

PERFORMANCES EVALUATION OF BGP-4+ IN IPV4/IPV6

István Attila Katona, Virgil Dobrota, Tudor Blaga, Gabriel Lazar
Technical University of Cluj-Napoca, Department of Communications

Tel: +40-264-401226, 401264, 401816, Fax: +40-264-597083
E-mails: katonaistvanattila@yahoo.com, Virgil.Dobrota@com.utcluj.ro,

 Tudor.Blaga@com.utcluj.ro, Gabriel.Lazar@com.utcluj.ro

Abstract: BGP-4 (Border Gateway Protocol version 4) is
the current EGP (Exterior Gateway Routing Protocol)
used in Internet, being defined by IETF in 1995. The study
is based on Network Simulator ns-2.26, with BGP++
1.03a beta extension, under Linux RedHat 9.0/ Fedora
Core 3 or later. There were three main objectives of this
paper. The first one was the understanding the complex
mechanism of establishing a logical BGP connection
(finite state machine, messages, routing information) and
evaluation of setup time depending on ns-2 parameters
(propagation delay and transfer rate). The second aim
envisaged the configuration of Hold Time and KeepAlive
interval for BGP connection state detection. After that, the
paper evaluates the data traffic and link utilisation
(about 70 % of bytes are IP and TCP Headers, the
remaining being BGP messages).

I. INTRODUCTION

Inside autonomous systems, the intra-domain routing is
performed by IGPs (Interior Gateway Routing Protocols).
Some examples are the following: RIP (Routing
Information Protocol), OSPF (Open Shortest Path First),
IS-IS (Intermediate System to Intermediate System),
EIGRP (Enhanced Interior Gateway Routing Protocol).
They are optimized in accordance with the technical
requirements, OSPF being recommended to be used
whenever possible. Between autonomous systems, the
inter-domain routing is realised by EGPs (Exterior
Gateway Routing Protocols). The first protocol was called
EGP but later on BGP (Border Gateway Protocol) took its
place. BGP-4 (Border Gateway Protocol version 4) is the
recommended inter-domain routing protocol nowadays, as
its previous versions (BGP-1, BGP-2, BGP-3) or EGP are
considered obsolete. Note that inter-AS routing usually
reflects the business and political relationships between
the networks and the companies involved rather than
technical aspects [Hal00].

The paper presents an overview of the main concepts used
in BGP. Messages, attributes, finite state machine and
timers are briefly described in the first two paragraphs.
The transition from IPv4-based networks to IPv6-enabled
is currently requesting several, including inter-domain
routing, This topic is discussed within the third paragraph,
reminding the problem of multiprotocol extensions for

BGP. Although the paper is concentrated on understanding
the mechanism of establishing a logical BGP connection
in IPv4, most of the work could be used for IPv6 too.
However a comparative evaluation of network parameters
(such as: setup time, HoldTime, KeepAlive interval, link
utilisation) may offer a better point of view regarding the
use of BGP in the new coming IPv6-based Internet. The
study is based on Network Simulator ns-2.26, with
BGP++ 1.03a beta extension, under Linux RedHat 9.0/
Fedora Core 3 or later.

II. BGP-4 MESSAGES AND ATTRIBUTES

BGP is an inter-autonomous system routing protocol that
relies on IGPs for routing an AS. Its primary role is to
exchange network reachability information with other
BGP entities, including the list of autonomous systems
that reachability information traverses. This information is
enough to build a graph of connectivity, in which routing
loops could be eliminated and routing policies at the AS
level enforced [RFC1771]. BGP sees the Internet as a
graph of autonomous systems, uniquely identified by their
ASN (AS Number). A collection of path information
associated with a given destination forms a loop-free route
[Hal00]. According to [RFC1774] BGP cannot be
classified as a pure distance vector protocol, neither as
pure link state. Generally, it is considered a path vector
routing protocol. This is similar to a distance vector
protocol, but instead of measuring the distance, the entire
path to the destination is given. Therefore, path vector
protocols eliminate the well-known count-to-infinity
problem of the usual distance vector protocols. For
exchanging routing information, BGP connections are
established over TCP (Transmission Control Protocol) at
port 179. It is recommended to set PSH flag within TCP
header, so that BGP data is delivered promptly to the
Application Layer. Routers that run a BGP routing process
are referred to as BGP speakers. Two BGP speakers that
establish a TCP connection to exchange routing
information are called peers or neighbours. When two
BGP routers establish a connection, all BGP routes are
exchanged between them. After the initial route exchange,
only incremental updates are sent, in case network
information changes. A BGP session established between
two BGP speakers in different Autonomous Systems is
called EBGP (External BGP). BGP speakers in the same

Autonomous System can also establish BGP sessions
between them, in order to exchange routing information
received from different external ASs. This option is used
by transit autonomous systems and is called IBGP
(Internal BGP). It is important to mention that EBGP
peers must be directly connected (except when using the
EBGP Multi-hop option). On the other hand IBGP peers
does not need to be directly connected, as IBGP is routed
by the intra-domain routing protocols. Note that even
IBGP and EBGP have different purposes, there is no
difference in their implementation. Before establishing a
BGP peer connection, two BGP speakers must perform the
standard three-way handshake to open a TCP connection
to port 179. There are four types of BGP unicast messages
defined by [RFC1771]: OPEN, KEEPALIVE, UPDATE
and NOTIFICATION. Later on [RFC2918] defined
ROUTE-REFRESH.

A BGP message is processed only after it has been entirely
received. Each BGP message (up to 4096 bytes) consists
of a message header (19 bytes) and a data portion (could
be optional). BGP path attributes are a set of parameters to

keep track of route-specific information, such as path,
degree of preference, next hop, and aggregation
information. Attributes are used in the route decision and
filtering process. BGP path attributes fall into four
separate categories: well-known mandatory, well-known
discretionary, optional transitive and optional non-
transitive. Well-known attributes must be recognized by
all BGP implementations and must be passed along to
other BGP peers (possibly after updating). Well-known
mandatory attributes must be included in every UPDATE
message. Well-known discretionary attributes may, or may
not be included in an UPDATE message. Optional
attributes may be added to each path in addition to well-
known attributes. It is not required that all BGP
implementations recognize all optional attributes. If a BGP
peer receives an unrecognized optional attribute, it acts
depending on the Transitive Bit from the Attribute Flags
octet. If the attribute is transitive, it should be accepted
and passed along to other peers, with the Partial Bit set to
1. If the attribute is non-transitive, it should be ignored and
not passed along to other peers.

Table 1. BGP path attributes

Type
Code Attribute Type Category Value

Code Attribute Value Defined by

0 IGP
1 EGP 1 ORIGIN Well-known

mandatory
2 Incomplete

[RFC1771]

1 AS_SET
2 AS_SEQUENCE

[RFC1771]

3 AS_CONFED_SET
2 AS_PATH Well-known

mandatory
4 AS_CONFED_SEQUENCE

[RFC3065]

3 NEXT_HOP Well-known
mandatory - Next-hop IP address [RFC1771]

4 MULTI_EXIT_DISC Optional
non-transitive - 4-octet MED [RFC1771]

5 LOCAL_PREF Well-known
discretionary - 4-octet LOCAL_PREF [RFC1771]

6 ATOMIC_AGGREGATE Well-known
discretionary - None [RFC1771]

7 AGGREGATOR Optional
transitive - ASN and IP address of

aggregator [RFC1771]

8 COMMUNITIES Optional
transitive - 4-octet community

identifiers [RFC1997]

9 ORIGINATOR_ID Optional
non-transitive - 4-octet ROUTER_ID of

originator [RFC2796]

10 CLUSTER_LIST Optional
non-transitive - List of CLUSTER_IDs [RFC2796]

11 DPA Optional
non-transitive - Destination Preference

Attribute
expired
draft

12 ADVERTISER Optional
non-transitive - BGP/IDRP Route Server [RFC1863]

13 RCID_PATH/
CLUSTER_ID

Optional
non-transitive - BGP/IDRP Route Server [RFC1863]

14 MP_REACH_NLRI Optional
non-transitive - Multiprotocol Reachable

NLRI [RFC2858]

15 MP_UNREACH_NLRI Optional
non-transitive - Multiprotocol Unreachable

NLRI [RFC2858]

255 Reserved for development - - [RFC2042]
- WEIGHT Local - 2-octet integer value Cisco

III. FINITE STATE MACHINE AND TIMERS

The operation of a BGP peer connection can be
described in terms of a Finite State Machine (FSM)
with six states. The transitions between the states are
triggered by events, which cause certain actions to be
performed and possibly a message to be sent. A
simplified diagram of the BGP Finite State Machine is
shown in Fig.1.

Fig.1 BGP Finite State Machine diagram

The BGP specifications describe three timers related
to a peer connection:

• ConnectRetry timer: is used to measure the time
spent trying to establish a TCP connection
between BGP peers. When a BGP speaker tries to
open a TCP connection to its peer, the
ConnectRetry timer is started. If the connection is
not established during the ConnectRetry interval,
the timer is restarted and the speaker tries again
to establish the TCP connection. When the TCP
connection succeeds, the ConnectRetry timer is
cleared and is no longer used. The value of the
ConnectRetry timer should be large enough to
allow establishing a TCP connection. The
suggested value is 120 seconds [RFC1771].

• Hold Timer: the Hold Time is the maximum
amount of time that may elapse between the
receipts of successive KEEPALIVE or UPDATE
messages. The Hold Timer is a timer that
increments from 0 to the Hold Time. When a
KEEPALIVE or UPDATE message is received,
the Hold Timer is reset to 0. If the Hold Time for
particular neighbour is exceeded, the connection
is closed. The Hold Time for a particular peer
connection is negotiated in the OPEN messages.
The minimum acceptable value is 3 seconds. The
value of 0 means that the Hold Timer is not used.
[RFC1771] suggests the value of 90 seconds for
the Hold Time.

• KeepAlive timer: the KeepAlive timer specifies
the rate at which KEEPALIVE messages are sent.
Its value should be chosen to ensure that the Hold

Timer would not expire. When a BGP peer sends
a KEEPALIVE or UPDATE message, it restarts
the KeepAlive timer. The recommended
KEEPALIVE rate is one-third of the negotiated
Hold Time. If the Hold Time is 0, KEEPALIVE
messages are not exchanged. [RFC1771] suggests
the value of 30 seconds for the KeepAlive timer.

• Start Timer: While not required by the
specifications, some BGP implementations
(including the Zebra’s bgpd and BGP++) use a
Start Timer to automatically generate the Start
event if a connection is in the Idle state. When the
Start Timer expires, the Start event is generated.
The Start Timer usually has a value of a few
seconds, and its value is randomized (jittered) to
avoid two peers generating the Start event at the
same time and thus form two parallel
connections.

IV. MULTI-PROTOCOL EXTENSIONS

BGP-4 was initially designed to carry routing
information for IPv4 only. There are three pieces of
information which are specific: NEXT_HOP (an IPv4
address), AGGREGATOR (an IPv4 address) and
NLRI (IPv4 address prefixes). The version with multi-
protocol extensions, sometimes referred to as MBGP
(Multi-protocol BGP) or BGP-4+, was later defined
by [RFC2283] and reviewed by [RFC2858]. It could
handle routing information for other Network Layer
protocols such as IPv6 or IPX. To provide backward
compatibility while adding support for additional
protocols to BGP-4, the existing fields and attributes
have been preserved, and two new optional non-
transitive attributes were defined (see also Table 1):

• MP_REACH_NLRI: used to carry a set of
reachable destinations, along with the next hop
information to be used for forwarding towards the
given destinations

• MP_UNREACH_NLRI: used to carry a set of
unreachable destinations. There is no need to
carry next hop information in this case.

A BGP speaker that does not support Multi-protocol
Extensions will ignore these attributes and not pass
them along to its peers. Their use is negotiated
between peer routers by the Capability Advertisement
feature. Even if a BGP router supports Multi-protocol
Extensions, it must have an IPv4 address, which is
used (among other things) for the AGGREGATOR
attribute. By the time the transition towards IPv6 will
be complete, a new version of BGP might be issued.
For the moment the Multi-protocol Extensions are
needed to carry routing information for IPv6 and
inter-domain multicast routing [RFC2545]. A newer
application is to distribute label information for
MPLS (Multiprotocol Label Switching), as described
in [RFC3107].

V. BGP-4+ SIMULATOR

The first aim of this paper was to study the Border
Gateway Protocol version 4 (BGP-4), the de-facto
standard inter-domain routing protocol in the Internet.
The approach chosen was simulation, using ns-2
extended with the BGP++ package. Network
Simulator with BGP++ was installed and used under
the GNU/Linux operating system (Fedora Core 3
distribution. By the time the experiments were
realised the releases were the following: ns-2 2.26 and
BGP++ 1.03a beta. The simplest way to obtain NS is
to download the so-called “all-in-one” package, which
includes all the software tools required to build and
use NS: Tcl (Tool Command Language), Tk (ToolKit
for designing user interfaces), Tclcl (Tcl/C++
interface), and OTcl (Object Tcl). It also includes nam
(Network AniMator), a tool for visualizing network
simulations, and other useful software for network
simulation. After unpacking the archives, the BGP++
patch files patch_bgp++1.03a_pdnsv2 was copied
to the ns-allinone-2.26/ns-2.26/ directory, and
the patch was applied with the command:

patch -p2 < patch_bgp++1.03a_pdns_v2

This command installs the BGP++ source code into
the NS source code. After applying the patch and
making some required changes in the configuration
files, ns with BGP support was compiled by
executing the install script from the ns-

allinone-2.26 directory. When the compilation is
completed, the ns executables can be accessed
through the symbolic links in the ns-allinone-
2.26/bin directory. The documentation suggests that
after installation, NS should be validated by running
the supplied test scripts, to verify the correct operation
of the simulator. This was done by running the
validate script in the ns-allinone-2.26/ns-
2.26 directory.

a) Simulation of Two BGP Peer Routers

Fig.2 Two-Router scenario

The first step is to create a simulation script
2peers.tcl for the simplest study case: two BGP
routers (called router0 and router1) forming a
peer connection. We suppose that the readers are
already familiar with the use of ns-2. A brief
introduction could be found in [Dob03]. Let us have a
link to connect the two routers at 1.5 Mbps with 10
ms propagation delay and a DropTail queuing
discipline, i.e. FIFO (First In First Out).

$ns duplex-link $router0 $router1 1.5Mb
10ms DropTail

The next step is to create BGP routers from the nodes.
The following code creates a BGP instance called
bgp0, and attaches it to the node router0:

set bgp0 [new Application/Route/Bgp]
$bgp0 register $r $bgp0 attach-node
$router0

The bgp0 instance of BGP will use the bgpd0.conf
configuration file from the directory specified by
opt(confdir) variable. Note that R0 will be used to
refer to both the node router0 and the BGP
instance bgp0. Similar, a BGP instance bgp1 is
created and attached to router1. By running the
simulation, each BGP instance will create a log file,
from which the operation of BGP can be examined.
Network Simulator can create so-called trace files,
containing the description of all packets processed
during the simulation.

The simulator should be set to end the simulation after
the specified number of seconds.

$ns at $opt(stop) "finish"

The above line tells the simulator to call the finish
procedure at the number of seconds specified by
opt(stop) variable. The role of the finish
procedure is to stop the simulation, close the trace
files, and run nam, specifying the name of the nam
trace-file to use as input. Finally, the simulation must
be started by specifying the following command at the
end of the script: $ns run

Let us comment now the very first experimental
results to understand the way the designed simulator
has been used. The given scenario supposed that at
moment 7.008645, R1’s Start timer expires and
tries to open a TCP connection to R0, changing from
the Idle to the Connect state:

bgpd1.log:
7.008645 BGP: 192.168.10.10 [FSM] Timer
(start timer expire).
7.008645 BGP: 192.168.10.10 [FSM]
BGP_Start (Idle->Connect)
7.008645 BGP: 192.168.10.10 went from
Idle to Connect
7.008645 BGP: 192.168.10.10 [Event]
Connect start to 192.168.10.10

The first TCP segment sent to open the connection, as
displayed in nam is shown in Fig.3. At moment
7.029072 the TCP connection was established, R1
changes to the OpenSent state and sends the OPEN
message:

Fig.3. R1 initiates transport connection

bgpd1.log:
7.029072 BGP: 192.168.10.10 [FSM]
TCP_connection_open (Connect->OpenSent)
7.029072 BGP: 192.168.10.10 went from
Connect to OpenSent
7.029072 BGP: 192.168.10.10 sending
OPEN, version 4, my as 65501, holdtime
180, id 192.168.10.11
7.029072 BGP: 192.168.10.10 send message
type 1, length (incl. header) 45

R0 does not accept the connection, because its Start
timer did not expire yet and it is still in the Idle
state (the Start event was not generated):

bgpd0.log:

7.039285 BGP: [Event] BGP connection
from host 192.168.10.11
7.039285 BGP: [Event] BGP connection IP
address 192.168.10.11 is Idle state

At moment 7.049499, R1 receives the TCP

connection closed event; therefore it changes
from OpenSent to the Active state. Retrying
successful BGP connections, the influence of the link
is presented within Table 2.

Table 2. BGP connection setup time versus link parameters

Rate

[Mbps]

Connection
setup time

[sec]

(1 ms delay)

Connection
setup time

[sec]

(10 ms delay)

Connection
setup

[sec]

(100 ms)
0.064 0.0627094 0.116 0.652842
0.128 0.034 0.088 0.628
0.256 0.02 0.074 0.614
0.512 0.013 0.067125 0.607
2.048 0.00775 0.06175 0.60175
5 0.0067168 0.0607168 0.6007166
10 0.0063582 0.0603586 0.6003584
50 0.0060718 0.0600718 0.6000718
100 0.0060358 0.060036 0.6000356

Fig.4 presents an example of a sucessful exchange of
routing information (UPDATE) which could be used
for performance evaluation (for example the proper
KeepAlive interval).

Fig.4 Example of simulation: R0 sends UPDATE message

b) Simulation of Three BGP Peer Routers

Fig.5 Three-Router scenario

Three-router experiments envisaged the understanding
of BGP route selection based on attributes
(NEXT_HOP, AS_PATH, WEIGHT etc.) and on
routing policies. Taking into account the previous
simulation, with the configuration R0 (AS 65500)
provides a transit service between AS 65501 and AS
65502 (R1 and R2). Supposing that AS 65500 does not
want to offer transit for traffic coming from AS 65502
and going towards the network 172.21.0.0/16 (in
AS 65501), a routing policy must be implemented.
Since this decision is taken in AS 65500 (R0), only
R0’s configuration file should be modified.�The above
described policy can be implemented at R0 by not
advertising the network address 172.21.0.0/16 to
R2. A routing policy, either referring to incoming or
outgoing advertisements, is implemented with a route
map. Supposing that the route map implemented at R0
is called RM1, the following command is added to
bgpd0.conf (after the neighbor commands):�

neighbor 192.168.10.12 route-map RM1 out

The command specifies that for peer 192.168.10.12
(R2) the route map for outgoing advertisements is RM1.
The next step is implementing the route map itself, by
creating an access list. It was denoted with the number
1, and specifies that the IP address 172.21.0.0/16 is
not accepted, but any other address prefix is permitted.

access-list 1 deny 172.21.0.0/16
access-list 1 permit any

Now the access list 1 can be attached to the route map

route-map RM1 permit 1
match ip address 1

VI. CONCLUSIONS

Several simulations based on Network Simulator ns-
2.26, with BGP++ 1.03a beta extension, under Linux
RedHat 9.0/ Fedora Core 3 or later were carried out.

During both establishing phase and in case of a route
oscillation BGP-4 routing information exchanged
included network number, autonomous systems’ path
and attributes. Two neighboring routers established a
TCP connection before sending BGP updates. Several
OTcl and Linux shell scripts were written, as well as
router configuration files in order to obtain the results
from log files. The paper studied the BGP connection
setup time depending on ns-2 parameters
(propagation delay and transfer rate). The simulation
of BGP proved that the Hold Timer is used to detect
failures. Preliminary tests showed that the connection
setup time is at least three times greater than RTT
(Round-Trip Time). The most important attribute in
selecting the best route is by default AS_PATH.
Measurement of data traffic and link utilisation
revealed that about 70 % of bytes are related to TCP/IP
headers, the remaining being BGP messages.

Practical implementations of BGP-4+ involving bgpd
under Linux are under progress.

REFERENCES:
[Bat00a] T. Bates, R. Chandra, E. Chen, “BGP Route Reflection –
 An Alternative to Full Mesh IBGP”, RFC 2796, 2000
[Bat00b] T. Bates, Y. Rekhter, R. Chandra, D. Katz,
 “Multiprotocol Extensions for BGP-4”, RFC 2858, 2000
[Cha96] R. Chandra, P. Traina, T. Li, “BGP Communities
 Attribute”, RFC 1997, August 1996
[Che00] E. Chen, “Route Refresh Capability for BGP-4”, RFC
 2918, September 2000
[Chu04] J. Chung & M. Claypool, NS by Example. Worchester
 Polytechnic Institute, http://nile.wpi.edu/NS/
[Cis03] ***, Internetworking Technologies Handbook, Cisco
 Systems, 2003
[Dob03] V. Dobrota, Digital Networks in Telecommunications.
 Volume 3: OSI and TCP/IP, Second Edition, Mediamira
 Science Publishers, Cluj-Napoca 2003 (in Romanian)
[Doy01] J. Doyle & J. Dehaven Caroll, Routing TCP/IP. Volume
 II . (CCIE Professional Development). Cisco Press, 2001

[Fal03] K. Fall, K. Varadhan, The ns Manual. The VINT Project,
2003, http://www.isi.edu/nsnam/ns/ns-
documentation.html

[Fly03] C. Flynt, Tcl/Tk. A Developer’s Guide. Second Edition.
 Morgan Kaufman Publishers, 2003
[Hal00] S. Halabi & D. McPherson, Internet Routing
 Architectures. Second Edition. Cisco Press, 2000

[RFC1771] Y. Rekhter & T. Li , “A Border Gateway
Protocol 4 (BGP-4)”, RFC 1771, March 1995

[Man97] B. Manning, “Registering New BGP Attribute Types”,
 RFC 2042, January 1997
[Mar99] P. Marques, F. Dupont, “Use of BGP-4 Multiprotocol
 Extensions for IPv6 Inter-Domain Routing”, RFC 2545,

March 1999
[McP02] D. McPherson, V. Gill, D. Walton, A. Retana, “Border
 Gateway Protocol (BGP) Persistent Route Oscillation
 Condition”, RFC 3345, August 2002
[Rek01] Y. Rekhter, E. Rosen, “Carrying Label Information in
 BGP-4”, RFC 3107, May 2001
[Tra95] P. Traina, “BGP-4 Protocol Analysis”, RFC 1774, 1995
[Tra01] P. Traina, D. McPherson, J. Scudder, “Autonomous
 System Confederations for BGP”, RFC 3065, 2001

