
Use of the symbolic concurrent programming

Erlang to test the integrated digital networks

access

V. Dobrota

Technical University ofCluj-Napoca, Department of

Communications, 3400 Cluj-Napoca, Romania

Abstract

The purpose of this paper is to present an efficient tool, as well as a new teaching
method, using a symbolic concurrent programming language Erlang (hosted on a
workstation running UNIX/DOS/Windows) for a telecommunications application.
The aim is to realise a software simulator for the ISDN access, being an ISUP state
machine implementation, but also the paper is focused on underlining the stages
that a teaching course would have to address in order to generate, step by step, a
rapid prototype. It can be useful to understand the mechanisms of a client/server
architecture and a socket/port based inter-processes communication. Obviously the
software simulator is a powerful instrument to verify the specific signalling
protocols involved as well.

1 Introduction

The experiments with programming telecommunications applications using
different languages (such as Lisp, Prolog, Parlog) stated that productivity gains
can be achieved by a symbolic language, which provides primitives for concurrency
and error recovery, and the execution model does not have back-tracking [9].
Most of the telecommunications processes are asynchronous in operation and they
must have a unique correspondent process in the language, which means
granularity of concurrency. The Computer Science Laboratory of Ellemtel
Utvecklings AB (Sweden) presented Erlang at ISS'90 and one year later a faster
implementation of this new software package was released to users. The main
features of Erlang, as a symbolic concurrent language, recommend it for building
the robust concurrent systems, and also make it suitable for rapid prototyping

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

268 Software Engineering in Higher Education

(compare to the time it takes using conventional imperative languages). Erlang is
being used for prototyping cordless applications at Ericsson Radio, for controlling
photonic switching at Ericsson Telecom etc, as well as in universities around the
world and in European collaborative projects for telecommunications such as
RACE (Research and Development in Advanced Communication Technologies in
Europe). The first book about concurrent programming in Erlang was published by
Prentice Hall in 1993 [1]. In MAGIC, which is a RACE project investigating
advanced Broadband-ISDN signalling protocols, it has been necessary to develop a
software simulator for the I SUP (ISDN User Part) protocol, in order to test the
interworking of B-ISDN and the existing Narrowband-ISDN signalling systems.
The approach of the project was to prototype the ISUP state machines in Erlang.
This paper intends to present the experimental results of this, but not from the
technical point of view. The aim is to underline the stages that a teaching course
would have to address, for an easy understanding and efficient learning of this new
language, and then for having the ability to implement a rapid prototype
concerning a specific domain (telecommunications for instance).

2 Overview of Erlang for teaching purposes

The data types and objects provided by Erlang that are mentioned in this paper are
the following.
Numbers: For example: integers, floating point numbers, ASCII characters.
Atoms: Individual objects of a textual content.
Tuples: An object that contains a fixed number of other objects.
Lists: This provides a means of storing a variable number of other objects

in a sequential manner.
Modules: Groups of Erlang functions that are independently compiled.
Processes: Independently executing Erlang programs (Note Erlang processes

are lightweight processes and execute within a single UNIX
process).

Ports: The means of sending messages between processes.
BIF: Built-in Functions (functions provided by the Erlang language).
References: Globally unique symbols.

The first step in learning how to use Erlang for a symbolic concurrent
programming is to understand its application to sequential programming. This
paper supposes that the readers are already familiar with other programming
languages because it is very interesting to adopt a permanent comparative method,
to discover the advantages and disadvantages in different circumstances. The
following examples illustrate the basic Erlang data types, such as: numbers
(integers, floats), atoms, tuples, lists, pids, ports, references.

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

269

Examples of integers in base 10: 6, -6
Examples of integers in base 16: 16#BOCF, 16#A010
Examples of integers in base 2: 2#lliiOOll, 2#10101010
Examples of ASCII values: $A, $s
Examples of floats: 16.536, -9.2311, 20.45E-14
Examples of atoms: 'This is an atom', this_is_an_atom, abed
Examples of tuples: {this,that},{12345,{this,that},'Tuple'}, {}
Examples of lists: [this,that],[12345,{this,that}],[],"i am",

[105,95,97,109], ""
* Examples of variables: I_am_a_variable, VariableName, J

There are no restrictions concerning the length of the atoms or the characters
included. To store any size but fixed number of items it is suitable to use a tuple.
For variable number of items it is proper to use a list which is dynamically sized.
Variables must start with a capital letter and they can only be bound once, i.e once
set their value cannot be altered, which is an important feature of Erlang.

Every process is a complete virtual machine having at its creation a unic Pid
(Process identifier). Suppose we are in the process A , with Pid A, and we want
to create another process named B The code is: Pid_B = spawn (Module,
Func, Args), where Module represents an independent entity (module) which
has a name (must be an atom) and includes different functions (their names must be
also atoms) that could be exported or not to other modules. Func is the name of a
function defined within specified Module or within current module. Args is a list
that represents the arguments of function and because they can be any Erlang data
structure it is even possible to have a function with no arguments. There is a
special category of functions named BIFs (Built In Functions) which are part of a
module called eriang and they normally do actions that are of general interest or
are impossible to be realised in other way. Some of them could return information
about the system, such as dateo or timeo . Other BIFs provide a conversion
between different data types [1]:

integer_to_list(Integer) list_to_integer(AsciilntegerList)
float_to_list(Float) list_to_float(AsciilntegerList)
atom_to_list(Atom) list_to_atom(AsciilntegerList)
tuple_to_list(Tuple) list_to_tuple(List)
pid_to_list(Pid) list_to_pid(AsciilntegerList)

To illustrate the Erlang data types, the following example shows the conversion
of the atom "Erlang' to a list of ASCII characters (in decimal codes). The example
was run on a UNIX machine named helios and the commands to be entered are
shown in bold:

helios% erl
Erlang (JAM) emulator version 3.3.581
Eshell V2.0
l>atom_to_list (' Erlang') .
[69,114,108,97,110,103]

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

270 Software Engineering in Higher Education

The port is another data type which provide byte stream interfaces to external
UNIX processes. Communication is realised using a socket. On the Erlang side
data is represented by a list of integers and on the UNIX side the bytes in the signal
are proceeded by the length given in 2 bytes, with most significant one first. So a
port can be seen as an external Erlang process and it is started using a BIF like in
the following example: Port = open_port ({ spawn, Process }) .

UNIX Process A UNIX Process B

Erlang
Process

\
\ /''Communication'

Erlang Process

Figure 1: Inter-processes communication using a socket

The exchange of information between processes (including ports) is realised by
sending messages, which are in fact tuples containing Erlang data types. The
message is sent to the Pid of the destination process as follows: Pid ! {*My
message'}. However, in Erlang it is common practice to include the Pid of the
calling process in the message, which permits the destination to identify the
originating process and to send replies. The Pid of the current process can be
found from the BIF seif(). As an example we will send the message
[49,50,51,52] from a process identified by Pid A to another process identified by
Pid B The recipient must check the identity of the source.

-module (com) .
-export([trs/2,rec/2]).
trs(Pid_A,Pid_B) ->

List = [49,50,51,52],
Pid_B ! {selfO, List}.

rec(Pid_A,Pid_B) ->
receive
{Pid_A, Message} ->
io:format(" Message received by Pid_B ~w~n", [Message]);
Other ->
io:format(" Error in receiving message ~n", [])
end.

Finally, the references are data types which provide globally unique symbol
guaranteed not to match any other symbol in the system. To create a reference
means to apply a BIF called make_ref o .

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Engineering in Higher Education 271

{Pid.A, {49,50,51,52}}
-

Figure 2: Inter-processes communication using Pid

The above overview illustrates the most important aspects and problems that
have to be covered by a teaching course as a first introduction to a new symbolic
concurrent language, Erlang. Best results can be obtained following the
recommendations from [1] and [2].

3 Use of Erlang to implement an ISUP state machine

The next aim of this paper is to present a method of understanding the mechanism
of a client-server architecture and a socket/port based inter-processes
communication. It is expected to improve the ability to create a rapid prototype of
a software simulator for the ISDN access, being an ISUP state machine
implementation. The technical requirements are very important in designing of this
tool but they can not be covered by this paper Because each Erlang process will
communicate with other connected Erlang processes, the readers must become
familiar with the concept of socket. A socket is a full duplex communication
channel between two UNIX processes either over the network to a machine
elsewhere or local between processes running on the same machine. There are two
parts: the initiator and the connector. The initiator is the UNIX process that opens
the socket first and after it issued a series of system calls to set up it waits for a
response from another UNIX process, called the connector, which agrees to
connect. There is a bidirectional exchange of information between them until the
socket is closed. The following building blocks (each of them has one or more
Erlang processes attached) have been used: N-ISDN Network Application,
Interworking Unit, Communications Link [3]. In order to simplify the
implementation it is possible to have two configurations [4]: single ISUP state
machine and two ISUP state machines (Figure 3).

3.1 General description of the software simulator
The following requirements were adopted from the beginning: three independent
circuits on the N-ISDN links; fully monitored processes, simple to understand user
interface;an interactive system for Call Control (both configurations) and
Signalling Procedure Control (single ISUP state machine configuration only); an

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

272 Software Engineering in Higher Education

N-ISDN INTERWORKING N-ISDN NETWORK
UNIT APPLICATION

I CC:>123400A ^ ^, CC:>123400A

TIMER u4 , j I to* TIMER

MASTER & CPCI/CPCO i i I I MASTER & CPCI/CPCO
I I I I :^ : I | i __̂ ,

socket_TIMER ^"^ \ \ \ ^^ socket_TIMER

socket_CC M I ~~ ^ socket_CC

socket_SPRC1 SPRC1-SPRC2 Link Master socket_SPRC2
A A

N-ISDN COMMUNICATION LINK

Figure 3: Two ISUP state machine configuration

easily upgradable package by inserting new messages or new facilities. The ISUP
simulation makes use of the following main component blocks: CC (Call Control):
This is an entity that simulates the call control processes of the signalling
applications. It is realised as an user interface displaying and allowing the user to
input signalling primitives. SPRC (Signalling Procedure Control): This is an
entity that simulates the signalling procedure control processes. It is realised as an
user interface displaying and allowing the user to input signalling messages, but
only for single ISUP state machine configuration. TIMER (Timing Control): This
is an entity that offers four independent timers(Tl,T5,T7,T9) for every active
circuit It receives timer start and timer_stop commands and sends alarms when
the tir expired. MASTER & CPCI/CPCO (Master & Call Processing Control
Incom>..g, Call Processing Control Outgoing): This is an entity that monitors all
the sockets of the ISUP state machine and also implements all the functions of the
CPC machine for both incoming and outgoing calls. It is not realised as a user
interface but it provides complete details about the exchange of information
through the sockets and about every internal transition of the current state
machine. SPRC1-SPRC2 LINK MASTER: This is an entity that essentially

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Engineering in Higher Education 273

simulates the N-ISDN link between two ISUP state machines. It includes the
function of SPRC for both machines and also monitors the exchange of
information from one ISUP machine to another.

All these blocks communicate by sockets: socket_CC: Socket between CC and
MASTER & CPCI/CPCO, used to transfer primitives; socket_SPRC: Socket
between SPRC and MASTER & CPCI/CPCO, used to transfer messages and
primitives; socket_TIMER: Socket between TIMER and MASTER &
CPCI/CPCO, used to transfer timer_start, timer stop and timer_expired;
socket_SPRCl: Socket between SPRC1-SPRC2 LINK MASTER and MASTER
& CPCI/CPCO (IWU), used to transfer messages and primitives; socket_SPRC2:
Socket between SPRC1-SPRC2 LINK MASTER and MASTER & CPCI/CPCO
(NA), used to transfer messages and primitives.

~D cmAael- /him/oh
CC: > 123400A ^

'setuo.req' •>
CC: > AR
CC:) ̂
CC: > AR

'alertjnd' <• i
CC: > AR
CC: > AR

'setupjconf <» j
CC: > AR |
CC:) AR

'reljnd' <=
CC: > AR
CC: > 123410C

'reLres' *)
CC: > AR
CC: > AR **************** ,<
CC: > AR f-
«= \ «""""""« 1

@̂ cnHiti»i-/bin/csh
SPRCl: 'IAH' •>

'S8ize<j' :SPRC2
<- 'ACM' :SPRC2«»**•*******«******<***>
<» 'm/C :SPRC2
<• 'REL' :SPRC2
<• 'REL' :5PRC2
<• 'REL' :SPRC2

SPRC1: 'RIC' •>
SMd: 'idle;

«
SPRCl:

«i —

CPCI: Changing of state to IDLE »T i"
3) *R <« CPCI: Sending 'rel_C3fif . 't5_stop' ard Tjtop' »T
3) AR

<•• CPCI: Sending 'idle :pc' to taster IT
3) *R

<»» MASTER: Sending 'rel corf to socket_CC
3> AR
3) AR

<•• KASTER: Sending 'tSjstap' to sockedKR
3) AR
3> *R <== MASTER: Sending 'tljtap' to sockst_~TJ€R
3) AR
3) ̂

<- MASTER: Sending idle.cpc to >ock£t_SW g

3) AR v
MASTER: NORMAL EXIT !!! »T nr

die' :5PRC2
:SPRC2

0

^

•0

CPCC: Cur-ar
3> *R

••••••••••1' setup.; nd' <• *~"

CC: > '234101
'alertjeq' »>

C': > '23410C
'set'jp.res' •>

CC: > *S
CC: > '23410E \

'rel.req' •> '
CC: > *R i*•****»*«*««**•*
CC: > "R
CC: > AR
CC: > *R

'reLconf <»

K= ̂ ̂ Q

[]ĵ^ î«:>- """"""""*" iS
it stats WAIT FOP OGC RELEASE COMPLETE 4"".'-'

3> AR !
•-> MASTER: R«e'ved 'raises' from socket.CC

3> AR
•-> CPCC: Received 'rel res' in WAIT FOA OGC REL. COMP. »'i'

3> AR ;CPCO: Changing of state to IDLE »T
3> *R <" CPCO: Seeding 'SL:' to laster »'''
3> "R j<•» CPCO: Serfng '-d'e.cpc' to taster #'"'

<== MASTER: kr.ding -lc to socket JPRC •
3> AR ;
3> AR ;

<•• MASTER: Serd-ng idle.cpc to sooeLSPRC A
3> *R .-
3> *R fe

MAS1R: HCBHL EXIT !!! $'"'%

Figure 4: Experimental results for two ISUP state machine configuration

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

274 Software Engineering in Higher Education

3.2 Experimental results
Figure 4 presents the images of windows involved in a two ISUP state machine
configuration. As a tool for a new teaching method this software package has a
very friendly user interface, by offering a powerful system which is able to simulate
the protocol implemented. It could be possible to design another version of the
simulator, with the same requirements, but using another type of inter-processes
communication (as it was presented in Figure 2). In this case every Erlang process
must know the Pids of all connected processes and also it supposes that users have
access to a X Window and graphic interface to Erlang. There is available a graphic
manager (based on Interviews from Standford University) which is a separate
process, that via Erlang buit-in ports is controlled by the Erlang module iv. For
technical purposes and for more than two state machines configuration, an
Interview based solution could be more efficient, but for teaching purposes the
implementation presented herein provides a beginning.

4 Conclusions

This paper presented an overview of a new symbolic concurrent programming
language Erlang for teaching purposes, as well as an application to implement a
software simulator in order to test the integrated digital networks access
(interworking of signalling between the Broadband-ISDN and the existing
Narrowband-ISDN). The aim was to underline the stages that a teaching course
would have to address in order to understand the mechanisms of a client/server
architecture by using Erlang. It is also useful in the process of teaching/learning
the telecommunications protocols.

Acknowledgements: The author would like to acknowledge the information and
the support provided by staff involved in RACE-MAGIC project, in particular
thanks go to Luigi Ronchetti and Luca Cipriani from Ericsson Telecommunicazioni
(Italy), Richard Boulter and Graham Popple from BT Laboratories (UK). In
addition the assistance from Bjarne Dacker from Ellemtel Utvecklings Aktiebolag
is also gratefully acknowledged. Very special thanks go to Paul McDonald from
BT Laboratories for his competent help.

References
1. Armstrong, J, Virding, R & Williams, M. Concurrent Programming in Erlang,
Prentice Hall, 1993
2. ***, Erlang Standard Libraries, Version 3.2, Ellemtel Utvecklings AB, 1992
3. ***, MAGIC R2044/BTLT)S/P/004/bl, RACE Project R2044, MAGIC -
Descriptor Of The Model / Demonstrator, 4th Deliverable, 1993
4. Dobrota, V N-ISDNISUP Simulator, British Telecommunications pic, 1993.

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

