
PROTOCOLS FOR COMMUNICATION BETWEEN QOS
AGENTS: COPS AND SDP

Daniel Zinca1, Virgil Dobrota1, Cristian-Mihai Vancea1, Gabriel Lazar1

Department of Communications
Technical University of Cluj-Napoca

Cluj-Napoca, Romania

Abstract – One solution to ensure QoS needed by multimedia applications is to start the
requests directly from the host. In this case, a QoS management architecture can be used to
avoid that applications are requesting parameters that cannot be sustained by the network. This
paper considers two protocols that can be used for the communication between the QoS agents
and a QoS management tool in a architecture we developed. The first protocol is COPS that was
designed to exchange policy information, including QoS parameters, either the IntServ or
DiffServ scheme. The second protocol is SDP, designed for exchanging multimedia session
information between participants. The element of novelty in this paper is that we defined several
modifiers that enable the use of SDP in combination with SIP for exchanging QoS policy
information between QoS agents and the management tool. We investigate the two protocols
regarding the suitability to the task and we found that using SDP with the proposed extensions is
a feasible solution that has several advantages over the solution of using COPS.

I. INTRODUCTION

Different multimedia applications need different QoS (Quality of Service) parameters.
IETF defined two categories for implementing QoS: IntServ (Integrated Services) [4] and
DiffServ (Differentiated Services) [5]. Depending on how QoS is implemented by different
applications, there are three situations: no QoS at all, IntServ (for example Microsoft
NetMeeting) or DiffServ. If a multimedia application is QoS enabled, it can make requests to
the network. One disadvantage of using QoS enabled applications is that the same type of
multimedia application can implement different QoS techniques if produced by different
manufacturers and the network does not necessary implement that type of QoS. Other
disadvantage is that applications tend to request for example bandwidth as much as possible,
without taking into account of other applications running on the same network.

In order to eliminate these disadvantages we proposed the following architecture [8],
discussed in details within Section II. It consists of a QoS management tool running on a
neutral station belonging to the Internet Service Provider and of QoS agents enabled on each
terminal that run multimedia applications.

The protocol used for communication between the QoS agents and the QoS management
tool is of great importance. In this paper we compare two existing protocols regarding the
suitability to the task. The first protocol is COPS (Common Open Policy Service) [1] and the
second one is SDP (Session Description Protocol) [2] used in combination with SIP [3].
COPS was designed as a management protocol in order to exchange information between
policy servers and networking equipment. It has specific extensions for IntServ and DiffServ.

1 Technical University of Cluj-Napoca, Department of Communications, 26-28 Baritiu Street,
 3400 Cluj-Napoca, Romania, Phones: +40-264-195699/ext.208, +40-264-413038, Fax: +40-264-197083,

 E-mail:{Daniel.Zinca, Virgil.Dobrota, Mihai.Vancea}@com.utcluj.ro, gabi_l@email.ro

53

We found that the client side of this protocol can be implemented by the QoS agent. We used
Intel’s COPS SDK [9] for developing client applications. In our architecture, the network
node (COPS specification) is QoS agent and the policy server (COPS specification) is QoS
tool. Section III discusses this protocol and the results we obtained.

The second approach is our proposal of adapting SDP to be used. There are several
application-defined modifiers in SDP and Section IV discusses some of them. We developed
a SIP/SDP parser and we included into the VoIP (Voice over IP) application.

Section V draws the conclusions of the work done regarding the use of these two protocols
for exchanging QoS information between QoS agents and the management tool.

II. QOS MANAGEMENT TOOL ARCHITECTURE

We proposed a QoS management architecture consisting of QoS agents running on end

stations and QoS Management tool running on a neutral station (see Figure 1).

Figure 1. The QoS Management tool and QoS agents [8]

The QoS agents are sending QoS_req to the management tool in order to obtain the proper
scheme to be used. Depending on the application type and specific QoS requirements, the
QoS tool determines the proper ‘treatment’, consisting of IntServ/DiffServ configuration of
routers in the Autonomous Domain. Also, the QoS agents receive the session parameters (if
using IntServ) or DSCP value (if using DiffServ). The QoS agent is responsible of changing
the scheme used on the terminal. Depending on the type of multimedia application used, the
QoS agent actions can be different regarding the detection of the multimedia application
characteristics and requirements.

If the QoS Agent must implement RSVP, it will use Microsoft Generic QoS API (GQoS),
an extension to Windows Sockets. On the other hand, if the QoS Agent must implement
DiffServ, a NDIS (Network Driver Interface Specification) Intermediate Driver is used, that
marks certain packets sent over one network interface of the terminal according to predefined
rules, for example the destination IP address, source/destination port, DSCP (DiffServ
CodePoint) value. Either implementation is independent of multimedia application used.

Figure 2 presents the QoS agent actions in the case of a VoIP application.

54

Figure 2. QoS agent actions

III. USING COPS AS THE COMMUNICATION PROTOCOL BETWEEN
QOS AGENTS

The first choice for the communication protocol between QoS agents and the management
tool we developed was COPS. Although the clients are usually embedded in routers, we found
that these also can be implemented in QoS agents. For testing the suitability of the solution
proposed, we used Intel COPS SDK.

The policy server, i.e. the PDP-Policy Decision Point in the COPS specification, can be
either embedded in the QoS management tool, either the tool could dynamically change the
PDP rules. The clients, i.e. the PEP-Policy Enforcement Points, are embedded in the QoS
agents. The communication between PDP and PEP is initiated by the agent (by sending a
Client-Open message) when it determines that a multimedia application is running. The
policy configuration is determined by the management tool and is sent by the PDP (the
Client-Accept message of Client-Close if a QoS scheme cannot be implemented in a particular
case). If the network conditions are changing and the management tool determines that the
QoS scheme must be modified, the PDP can send the new policy to the agent, in order to
replace the previous one. The agent must send Keep-Alive messages to the PDP. The transport
protocol used is TCP and the port number on which the policy server listens is 3288 [1]. The
location of the management tool (IP address) is configured in the agent.

The software implementation of the PEP can be done using socket calls. The source code
in the COPS SDK is an example of such implementation (see the architecture presented in
Figure 3).

The Portability Layer allows the extension of the SDK to other operating environments in
addition to Microsoft Windows family, for example to Linux or Solaris. The base COPS
extension performs the interaction between the client and the server according to COPS
specification. The RSVP extension provide the mechanism to exchange RSVP policy control
decisions between clients and the Policy Server. The COPS-PR (COPS for Policy
Provisioning) extension is used to communicate PIBs between PDPs and PEPs. The DiffServ
extensions enable the support of QoS differentiation between aggregated flows, in order to
classify and mark the traffic entering the network.

55

 DS-PIB RSVP

COPS-PR

 COPS

Portability Layer

Figure 3. Intel COPS Client SDK architecture [9]

The RSVP extension provide the mechanism to exchange RSVP policy control decisions

between clients and the Policy Server. The COPS-PR (COPS for Policy Provisioning)
extension is used to communicate PIBs between PDPs and PEPs. The DiffServ extensions
enable the support of QoS differentiation between aggregated flows, in order to classify and
mark the traffic entering the network.

We implemented the PEP in the agent and we used the PDP binary distributed with the
SDK. As the development tool we used Microsoft Visual C++ 6.0. Figure 4 presents a COPS
Client-Open message sent by the agent and captured by Ethereal software package.

Figure 4. COPS Client-Open message

In Figure 4, the PDP IP address is 172.27.208.165, the QoS agent address is 172.27.208.30

and the Client-type is RSVP. The agent must send requests for both clients, RSVP and
DiffServ respectively.

56

IV. USING SDP AS THE COMMUNICATION PROTOCOL BETWEEN
QOS AGENTS

In this paper we propose the SDP protocol to be used for communication between QoS
agents. SDP was developed in order to communicate the relevant conference setup
information (the session description) to participants in a multimedia conference [2]. SDP can
use different transport protocols, SIP being one of the most used. Different multimedia
applications are implementing SIP/SDP parsers. Although there is no QoS-related
information, in [2] is stated that the application can define several modifiers for specific
purposes. One example is [10] where a RTCP (RTP Control Protocol) attribute is introduced.

We propose to use the b= (bandwidth) modifier to communicate specific information
regarding the QoS parameters. For example, for communicating the bandwidth requirements,
the b=AT:<bandwidth requirement in kbps> modifier will be used, because the value is
application-specific. The b=X-D:<delay in miliseconds> is needed for exchanging the delay
requirements. In case of DSCP value, b=X-DSCP:<DSCP value> specificator have to be
used, whilst the scheme information may envolve b=X-S:<INTSERV or DIFFSERV>.
According to SDP specifications, existing SDP parsers will ignore these fields, but the new
ones can use them to exchange the QoS information. Figure 5 presents an example of a SDP
message including the proposed extensions for DiffServ scheme. The message is sent by the
QoS management tool after determining the proper treatment, and is encapsulated in the body
of a SIP INVITE message.

Figure 5. Structure of a SIP/SDP message for exchanging DiffServ information

It is also possible to send an INVITE from the QoS agent containing no specificators and

to have the management tool to send the SIP OK message containing the QoS specificators.

V. CONCLUSIONS

Our paper investigates two protocols to be used for communication between QoS agents in
the QoS management architecture we proposed in [8], COPS and SDP respectively. The
element of novelty is the use of optional fields in SDP to fit the purpose of communicating
QoS parameters.

Several issues must be addresses in order to make SDP a complete solution for exchanging
QoS information and we intend to continue the investigations in order to find solutions. Of
great importance is the security issue, that can be solved using IPSec to encapsulate the
SIP/SDP message. There are also other QoS parameters that need to be added as modifiers.

57

The SDP solution has the following advantages over the COPS solution:

1. A SIP/SDP parser is already implemented in several multimedia applications and the

support for the modifiers can be easily added

2. COPS is a separate protocol that runs over TCP. SDP/SIP can run over UDP therefore

is no need to implement TCP in dedicated applications (for example in VoIP
telephones) because UDP is simpler to implement than TCP and multimedia
applications are using usually RTP over UDP.

References

[1] D. Durham et al, ”The COPS (Common Open Policy Service) Protocol”, RFC 2748,
January 2000
[2] M. Handley et al, ”SDP: Session Description Protocol”, RFC 2327, April 1998
[3] J. Rosenberg et al, ”SIP: Session Initiation Protocol”, RFC 3261, June 2002
[4] R. Braden et al, ”Resource ReSerVation Protocol (RSVP) – Version 1 Functional
Specification”, RFC 2205, September 1997
[5] S. Blake et al, ”An Architecture for Differentiated Services”, RFC 2475, December 1998
[6] V. Fineberg “A Practical Architecture for Implementing End-to-End QoS in an IP
Network”, IEEE Communications Magazine, January 2002, pp. 122-130
[7] V. Dobrota, “Digital Networks in Telecommunications. Volume 3: OSI and TCP/IP”,
Mediamira Science Publishers, Cluj-Napoca 2002
[8] D. Zinca, V. Dobrota, C.M. Vancea, G. Lazar, ”A Practical Evaluation of QoS for Voice
over IP”, 12th IEEE Workshop on Local and Metropolitan Area Networks LANMAN 2002,
Stockholm, Sweden, August 2002, pp.65-69
[9] Intel COPS SDK 3.1, http://developer.intel.com, March 2002
[10] C. Huitema, “RTCP attribute in SDP”, <draft-ietf-mmusic-sdp4nat-02.txt>, Work in
progress, February 2002

58

	Daniel Zinca1, Virgil Dobrota1, Cristian-Mihai Vancea1, Gabriel Lazar1
	Technical University of Cluj-Napoca
	
	
	
	I. INTRODUCTION
	II. QOS MANAGEMENT TOOL ARCHITECTURE
	III. USING COPS AS THE COMMUNICATION PROTOCOL BETWEEN QOS AGENTS
	IV. USING SDP AS THE COMMUNICATION PROTOCOL BETWEEN QOS AGENTS
	V. CONCLUSIONS
	References

