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ABSTRACT

Aims. A method for constructing new uniform grids on the sphere is given.
Methods. We define a bijection inR2, which maps squares onto discs and preserves areas. Then we use this bijection, combined with
Lambert azimuthal projection, for lifting uniform grids from the square to the sphere.
Results. We can obtain uniform spherical grids that allow a hierarchical data manipulation and have an isolatitudinal distribution
of cells. Compared with HEALPix grids, nowadays the most used in astronomy and astrophysics, our grids have the advantage of
allowing easier implementation, and in addition one can move approximating functions from the square to the sphere by a simple
technique.
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1. Introduction

The analysis of functions defined on spherical domains playsa
central role in geosciences. In many applications, one needs uni-
form grids on the sphere. The standard manipulation of spher-
ical data includes convolutions with local and global kernels,
Fourier analysis with spherical harmonics, wavelet analysis,
nearest neighbour search, etc. Some of these manipulationsbe-
come very slow if the sampling of functions on the sphere and
the related discrete data set are not designed well. Thus, the dis-
crete data should have the following properties: (a) hierarchical
tree structure (allowing construction of a multiresolution analy-
sis); (b) equal area for the discrete elements of the partition of
the sphere; (c) isolatitudinal distribution for the discrete area el-
ements (essential for fast computations involving spherical har-
monics).

There are plenty of spherical grids and sampling points,
many of them mentioned in Gorsky et al. (2005). A complete
description of all known spherical projections used in cartogra-
phy is realized in (Snyder 1993; Grafarend and Krumm 2006).
Until the construction of the HEALPix grid, no grid satisfiedsi-
multaneous the requirements (a), (b), (c). In this paper we give
a method for constructing uniform grids and sampling pointson
the 2-sphere, satisfying these requirements simultaneously. We
start with a bijection onR2, which preserves areas and maps a
square in a disc. Thus,any uniform grid of the square can be
mapped bijectively onto a uniform grid on the disc, and then onto
a uniform grid on the sphere, via Lambert’s equal area azimuthal
projection. Compared to the projections used for HEALPix grids
and to the planar domains mapped there, our method has the nice
property that, besides the uniform grids and sampling points on
the sphere, one can transportany function from the square to the
sphere by the technique used in Roşca and Antoine (2009). Inad-
dition, if we have a set of real functions defined on the square, the
corresponding spherical functions preserve the followingprop-
erties: orthonormal basis, Riesz basis, frame, and local support.

Consider the square of edge 2L and the circle with the same
area, both centred on the originO (Figure 1). The radius of the

circle will be R = 2L/
√
π. We want to construct a bijectionT

from the domain

S L = {(x, y) ∈ R2, |x| ≤ L, |y| ≤ L}

to the disc of radiusR,

CL =

{

(x, y) ∈ R2, x2 + y2 ≤
4L2

π

}

,

such that

A(D) = A(T (D)) for every domainD ⊆ S L. (1)

HereA(D) denotes the area ofD.
The first idea is to construct a map by keeping the direction

of the position vector, that is, forM ∈ S L to takeT (M) on the
half-line OM. If we define such an application which maps the
square

∂S l = {(x, y) ∈ R2, |x| = l, |y| = l},

into the circle

∂Cl =

{

(x, y) ∈ R2, x2 + y2 =
4l2

π

}

,

for every l ∈ (0, L], we see that such an application does not
satisfy (1).

Therefore, an alternative would be to take a rotation around
O, followed by an appropriate move along the radius. This con-
struction is described bellow. We focus for the moment on the
first octant I of the plane, intersected with the squareS L,

I = {(a, b) ∈ R2, 0 ≤ b ≤ a}.

The mapT will be defined in such a way that each half-line
dm ⊂ I of equationy = mx (0 ≤ m ≤ 1) is mapped into the
half-linedk(m) of equationy = k(m) x, with

k(m) = tan
mπ
4
.
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Fig. 1. The action of the transformT . PointsN andP are the images of
M andQ, respectively.

In this way, the half linesy = 0 andy = x, situated on the
boundary of I are invariant underT anddk(m) ⊂ I for all m ∈
[0, 1]. We want the other boundary edgex = L situated in I to be
mapped on the arc of the circleCL situated in I, so letM(a, b) ∈
I ∩ S L and Q(L,mL) ∈ ∂S L the intersection ofOM with the
square∂S L (see Figure 1), where

m =
b
a
.

The pointQ will be mapped on the pointP(X, Y), the intersection
of the half-linedk(m) with the circle∂CL. Thus, we haveX2 +

k(m)2X2 = R2, whence

X =
R

√

1+ k(m)2
=

R
√

1+ tan2 mπ
4

= R cos
mπ
4
.

Therefore, the pointP has the coordinates

P
(

R cos
mπ
4
,R sin

mπ
4

)

.

We defineN = T (M) such thatN ∈ OP and ON
OP =

OM
OQ . A

simple calculation givesOM
OQ =

a
L , and therefore we find

N

(

2a
√
π

cos
bπ
4a
,

2a
√
π

sin
bπ
4a

)

.

Straightforward calculations show that the Jacobian of themap
T , restricted to I, is indeed 1, and thereforeT preserves the areas
of the domains situated in the first octant I.

By similar arguments for the seven other octants, we find that
the mapT : S L → CL preserving areas is defined as follows:

1. For 0< |b| ≤ |a| ≤ L,

(a, b) 7−→ (A, B) =

(

2a
√
π

cos
bπ
4a
,

2a
√
π

sin
bπ
4a

)

; (2)

2. For 0< |a| ≤ |b| ≤ L,

(a, b) 7−→ (A, B) =

(

2b
√
π

sin
aπ
4b
,

2b
√
π

cos
aπ
4b

)

. (3)

For the origin we takeT (0, 0) = (0, 0). One can prove that
T is continuous and that the Jacobian ofT is 1. Figure 2 shows
the images of the horizontal lines. Figure 3 show images of two
uniform grids ofS L, each obtained from uniform grids on the
square consisting of lines parallel to the edges.

The inverse ofT is given by the following formulas:

Fig. 2. A horizontal grid and its image grid on the disc. The image of
the bold line on the left is the bold curve on the right.

Fig. 3. Two uniform grids of the disc, where the right one is the refine-
ment of the left one.

1. For 0< |B| ≤ |A| ≤ R,

(A, B) 7−→ (a, b) = sign(A)
√

A2 + B2

( √
π

2
,

2
√
π

arctan
B
A

)

;

(4)
2. For 0< |A| ≤ |B| ≤ R,

(A, B) 7−→ (a, b) = sign(B)
√

A2 + B2

(

2
√
π

arctan
A
B
,

√
π

2
,

)

.

(5)

2. Spherical grids

We intend to use our transform to construct uniform grids on the
sphere. In a uniform grid, all the cells have the same area. The
idea is to start from a uniform grid on a square, first to map it
onto a disc using the mapT and then use an equal area projection
from the disc to the sphere. An example of such a projection is
Lambert’s azimuthal projection.

2.1. Lambert’s azimuthal equal area projection

This projection was constructed in 1772 by J.H. Lambert, and
it is the most used projection in cartography for mapping one
hemisphere of the Earth onto a disc. This projection establishes
a bijection between a sphere of radiusr, without a point, and the
interior of a disc of radius 2r and it preserves areas. To define the
Lambert azimuthal projection (see Figure 4), we need the plane
tangent to the sphere at some pointS on the sphere. LetP be
an arbitrary point on the sphere other than the antipode of S.Let
d be the Euclidean distance betweenS andP (not the distance
along the sphere surface). The projection ofP will be the point
P′ on the plane, such thatS P′ = d. Geometrically, it can be
constructed as follows. We consider the unique circle centred on
S , passing throughP and perpendicular to the plane. This circle
intersects the plane at two points and we takeP′ those point that
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S

Fig. 4. Lambert azimuthal projection.

is closer toP. This is the projected point (Figure 4). The antipode
of S is excluded from the projection because the required circle
is not unique. The projection ofS is taken asS .

If we take the sphereS2
r of equationx2 + y2 + z2 = r2 and

S (0, 0,−r) the south pole, then Lambert’s projection and its in-
verse can be described, in Cartesian coordinates, by the follow-
ing formulas:

(x, y, z) 7−→ (X, Y) =















√

2r
r − z

x,

√

2r
r − z

y















(6)

and

(X, Y) 7−→ (x, y, z) =














√

1− X2 + Y2

4r2
X,

√

1− X2 + Y2

4r2
Y,−r +

X2 + Y2

2r















. (7)

2.2. Spherical uniform grids using Lambert’s azimuthal
projection for the whole sphere

We want to construct a uniform grid on the sphereS2
r start-

ing from a uniform grid of the squareS r
√
π of edge 2r

√
π. By

combining the formulas (7) and (2)-(3), we obtain that a point
(a, b) ∈ S r

√
π is mapped into the point (x, y, z) ∈ S2

r with the
following coordinates:

1. For 0< |b| ≤ |a| ≤ L,

(x, y, z) =














2a
π

√

π − a2

r2
cos

bπ
4a
,

2a
π

√

π − a2

r2
sin

bπ
4a
,

2a2

πr
− r















;(8)

2. For 0< |a| ≤ |b| ≤ L,

(x, y, z) =














2b
π

√

π − b2

r2
cos

aπ
4b
,

2b
π

√

π − b2

r2
sin

aπ
4b
,

2b2

πr
− r















.(9)

For the inverse, combining formulas (6) and (4)-(5), we ob-
tain that a point (x, y, z) ∈ S2

r is mapped onto the point (a, b) ∈
S r
√
π with the following coordinates:

1. For 0≤ |y| ≤ |x|,

(a, b) = sign(x)
√

2r(r + z)

( √
π

2
,

2
√
π

arctan
y
x

)

; (10)

2. For 0< |x| ≤ |y|

(a, b) = sign(y)
√

2r(r + z)

(

2
√
π

arctan
x
y
,

√
π

2

)

. (11)

Fig. 5. The grids in Figure 3, projected on the sphere by Lambert’s pro-
jection.

Two examples of such spherical uniform grids are given in
Figure 5. One can see that, because of the Lambert projection,
the distortion of shape increases towards the north pole. For this
reason, one can construct another type of spherical grids, by
applying the Lambert projection separately for the two hemi-
spheres.

2.3. Spherical grid using Lambert’s azimuthal projection for
each of the hemispheres

When we use Lambert’s projection, we can choose to map only
the southern hemisphere with respect to the south pole, and sep-
arately, the northern hemisphere with respect to the north pole.
If the sphere has the radiusr, then the projected discs of each
hemisphere have the radius

√
2r and therefore the correspond-

ing square will beS r
√
π/2 of edger

√
2π. The formula for the

spherical image (x, y, z) of a point (X, Y) of the discCr
√

2 are the
one given in (7) for (x, y, z) in the southern hemisphere, while for
the northern hemisphere it is given by

(x, y, z) =















√

1−
X2 + Y2

4r2
X,

√

1−
X2 + Y2

4r2
Y, r −

X2 + Y2

2r















.

(12)
For the inverse projection, a point (x, y, z) on the southern

hemisphere projects according to formula (6), while for a point
(x, y, z) on the northern hemisphere, the projection onto the disc
Cr
√

2 is given by

(x, y, z) 7−→ (X, Y) =















√

2r
r + z

x,

√

2r
r + z

y















. (13)

Similarly, formulas (8)-(9) are the ones used for the points
(x, y, z) on the southern hemisphere, while for the northern hemi-
sphere, only the sign ofz changes in both of these formulas. As
for the images in the squareS r

√
2 of a point (x, y, y) on the north-

ern hemisphere, the formulas are similar to (10)-(11), with(r+z)
replaced with (r − z). Such uniform spherical grids are depicted
in Figure 6.

The number of cells at each latitude for the square grid

We focus on the spherical grid with 8n2 cells, for which the grid
on each hemisphere is the image of a uniform grid of the square
[−L, L], with L = r

√
π/2. On this square we consider the grid

containing (2n)2 small squares of the same area, formed by lines
parallel to the edges. The centres of the cells of the spherical grid
are equally distributed on 2n latitudinal circles, symmetric with
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Fig. 6. The grids in Figure 3, projected on the sphere by Lambert’s pro-
jection, separately for the northern and southern hemispheres.

respect to the equator. The latitudinal circles are, in fact, images
of squares centred onO. The number of cells in the northern
hemisphere (and of course, symmetric on the southern hemi-
sphere) will be 4(2i − 1) on thei-th latitudinal circle.

3. Conclusions

The equal area projection that maps squares onto circles (tothe
best of our knowledge this projection has not been constructed
before) allowed us to construct uniform grids on a disc and on
a sphere. We presented here only the pictures for the spherical
grid generated by a square grid with square cells, but of course
there are many other uniform grids on the square, which can be
mapped to nice uniform grids on the sphere.

There are still many open questions. Do the centers of some
spherical grid cells constitute fundamental systems of points?
How do cubature formulas with such points behave? Which
wavelets on the interval can be efficiently mapped on the sphere?
How efficient are the new grids for geo-statistical applications?
In which applications are our grids preferable to other grids?
These will be the subjects of future work.
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