is encapsulated in a TCP segment, then in an
IPv6/IPv4 datagram, then in a Fast-Ethernet frame.
 According to [4],[9], we have to evaluate the following
delays: access delay (the time requested to access the
socket); packetization delay (the time needed to
encapsulate the socket’s data into a Layer 2 frame);
transmission delay (to send the frame between Layer 2
and Layer 1, i.e. 13.6 microseconds in IPv4, respectively
16.8 microseconds in IPv6, at 100 Mbps); propagation
delay (depending on the distance and on the type of
media between the source and the destination); Layer 4
switching delay (at the server, see Tables 1-3); queueing
delay and reassembly delay.
 Whenever the RTT measured is different from the
current value, the transfer rate for the sending model has
to be proportionally adjusted. For example, let us
suppose that the current 1024-byte RTT is 1437
microseconds. This means an average throughput of about
11.4 Mbps. The departure schedule will involve a 11.4
Mbps-based model (instead of a theoretical 100 Mbps-
based model, such as Model 100). If the measured RTT is
changing to 466 microseconds, the departures will follow
a 35.15 Mbps-based model.

V. CONCLUSIONS
1. The preliminary comparison between IPv6 and IPv4

proved that there are no relevant permanent
differences concerning the throughputs and the Layer
4 switching performances. This observation is valid
for both Microsoft’s Windows 2000 implementation
(as from this paper) and Linux-based solution (as
from our previous work).

2. It is more difficult to choose a departure schedule for
Fast Ethernet comparing to equivalent conditions in
ATM.

3. The Layer 4 switching performances could be
improved by selecting the proper model at both
sending client and the server.

4. Many users have an unrealistic expectation about the
overall throughput, calculated within the interval
since the first bit left the sender until the last bit reach
the destination. The highest value, calculated at the
application/Windows Sockets interface, is about 31-
32 Mbps for 100 Mbps Fast Ethernet (for at least 366
MHz CPU's frequency).

5. Choosing a proper model for departure can generate
better results (i.e. overall throughput, congestion
avoidance etc.) than the expected ones obtained by

involving the classical one-block sending mechanism
through sockets.

6. The involvement of the new protocol for measuring
RTT at Layer 7 will limit the applicability of those
models that are not supported by the network.

7. A dynamic adjustment of the transmission or
switching schedule is becoming possible.

VI. FUTURE WORK

The next step is to determine the optimal model,
depending on the specific application (burst traffic, voice,
variable video streams etc). The overall performance of
the Layer 4 switching is expected to be improved by
running it on top of Layer 2/Layer 3 switches on the same
machine. It is also for future work to evaluate the
performances by involving time synchronization
protocols (including the availability for other
microprocessors family or other environments).
Obviously it is for further study the optimum interval for
RTT updating and the mechanism of switching from one
sending model to another.

REFERENCES

[1] V. Dobrota, D.Zinca, C.M. Vancea, "Layer 4 Switching
Experiments with IPv6 versus IPv4”, Proceedings of the
International Conference Communications’2000, Bucharest,
Romania, December 7-9, 2000, pp.300-303
[2] V. Dobrota, D.Zinca, C.M. Vancea, A. Vlaicu - "Layer 4
Switching Experiments for Burst Traffic and Video Sources in
ATM", Digest of Papers. The 10th IEEE Workshop on
LANMAN'99, Sydney, Australia, 21-24 November 1999, pp. 66-
69.
[3] V. Dobrota, D. Zinca, C.M. Vancea, A. Vlaicu, “Layer 4
Switching Experiments in a TCP/IP Environment for the ATM
Sources”, ACTA Tehnica Napocensis, ISSN 1221-6542, Vol.40,
No.1, 2000, pp. 13-18.
[4] V. Dobrota, Retele digitale in telecomunicatii. Volumul 2: B-
ISDN cu ATM, Sistemul de semnalizare cu canal comun SS7,
Editura Mediamira, Cluj-Napoca 1998.
[5] D.L. Mills, "Network Time Protocol (Version 3)
Specification, Implementation and Analysis ", RFC 1305,
University of Delaware, March 1992.
[6] D. Zinca, V. Dobrota, M. Cosma, A. Vlaicu, “Software
Traffic Analyzer and Frame Generator for IEEE 802.3u”, 8th
IEEE Workshop on Local and Metropolitan Area Networks
LANMAN’96, Berlin/Potsdam, Germany, August 25-28, 1996,
pp. 243-248.
[7] J.M. Berthaud, “Time Synchronization over Networks using
Convex Closures”, IEEE/ACM Transactions on Networking,
Volume 8, No. 2, April 2000, pp. 265-277.
[8] J. Day, “The (Un) Revised OSI Reference Model”,
ACM/SIGCOMM Computer Communication Review, vol.25,
No.5, October 1995, pp.39-55.
[9] F. Tobagi, I. Dalgic, “Performance Evaluation of 10Base-T
and 100Base-T Ethernets Carrying Multimedia Traffic”, IEEE
Journal on Selected Areas in Communications, Vol.14, No.7,
September 1996, pp. 1436-1454.
[10] ***, http://msdn.microsoft.com/downloads/sdks/platform/
tcpip6.asp
[11] ***, http://www.cisco.com/univercd/cc/td/doc/product/
 l4sw/index.htm

