
WAN EMULATOR

Andrei Bogdan Rus 1 , René Serral Gracià 2 , Jordi Domingo-Pascual 2 , Virgil Dobrota1

1Technical University of Cluj-Napoca, Communications Department, 26-28 George Baritiu Street,
400027 Cluj-Napoca, Romania, Tel:+40-264-401226, E-mails: {bogdan.rus, virgil.dobrota}@com.utcluj.ro}

2 Universitat Politecnica de Catalunya, Barcelona, Dept. d'Arquitectura de Computadors, Campus Nord. Modul D6. Jordi
Girona 1-3, E-08034 Barcelona, Spain, Tel: +34-93-4016981, E-mails: {rserral, jordi.domingo@ac.upc.edu}

ABSTRACT
Testing in real life conditions is not as easy as it first seems,
because often it is costly and difficult to reproduce Internet
behaviour in controlled environment. WAN Emulator (WANE)
proposed herein is a software tool that helps controlling the IP
traffic parameters of a network, like delay, packet loss or
packet duplication.

1. INTRODUCTION
Testing in real life conditions is not as easy as it first seems,
because often it is costly and difficult to reproduce Internet
behaviour in a controlled environment. The current tools
available involve expensive hardware or proprietary solu-
tions. However there is a software tool called NetEm (Net-
work Emulator) which is an enhancement of the traffic con-
trol facilities provided by the Linux Kernel. The major ad-
vantage of this open-source software is related to its good
performances. On the other hand, it is rather difficult to use
NetEm, as it requests advanced knowledge in traffic control
under Linux. The proposed tool, called WANE (WAN Emula-
tor), has a friendly user interface, while maintaining the good
performance in evaluations.

The rest of the paper is structured as follows: the next section
presents the software tool developed in this work, after this,
we follow the discussion by explaining the basis of the core
technologies used in this work, namely iptables, tc (traffic
control) and NetEm Qdisc Design. Later we present the tests
and results along with the limitations of the system. Finally
we conclude and detail the further lines of research.

2. SOFTWARE TOOLS: IPTABLES, TC AND
NETEM

WANE is a software tool for Linux platforms and it is inte-
grated into NetMeter, developed by Universitat Politecnica
de Catalunya in Barcelona [1]. The software was designed to
test the measuring tools already developed in NetMeter.

Figure 1. Testbed architecture

In Figure 1 we have illustrated the way that WANE is used in
the testbed. The parameters that can be emulated with this
tool are the following: delay, jitter, dropped packets and du-
plicate packets. Another facility that WANE offers is the abil-
ity to emulate several scenarios in the same time for different
data differentiated by a series of parameters such as:
source/destination address, mask and port; protocol (TCP,
UDP or ICMP); input network interface of the router con-
trolled by WANE.

The proposed emulator uses two tools implemented in Linux
kernel: iptables and tc. In order to implement a specific sce-
nario, the steps covered by the tool are listed below.

1. Marking the specific traffic flow for which the tc parame-

ters are configured using iptables.

2. Building the tc tree composed by queuing disciplines and

enabling the changes of IP parameters for the output data
traffic. This step is implemented with the tc tool.

3. Filtering the flows with a specific mark previously set to

the packet in the first step, and sending them to a specific
branch from the tc tree built in step two. To implement it
we used the filtering option of this tool.

Figure 2. iptables architecture

iptables is the native packet filtering mechanism for the
Linux 2.4 and above kernel series. We can use it to filter
packets, implement network address translation and mangle
packets. There are three default chains for filtering packets:
INPUT, OUTPUT and FORWARD, and two default chains
for network address translation: PREROUTING and
POSTROUTING, and three tables: filter, nat and mangle.

In Figure 2 we can see the chains through which the packets
are going, when the iptables service is enabled in Linux ker-
nels. In this paper we used the mangle table in order to mark
packets from a specific data flow. The marking rules were set
into the PREROUTING chain. We later used this mark in
order to identify the flows and apply the desired changes in
the network metrics.

Figure 3. Layering of tc queuing disciplines

tc is a software tool, implemented in Linux kernel, based on
the concept of queue, i.e. a stack where the binary data is
stored, before sending it to the network interface. The queues
can have classes with different parameters and priorities.
However the major issue is that it is complex to work with
and it requires some experience. One of the most important
goals of WANE tool is to make the user’s job easier.

WAN Emulator uses a tc tree and builds it depending of the
user needs, as in Figure 4. The root of the tree is a HTB qdisc
used to set a maximum transfer rate for the data flow. These
parameters are used when WAN Emulator builds the class,
attached to the root qdisc. If the user does not want to
specify any of the above parameters, WANE will create a
class with a maximum rate set to the link speed, so that these
settings will not affect in any way the traffic that is forwarded
to this class. A NetEm qdisc was attached to the HTB class,
as in Figure 4. This provides the functionality to emulate IP
traffic parameters for testing several protocols. The current
version emulates variable delay, loss and packet duplication
[4].

After creating the tree, the last step is to implement the filters
used to discriminate the packets based on a set of parameters.
In this case, the packets are filtered according to their
associated mark set by iptables. After that the packets are
sent to a specific branch from the tree that emulates a specific
scenario.

Figure 4. Traffic control tree build by WANE

NetEm is an enhancement of the tc tool and it can be used to
emulate IP traffic parameters like: packet delays, dropped
packets or duplicate packets. It consists of two parts, a small
kernel module for a queuing discipline and a command line
utility to configure it. The kernel module has been integrated
in Linux 2.6.8 kernels or later.

3. TESTS AND RESULTS
We tested if the parameters (such as delay, percentages of
dropped or duplicate packets and throughput) applied to
WAN Emulator properly influenced the traffic flows.

Figure 5. Experimental results: delay tests 1-4

First, we used a tool from NetMeter that measured packet
delay from a specific source to a destination. Within the first
test in WANE we considered a fixed delay of 100 ms, whilst
in the second test each packet was delayed randomly within a
range of values 180 ms and 220 ms. Test 3 took into consid-
eration the fact that the delay variation (jitter) is not purely
random in real networks. So we specified a correlation
between two consecutive values. This represented how much
of the current delay applied to the packet depended on the
previous one. This correlation is described analytically in the
following equation:

1 1
100 100n n
Corr CorrDelay Delay RandDelay−

⎛ ⎞= ⋅ ± ⋅ −⎜ ⎟
⎝ ⎠

 (1)

where Delayn refers to the current packet and Delayn-1 to the
previous packet.

Corr is the correlation and RandDelay is a random delay
value. Within the third test the delay was in the range 280 ms
up to 320 ms, with a correlation of 80%. Finally, the fourth
test took the delay between 380 ms and 420 ms, with a
normal (Gaussian) distribution.

Figure 6. Normal distribution

Figure 7. Pareto distribution

In Figure 6 we represented the percentages of packets de-
layed versus the delay (in milliseconds). This result proved
that the emulator managed to impose a normal distribution.
Later on a Pareto distribution was analyzed too, demon-
strating that WANE is able to implement it (see Figure 7).

The second group of experiments was devoted to check
how accurate WANE can emulate packet dropping. Before
doing a measurement we configured the emulator to discard
a specific percentage of packets. For each set we performed
three tests, taking the average as a final result.

Observe from Table 1 that the difference between imposed
values of dropped packets and the measured ones was less
than 1%. This performance is good enough for emulating a
certain connection as in a real network. The same procedure
was applied for duplicate packets, the results being pre-
sented in the Table 2. Again the WANE emulation errors
were less than 1%. Next we investigated the maximum
transfer rate using a tool called NetPerf [5]. Thus we
started from 10 kbps up to 100 Mbps. For each maximum
rate imposed by WANE several tests were performed, the
average throughput been presented in the Table 3.

Measured value at: Value im-
posed by
WANE

[%]

1kB/s
[%]

10kB/s
[%]

100kB/
s [%]

1MB/s
[%]

10 9.8 10.1 9.8 10.1
20 20.3 20.2 19.9 19.9
30 29.5 30.4 30.2 30.2
40 39.1 40.8 40.1 39.8
50 50.2 49.2 49.8 50.1
60 59.7 59.6 60.2 60.3
70 70.4 69.9 70.3 69.8
80 80.1 79.6 79.7 80.4
90 90.3 90.1 89.8 90

Table 1. Packets dropped

Measured value at: Value im-
posed by
WANE

[%]

1kB/s
[%]

10kB/s
[%]

100kB/s
[%]

1MB/s
[%]

10 10.3 10.1 9.7 10.1
20 19.6 20 19.8 20.2
30 29.5 30.2 30.1 29.9
40 40.6 39.9 40.3 39.8
50 50.1 49.8 49.8 50.2
60 60.2 60.3 60.1 60.1
70 69.8 69.7 69.9 69.9
80 80.2 79.8 80.2 79.9
90 90.1 90.2 90.1 90.2

Table 2. Duplicate packets

Maximum
throughput
imposed by

WANE

Average
throughput
measured

Error [%]

10 [kbps] 9.59 [kbps] 4.10
50 [kbps] 48.06 [kbps] 3.89
100 [kbps] 97.33 [kbps] 2.67
500 [kbps] 479.17 [kbps] 4.17
1 [Mbps] 0.95 [Mbps] 5.00
5 [Mbps] 4.79 [Mbps] 4.20

10 [Mbps] 9.58 [Mbps] 4.20
50 [Mbps] 47.89 [Mbps] 4.22

100 [Mbps] 95.95 [Mbps] 4.05
Table 3. Maximum throughput

Observe that in this case the emulation error was less than
5%. There are several reasons for this. First is the fact that
the measuring tool worked at the Application Layer and it
did not count the headers added to the packets. Moreover
TCP automatically adjusted the transmission window, usu-
ally underestimating the available throughput. The formula
for the error value was the following:

 _[%] 100

_
Val imposed averageer

Val imposed
−

= ⋅ (4)

Regarding the limitations of WAN Emulator tool, these are
due to the disadvantages inherited from NetEm qdisc. So,
NetEm does its best to a single flow. However, real world
networks are quite complex and the emulation inevitably
breaks down in some circumstances. Linux version used was
not a real-time operating system and this generates some
constraints on the performance of a real-time simulator such
as NetEm. Kernel timers are limited by the system time tick
rate of 1000 Hz (1 ms) on Linux 2.6. The Linux 2.4 kernel
uses a slower 100 Hz clock (10 ms). Therefore NetEm can
not be used to emulate relatively short delay networks of less
than 1 ms [6].

4. CONCLUSIONS
NetEm (Network Emulator) proved to be a useful tool for
testing protocol behaviour. It provided the necessary statisti-
cal options to emulate real world network response. The au-
thor of NetEm developed this tool, in order to validate BIC
TCP and TCP Vegas protocols for the Linux 2.6 kernel. But
since then, many other developers used NetEm to test proto-
cols and applications. The proposed tool WANE (WAN Emu-
lator) made the job easier for the researchers because they
will not have to bother with creating the tc tree, marking the
specific traffic and filtering it. All these operations are made
by WANE in a decent time with the same accuracy as
NetEm. As future work, we want to improve WANE in order
to support IPv6 traffic. Additionally we envisage an extra
feature of the emulator to be able to corrupt packets and to
test how this could influence the quality of the tested flow.

REFERENCES

[1] ***,www.ccaba.upc.edu/netmeter
[2] http://www.ks.uni-

freiburg.de/download/inetworkSS04/practical/iptables-
intro-short.pdf

[3] MA.Brown, Traffic Control HOWTO,
 http://linux-ip.net/articles/Traffic-Control-

HOWTO/classful-qdiscs.html, 2006
[4] ***, http://linux-net.osdl.org/index.php/Netem
[5] ***, http://www.netperf.org/netperf/training/Netperf.html
[6] S.Hemminger, Network Emulation with NetEm, 2005
[7] J.Boxman, A Practical Guide to Linux Traffic Control,

Chapter 6.3 Using the Netfilter MARK Target,
http://trekweb.com/~jasonb/articles/traffic_shaping/
classlows.html

[8] B.Hubert, Linux Advanced Routing & Traffic Control
 HOWTO, http://lartc.org/howto/

