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Abstract – This paper is focused on the study of  routing 
protocols in IPv4 and IPv6. Their classification is based 
on type of updating (distance-vector versus link-state), 
working domains (intra- versus inter-domain), number 
of paths (single or multi-path), and type of traffic 
(unicast or multicast). The work is backed up by the 
practical experiments, using the Zebra and GateD 
routing software on RedHat Linux platform for IPv4, 
and pim6sd and pim6dd on FreeBSD for IPv6. The 
architecture used by the experiments revealed the 
operation of the following routing protocols: RIPv1/v2,  
RIPng, OSPFv2/v3, DVMRP, PIM-SM and PIM-DM in 
IPv4/IPv6. The deployment of a multicast testbed is 
more complex than for a unicast one. It involves a 
multicast traffic source, at least one member for that 
multicast group and the multicast routers.  
Keywords: Zebra, GateD, KAME, multicast, routing 
protocols 
 

I. INTRODUCTION 
 

One of the basic functions of the Internet Layer is to 
forward packets from the source to the destination. 
This process of moving packets across an inter-
network is called routing and the device performing it 
is an IP router.  
 
Routing generally involves the (optimal) path 
determination and the packet switching [4]. The 
protocols involved use metrics to evaluate the best 
single or multiple paths to be followed by a packet in 
order to reach the destination. To perform the path 
determination process, the algorithms establish and 
maintain routing tables. According to this dynamically 
updated route information, the switching is able to 
move the packet from a router’s interface to another, 
forwarding the datagram towards the next hop. The 
static and dynamic allocation of logical IP addresses 
is described in details in [1], [5].  
 
During the current migration from IPv4 to IPv6, due 
to the lack of addresses and/or the exponential growth 
of the routing table size, additional mechanisms were 
implemented too. Among them, CIDR (Classless 
InterDomain Routing), VLSM (Variable Length 
Subnet Mask) and NAT (Network Address 
Translation) have a certain success. There are no 
doubts that IPv6 remains the complete solution, 
expecting to be generalized as soon as possible. For 
these reasons, the paper is focused on a major 

problem during the transition from one IP version to 
another: the routing protocols. Although the approach 
has taken into consideration the existing achievements 
in the field (including those from Cisco Systems, the 
world leader) the practical experiments were 
conducted in Linux, due to its availability for the new 
coming IPv6-based routing protocols. 
 
IP multicasting is a Network Layer mechanism to 
support applications where data needs to be sent from 
a source to multiple receivers (point-to-multipoint). 
The applications based on this concept could be for 
instance conferencing systems, software updates, on-
demand video distribution and resource discovery. A 
major benefit of using multicasting could be the 
considerable decrease of the network traffic (load). It 
optimizes the number of packets sent when there is a 
group of nodes as destination.  
 
The problem of routing multicast packets efficiently 
to the group members is more complex than in 
unicast. As different approaches have been taken into 
consideration, a set of multicast protocols were 
designed: DVMRP (Distance Vector Multicast 
Routing Protocol), MOSPF (Multicast Extensions to 
OSPF), PIM (Protocol Independent Multicast) and 
CBT (Core Based Tree). Other challenging issues are 
how to implement reliable multicast, how to handle 
the flow control and how to secure a multicast 
session.  
 
This paper focuses on multicast routing, involving 
DVMRP and PIM only, due to the lack of 
implementations of other protocols. The platforms 
were based on Linux Fedora Core 1 (FC1) for the 
IPv4 multicast routers and IPv4/IPv6 clients 
(multicast senders and receivers) and FreeBSD 5.2.1 
for the IPv6 multicast routers. 

 
II. ROUTING BASICS 

 
II.1. Unicast Routing 
 
The several existing routing algorithms may have 
different impacts on network but certain common 
properties are requested for all of them: correctness, 
simplicity, robustness, stability, fairness and 
optimality.  
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There are two methods used to build a routing table: 
static and dynamic. Static routing does not involve an 
algorithm, as the network administrator manually 
configures the routes.  On the other hand, the dynamic 
one utilizes algorithms that automatically discover, 
calculate and maintain paths through the network. 
These are classified into three main categories: 
distance-vector, link state and hybrid.  
 
The multiplicity of routing protocols could be 
explained also by the domain they were designed to 
operate in. Intra-domain protocols work only within 
an AS (Autonomous System), whilst inter-domain 
protocols are applied between several routing 
domains. Note that an autonomous system is a 
collection of networks under a common 
administration. It might be possible to have an 
overlapping of routing domains within an AS, as the 
router may work with different routing protocols in 
the same time. However, an administrative distance 
(from 0 to 255) is a rating of the trustworthiness of a 
routing information source. For a given route, the 
protocol having the lowest administrative distance 
will be chosen. By default the distances for a 
connected interface is 0 and for a static route is 1. 
Table 1 presents some of the most used routing 
protocols, classified according to the criteria 
previously discussed. 

The need for balanced utilization of the network 
resources has lead to complex routing protocols that 
support multiple paths to the same destination. This 
evolution requested a different approach. Within the 
initial flat routing systems, all routers were on the 
same level, all of them exchanging routing 
information and all being peers of all others. 
Hierarchical systems divide the network into routing 
areas. Some routers in an area can communicate with 
routers in other areas, while others can communicate 
only with routers within their area.  
 
The use of hierarchical routing reduces the amount of 
routing update traffic and simplifies sometimes the 
algorithms. The process of bringing all routing tables 
to a state of consistency is called convergence. The 
time it takes a network to converge depends on the 
routing algorithm, the convergence time being one of 
the most important performances criteria. The 
continuous circling of traffic between two or more 
routers is referred to as a routing loop. The count-to-
infinity problem is specific to distance vector 
protocols only and it consists on a continuous 
increment of the path cost up to infinity. Obviously, 
the routing loops and the count-to-infinity problem 
have to be carefully considered and eliminated.  
 

 
Table 1. Classification of IP routing protocols 

Routing Administrative Zebra
Protocol Distance Implementation

Intra- Inter- Distance Link- Single Composite IPv4 IPv6 Single Multi Uni- Multi-
vector state cast cast

RIP X X X X 120 X X X
RIP-2 X X X X 120 X X X
RIPng X X X X 120 X X X
IGRP X X X X 100 X X -

EIGRP X X X X X 90/170 X X -
OSPF-2 X X X X 110 X X X
OSPF-3 X X X X X 110 X X X
MOSPF X X X X X -

IS-IS X X X X X 115 X X -
DVMRP X X X X X -

PIM X X X X -
EGP X X 140 X X -

BGP-4 X X X X X 20/200 X X X X

Path Unicast/
Multicast

MetricsWorking
Domain

Type IP
Version

 
 
A. RIPv1, RIPv2 and RIPng 
 
RIP (Routing Information Protocol) is a distance 
vector routing protocol that uses hop count as a metric 
to determine the direction and distance to any link in 
the internetwork. It was designed for small domains, 
selecting the path with the lowest number of hops (not 
greater than 15).  
 
Routing tables are exchanged through routing updates 
that are broadcasted periodically every 30 seconds. 
Split horizon or split horizon with poison reverse are 
used to prevent the count-to-infinity problem. RIPv1 
(RIP Version 1) requires all devices in the network to 

use the same subnet mask, because it cannot include 
subnet mask information in its routing updates. This is 
a typical characteristic of a classful routing protocol.  
 
RIPv2 (RIP Version 2) provides support for CIDR 
and VLSM, being a classless routing protocol [5]. It 
prefers multicasting instead of simple broadcasting of 
routing announcements. This reduces the processing 
load on hosts that are not listening for RIPv2 
messages. Additional support for authentication and 
fully interoperability with RIPv1 are provided. 
 
RIPng (RIP Next Generation) was developed to allow 
routers within an IPv6-based network to exchange 



 3 

information. Although it uses the same algorithms, 
timers and logic as in previous version, there are two 
major differences. First, the RIPng does not include 
any native authentication support, relying on security 
features offered by IPv6. Second, the packets were 
updated to support the 128-bit IPv6 address format. 
RIPv1, RIPv2 and RIPng have the same limitation as 
any distance vector routing protocol, which is the 
slow convergence. An additional drawback such as 
the path cost restriction (maximum 15 hops) might be 
eliminated within a Cisco routers only, by choosing 
IGRP (Interior Gateway Routing Protocol) (up to 255 
hops). 
  
B. OSPFv2 and OSPFv3 
 
OSPFv2 (Open Shortest Path First Version 2) is a 
link-state routing protocol developed to address the 
limitations of RIP. It provides immediate propagation 
of routing updates because they are events triggered, 
offering faster convergence and no cost limitations. 
OSPF was from the beginning designed as a classless 
routing protocol, by supporting CIDR and VLSM. 
Being very complex, it permits hierarchical routing. 
Thus OSPF networks are divided into a collection of 
areas (logical groups of networks and routers). Area 0 
(known as backbone area) physically connects to all 
other areas. Each router has a view of the entire 
network (a routing loop-free approach) and it executes 
the SPF (Shortest-Path First) algorithm to determine 
the routes to the destination. Routing information is 
flooded by using LSA (Link State Advertisement) 
packets to the following IPv4 multicast addresses: 
224.0.0.5 for OSPF routers and 224.0.0.6 for 
Designated/Backup Designated routers. 
 
OSPFv3 (OSPF Version 3) was designed for both 
IPv4 and IPv6. Obviously, some modifications were 
needed due to the changes in protocol semantics or 
simply to handle the increased address size. New 
LSAs have been created to carry IPv6 addresses and 
prefixes. Authentication has been removed from the 
OSPF protocol itself, relying on IPv6's AH 
(Authentication Header) and ESP (Encapsulating 
Security Payload) [1]. Although the SPF algorithm 
was employed again, the multicasting is using to 
distinct IPv6 addresses:  FF02::5   for all OSPF 
routers and FF02::6 for all Designated/Backup 
Designated routers. Note that the packets sent to these 
multicast addresses should never be forwarded 
because they are meant to travel a single hop only. 
This is the reason to have multicast addresses with 
link-local scope and packets sent to these addresses 
should have their IPv6 Hop Limit set to one. 
 
II.2. Multicast Routing 
 
Multicast data delivery requires a set of protocols and 
mechanisms at the Network Layer: 
 

• Multicast addresses that designate a multicast  
group as the destination of  a datagram 

• A mechanism that allows a host to join and leave a 
multicast group 

• Multicast routing protocols that set up paths, 
called distribution tree, from the sender to the 
members of a multicast group. 

 
IPv4 and IPv6 multicast addresses have different 
structure. The range of IPv4 multicast addresses, from 
224.0.0.0 to 239.255.255.255, corresponds to the class 
D addresses of IPv4 addressing scheme. Class D 
address is identified by the first four bits (1110) 
within the address. The remaining 28 bits contain the 
group ID of the multicast group [9]. IPv6 multicast 
addresses are divided in four different fields. The first 
field (8bits) identifies that the address is a multicast 
address. This is followed by a flag field (4 bits) 
showing whether the address is permanent or non-
permanent. The next four bits contain the delivery 
scope of the multicast packet. The group ID makes up 
the rest of the address (112 bits) [11]. 
 
Table 2. IPv4 multicast address structure 

1110 Multicast group ID 
4 28 bits 

 
Table 3. IPv6 multicast address structure 

11111111 flags Scope Multicast group 
ID 

8 4 4 112 bits 
 
A group management protocol is used by host willing 
to join or leave a multicast group. This way, hosts 
inform neighboring routers that they are interested in 
receiving multicast packets. IGMP (Internet Group 
Management Protocol) is the IPv4 version of this 
protocol and the IPv6 version is called MLD 
(Multicast Listener Discovery). 
 
There are three versions of IGMP. IGMPv1 has two 
types of messages, membership query and 
membership report. Hosts send IGMP membership 
reports corresponding to a particular multicast group 
to indicate that they are interested in joining that 
group.  
 
Router periodically sends IGMP membership query 
messages to verify that at least one host on the subnet 
is interested in multicast traffic. IGMPv2 is an 
enhancement of the first version and it includes a few 
extensions. Among them there is a procedure for the 
election of the multicast query device for each LAN, 
explicit leave messages for faster pruning and group 
specific query messages. IGMPv3 permits a host to 
join a group and specify a set of sources of that group 
from which it wants to receive multicast. This feature 
is called source filtering. MLD protocol has two 
versions: MLDv1 (IPv6 version of IGMPv2) and 
MLDv2 (IPv6 version of IGMPv3).  
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To deliver traffic to all receivers, multicast-capable 
routers create distribution trees. The simplest way of 
providing multicast routing is by flooding. If a 
multicast router receives a multicast packet for the 
first time, it forwards this packet to all the outgoing 
interfaces except the one from which it receives it. 
This solution is very inefficient in terms of network 
bandwidth utilization. A better solution is to build a 
spanning tree where a multicast router could forward 
multicast packets to all the interfaces that are part of a 
multicast tree except the source. Multicast forwarding 
algorithms can be classified in two categories: source-
based (shortest path tree) and core-based (shared tree). 
 
A source-based tree has its root at the source and 
branches forming a spanning tree through the network 
to the receivers. The source-based tree has the 
drawback that it is dependent on the source of the 
multicast tree; it must be computed separately for 
each source.  
 
Core-based tree algorithms need a single common 
root placed at a chosen point in the network, but the 
root is not at the source. This shared root is called a 
rendez-vous point (RP). The disadvantage of core-
based trees is that under certain circumstances the 
paths between the source and receivers might not be 
the optimal. Therefore the placement of the RP must 
be carefully considered. 
 
Source-based trees, as well as core-based trees can be 
constructed using RPF (Reverse Path Forwarding). 
The idea of RPF is the following: by given the address 
of the tree’s root, a router selects as its upstream 
neighbor in the tree the router which is the next-hop 
neighbor for forwarding unicast packets to the root. 
The network interface used to reach this upstream 
neighbor is called the RPF interface.  
 
RPF tells each router the upstream neighbor in the 
distribution tree, but not the downstream neighbors, so 
additional protocol mechanisms are needed to 
determine the outgoing interfaces. One method to 
achieve this is flood-and-prune, which starts by 
forwarding multicast packets on all its interfaces, and 
then deletes interfaces which are not part of the 
distribution tree. Another method, called explicit join, 
requires that multicast receivers initiate the process of 
getting connected to the distribution tree. 
 
Multicast routing protocols minimize the paths from 
the receivers to the source, as opposed to minimizing 
the path from the source to the receiver. 
 
 
A. DVMRP  
 
DVMRP was the first multicast routing protocol 
developed. It utilizes a dynamic routing protocol for 
route exchange and routing table construction based 
on RIP (Routing Information Protocol). It employs 

RPF to prevent multicast traffic from circulating in 
the network until the TTL field within the IP header 
becomes. It can operate in an environment where not 
all routers in the network are capable of multicast 
forwarding and routing. This implies a tunnel between 
multicast capable routers using IP-IP encapsulation. 
The basic operation of DVMRP consists of four 
processes [8]: 
 
• Neighbor discovery, which is used to find other 

DVMRP capable routers attached to a common 
network  

• Route exchange, similar to RIP 
• Graft messages, used to add networks to the 

forwarding list  
• Prune messages, used to remove networks from 

the forwarding list 
 
In the case of several multicast routers connected to a 
multi-access network, DVMRP provides a mechanism 
to elect a designated router (DR) to be responsible for 
forwarding multicast traffic to the network, thus 
preventing duplicate packets. The router with the 
lowest cost to the source is elected to be the DR. In 
case of a tie, the one with the lowest IP address is 
chosen. 
 
Routing information exchanged consist of three 
components: the netmask, the network, and the 
metric. DVMRP routes are sent in abbreviated format. 
Because the first octet of every subnet mask is 
assumed to be 255, it is not included in the route 
report. Only one netmask is listed for all networks 
having the same netmask. To reduce the packet size 
further, only the portion of the network that 
corresponds to a non-zero value of the netmask is 
reported. 
 
DVMRP messages are sent using IP packets with the 
protocol field set to 2, identifying the packet type as 
an IGMP message, the destination IP address used is 
224.0.0.4, ALL-DVMRP-ROUTERS 
 
B. PIM  
 
PIM is a multicast routing protocol that is independent 
of the mechanisms provided by any unicast routing 
protocol. It requires some unicast routing protocols 
(such as RIP or OSPF) to determine the network 
topology and the topology changes. 
 
PIM is not a single multicast routing protocol, it has 
two different modes: PIM-DM (PIM Dense Mode) 
and PIM-SM (PIM Sparse Mode). PIM-DM builds 
source-based trees using flood-and-prune, and is 
intended for large multicast groups where most 
networks have a group member. PIM-SM builds core-
based trees as well as source-based trees with explicit 
joins, and it is intended for environments where group 
members are distributed across many regions of the 
network. 
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PIM-DM is quite similar to DVMRP: they both use a 
flood-and-prune mechanism to build delivery trees. 
However there are some important differences 
between these two algorithms. The first is that PIM-
DM uses an existing unicast routing protocol to adapt 
to topology changes, but at the same time is 
independent of the mechanisms of this unicast routing 
protocol.  
 
The operation of PIM-DM is similar to DVMRP 
without the route exchange. To avoid duplicate 
multicast packets forwarding in multi-access 
networks, PIM-DM uses assert messages to determine 
a designated forwarder for the network. 
 
Multicast forwarding is performed for the interfaces 
from the oilist (output interface list). The oilist is 
populated with those interfaces on which neighbors 
were discovered or on which multicast receivers have 
indicated their desire to receive traffic. 
 
PIM-SM assumes that each receiver has to explicitly 
join a multicast tree if it wants to receive any 
multicast packet. It creates a core-based tree with a 
share root called RP. The RP is responsible for 
forwarding all packets destined for the multicast 
group. Each-group has a single RP at any given time.  
 
PIM-SM operation consists in three processes: 
 
• Neighbor discovery, which uses router query 

messages  
• RP registering, accomplished with register and 

register-stop messages 
• RP joining/pruning, with join/prune messages 
 
During neighbor discovery for a multi-access network 
a query message is sent to the all-routers multicast 
address, 224.0.0.2, which serves as the DR 
(Designated Router) election mechanism. 
 
When a source sends a multicast packet to a certain 
group, the DR of that source encapsulates the first 
message in register message and sends it to the RP of 
that group as a unicast message. After receiving this 
message, the RP sends back a join message to the DR 
of the source. This way a distribution tree is created 
from the DR to the RP so the next multicast message 
of this source can be forwarded to the RP. Until the 
distribution tree is created, all multicast messages will 
be forwarded as encapsulated unicast messages. When 
the RP detects that multicast packets from the source 
are received as normal IP multicast packets, the RP 
sends a register-stop message to the DR. Upon 
reception of register-stop message the DR will stop 
encapsulating the multicast traffic from the source. 
 
Hosts wanting to receive multicast traffic for a certain 
group will send an IGMP join message to their DR. 

The DR sends a join message to the RP for that 
multicast group. 
 
Using the shared tree is not the best option in all 
cases. PIM-SM provides a method for using shortest-
path trees for some or all of the receivers. When a 
threshold on a leaf router is exceeded, the router will 
switch from the shared tree through the RP to the 
source tree. In these situations, the leaf router sends a 
join message to the source node, thus creating a 
shortest-path tree. 
 
PIM messages are encapsulated in IP packets with 
protocol number 103 and are sent to the multicast 
group 224.0.0.13, ALL-PIM-ROUTERS. The type 
field from the PIM packet header identifies the 
operation mode (dense/sparse) and the message type. 
 
The operation mode of PIM for IPv6 does imply any 
major changes, except the type of addresses used 
within the header. The ALL-PIM-ROUTERS address 
ff02::d is the destination address for most messages.  
A link-local address of the interface on which the 
message is being forwarded will be used as source 
address. A special case is the Register message which 
uses domain-wide reachable IPv6 addresses, for both 
source and destination [12]. 
 

III. ROUTING TOOLS 
 
To achieve our goal, i.e. to have an IPv4/IPv6 unicast 
and multicast routing testbed, the following software 
tools where used: Zebra 0.94 and NextHop GateD 
Enterprise 2.0 running on Fedora Core 1, the KAME 
IPv6 stack for BSD, code merged in FreeBSD 5.2 and 
a collection of programs developed to send and 
receive IPv4/IPv6 multicast traffic: m4send/m4receive 
and m6send/m6receive. 
 
A. Zebra 0.94 
 
Zebra is a Free Open Source package running under 
GNU/Linux, FreeBSD, NetBSD, OpenBSD, Solaris 
and providing (simultaneous) real routing services 
based on a collection of routing daemons, as you can 
observe in Table 4. 

 
Table 4. Routing daemons in Zebra 
Routing 
daemon 

TCP port Routing 
protocols 

ripd 2602 RIPv1, RIPv2 
ripngd 2603 RIPng 
ospfd 2604 OSPFv2 
ospf6d 2606 OSPFv3 
bgpd 2605 BGP-4, BGP-

4+ 
 
As a major advantage, Zebra is also ready to support 
IPv6-based routing protocols (which is not the case of 
the most Cisco routers currently available in our 
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academic network). At least two Linux boxes with 
Zebra are needed for tests. The first one starts an 
integrated shell (zebra vty) at TCP port 2601, 
allowing to change the configuration and to display 
the routing table. The second Linux box starts a 
dedicated routing daemon. The machine exchanges 
routing information with other routers using the 
previously mentioned protocols and updates the 
kernel routing table.  
 
Note that the default commands for a Linux-based 
router configuration are ifconfig and route, whilst the 
status of routing table is displayed by netstat. These 
commands work only if the user has root privileges.  
 
On the other hand, Zebra is administrated in a 
different way. Actually, there are two modes: normal 
and enable. Within the first one, the user can only 
view system status but within the enable mode, he/she 
can change system configuration (does not matter 
his/her rights in Linux). Another option for testing 
would have been gated, but unfortunately, this routing 
daemon originally coordinated by Cornell University 
is not free, currently being developed by Merit GateD 
Consortium. 
 
B. GateD Enterprise 2.0 
 
We used the free version for academic and research 
purposes provided by NextHop. GateD includes the 
following IPv4 unicast and multicast routing 
protocols: RIPv1/v2, OSPF, BGP, DVMRP, PIM-
DM, PIM-SM, PIM-SSM (PIM Source Specific 
Multicast) [16]. 
 
GateD operation and configuration is similar to any 
Cisco router. During the installation of the software a 
special user, called cligated, is created. It gives us 
access to the command line interface. Configuration 
can be performed through XML sessions with telnet 
to the port 4242 on the machine running GateD. 
 
C. KAME – FreeBSD 
 
KAME Project is a joint effort of six companies from 
Japan to provide an IPv6 stack for different BSD 
variants. Several platforms contain KAME code in the 
source files, FreeBSD 4.0 and beyond, OpenBSD 2.7 
and beyond, NetBSD 1.5 and beyond, BSD/OS 4.2 
and beyond [17]. A separate KAME kit is available 
for each platform. The KAME kit includes more 
experimental protocols but is not as stable as the code 
merged in BSD. 
 
 
 
 
 
 
 

D. IPv4/IPv6 multicast sender/receiver 
 
The m4sender/m6sender programs periodically (1 
second) transmit UDP datagrams to a given multicast 
group. They do not join the multicast group. On the 
other hand the m4receive/m6receive programs join the 
multicast group and display the payload of received 
multicast messages to the standard output.  
 
The sender is started with the following command: 
 
#./mXsend group_address port "text" 
ttl/hoplimit 

 
For example: 
 
# ./m4send 224.5.5.5 5555 "IPv4 multicast" 4 
# ./m6send ff15::5 5555 "IPv6 multicast" 4 

 
The payload of the datagram contains besides the text 
given by the user a counter that allows us to track 
down which packets have been received. 
 
The receiver is started with the following command: 
 
# ./mXreceive group_address port 

 
For example: 
 
# ./m4receive 224.5.5.5 5555 
# ./m6receive ff15::5 5555 

 
This program sends the IGMP/MLD message to 
notify the DR that the host wants to receive multicast 
traffic for that multicast group. 
 
 

IV. EXPERIMENTAL RESULTS 
 
IV.1. Unicast Testbed 
 
The practical experiments regarding the performance 
evaluations of the routing protocols are under 
progress. This paper is discussing first the unicast 
tests using Zebra 0.94 under Fedora Core 1, for both 
IPv6 and IPv4. Apparently, the network topology 
described in Figure 1 is not very complex but it is an 
excellent testbed for the study proposed. There are 
two routers, R1 and R2, actually two Linux machines, 
each running Zebra in two Linux boxes (as it was 
explained in section III).  
 
The following subsections present the configuration 
files of for each routing daemon (ripd, ripngd, ospfd 
and ospf6d), as well some preliminary results. IPv6-
based experiments are of a greater interest than those 
related to “classical” IPv4, so the comments are 
concentrated on the new coming routing protocols. 
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Figure 1. Unicast routing testbed 

 
A. Unicast Routing in IPv6 
 
The configuration file for the Zebra daemon is called 
zebra.conf, containing the router setup (hostname, 
password, enable password, IPv4/IPv6 interfaces 
addresses). Figure 2 presents an example for router R1 
that has three interfaces (eth0, eth1, eth2). 
 

 
Figure 2. R1’s zebra.conf file 

 
The routing daemons involved were ripngd and 
ospf6d. Each daemon had its own configuration file 
called *.conf. Supposing the case of a single area 
OSPF (area 0.0.0.0), with the router-id for R1 being 
0.0.0.1 (R2 has a router-id equal to 0.0.0.2), the 
configuration files applied to router R1 are presented 
in Figure 3 and 4. 
 

 
Figure 3. R1’s ripngd.conf file 

 
Figure 4. R1’s ospf6d.conf file 

 
The proper operation within zebra could be seen by 
analyzing the entries from the routing table or the 
results of the command ping6. For instance, the 
information got from R2 must contain the routes 
learned from R1 (either by RIPng, either by OSPFv3). 
No static routes have been previously configured, so if 
the routing protocol does not work properly the 
networks connected to eth1 and eth2 at R1 cannot 
communicate with the network connected to eth1 at 
R2.  
 
There are two ways of analyzing the routing table: a) 
from the zebra daemon with the command: show ip 
route; b) from the Linux shell with the commands: 
netstat -r or route –A inet6. For a better 
understanding, we can capture the packets with the 
software packet analyzer called Ethereal. A failure 
situation must be provoked for further testing of our 
IPv6 testbed. Suppose one of the networks connected 
to router R1 will be disconnected either by 
unplugging the network cable, either by shutting 
down the interface. The time it takes for the new 
routing information to reach router R2 is actually the 
convergence time for the given routing protocol. 
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B. Unicast Routing in IPv4 
 
The same procedures were applied for IPv4, except 
the types of daemons started, which were in this case 
ripd and ospfd. Figures 5 and 6 show the requested 
configuration files. 
 

 
Figure 5. R1’s ripd.conf file 

 

 
Figure 6. R1’s ospfd.conf file 

 
Note that the two version of RIP (RIPv1 and RIPv2) 
can be configured thus resulting two routing 
scenarios. The differences presented in section II.1 are 
easy to be notices from the packets captured. First, the 
destination address is 255.255.255.255 (local 
broadcast) for RIPv1 and 224.0.0.9 (multicast) for 
RIPv2. Second, the version field and the routing 
information carried are different. 

 

 
Figure 7. Multicast routing testbed 

 
IV.2. Multicast Testbed 
 
The topology presented in Figure 7 is not very 
complex, but it is an excellent testbed for the study of 
multicast routing. There are two multicast routers, R1 
and R2 which operate under Fedora Core or FreeBSD 
depending on the experiment. We have also two 
machines which serve as multicast source and 
multicast receiver. The following subsections present 
the operations performed on the routers and hosts in 
order to enable multicasting and the problems that 
may arise. 
 
A. Multicast Routing in IPv6 
 
IPv6 multicast testing was performed using PIM 
because no other implementations were available. To 
operate one of the two PIM daemons, pim6dd or 
pim6sd, we first need to enable and configure IPv6 on 
the routers. Later we need to choose the unicast 
routing protocol and finally we can start multicast 
routing. The file /etc/rc.conf is responsible for the 
IPv6 configurations and the starting of unicast-

multicast routing daemons. Figure 8 below presents 
the R2 configuration file: 
 

 
Figure 8. R2’s /etc/rc.conf file 

 
The IPv6 unicast routing daemon implementing 
RIPng protocol is called route6d. No configurations 
are needed for this daemon; the defaults assure the 
route exchange between R1 and R2. 
 
The configuration files for the two multicast routing 
daemons are /etc/pim6dd.conf and /etc/pim6sd.conf. 
These files describe how the corresponding daemon 
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treats each interface on the system. When using 
pim6dd the defaults (or no configuration file present) 
activate PIM-DM on all interfaces, thus enabling 
multicast routing. Operating pim6sd requires some 
configuration, given by the special operation of the 
protocol.  
  

 
Figure 9. R2’s pim6sd.conf file 

 
The experiment is considered successful if the 
m6receiver program receives the packets from the 
source. Despite of all previous configuring the 
experiments have failed. The multicast daemons were 
started in debug mode, all the debug messages were 
examined, and it turned out that the router did not 
accept or did not receive the MLD messages sent by 
the receiver. Using Ethereal tool all the IPv6 packets 
from the network were captured. We discovered that 
the receiver was sending MLDv2 messages to the 
ALL-MLDv2-CAPABLE-ROUTES address ff02::16, 
in order to join the desired multicast group. The 
multicast router did not accept MLDv2 messages 
despite the mld_version any configuration was 
correct. There were two possible solutions: either to 
have an MLDv2 enabled router, either to have a 
receiver that uses MLDv1. The KAME code merged 
in FreeBSD supports only MLDv1, so the first 
solution would have been to compile a FreeBSD 
kernel and usertools (PIM daemons) from the original 
KAME kit. The other solution would have been to 
force the receiver to use MLDv1. We chose the later 
one, which meant compiling a 2.6.4 Linux kernel and 
configuring the net.ipv6.conf.all.force_mld_version=1 
in the sysctl.conf file, thus forcing MLDv1.     
 
B. Multicast Routing in IPv4 
 
The following IPv4 multicast routing protocols were 
tested: DVMRP, PIM-DM and PIM-SM. Figures 10 
and 11 present the GateD configuration files for each 
protocol used on router R1 
 

 
Figure 10. R1’s gated.conf file 

 

 
Figure 11. R1’s gated.conf file 

 
We used OSPF as the underlying unicast routing 
protocol. The routes learned by OSPF are also placed 
in the multicast RIB (Routing Information Base), so 
that PIM could use them. Otherwise PIM cannot build 
the delivery tree from the source to the receiver. 
 
 

V. CONCLUSIONS AND FURTHER WORK 
 
This paper presented the setup of unicast routing 
protocols and of new coming multicast routing 
protocols for IPv6-based networks.  
 
PIM was analyzed by comparing its implementations 
in both versions of IP. GateD Enterprise 2.0 running 
under Fedora Core 1 was used in IPv4 and FreeBSD’s 
KAME supported IPv6-based trials. Other multicast 
routing protocol, such as DVMRP, was tested in IPv4 
only, whilst MOSPF was not available at all due to 
lack of implementations.  
 
Following the trials presented herein, it is for further 
work to determine the performances of multicast 
networks, according to new IETF recommendations. 
One of the parameters to be measured is join latency, 
the time it takes a host to receive the first multicast 
packet. 
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