

Testing IPv4/IPv6-Based Unicast/Multicast Routing
Protocols Using Linux and FreeBSD

Tudor Blaga1, Virgil Dobrota1

1 Technical University of Cluj-Napoca, Communications Department, 26-28 Baritiu Street, 400027 Cluj-Napoca, Romania,

Tel/Fax: +40-264-597083, E-mail: {Tudor.Blaga, Virgil.Dobrota}@com.utcluj.ro

Abstract – This paper is focused on the study of routing
protocols in IPv4 and IPv6. Their classification is based
on type of updating (distance-vector versus link-state),
working domains (intra- versus inter-domain), number
of paths (single or multi-path), and type of traffic
(unicast or multicast). The work is backed up by the
practical experiments, using the Zebra and GateD
routing software on RedHat Linux platform for IPv4,
and pim6sd and pim6dd on FreeBSD for IPv6. The
architecture used by the experiments revealed the
operation of the following routing protocols: RIPv1/v2,
RIPng, OSPFv2/v3, DVMRP, PIM-SM and PIM-DM in
IPv4/IPv6. The deployment of a multicast testbed is
more complex than for a unicast one. It involves a
multicast traffic source, at least one member for that
multicast group and the multicast routers.
Keywords: Zebra, GateD, KAME, multicast, routing
protocols

I. INTRODUCTION

One of the basic functions of the Internet Layer is to
forward packets from the source to the destination.
This process of moving packets across an inter-
network is called routing and the device performing it
is an IP router.

Routing generally involves the (optimal) path
determination and the packet switching [4]. The
protocols involved use metrics to evaluate the best
single or multiple paths to be followed by a packet in
order to reach the destination. To perform the path
determination process, the algorithms establish and
maintain routing tables. According to this dynamically
updated route information, the switching is able to
move the packet from a router’s interface to another,
forwarding the datagram towards the next hop. The
static and dynamic allocation of logical IP addresses
is described in details in [1], [5].

During the current migration from IPv4 to IPv6, due
to the lack of addresses and/or the exponential growth
of the routing table size, additional mechanisms were
implemented too. Among them, CIDR (Classless
InterDomain Routing), VLSM (Variable Length
Subnet Mask) and NAT (Network Address
Translation) have a certain success. There are no
doubts that IPv6 remains the complete solution,
expecting to be generalized as soon as possible. For
these reasons, the paper is focused on a major

problem during the transition from one IP version to
another: the routing protocols. Although the approach
has taken into consideration the existing achievements
in the field (including those from Cisco Systems, the
world leader) the practical experiments were
conducted in Linux, due to its availability for the new
coming IPv6-based routing protocols.

IP multicasting is a Network Layer mechanism to
support applications where data needs to be sent from
a source to multiple receivers (point-to-multipoint).
The applications based on this concept could be for
instance conferencing systems, software updates, on-
demand video distribution and resource discovery. A
major benefit of using multicasting could be the
considerable decrease of the network traffic (load). It
optimizes the number of packets sent when there is a
group of nodes as destination.

The problem of routing multicast packets efficiently
to the group members is more complex than in
unicast. As different approaches have been taken into
consideration, a set of multicast protocols were
designed: DVMRP (Distance Vector Multicast
Routing Protocol), MOSPF (Multicast Extensions to
OSPF), PIM (Protocol Independent Multicast) and
CBT (Core Based Tree). Other challenging issues are
how to implement reliable multicast, how to handle
the flow control and how to secure a multicast
session.

This paper focuses on multicast routing, involving
DVMRP and PIM only, due to the lack of
implementations of other protocols. The platforms
were based on Linux Fedora Core 1 (FC1) for the
IPv4 multicast routers and IPv4/IPv6 clients
(multicast senders and receivers) and FreeBSD 5.2.1
for the IPv6 multicast routers.

II. ROUTING BASICS

II.1. Unicast Routing

The several existing routing algorithms may have
different impacts on network but certain common
properties are requested for all of them: correctness,
simplicity, robustness, stability, fairness and
optimality.

 2

There are two methods used to build a routing table:
static and dynamic. Static routing does not involve an
algorithm, as the network administrator manually
configures the routes. On the other hand, the dynamic
one utilizes algorithms that automatically discover,
calculate and maintain paths through the network.
These are classified into three main categories:
distance-vector, link state and hybrid.

The multiplicity of routing protocols could be
explained also by the domain they were designed to
operate in. Intra-domain protocols work only within
an AS (Autonomous System), whilst inter-domain
protocols are applied between several routing
domains. Note that an autonomous system is a
collection of networks under a common
administration. It might be possible to have an
overlapping of routing domains within an AS, as the
router may work with different routing protocols in
the same time. However, an administrative distance
(from 0 to 255) is a rating of the trustworthiness of a
routing information source. For a given route, the
protocol having the lowest administrative distance
will be chosen. By default the distances for a
connected interface is 0 and for a static route is 1.
Table 1 presents some of the most used routing
protocols, classified according to the criteria
previously discussed.

The need for balanced utilization of the network
resources has lead to complex routing protocols that
support multiple paths to the same destination. This
evolution requested a different approach. Within the
initial flat routing systems, all routers were on the
same level, all of them exchanging routing
information and all being peers of all others.
Hierarchical systems divide the network into routing
areas. Some routers in an area can communicate with
routers in other areas, while others can communicate
only with routers within their area.

The use of hierarchical routing reduces the amount of
routing update traffic and simplifies sometimes the
algorithms. The process of bringing all routing tables
to a state of consistency is called convergence. The
time it takes a network to converge depends on the
routing algorithm, the convergence time being one of
the most important performances criteria. The
continuous circling of traffic between two or more
routers is referred to as a routing loop. The count-to-
infinity problem is specific to distance vector
protocols only and it consists on a continuous
increment of the path cost up to infinity. Obviously,
the routing loops and the count-to-infinity problem
have to be carefully considered and eliminated.

Table 1. Classification of IP routing protocols

Routing Administrative Zebra
Protocol Distance Implementation

Intra- Inter- Distance Link- Single Composite IPv4 IPv6 Single Multi Uni- Multi-
vector state cast cast

RIP X X X X 120 X X X
RIP-2 X X X X 120 X X X
RIPng X X X X 120 X X X
IGRP X X X X 100 X X -

EIGRP X X X X X 90/170 X X -
OSPF-2 X X X X 110 X X X
OSPF-3 X X X X X 110 X X X
MOSPF X X X X X -

IS-IS X X X X X 115 X X -
DVMRP X X X X X -

PIM X X X X -
EGP X X 140 X X -

BGP-4 X X X X X 20/200 X X X X

Path Unicast/
Multicast

MetricsWorking
Domain

Type IP
Version

A. RIPv1, RIPv2 and RIPng

RIP (Routing Information Protocol) is a distance
vector routing protocol that uses hop count as a metric
to determine the direction and distance to any link in
the internetwork. It was designed for small domains,
selecting the path with the lowest number of hops (not
greater than 15).

Routing tables are exchanged through routing updates
that are broadcasted periodically every 30 seconds.
Split horizon or split horizon with poison reverse are
used to prevent the count-to-infinity problem. RIPv1
(RIP Version 1) requires all devices in the network to

use the same subnet mask, because it cannot include
subnet mask information in its routing updates. This is
a typical characteristic of a classful routing protocol.

RIPv2 (RIP Version 2) provides support for CIDR
and VLSM, being a classless routing protocol [5]. It
prefers multicasting instead of simple broadcasting of
routing announcements. This reduces the processing
load on hosts that are not listening for RIPv2
messages. Additional support for authentication and
fully interoperability with RIPv1 are provided.

RIPng (RIP Next Generation) was developed to allow
routers within an IPv6-based network to exchange

 3

information. Although it uses the same algorithms,
timers and logic as in previous version, there are two
major differences. First, the RIPng does not include
any native authentication support, relying on security
features offered by IPv6. Second, the packets were
updated to support the 128-bit IPv6 address format.
RIPv1, RIPv2 and RIPng have the same limitation as
any distance vector routing protocol, which is the
slow convergence. An additional drawback such as
the path cost restriction (maximum 15 hops) might be
eliminated within a Cisco routers only, by choosing
IGRP (Interior Gateway Routing Protocol) (up to 255
hops).

B. OSPFv2 and OSPFv3

OSPFv2 (Open Shortest Path First Version 2) is a
link-state routing protocol developed to address the
limitations of RIP. It provides immediate propagation
of routing updates because they are events triggered,
offering faster convergence and no cost limitations.
OSPF was from the beginning designed as a classless
routing protocol, by supporting CIDR and VLSM.
Being very complex, it permits hierarchical routing.
Thus OSPF networks are divided into a collection of
areas (logical groups of networks and routers). Area 0
(known as backbone area) physically connects to all
other areas. Each router has a view of the entire
network (a routing loop-free approach) and it executes
the SPF (Shortest-Path First) algorithm to determine
the routes to the destination. Routing information is
flooded by using LSA (Link State Advertisement)
packets to the following IPv4 multicast addresses:
224.0.0.5 for OSPF routers and 224.0.0.6 for
Designated/Backup Designated routers.

OSPFv3 (OSPF Version 3) was designed for both
IPv4 and IPv6. Obviously, some modifications were
needed due to the changes in protocol semantics or
simply to handle the increased address size. New
LSAs have been created to carry IPv6 addresses and
prefixes. Authentication has been removed from the
OSPF protocol itself, relying on IPv6's AH
(Authentication Header) and ESP (Encapsulating
Security Payload) [1]. Although the SPF algorithm
was employed again, the multicasting is using to
distinct IPv6 addresses: FF02::5 for all OSPF
routers and FF02::6 for all Designated/Backup
Designated routers. Note that the packets sent to these
multicast addresses should never be forwarded
because they are meant to travel a single hop only.
This is the reason to have multicast addresses with
link-local scope and packets sent to these addresses
should have their IPv6 Hop Limit set to one.

II.2. Multicast Routing

Multicast data delivery requires a set of protocols and
mechanisms at the Network Layer:

• Multicast addresses that designate a multicast
group as the destination of a datagram

• A mechanism that allows a host to join and leave a
multicast group

• Multicast routing protocols that set up paths,
called distribution tree, from the sender to the
members of a multicast group.

IPv4 and IPv6 multicast addresses have different
structure. The range of IPv4 multicast addresses, from
224.0.0.0 to 239.255.255.255, corresponds to the class
D addresses of IPv4 addressing scheme. Class D
address is identified by the first four bits (1110)
within the address. The remaining 28 bits contain the
group ID of the multicast group [9]. IPv6 multicast
addresses are divided in four different fields. The first
field (8bits) identifies that the address is a multicast
address. This is followed by a flag field (4 bits)
showing whether the address is permanent or non-
permanent. The next four bits contain the delivery
scope of the multicast packet. The group ID makes up
the rest of the address (112 bits) [11].

Table 2. IPv4 multicast address structure

1110 Multicast group ID
4 28 bits

Table 3. IPv6 multicast address structure

11111111 flags Scope Multicast group
ID

8 4 4 112 bits

A group management protocol is used by host willing
to join or leave a multicast group. This way, hosts
inform neighboring routers that they are interested in
receiving multicast packets. IGMP (Internet Group
Management Protocol) is the IPv4 version of this
protocol and the IPv6 version is called MLD
(Multicast Listener Discovery).

There are three versions of IGMP. IGMPv1 has two
types of messages, membership query and
membership report. Hosts send IGMP membership
reports corresponding to a particular multicast group
to indicate that they are interested in joining that
group.

Router periodically sends IGMP membership query
messages to verify that at least one host on the subnet
is interested in multicast traffic. IGMPv2 is an
enhancement of the first version and it includes a few
extensions. Among them there is a procedure for the
election of the multicast query device for each LAN,
explicit leave messages for faster pruning and group
specific query messages. IGMPv3 permits a host to
join a group and specify a set of sources of that group
from which it wants to receive multicast. This feature
is called source filtering. MLD protocol has two
versions: MLDv1 (IPv6 version of IGMPv2) and
MLDv2 (IPv6 version of IGMPv3).

 4

To deliver traffic to all receivers, multicast-capable
routers create distribution trees. The simplest way of
providing multicast routing is by flooding. If a
multicast router receives a multicast packet for the
first time, it forwards this packet to all the outgoing
interfaces except the one from which it receives it.
This solution is very inefficient in terms of network
bandwidth utilization. A better solution is to build a
spanning tree where a multicast router could forward
multicast packets to all the interfaces that are part of a
multicast tree except the source. Multicast forwarding
algorithms can be classified in two categories: source-
based (shortest path tree) and core-based (shared tree).

A source-based tree has its root at the source and
branches forming a spanning tree through the network
to the receivers. The source-based tree has the
drawback that it is dependent on the source of the
multicast tree; it must be computed separately for
each source.

Core-based tree algorithms need a single common
root placed at a chosen point in the network, but the
root is not at the source. This shared root is called a
rendez-vous point (RP). The disadvantage of core-
based trees is that under certain circumstances the
paths between the source and receivers might not be
the optimal. Therefore the placement of the RP must
be carefully considered.

Source-based trees, as well as core-based trees can be
constructed using RPF (Reverse Path Forwarding).
The idea of RPF is the following: by given the address
of the tree’s root, a router selects as its upstream
neighbor in the tree the router which is the next-hop
neighbor for forwarding unicast packets to the root.
The network interface used to reach this upstream
neighbor is called the RPF interface.

RPF tells each router the upstream neighbor in the
distribution tree, but not the downstream neighbors, so
additional protocol mechanisms are needed to
determine the outgoing interfaces. One method to
achieve this is flood-and-prune, which starts by
forwarding multicast packets on all its interfaces, and
then deletes interfaces which are not part of the
distribution tree. Another method, called explicit join,
requires that multicast receivers initiate the process of
getting connected to the distribution tree.

Multicast routing protocols minimize the paths from
the receivers to the source, as opposed to minimizing
the path from the source to the receiver.

A. DVMRP

DVMRP was the first multicast routing protocol
developed. It utilizes a dynamic routing protocol for
route exchange and routing table construction based
on RIP (Routing Information Protocol). It employs

RPF to prevent multicast traffic from circulating in
the network until the TTL field within the IP header
becomes. It can operate in an environment where not
all routers in the network are capable of multicast
forwarding and routing. This implies a tunnel between
multicast capable routers using IP-IP encapsulation.
The basic operation of DVMRP consists of four
processes [8]:

• Neighbor discovery, which is used to find other

DVMRP capable routers attached to a common
network

• Route exchange, similar to RIP
• Graft messages, used to add networks to the

forwarding list
• Prune messages, used to remove networks from

the forwarding list

In the case of several multicast routers connected to a
multi-access network, DVMRP provides a mechanism
to elect a designated router (DR) to be responsible for
forwarding multicast traffic to the network, thus
preventing duplicate packets. The router with the
lowest cost to the source is elected to be the DR. In
case of a tie, the one with the lowest IP address is
chosen.

Routing information exchanged consist of three
components: the netmask, the network, and the
metric. DVMRP routes are sent in abbreviated format.
Because the first octet of every subnet mask is
assumed to be 255, it is not included in the route
report. Only one netmask is listed for all networks
having the same netmask. To reduce the packet size
further, only the portion of the network that
corresponds to a non-zero value of the netmask is
reported.

DVMRP messages are sent using IP packets with the
protocol field set to 2, identifying the packet type as
an IGMP message, the destination IP address used is
224.0.0.4, ALL-DVMRP-ROUTERS

B. PIM

PIM is a multicast routing protocol that is independent
of the mechanisms provided by any unicast routing
protocol. It requires some unicast routing protocols
(such as RIP or OSPF) to determine the network
topology and the topology changes.

PIM is not a single multicast routing protocol, it has
two different modes: PIM-DM (PIM Dense Mode)
and PIM-SM (PIM Sparse Mode). PIM-DM builds
source-based trees using flood-and-prune, and is
intended for large multicast groups where most
networks have a group member. PIM-SM builds core-
based trees as well as source-based trees with explicit
joins, and it is intended for environments where group
members are distributed across many regions of the
network.

 5

PIM-DM is quite similar to DVMRP: they both use a
flood-and-prune mechanism to build delivery trees.
However there are some important differences
between these two algorithms. The first is that PIM-
DM uses an existing unicast routing protocol to adapt
to topology changes, but at the same time is
independent of the mechanisms of this unicast routing
protocol.

The operation of PIM-DM is similar to DVMRP
without the route exchange. To avoid duplicate
multicast packets forwarding in multi-access
networks, PIM-DM uses assert messages to determine
a designated forwarder for the network.

Multicast forwarding is performed for the interfaces
from the oilist (output interface list). The oilist is
populated with those interfaces on which neighbors
were discovered or on which multicast receivers have
indicated their desire to receive traffic.

PIM-SM assumes that each receiver has to explicitly
join a multicast tree if it wants to receive any
multicast packet. It creates a core-based tree with a
share root called RP. The RP is responsible for
forwarding all packets destined for the multicast
group. Each-group has a single RP at any given time.

PIM-SM operation consists in three processes:

• Neighbor discovery, which uses router query

messages
• RP registering, accomplished with register and

register-stop messages
• RP joining/pruning, with join/prune messages

During neighbor discovery for a multi-access network
a query message is sent to the all-routers multicast
address, 224.0.0.2, which serves as the DR
(Designated Router) election mechanism.

When a source sends a multicast packet to a certain
group, the DR of that source encapsulates the first
message in register message and sends it to the RP of
that group as a unicast message. After receiving this
message, the RP sends back a join message to the DR
of the source. This way a distribution tree is created
from the DR to the RP so the next multicast message
of this source can be forwarded to the RP. Until the
distribution tree is created, all multicast messages will
be forwarded as encapsulated unicast messages. When
the RP detects that multicast packets from the source
are received as normal IP multicast packets, the RP
sends a register-stop message to the DR. Upon
reception of register-stop message the DR will stop
encapsulating the multicast traffic from the source.

Hosts wanting to receive multicast traffic for a certain
group will send an IGMP join message to their DR.

The DR sends a join message to the RP for that
multicast group.

Using the shared tree is not the best option in all
cases. PIM-SM provides a method for using shortest-
path trees for some or all of the receivers. When a
threshold on a leaf router is exceeded, the router will
switch from the shared tree through the RP to the
source tree. In these situations, the leaf router sends a
join message to the source node, thus creating a
shortest-path tree.

PIM messages are encapsulated in IP packets with
protocol number 103 and are sent to the multicast
group 224.0.0.13, ALL-PIM-ROUTERS. The type
field from the PIM packet header identifies the
operation mode (dense/sparse) and the message type.

The operation mode of PIM for IPv6 does imply any
major changes, except the type of addresses used
within the header. The ALL-PIM-ROUTERS address
ff02::d is the destination address for most messages.
A link-local address of the interface on which the
message is being forwarded will be used as source
address. A special case is the Register message which
uses domain-wide reachable IPv6 addresses, for both
source and destination [12].

III. ROUTING TOOLS

To achieve our goal, i.e. to have an IPv4/IPv6 unicast
and multicast routing testbed, the following software
tools where used: Zebra 0.94 and NextHop GateD
Enterprise 2.0 running on Fedora Core 1, the KAME
IPv6 stack for BSD, code merged in FreeBSD 5.2 and
a collection of programs developed to send and
receive IPv4/IPv6 multicast traffic: m4send/m4receive
and m6send/m6receive.

A. Zebra 0.94

Zebra is a Free Open Source package running under
GNU/Linux, FreeBSD, NetBSD, OpenBSD, Solaris
and providing (simultaneous) real routing services
based on a collection of routing daemons, as you can
observe in Table 4.

Table 4. Routing daemons in Zebra
Routing
daemon

TCP port Routing
protocols

ripd 2602 RIPv1, RIPv2
ripngd 2603 RIPng
ospfd 2604 OSPFv2
ospf6d 2606 OSPFv3
bgpd 2605 BGP-4, BGP-

4+

As a major advantage, Zebra is also ready to support
IPv6-based routing protocols (which is not the case of
the most Cisco routers currently available in our

 6

academic network). At least two Linux boxes with
Zebra are needed for tests. The first one starts an
integrated shell (zebra vty) at TCP port 2601,
allowing to change the configuration and to display
the routing table. The second Linux box starts a
dedicated routing daemon. The machine exchanges
routing information with other routers using the
previously mentioned protocols and updates the
kernel routing table.

Note that the default commands for a Linux-based
router configuration are ifconfig and route, whilst the
status of routing table is displayed by netstat. These
commands work only if the user has root privileges.

On the other hand, Zebra is administrated in a
different way. Actually, there are two modes: normal
and enable. Within the first one, the user can only
view system status but within the enable mode, he/she
can change system configuration (does not matter
his/her rights in Linux). Another option for testing
would have been gated, but unfortunately, this routing
daemon originally coordinated by Cornell University
is not free, currently being developed by Merit GateD
Consortium.

B. GateD Enterprise 2.0

We used the free version for academic and research
purposes provided by NextHop. GateD includes the
following IPv4 unicast and multicast routing
protocols: RIPv1/v2, OSPF, BGP, DVMRP, PIM-
DM, PIM-SM, PIM-SSM (PIM Source Specific
Multicast) [16].

GateD operation and configuration is similar to any
Cisco router. During the installation of the software a
special user, called cligated, is created. It gives us
access to the command line interface. Configuration
can be performed through XML sessions with telnet
to the port 4242 on the machine running GateD.

C. KAME – FreeBSD

KAME Project is a joint effort of six companies from
Japan to provide an IPv6 stack for different BSD
variants. Several platforms contain KAME code in the
source files, FreeBSD 4.0 and beyond, OpenBSD 2.7
and beyond, NetBSD 1.5 and beyond, BSD/OS 4.2
and beyond [17]. A separate KAME kit is available
for each platform. The KAME kit includes more
experimental protocols but is not as stable as the code
merged in BSD.

D. IPv4/IPv6 multicast sender/receiver

The m4sender/m6sender programs periodically (1
second) transmit UDP datagrams to a given multicast
group. They do not join the multicast group. On the
other hand the m4receive/m6receive programs join the
multicast group and display the payload of received
multicast messages to the standard output.

The sender is started with the following command:

#./mXsend group_address port "text"
ttl/hoplimit

For example:

./m4send 224.5.5.5 5555 "IPv4 multicast" 4
./m6send ff15::5 5555 "IPv6 multicast" 4

The payload of the datagram contains besides the text
given by the user a counter that allows us to track
down which packets have been received.

The receiver is started with the following command:

./mXreceive group_address port

For example:

./m4receive 224.5.5.5 5555
./m6receive ff15::5 5555

This program sends the IGMP/MLD message to
notify the DR that the host wants to receive multicast
traffic for that multicast group.

IV. EXPERIMENTAL RESULTS

IV.1. Unicast Testbed

The practical experiments regarding the performance
evaluations of the routing protocols are under
progress. This paper is discussing first the unicast
tests using Zebra 0.94 under Fedora Core 1, for both
IPv6 and IPv4. Apparently, the network topology
described in Figure 1 is not very complex but it is an
excellent testbed for the study proposed. There are
two routers, R1 and R2, actually two Linux machines,
each running Zebra in two Linux boxes (as it was
explained in section III).

The following subsections present the configuration
files of for each routing daemon (ripd, ripngd, ospfd
and ospf6d), as well some preliminary results. IPv6-
based experiments are of a greater interest than those
related to “classical” IPv4, so the comments are
concentrated on the new coming routing protocols.

 7

Figure 1. Unicast routing testbed

A. Unicast Routing in IPv6

The configuration file for the Zebra daemon is called
zebra.conf, containing the router setup (hostname,
password, enable password, IPv4/IPv6 interfaces
addresses). Figure 2 presents an example for router R1
that has three interfaces (eth0, eth1, eth2).

Figure 2. R1’s zebra.conf file

The routing daemons involved were ripngd and
ospf6d. Each daemon had its own configuration file
called *.conf. Supposing the case of a single area
OSPF (area 0.0.0.0), with the router-id for R1 being
0.0.0.1 (R2 has a router-id equal to 0.0.0.2), the
configuration files applied to router R1 are presented
in Figure 3 and 4.

Figure 3. R1’s ripngd.conf file

Figure 4. R1’s ospf6d.conf file

The proper operation within zebra could be seen by
analyzing the entries from the routing table or the
results of the command ping6. For instance, the
information got from R2 must contain the routes
learned from R1 (either by RIPng, either by OSPFv3).
No static routes have been previously configured, so if
the routing protocol does not work properly the
networks connected to eth1 and eth2 at R1 cannot
communicate with the network connected to eth1 at
R2.

There are two ways of analyzing the routing table: a)
from the zebra daemon with the command: show ip
route; b) from the Linux shell with the commands:
netstat -r or route –A inet6. For a better
understanding, we can capture the packets with the
software packet analyzer called Ethereal. A failure
situation must be provoked for further testing of our
IPv6 testbed. Suppose one of the networks connected
to router R1 will be disconnected either by
unplugging the network cable, either by shutting
down the interface. The time it takes for the new
routing information to reach router R2 is actually the
convergence time for the given routing protocol.

 8

B. Unicast Routing in IPv4

The same procedures were applied for IPv4, except
the types of daemons started, which were in this case
ripd and ospfd. Figures 5 and 6 show the requested
configuration files.

Figure 5. R1’s ripd.conf file

Figure 6. R1’s ospfd.conf file

Note that the two version of RIP (RIPv1 and RIPv2)
can be configured thus resulting two routing
scenarios. The differences presented in section II.1 are
easy to be notices from the packets captured. First, the
destination address is 255.255.255.255 (local
broadcast) for RIPv1 and 224.0.0.9 (multicast) for
RIPv2. Second, the version field and the routing
information carried are different.

Figure 7. Multicast routing testbed

IV.2. Multicast Testbed

The topology presented in Figure 7 is not very
complex, but it is an excellent testbed for the study of
multicast routing. There are two multicast routers, R1
and R2 which operate under Fedora Core or FreeBSD
depending on the experiment. We have also two
machines which serve as multicast source and
multicast receiver. The following subsections present
the operations performed on the routers and hosts in
order to enable multicasting and the problems that
may arise.

A. Multicast Routing in IPv6

IPv6 multicast testing was performed using PIM
because no other implementations were available. To
operate one of the two PIM daemons, pim6dd or
pim6sd, we first need to enable and configure IPv6 on
the routers. Later we need to choose the unicast
routing protocol and finally we can start multicast
routing. The file /etc/rc.conf is responsible for the
IPv6 configurations and the starting of unicast-

multicast routing daemons. Figure 8 below presents
the R2 configuration file:

Figure 8. R2’s /etc/rc.conf file

The IPv6 unicast routing daemon implementing
RIPng protocol is called route6d. No configurations
are needed for this daemon; the defaults assure the
route exchange between R1 and R2.

The configuration files for the two multicast routing
daemons are /etc/pim6dd.conf and /etc/pim6sd.conf.
These files describe how the corresponding daemon

 9

treats each interface on the system. When using
pim6dd the defaults (or no configuration file present)
activate PIM-DM on all interfaces, thus enabling
multicast routing. Operating pim6sd requires some
configuration, given by the special operation of the
protocol.

Figure 9. R2’s pim6sd.conf file

The experiment is considered successful if the
m6receiver program receives the packets from the
source. Despite of all previous configuring the
experiments have failed. The multicast daemons were
started in debug mode, all the debug messages were
examined, and it turned out that the router did not
accept or did not receive the MLD messages sent by
the receiver. Using Ethereal tool all the IPv6 packets
from the network were captured. We discovered that
the receiver was sending MLDv2 messages to the
ALL-MLDv2-CAPABLE-ROUTES address ff02::16,
in order to join the desired multicast group. The
multicast router did not accept MLDv2 messages
despite the mld_version any configuration was
correct. There were two possible solutions: either to
have an MLDv2 enabled router, either to have a
receiver that uses MLDv1. The KAME code merged
in FreeBSD supports only MLDv1, so the first
solution would have been to compile a FreeBSD
kernel and usertools (PIM daemons) from the original
KAME kit. The other solution would have been to
force the receiver to use MLDv1. We chose the later
one, which meant compiling a 2.6.4 Linux kernel and
configuring the net.ipv6.conf.all.force_mld_version=1
in the sysctl.conf file, thus forcing MLDv1.

B. Multicast Routing in IPv4

The following IPv4 multicast routing protocols were
tested: DVMRP, PIM-DM and PIM-SM. Figures 10
and 11 present the GateD configuration files for each
protocol used on router R1

Figure 10. R1’s gated.conf file

Figure 11. R1’s gated.conf file

We used OSPF as the underlying unicast routing
protocol. The routes learned by OSPF are also placed
in the multicast RIB (Routing Information Base), so
that PIM could use them. Otherwise PIM cannot build
the delivery tree from the source to the receiver.

V. CONCLUSIONS AND FURTHER WORK

This paper presented the setup of unicast routing
protocols and of new coming multicast routing
protocols for IPv6-based networks.

PIM was analyzed by comparing its implementations
in both versions of IP. GateD Enterprise 2.0 running
under Fedora Core 1 was used in IPv4 and FreeBSD’s
KAME supported IPv6-based trials. Other multicast
routing protocol, such as DVMRP, was tested in IPv4
only, whilst MOSPF was not available at all due to
lack of implementations.

Following the trials presented herein, it is for further
work to determine the performances of multicast
networks, according to new IETF recommendations.
One of the parameters to be measured is join latency,
the time it takes a host to receive the first multicast
packet.

REFERENCES

[1] V. Dobrota, Digital Networks in Telecommunications.
Volume 3: OSI and TCP/IP. Second Edition, Mediamira Science
Publishers, Cluj-Napoca, 2003 (in Romanian)
[2] A. Rodriguez, J.Gatrell, J.Karas and R. Peschke, TCP/IP
Tutorial and Technical Overview, IBM, August 2001
[3] ***, “Redistributing Routing Protocols”, Cisco Systems, 2002
[4] ***, "Internetworking Technologies Handbook", Cisco
Systems, 2002
[5] A. Tanenbaum, Computer Networks, Fourth Edition, Prentice
Hall, 2003
[6] W. Parkhurst, Cisco Multicast Routing & Switching,
McGraw-Hill, 1999

 10

[7] B. Adams, E. Cheng, T. Fox, Interdomain Multicast Solutions
Guide, Cisco Press, 2002
[8] C. Waitzman, Distance Vector Multicast Routing Protocol
RFC 1075, November 1988
[9] S. Deering, Host extensions for IP multicasting, RFC 1112,
August 1989
[10] D. Estrin, D. Farinacci, Protocol Independent Multicast-
Sparse Mode (PIM-SM): Protocol Specification, RFC 2362, June
1998
[11] R. Hinden, S. Deering, IP Version 6 Addressing Architecture,
RFC 2373, July 1998
[12] B. Fenner, M. Handley, H. Holbrook, I. Kouvelas, Protocol
Independent Multicast - Sparse Mode (PIM-SM):
Protocol Specification (Revised), draft-ietf-pim-sm-v2-new-09.txt,
February 2004
[13] E. Nemeth, G. Snyder, T.R. Hein, Linux Administration
Handbook, Prentice Hall 2002
[14] M. Lucas, Absolute BSD The Ultimate Guide to FreeBSD, No
Starch Press 2002
[15] www.zebra.org
[16] www.nexthop.com
[17] www.kame.net

