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Abstract: This paper is focused on a Layer 4 switching experiments of IPv6 over Fast Ethernet, running under Windows 
2000 Professional. Prior to our studies on IPv4 over ATM with TCP relaying, firstly introduced at IEEE LANMAN’99, we 
are trying to evaluate the performances at the interface between the applications and the nonblocking stream-oriented 
sockets in TCP/IP. The first major objective is to get consistent results for a IPv6 versus IPv4 debate, even the 
implementation phase of this new version of the Internet Protocol is under progress. The second objective is to propose a 
method for measuring the round-trip-time RTT at the Application Layer. It will provide 1 nanosecond - accuracy, that is 
requested by the new technologies such as Gigabit Ethernet. 
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I. INTRODUCTION 
To help the industry-wide conversion from IP version 4 
(IPv4) to IP version 6 (IPv6), Microsoft has announced a 
four-phase execution plan. The current phase (delivery of 
a preview IPv6 stack for applications conversion) will be 
followed by the delivery of a pre-production version for 
laboratory testing and, finally, the production release to 
be deployed [9].  
    All the experiments, concerning both IPv6 and IPv4 
presented herein, involved Fast Ethernet technology and 
Windows 2000 Professional. An updated version of the 
software tool from [2],[3] offered the facilities to evaluate 
the sending time, the receiving time and the elapsed time 
at the interface between the application and the non-
blocking stream-oriented socket in TCP/IP. Obviously 
each Layer 3 protocol version requested its own TCP 
implementation on top of it. Some of the preliminary 
results published herein were previously presented in [1].     
    Although the types of models applied have a great 
influence on the overall performances, it is not the subject 
of this paper to present the reasons to choose them. The 
reader is kindly advised to read [3],[4] for more details. 
    To understand the experiments carried out by 
comparing IPv6 implementation to currently running 
IPv4, under the same physical and data link testing 
conditions, a short note is necessary.       
    According to the approved commentaries regarding the 
OSI Reference Model, transport relays could not 
guarantee the transport service, except under very 
constrained circumstances [8]. Therefore it was generally 
agreed that the Layer 4 switching is prohibited. Despite of 
this statement, the results presented in [2],[3] 
demonstrated that the TCP/IP environment should be 

exploited by involving scheduling and relaying 
mechanisms even at the transport layer.  
    Recently, Cisco Systems Inc. has introduced its own 
concept of Layer 4 switching, rather different from that 
one we are using in this paper. They have implemented a 
Server Load Balancing (SLB) over Layer 3 switching for 
their Fast-Ethernet/Gigabit-Ethernet Catalyst 4840G. 
Cisco’s Layer 4 switch is a re-distributor of the requests 
and hits from clients evenly among all the server in the 
server farm, in order to achieve a balanced load for each 
server. It was mainly designed for increasing Web traffic 
and access reliability of multiple Web servers, offering 
the appearance of one virtual server, with one IP address 
and a single Universal Resource Locator (URL) for an 
entire server farm [10].        
    In this paper, we are trying to obtain better results in 
TCP/IP for burst traffic by involving departure schedules 
for TPDUs (Transport Protocol Data Units). This means 
that the applications should not send the information 
directly to the sockets without taking into account the 
non-linear behaviour of the TCP/IP entities within a 
broadband network. On the other hand, at the server site, 
a pure Layer 4 switching will be performed, by 
redistributing the TPDU from the incoming socket to the 
outgoing socket, as faster as possible, without any 
additional scheduling or checking. As soon as the 
optimum model, i.e. a frame departure schedule, will be 
determined for a given application, under a given 
network, it is for sure that a Layer 4 switching schedule 
(or at least a QoS mechanism) has to be added at the 
server site, too.      
 

 



 
II. TESTING CONFIGURATION AND FILES 

Due to the fact that Microsoft’s IPv6 implementation is 
based on Windows 2000 technology only and the 
available ATM cards drivers (VIRATAlink) were written 
for Windows95/98/NT only, we were forced to perform 
the experiments on Fast Ethernet, instead of ATM.  
    Let us suppose again, as in [3], the most favorable 
networking conditions, i.e. there will be no other 
workstations connected, except those involved in trial. 
The entire bandwidth is at our disposal, without 
unexpected collisions or congestion. Therefore the results 
presented herein could be considered as the maximum we 
can get from the network.    
    The testing configuration in Figure 1 included three 
workstations connected to the 100 Mbps ports of HP 
ProCurve hub. The most powerful station within the 
tested network was based on Intel’s Pentium II/400 MHz, 
running the server and acting as a Layer 4 switch. The 
client software was installed on two different 
workstations (with Celeron 366 MHz and Pentium 233 
MHz MMX). Note that by the time this experiments were 
done, more powerful machines would have been 
available, but it was decided to keep the same testing 
configuration as in [2],[3] for IPv4 over ATM.  The 
Testfile1 has 7990 bytes, whilst Testfile 2 has 240,118 
bytes.  
    The evaluation’s accuracy of the proposed software 
tool (client and server) is given by the clock period of the 
CPU (2.5 ns. at Pentium II/400 MHz). The measurement 
is also dependent on RDTSC (Read Time Stamp Counter) 
and other instructions included in the loop. Obviously the 
processes are guided by the TCP/IP entity, as we rely on 
the Windows Sockets select function to determine the 
status of the sockets and to perform synchronous I/O [3]. 
 
 

 
 

Figure 1. The testing configuration 

 
 

Figure 2. Screen capture of the client’s GUI used as 
Testfile2 (240,118 bytes) 

       
III.  PROTOCOL DESIGN FOR MEASURING 

ROUND-TRIP-TIME IN APPLICATION LAYER 
The time synchronization protocols currently in use for 
TCP/IP are NTP (Network Time Protocol) and its 
simplified version, SNTP (Simple Network Time 
Protocol). They involve two synchronization processes.  
The first is the synchronization with a reference time 
device (cesium clock, GPS receiver, etc.), offering a 
theoretical accuracy of less than 1 nanosecond. The 
second process is the synchronization between the 
external reference and the computer’s internal clock 
(using standard operating system calls). Unfortunately the 
existing implementations are providing about 1 
millisecond accuracy only, determining the overall value. 
Note that NTP is using absolute time synchronization 
between servers and clients in order to distribute time 
across the Internet [5]. In many other applications, we 
need rather a relative synchronization between the hosts. 
Therefore in this paragraph we are proposing two 
methods for improving the overall accuracy used for the 
timestamps. The first method is devoted to SNTP and the 
second one is an original proposal of a new protocol. 
Both of them are based on Intel’s microprocessors family 
and RDTSC instruction [6]. The number of clock periods 
since the computer was powered on is the resulting 64-bit 
timestamp. 
    The first method calls the RDTSC instruction, the 
timestamp being multiplied by the microprocessor’s 
clock. The least significant 32 bits represent subdivisions 
of the current second, to be used by SNTP. 
    The second method envisaged describes a new protocol 
for measuring the RTT (Round Trip Time) at the 
Application Layer. As in [7], no corrections are 
performed against the local clocks. The timestamps are 
used to synchronize the sending moments according to 
the packet delays on the network at that time. The main 
requirements of this protocol are the following: 
 



 accuracy of hundreds of picosecond up to 1 
nanosecond, depending on the microprocessor’s 
clock 

 minimum packet size of the packet will 
accommodate several technologies, including ATM 

 IPv4/IPv6, TCP/UDP support 
 multicast support 

 socket-based implementation (Microsoft Windows/ 
Linux/UNIX operating systems) 

 minimum time between timestamp reading 
operations and network operations 

 minimum time to fill-in the fields 
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Figure 3. Application Protocol Data Unit (APDU) determining RTT at Layer 7 
 
    This protocol is carried out on the signalling socket, 
involving an exchange of APDUs, with the following 
significance of the fields presented in Figure 3: 
 
 Type (8 bits) is similar to the field Stratum used by 

NTP. It also specifies a multicast (MSB=1) or unicast 
(MSB=0) transmission 

 Sending Timestamp (64 bits) represents the 
timestamp before starting the sending of the packet 

(as its _12 in Figure 4) to the corresponding client 

 Sending Sequence Number (SSN) (16 bits) represents 
a sequence number used by the transmitter The UDP-
based applications use this value, whilst the TCP-
based ones may ignore it. 

 Receiving Timestamp (64 bits) represents the 
timestamp before starting the receiving of the last 

packet (as fts _12 in Figure 4) from the 

corresponding client 
 Receiving Sequence Number (RSN) (16 bits) 

represents the sequence number of the last received 
packet from the corresponding client. The UDP-
based applications  use this value, whilst the TCP-
based ones may ignore it. 

 Sending Processor’s Frequency (32 bits) is given in 
MHz. 

 PAD (0 or 7992 bits) represents additional 7992 bits 
of 00h for Ethernet frame-based technologies 
because the 1024-byte APDU gives a more accurate 
evaluation of the overall RTT throughput. The 25-
byte APDU (0 bits of PAD) is recommended for 
technologies such as ATM.   

 
    In multicast transmissions, the server sends only the 
first three fields, because its microprocessor’s frequency 
is known from previous messages.  
    There are two memory tables for each host that uses 
this protocol. The first table is dedicated to the sent 

messages and stores the timestamps: its _12  (initial 

moment of the sending from client 1 to client 2), with 

associated 12SSN ; together with the returned value 

fts _12  (the timestamp when the message was actually 

received by the client 2), with associated 12RSN .  The 

second table is dedicated to the received messages and 

stores the timestamps: its _21  (initial moment of the 

sending from client 2 to client 1) with associated 21SSN , 

together with the returned value fts _21  (the timestamp 

when the message was actually received by client 1), with 

associated 21RSN . Note that the microprocessor’s 

frequency  is stored for each host ( 1CPUf for Client 1, 

2CPUf for Client 2). 
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Figure 4. Four timestamps for measuring the RTT 

 at the Application Layer 
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    On the data socket the elapsed time at the client could 
be evaluated only if the sending and receiving entities are 
on the same machine. 
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   is                ir     fs                                                              fr  

Figure 5. Four time stamps for measuring the sending, 
receiving and elapsed times at the client site 

 
     At the server site, the switching time is defined as the 
interval since the reception of the first TPDU started and 
the transmission of the last TPDU ended.  
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Figure 6. Four time stamps for measuring the sending, 
receiving and elapsed times at the server site 

 
IV. EXPERIMENTAL RESULTS  

The first experiments are dedicated to the influence of the 
application’s buffer size (see Table1 and Table2). All  
results were validated without employing any protocol 
described in Section III. 
     

Applica-
tion’s 

buffer size 
 

[Bytes] 

Average 
switching 

time  
(IPv4) 
[ s] 

Average 
switching 

speed  
(IPv4) 
[Mbps] 

Average 
receiving 

time  
(IPv4) 
[ s] 

8192  111 575.84 217 
5000 266 240.30 721 
3000 333 191.95 1074 
1500 617 103.59 2458 
750 937 68.21 4945 
375 1738 36.77 9502 

 
Table 1. Testfile1, point-to-point, Client 1->server -> 

Client 1, without model. The average sending time/ 
throughput  was 165  s/387.39 Mbps for IPv4. 

 
    The results for the application’s buffer size of 8192 
bytes  are very important for evaluating the highest Layer 
4 switching speed of about 575 Mbps (IPv4), respectively 
1083 Mbps (IPv6). In general, supposing a theoretical 
transmission throughput of 100 Mbps (Fast Ethernet), it 

seems that the speed advantage is greater than 1 for a 
buffer size of at least 1500 bytes.  
    Due to the protocols stack the actual sending or 
receiving throughput at the lower layers cannot reach the 
upper bound of 100 Mbps. 

 
Applica-

tion’s  
buffer size 

 
[Bytes] 

Average 
switching 

time  
(IPv6) 
[ s] 

Average 
switching 

speed  
(IPv6) 
[Mbps] 

Average 
receiving 

time  
(IPv6) 
[ s] 

8192  59 1083.38 102 
5000 317 201.64 565 
3000 486 131.52 1371 
750 1249 51.17 5498 
375 2601 24.57 10843 

 
Table 2. Testfile1, point-to-point, Client 1->server-> 
Client 1, without model. The average sending time/ 

throughput  was 264  s/242.12 Mbps for IPv6. 

    

 
 

Figure 7. Switching time for application’s buffer size of 
750 bytes, Testfile1, point-to-point, Client 1->server -> 

Client 1, without model 
 
    Apparently, there is no advantage of using IPv6 instead 
of IPv4, as shown in Figure 7. This is a preliminary 
conclusion because several additional experiments should 
be performed. Let us involve now departure schedules 
(see Figure 8). 
    Note that there are two entities for each ON+OFF 
period. The first entity represents the number of  bytes 
during the burst (for example 15582 bytes in Model 1, 
209 bytes in Model 2, 62487 bytes in Model 100). The 
second entity is the total duration of the ON+OFF period 
(for example 0.005947 seconds in Model 1, 0.000016 
seconds in Model 2, 0.005995 seconds in Model 100). 
Actually Model 1 was designed for 25.6 ATM, as in 



[2],[3], but it seems that it is also suitable for Fast 
Ethernet.  

 
 

Figure 8. Model 1, Model 2, Model 100 for burst traffic  
 

 
 

Figure 9. Model 2 for IPv6, Client 1 ->server-> Client 1, 
testfile1. The sending TCP entity cannot follow Model 2 

    
 

Interval 
 

Measured 
time [ s] 

Throughput 
[Mbps] 

fs - is  

SENDING 

18543…18877 
(CLIENT 1) 

101.76..103.59 

 
SWITCHING  

74493…74643 
(SERVER) 

25.73…25.78 

fr - ir  

RECEIVING 

82671…84942 
(CLIENT 2) 

22.61…23.23 
  

 
Table 3. Model 100 for IPv4, point-to-point,  Client 1 -> 
server-> Client 2, Testfile2, application’s buffer size of 

5000 bytes. The planned sending  time/ throughput  were 
19209 s/100 Mbps without model and for Model2, 

respectively 22202 s/86.52 Mbps for Model100 

 
    Model 100 is the 100 Mbps-updated version of Model 
1, but it is rather difficult to be accurately followed by the 
sending TCP entity.                     
    Due to implementation difficulties, the experiments 
involving NTP, SNTP or the new proposed protocol are 
under progress and no preliminary results are considered 
to be included in this paper. However, we can estimate 
that more sophisticated trials still have to be performed. 
The APDU is encapsulated in a TCP segment, then in an 
IPv6/IPv4 datagram, then in a Fast-Ethernet frame.  
    According to [4],[9], we have to evaluate the following 
delays: access delay (the time requested to access the 
socket); packetization delay (the time needed to 
encapsulate the socket’s data into a Layer 2 frame);  
transmission delay (to send the frame between Layer 2 
and Layer 1, i.e. 13.6 microseconds in IPv4, respectively 
16.8 microseconds in IPv6, at 100 Mbps); propagation 
delay (depending on the distance and on the type of 
media between the source and the destination); Layer 4 
switching delay (at the server, see Tables 1-3); queueing 
delay and reassembly delay.    
    Whenever the RTT measured is different from the 
current value, the transfer rate for the sending model has 
to be  proportionally adjusted. For example, let us 
suppose that the current 1024-byte RTT is 1437 
microseconds. This means an average throughput of about 
11.4 Mbps. The departure schedule will involve a 11.4 
Mbps-based model (instead of a theoretical 100 Mbps-
based model, such as Model 100). If the measured RTT is 
changing to 466 microseconds, the departures will follow 
a 35.15 Mbps-based model.  
  

V. CONCLUSIONS 
1.  The preliminary comparison between IPv6 and IPv4 

proved that there are no relevant permanent 
differences concerning the throughputs and the Layer 
4 switching performances. This observation is valid 
for both Microsoft’s Windows 2000 implementation 
(as from this paper) and Linux-based solution (as 
from our previous work).  

2.  It is more difficult to choose a departure schedule for 
Fast Ethernet comparing to equivalent conditions in  
ATM. 

3.  The Layer 4 switching performances could be 
improved by selecting the proper model at both 
sending client and the server.  

4.  Many users have an unrealistic expectation about the 
overall throughput, calculated within the interval 
since the first bit left the sender until the last bit reach 
the destination. The highest value, calculated at the 
application/Windows Sockets interface, is about 31-
32 Mbps for 100 Mbps Fast Ethernet (for at least 366 
MHz CPU's frequency).  

5.  Choosing a proper model for departure can generate 
better results (i.e. overall throughput, congestion 
avoidance etc.) than the expected ones obtained by 



involving the classical one-block sending mechanism 
through sockets. 

6.  The involvement of the new protocol for measuring 
RTT at Layer 7 will limit the applicability of those 
models that are not supported by the network. 

7.  A dynamic adjustment of the transmission or 
switching schedule is becoming possible.  

 
VI. FUTURE WORK 

The next step is to determine the optimal model, 
depending on the specific application (burst traffic, voice, 
variable video streams etc). The overall performance of 
the Layer 4 switching is expected to be improved by 
running it on top of Layer 2/Layer 3 switches on the same 
machine. It is also for future work to evaluate the 
performances by involving time synchronization 
protocols (including the availability for other 
microprocessors family or other environments). 
Obviously it is for further study the optimum interval for 
RTT updating and the mechanism of switching from one 
sending model to another. 
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