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Abstract 
 

The paper presents the experimental evaluation 
of the existing TCP implementations: Tahoe without 
Fast Retransmit, Reno, New-Reno. The short time 
analysis involved a software tool called TBIT (TCP 
Behavior Inference Tool), which was designed by 
AT&T Center for Internet Research. It generates 
short TCP traffic (about 25 segments), with the 13th 
and the 16th segments intentionally dropped. 
Depending on the type of TCP implementation the 
behavior was different, due to the activation/missing 
of the following congestion control algorithms: 
"Slow-Start", "Congestion Avoidance", "Fast 
Recovery" and "Fast Retransmit". TCP segments 
were captured at both ends of the TCP connection 
using tcpdump tool and then the data was analyzed 
with several programs (tcptrace, xplot and 
proprietary programs developed for Linux Red Hat).  
 
 
1. Introduction 
 

During the last years, computer networks have 
experienced tremendous growth. More and more 
computers get connected to both private and public 
networks, the most common protocol stack used 
being TCP/IP. 

Nowadays it is difficult to identify the 
congestion control algorithms that are currently 
implemented by various machines in Internet. The 
TCP header does not provide any information about 
them.  

Another important issue is the way that these 
algorithms are implemented in different operating 
systems. By this time, the most frequent TCP 
implementation for clients is based on the Windows 
2000 kernel. On the other hand, most Internet 
servers use various FreeBSD or Linux-based 
versions. 

The related work on TCP congestion control 
covers at least two major issues. The first one 

includes simulations based on theoretical analysis of 
TCP implementations, such as in [1]. Although new 
ideas could be tested, this kind of work is not always 
close to real implementations from the operating 
system’s kernel. For this reason, a second major 
issue is focused on real TCP implementations, such 
as in [2]. 

TCP is trying to provide reliable data 
transmission between two entities. It implies anyway 
to handle packet losses, that are due to transmission 
errors or traffic congestion.  

 
2. TCP congestion control 

 
Let us define the following parameters: 
 

• sender maximum segment size (smss) 
represents the maximum amount of data that 
can be sent in a single TCP segment, 
without including the header. 

• sender’s window (swnd) represents the 
maximum number of bytes that the can be 
sent. Its value is the lowest between 
receiver’s window and congestion window. 

• receiver’s window (rwnd) is the latest 
window advertised by the receiver. 

• congestion window (cwnd) is a TCP state 
variable, limiting the amount of data that can 
be sent.  

• loss window (lw) is the value of the 
congestion window after a packet loss has 
been detected.  

• slow-start threshold (ssthresh) is another 
TCP state variable that determines the 
congestion control algorithm to be 
employed: either slow-start (if cwnd ≤  
ssthresh) , either congestion avoidance (if 
cwnd ≥  ssthresh).   

 
Basic TCP congestion control is done using 

Slow-Start and Congestion Avoidance algorithms,   
based on the work initiated by Van Jacobson.  
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According to [3] these algorithms are mandatory, 
but they could be accompanied by two new ones: 
Fast Retransmit and Fast Recovery. 

 
2.1 Slow-Start and Congestion Avoidance 

 
These two algorithms must be implemented by 

TCP entities in order to control the amount of data 
sent over the network. 

The Slow-Start, improperly called like this, 
actually increases exponentially the size of the 
congestion window. It is used by a TCP entity at the 
beginning of a transmission or after detecting a 
packet loss. The purpose of Slow-Start is to fill as 
soon as possible a transmission channel. 

 

 
Figure 1. Slow-Start and  
Congestion Avoidance 

 
After the congestion window has reached the  

threshold value, the Congestion Avoidance 
algorithm is employed. It continues to increase 
linearly the congestion window, adding up to one 
SMSS but not less then one byte. In both cases a 
retransmission timer is used for every packet. The 
timeout signals the loss of the packet. This leads to 
the retransmission of that packet and halving of the 
Slow-Start threshold. The congestion window is also 
set to the value of the loss window. 
 
2.2 Fast Recovery and Fast Retransmit 
 

After implementing the previous two algorithms,  
new problems arise. The first one is related to the 
packet loss detection. Normally a packet loss is 
inferred based on the timeout of the retransmission 
timer. This, however, may lead to significant delays 
in data transmissions, so another way to determine 
packet loss has been added to TCP. 

Under normal circumstances a TCP entity must 
send a duplicate ACK for every packet that arrives 
out of sequence. A packet may be received out of 
sequence due to packet duplication by the network, 
packet delays or loss. 

The Fast Retransmission algorithm considers that 
a packet has been lost when it receives 3 duplicate 
ACKs, before the timeout of the retransmission 
timer. In this way valuable time is saved.  

The second problem is related to the drastic 
decrease of the congestion window after a packet 
loss detection. If a packet is lost during Slow-Start 
or Congestion Avoidance the value of the 
congestion window is set to the value of the loss 
window (1 SMSS). The Fast Recovery algorithm 
tackles this  problem. The new value of the 
congestion window after a packet loss is detected by 
the Fast Retransmission is set to ssthresh + 3 SMSS. 
This is called “artificial inflation” of the congestion 
window. Beside that, for every new duplicate ACK 
received the congestion window is further increased 
with 1 SMSS. 

 
3. Tools and Environment 

 
3.1 Tools 

 
In order to identify the TCP implementation 

within the operating system’s kernel, an apache web 
server should run on the tested host. This software is 
free and there are ports available for all the systems 
we tested. 

The TCP packets exchanged between the testing 
and the tested system were captured using tcpdump 
and stored for analysis. On Windows systems  
ethereal was preferred. The most important tool 
we used was TBIT (TCP Behavior Inference Tool).  

This tool  was developed at AT&T Center for 
Internet Research and it can be used to characterize 
the behavior of a TCP implementation from a distant 
machine running a web server. 

Generally speaking TBIT works like a regular 
web browser: it establishes a TCP connection to the 
web server and requires a web page. TBIT builds 
it’s own TCP packets and uses an IP socket to send 
them to the server. It also uses a Berkley Packet 
Filter to prevent the TCP packages received from 
the web server from reaching the operating systems 
kernel and to redirect them towards TBIT. Then 
TBIT creates controlled packet loss by confirming 
only certain received packets. The web server 
interprets those losses as a sign of congestion and 
reacts according to the congestion control 
algorithms it implements. This reaction can be 
analyzed, the algorithms used can be recognized and 
the TCP version estimated. 

 
3.2 Network Configuration 

 
In order to perform the experiments we used 2 

machines: the testing system and the tested system. 
The testing machine was based on FreeBSD 4.5 with 
a recompiled kernel (according to TBIT 
specifications), TBIT and tcpdump. On the tested 
system we installed various versions of FreeBSD, 
Linux and Windows. A web server plus tcpdump or 
ethereal ran on the system. The testbed 
configuration is presented in Figure 2. 
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Figure 2. Testbed Configuration 

 
The tests were performed as follows: 
 

1.  The http daemon was started on the tested 
system. 

2.  tcpdump was started on both systems. The 
captured packets were written into a file for 
future analysis. 

3.  TBIT was started with the required parameters 
on the testing system. The TBIT output was 
redirected to another file for analysis. 

4.  After the TBIT test was finished, both the 
tcpdump and httpd were stopped. 

 
At the end of the tests we proved that both the 

TBIT results and those from the dump files 
converged. They are indicating the same TCP 
implementation. 

 
4. Experimental Results 

 
4.1. TCP Implementations 
 

According to [2],[4], [5] the most popular TCP 
implementations are the following: 

 
• Tahoe without Fast Retransmit: includes 

Slow-Start, Congestion Avoidance. 
• Tahoe: includes also Fast Retransmit. 
• Reno: adds Fast Recovery to Tahoe TCP.  
• New-Reno: enhanced Reno TCP using a 

modified version of Fast Recovery. 
• Reno Plus: on some Solaris systems. 
• SACK: uses selective acknowledgements. 
 

    Other current TCP implementations are Vegas,  
Peach, ATCP etc. As we can see, the differences 
between versions are related to the congestion 
control algorithms involved. We can exploit this 
observation in order to determine the TCP 
implementation on a certain machine. 
 
4.2. Tahoe without Fast Retransmit 

 
The TCP sender that implements Tahoe without 

Fast Retransmit does not count the duplicate ACKs 
in order to determine if a packet has been lost. The 
sender infers that a packet has been lost only when 
the retransmission timer expires. 

 

 
 

Figure 3. Tahoe without Fast Retransmit 
 



 128

This implementation includes two algorithms 
only: Slow Start and Congestion Avoidance. Figure 
3 describes the working mode of this 
implementation: 
 
1.  The first 12 packets are acknowledged 

appropriately.      
2.  Packet 13 is dropped. 
3.  Packets 14 and 15 are acknowledged, but the 

ACKs sent are duplicate ACKs for segment 12 
4.  Packet 16 is dropped  
5.  Packet 17 is acknowledged, but the ACK sent is 

a duplicate ACK for segment 12 
6.  The last 5 segments were not acknowledged 

properly so the sender cannot send anymore 
packets.  

7.  The transmission restarts (with Slow Start 
algorithm) when the retransmission timer for 
packet 13 expires (timeout). Segment 13 is 
retransmitted. 

8.  The ACK generated because of the correct 
reception of packet 13 is the ACK for packet 
15, because packets 14 and 15 are already in the 
receiver’s buffer. This ACK segment 
acknowledges segments 13, 14 and 15. 

9.  Packet 16 is retransmitted, but there is also an 
useless retransmission of packet 17 because this 
packet is already in the receiver’s buffer  

 
TCP TahoeNoFR is characterized by a 

retransmission timeout for segment 13 and an 
useless retransmission of segment 17. 

 The situation when multiple packets are lost 
from one window is almost similar with the situation 
when there is only one packet lost from that 
window. The first lost packet will generate a 
retransmission timeout (a lot of time wasted), and all 
the lost packets will be retransmitted immediately 
afterwards.   

This implementation performance is very poor 
especially when at least one packet per window is 
lost and packet loss happens very often. This would 
lead to many timeouts. 
 
4.3. Tahoe TCP 

 
Tahoe implementation added a number of new 

algorithms and refinements to earlier 
implementations (including TCP without Fast 
Retransmit). The algorithms suite included Slow-
Start, Congestion Avoidance and Fast Retransmit. 
With the latter one, after receiving a 3 duplicate 
acknowledgments for the same TCP segment, the 
data sender inferred that a packet has been lost and 
retransmitted the packet. Note that this happened 
before the retransmission timer generated timeout, 
leading to a higher channel utilization and 
connection throughput. Unfortunately, in practice 

we were not able to find any workstations in the 
Internet currently using this TCP version. 
 
4.4. Reno TCP 

 

 
Figure 4. Reno TCP 

 
Reno implements two new algorithms beside the 

those ones implemented by TahoeNoFR: Fast 
Retransmit and Fast Recovery.  

In Figure 4 the area for the first 18 segments is 
zoomed because the initial figure might create the 
idea that there is no Slow Start, which is not true. 
The implementation works as follows: 
 
1.  The first 12 packets are acknowledged 

appropriately . 
2.  Packets  13 and 16 are dropped. 
3.  Segments 14, 15 and 17 generate duplicate 

ACKs for segment 12. Because of the 3 
consecutive duplicate ACKs, Fast Retransmit 
and Fast Recovery algorithms are started. 

4.  Packet 13 is fast retransmitted. 
5.  The received ACK confirms packets 13, 14, and 

15, and asks for segment 16. This is a new and 
distinct ACK and because of it Fast Retransmit 
algorithm ends and a new packet is transmitted: 
18.  

6.  Packet 18 generates a duplicate ACK for packet 
15.  

7.  Since there are no new and distinct ACKs, no 
more data can be sent. Because there aren’t 
enough duplicate ACKs to start the Fast 
Retransmit algorithm for packet 16,  
transmission restarts only when the 
retransmission timer for packet 16 generates 
timeout.  

8.  When the timer expires, packet 16 is 
retransmitted, and because packets 17 and 18 
are already in the receiver’s buffer, an ACK for 
packet 18 will be generated. 

 
Fast Retransmission algorithm solves one 

problem from TahoeNoFR: there is no timeout for 
the first packet lost for one window. But this 
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happens when we have a multiple packet loss from 
the same window. Reno TCP works best for only 
one lost packet per window. Another problem of 
TahoeNoFR that is solved by Reno is the useless 
retransmission of packet 17. 

This was a problem because we were loading the 
network with unnecessary packets since they are 
already in the receiver’s buffer. 

Reno TCP is characterized by a Fast Retransmit 
for packet 13, a Retransmit Timeout for packet 16, 
and no unnecessary retransmission of packet 17 (for 
the scenario described in Figure 5).  

 
4.5. NewReno TCP  

 
NewReno TCP is a variant of Reno with a little 

modification within Fast Recovery algorithm. This 
was done in order to solve the timeout problem 
when multiple packets are lost form the same 
window. 

 

 
 

Figure 5. NewReno TCP 
 
Figure 5 shows the way this implementation 

works: 
 
1.  The first 12 packets are acknowledged 

appropriately 
2.  Packets  13 and 16 are dropped 
3.  Segments 14, 15 and 17 generate duplicate 

ACKs duplicate for segment 12. Because of the 
3 duplicate ACK Fast Retransmit and Fast 
Recovery algorithms are started. 

4.  Packet 13 is fast retransmitted 
5.  The received ACK confirms packets 13, 14, and 

15, and it asks for segment 16. This is a new 
and distinct ACK, but an intermediate one (it 
acknowledges only some of the segments not all 
the segments that need to be acknowledged). 
Because of it Fast Retransmit algorithm does 
not stop, and is applied for segment 16 

6.  Segment 16 is fast retransmitted and it generates 
an ACK for segment 17, because packet 17 
already in the receiver’s buffer. 

7.  All the packets that needed to be acknowledged 
were acknowledged, so the Fast Retransmit 
algorithm stops. 

 
Note that higher performances were obtained  

due to the little modification of Reno TCP.  
Although NewReno solves the timeout problem 
when multiple packets are lost form the same 
window, it can retransmit only one packet per 
Round Trip Time. 

 
4.6. RenoPlus TCP 

 
This implementation was found on Solaris 2.51.  
In Figure 6 it can be observed the way this 

implementation works, and also that this 
implementation does not perform a correct Slow 
Start. 

 

 
 

Figure 6. RenoPlus TCP 
 
1.  The first 12 packets are acknowledged 

appropriately.  
2.  Packets  13 and 16 are dropped. 
3.  Segments 14, 15 and 17 generate duplicate 

ACKs duplicate for segment 12. Because of the 
3 duplicate ACK Fast Retransmit and Fast 
Recovery algorithms are started. 

4.  Packet 13 is fast retransmitted. 
5.  The received ACK confirms packets 13, 14, and 

15, and it asks for segment 16. This new and 
distinct ACK is not considered as an 
intermediate ACK (like NewReno). Because of 
this ACK segments 18, 19 and 20 are 
transmitted.  

6.  These 3 segments will generate duplicate ACKs 
for segment 15. Fast Retransmit and Fast 
Recovery algorithms are started. 

7.  Packet 16 is fast retransmitted. 
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8.  The received ACK (acknowledgement for 
segment 20) confirms packets 16, 17, 18, 19 
and 20. 

 
4.7.  TCP Versions Used by Some of the 
        Current Operating Systems  
 

OS TCP 
Implementation 

FreeBSD 3.5.1 Reno 
FreeBSD 4.2 Reno 
FreeBSD 4.3 NewReno 
FreeBSD 4.4 NewReno 
FreeBSD 4.5 NewReno 
Windows 98 TahoeNoFR 

Windows 2000 TahoeNoFR 
RedHat 7.2 NewReno 

 
Table 1. TCP Versions 

 
We tested several operating systems in order to 

determine the TCP implementation. Some old 
editions of tested systems used Reno (FreeBSD 
3.5.1 and 4.2), whilst the latest versions evolved 
towards NewReno (FreeBSD 4.3, 4.4, 4.5, RedHat 
7.2). Surprisingly, Windows 98/2000 Professional 
are currently using TahoeNoFR (Tahoe without Fast 
Retransmit).  
 
5. Conclusions and further work 
 
    The most reliable implementation is NewReno 
TCP. 
 
1.  It has no useless retransmissions and very low 

probability of retransmission timeouts. 
2.  Most web servers prefers NewReno.  
3.  To avoid the performance decreasing in case of 

a congested network, the selective ACK option 
should be enabled. 

 
Several other tests, related to the new coming 

operating systems (Windows XP/2003, RedHat 
8.0/9.0 etc.) are under progress. We want to extend 
also our study for the new congestion control 
algorithms used in the latest TCP implementations: 
Vegas, Peach, ATCP etc. Also we plan to study the 
dynamics of the congestion window in order to 
analyze TCP throughput for different 
implementations. 
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