
Understanding the programming techniques

for client-server architectures

V. Dobrota,* S.D. Bate,* M. Cosma," D. Zinca*

"Technical University ofCluj-Napoca, Department of

Communications, 3400 Cluj-Napoca, Romania

^Coventry University, School of Engineering, Coventry,

Abstract

This paper sets out the authors' experience in teaching programming
techniques applied for the Client-Server architectures. First, as there are
multiple requirements for students coming from different areas of computer
science or of communications engineering it was decided to find the suitable
methods to teach the subject. Second, two approaches have been studied, from
the standpoint of: as a future software engineer working in setting up a
telecommunications application and as a future communications engineer
working in setting up a software tool. The variety of opinions is confirmed by
the students' solutions to a specific problem which has been given for a rapid
implementation. C was chosen for DOS/Windows and Erlang for UNIX,
internetworking with TCP/IP.

1 Introduction

The importance of the client-server architecture is increasing constantly, as
more and more people become involved in global communication. The Internet
and the Information Superhighway are exciting subjects that are of great
interest. It is becoming very clear that in a short time a client-server literacy
will be an obligatory condition to gain employment for certain IT personnel.
This paper focuses on understanding the mechanism of a client-server
architecture in general and some of the particular programming techniques to
implement it. Being a relatively new topic to teach an experiment project has
been launched for students studying their M.Sc. in telecommunications. Two
perspectives have been chosen: 1 . As a future software engineer working in

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

304 Software Engineering in Higher Education

setting up a telecommunications application based on client-server
architectures (mainly focused on computer engineering); 2. As a future
telecommunications engineer working in setting up a software tool based on
client-server architectures (mainly focused on communications engineering).
Some teaching problems and difficulties which were overcome during this

experiment are also presented. These are accompanied by relevant commentary
and practical examples, written in C for DOS/Windows and Erlang for UNIX.

2 Client-server architectures

First it was useful to define what is the meaning of client or server software
and what is their specific interworking mechanism. A client is an application
which initiates peer-to-peer communication. Most client software consists of
conventional programs which contact the server, send a request and wait for an
answer. If the answer comes in time, the client continues its process. There are
some standard applications included in this category and mentioned by Stallings
[2], such as TELNET, FTP, SNMP (defined by TCP/IP). Some examples of
non-standard applications (at the moment) could be an experimental audio-
video conferencing system, specific access to a distributed database etc.

A server is an application that expects communication requests from its
clients in order to provide the service and to return back the result towards the
originator TCP/IP will be considered in our case study. The technology
frequently used in this area includes CO (Connection-Oriented) servers (like
TCP) and CL (Connectionless) servers (like UDP) The TCP servers are
suitable for a reliable communication channel and Comer & Stevens [1]
strongly recommended them to be implemented by the beginners. There is a
permanent check if data has been received error-free at its destination, a
mechanism of retransmission being activated if necessary. The UDP servers do
not offer guaranteed data delivery so there is no confirmation, like in the
previous case They are suitable for broadcasting applications or whenever the
protocol overhead is too long to be acceptable (Berson [3]).

Obviously the attribute of being a client or a server is relative: in the mean
time an application could request a communication from a server (acting as a
client) and also could provide itself services for other clients (acting as a
server). This duality has an important influence over the programming
techniques used to implement the desired architecture.

3 Problems in teaching and learning of internetworking

TCP/IP - TLI Version

AT&T has launched TLI (Transport Layer Interface) as an interface between
application program and the protocol software in the operating system, being in
fact a transport service supplier. The specifications, that have been published by
Comer & Stevens [1], are applied to the following defined functions:

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Engineering in Higher Education 305

t_accept t_free t_optmgmt t_rcvuderr
t_alloc t_getinfo t_rcv t snd
t_bind t_getstate t_rcvconnect t_snddis
t_close t_listen t_rcvdis t~sndrel
t_connect t_look t_rcvrel t_sndudata
t_error t_open t_rcvudata t^sync

t_unbind

The students' reaction to this new subject was dependent on their background
(whether in computer or communications engineering) and their programming
skills. It was supposed that they had already learnt to write programs in C and
Intel 80x86 assembly language. In addition some of them became familiar with
a special programming language (Erlang), which is suitable for
telecommunications applications, as in [5]. The client-server architecture is a
topic covered in a general course: 'Computer Networks'.

| t_open(path,oflags,info);

| DESCRIPTION: Both clients and servers call t_open to
| create a communication descriptor.The caller specifies
| a path associated with the transport service provider
j and the type of service.
| ARGUMENTS:
I path &char A pointer to a path name for
| transport provider
! oflags int The same as the flag bits in
I UNIX's open

info &struct t_info Other information including
I the service type ;
| RETURN CODE: t_open returns a nonnegative communication I
I descriptor if successful and -1 if an error occurs. ;
| When an error occurs, the global variable t_errno '
|_ contains: TBADFLAG, TSYSERR ;

Figure 1: Example of a TLI function, Comer & Stevens [1]

The most sensitive terms (from the teaching point of view) were the
following: definition of client, server, port, communication descriptor, global
variable. After the presentation of the specification for TLI functions were
completed, almost 60% of students were very confused about an apparent lack
of information provided. The implementation seemed to be very difficult at the
beginning, mainly because the simplicity of the mechanism had not been
understood. When a programmer writes an application which must be
integrated later in a client-server architecture, he does not need to know what
the operating system has to do in order to open, bind, connect, send, receive or
close communication. Because of the TLI functions, he just needs to know how
to address them, irrespective of whatever operating system is currently running.

Therefore the teaching experiment included a one-term project by organizing
the students in four teams: client TCP, client UDP, server TCP, server UDP.
Each member of a team receives a TLI function to be implemented and then

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

306 Software Engineering in Higher Education

after the integration of their work in a client or a server software, a peer-to-
peer experiment is performed. A software package PC TCP for DOS/ Windows
(FTP Software) is assumed to be installed, with a network interface (could be
packet drivers/NDIS/ODI). All the services provided by int 61h become
available after the executing of ethdrv.exe , which remains resident. The next
paragraph suggests some professional problems that could be considered.

4 Programming techniques

4.1 DOS/Windows version of a client-server architecture
Conceptually, TLI functions for Windows applications might be implemented in
two ways. In the first one a shared library, called DLL (Dynamic Linked
Library) in Windows, is used. This allows the system to keep a single copy for
every function. The second way to implement TLI functions assumes a
conventional library to be statically linked to every program if necessary.
Therefore, every program that uses them will include its own copy of the
needed function linked to it, suitable for DOS implementation.

4.1.1 TLI functions, data structures and symbolic constants What is
essential for the TLI interface is to define a new type of data called
com descriptor. It is analogous to the DOS files descriptors. This small integer
is used as an index into a table to identify the communication path to a
particular peer. The declaration will be contained in the tli.h header file:
typedef short com_descriptor; The next step is to define all the data
structures that will be needed. For example, the function t open needs a data
structure, called t info, that will contain information about the communication
requested to be set. The declaration for this structure will be also in the tli.h
header file (Figure 2). Then, by including the header file tli.h, every source
program will be able to "know" about this data structure. All the six other data
structures that are needed by the other TLI functions (t bind, t call, t discon,
t optmgmt etc.) will be defined in the header file in the same way as t info.

typedef struct
{
long addr; //size of protocol address
long options; //size of protocol options
long tsdu; //size of max service data unit
long etsdu; //size of max expedited TSDU
long connect; //max data sent during connection
long discon; //max data sent during disconnection
long servtype; //transport provider service type
} t info ;

Figure 2: Example of a data structure used for a TLI implementation

The header file will also include the definitions of all the TLI functions
implemented. Thereafter, all these functions can be used by the programmers,
instead of learning about the operating system details and writing the own TLI

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Engineering in Higher Education 307

functions. Then it is the job of the compiler (if a conventional library is to be
implemented) or the Windows system (if a DLL is to be implemented) to link
the copies of the TLI functions to all programs that will request to use them. In
addition to data structures and functions, the interface must provide a set of
predefined symbolic constants. These constants may be used in applications to
specify arguments, global variables or return values. They have to be defined in
the header file in statements like ̂ define TSYSRERROR 8 . To use all these
predefined constants, structures and functions into C applications, an înclude
<tli.h> statement is needed at the beginning of the program.

4.1.2 Implementing a conventional library for TLI functions Whatever
the application is, either a client or a server, it first calls the function t open to
create a new communication descriptor that might be further used for network
communications. Arguments to / open specify the transport provider (i.e. the
protocol software that should be used), the desired mode (e.g. whether the
descriptor will be used to read or write data) and some information about
communication in the t info structure. For example the field servtype specifies
whether the communication descriptor to be created uses TCP or UDP. An
implementation of the function t open is shown in Figure 3.

short t_errno,errno=0; //global variables
com_descriptor t_open(char FAR *path,int oflags,

t_info FAR *info)
{short sh;
if((info->servtype < T_CLTS) // UDP client or server
I|(info->servtype < T_COTS)) // TCP client or server

{t_errno=TSYSERR;
return(-1);}
asm cli;
asm pusha;
asm mov bx,oflags;
asm mov ax,seg path;
asm mov ds,ax;
asm mov si,offset path;
asm mov ax,seg info;
asm mov es,ax;
asm mov di,offset info;
asm mov ah,29h; // allocate global descriptor
asm int 61h;
asm mov sh,ax;
asm jnc no_error;
t_errno=TSYSERR;
errno=sh; // sh = error code
asm popa;
asm sti;
return(-1);

no_error: asm popa;
asm sti;
return(sh); // sh = network descriptor

Figure 3: Example of t open implementation (see Figure 1)

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

308 Software Engineering in Higher Education

All the other TLI functions, written in the same way like t open, must be added
in the file tli.c. To create a conventional library, after compilation a librarian
must be run instead of the classical linker. The result will be a library file, tli.lib,
that will contain the implementations for every TLI function. Whenever a C
application needs to call a TLI function, this function is statically linked after
compilation by the linker and the body of the needed function will be part of
the executable. Therefore, as Figure 4 suggests, if more applications run
simultaneously, more copies of the same functions will be found in the memory
at the same time

V

1

v̂-

f \

<

_^

r ^

"̂ -copies of TLI -sV*
* functions linked to

executable;
1Z- calls to O.S. -X"*

r \

»
_̂ _̂ "

r \

J

Protocol software in the operating system

OPERATING SYSTEM

Figure 4: Static linked library implementation of TLI functions

4.1.3 Implementing a shared library for TLI functions Even if a
communication descriptor is already created it does not have either local or
remote endpoint addresses specified. Thus both clients and servers call / bind
to specify the local endpoint address for the given communication
descriptor. The arguments to t bind specify the communication descriptor and
two pointers to / bind structures: one is called request and the other one
result. The pointer to the request structure might be NULL, showing that the
caller does not care about the endpoint address which will be chosen by the
service provider. Otherwise the request structure will contain the endpoint
address and the maximum number of TCP connections the system will queue
up. All the other TLI functions have to be implemented in a similar way. Then
the resulting tli.c file will be compiled by a C for Windows compiler, building a
DLL. For this, instead of a WinMain entry point for the executable, rather a
LibMain entry point will be used. Whenever a new application is to be created
it might use all the functions, structures, global variables and predefined
symbolic constants assuming that the tli.h header file is included and all the
functions used are declared as 'IMPORTS' in its .def file. Then, when the first
application that uses TLI functions is to be run, the DLL file is loaded and
dynamically linked to it Each other application will use the same, already
loaded, DLL Therefore, even if there are more applications that are running
simultaneously, they will share the same copy of the TLI functions code and
only one set of functions might be found in the memory (Figure 5). However,

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Engineering in Higher Education 309

these functions are related to different data segments when called and thus they
will provide the appropriate results to the caller [4].

/ applications images

Dynamically linked Transport Layer Interface

1 LProtocol software
OPE

in
RAl

the Operating System
flNG SYSTEM

Figure 5: Dynamic linked library implementation of TLI functions

4.2 UNIX version of a client-server architecture
The teaching experiment is assumed to include a UNIX version of a client-
server architecture, but without TLI functions. Based on students' reaction to
the DOS/Windows version previously discussed, it seems that, for better
understanding of the terms (such as socket, port, client, server), other point of
view could be useful. Some teaching problems encountered by use of a new
symbolic concurrent programming language Erlang for telecommunications
applications, have been presented at SEHE 94 by Dobrota [5]. Underlining the
advantages compared to conventional imperative languages, a rapid
implementation of a client-server architecture is presented. It is assumed that
there are two processes and an inter-processes communication using a socket.

UNIXProcessA UNIX Process B

/ 'Calling' \
(Erlang j
V Process /

Figure 6: Inter-processes communication using a socket

The following examples present the mechanism of starting a socket server and
a socket client (Figure 7). Then it is not very difficult to test the output and
input for both processes. Obviously the implementation of TLI functions in
Erlang could be for further study, as well as other combinations of
programming languages and operating systems: C++ for UNIX, Erlang for
DOS/Windows etc.

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

310 Software Engineering in Higher Education

server_socket (Name) ->
socket:start(),
ListenSocket=socket: listen ('STREAM' , \AF__INET' , 0,

twobytes),
{FD, Port} = ListenSocket,
io:format("~s:attempting to use port:~w~n",[Name,Port]),
Accepted = socket:accept(ListenSocket),
io:format("~s: connected to port: ~w. Id = ~w~n",

[Name,Port,Accepted]) ,
Accepted.

client_socket (Name, Machine, Port) -> |
socket: start () ,
io: format ("~s : connecting to port: *~w' on machine

^~w'~n", [Name, Machine, Port]),
Socket-socket : client ('STREAM' , *AF_INET' , {Machine, Port },

twobytes) ,
io: format ("~s : connected to socket : *~w' ~n", [Name, Socket]),

Figure 7: Starting a socket server and socket client in Erlang under UNIX

5 Conclusions

A teaching experiment has been launched in order to find the suitable methods
to teach client-server architecture and their particular programming techniques.
The first approach was from standpoint of a future software engineer working
in telecommunications and setting up a DOS/Windows version,
internetworking with TCP/IP. TLI functions were assumed to be used,
implementing conventional or shared library for them, written in C++. The
second approach was from standpoint of a future communications engineer
designing a software tool. The UNIX version of a client- server architecture,
but without TLI functions, has been done in Erlang, a new symbolic concurrent
programming language.

References

1. Comer, D. & Stevens, L.D. Internetworking with TCP/IP -AT&T TLI
version, Vol.III, Englewood Cliffs, Prentice Hall, 1994.

2. Stallings, W SNMP, SNMPv2, andCMIP. The Practical Guide to
Network-Management Standards. Addison Wesley Publishing, 1 993 .

3. Berson, A. Client/Server Architecture. McGraw-Hill, Inc. 1992.
4. Pietrek, M. Windows Internals. The Implementation of the Windows
Operating Environment. Addison- Wesley Publishing Company, 1993.

5. Dobrota, V. Use of the Symbolic Concurrent Programming Erlang to Test
the Integrated Digital Networks Access, SEHE 94, in Software Engineering
in Higher Education SEHE 95 Proceedings.

 Transactions on Information and Communications Technologies vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

