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Abstract

We give a simple method for constructing a projection from a surface of revolution M onto
the plane perpendicular to the rotation axis, which preserves areas. Then we use this projection
for constructing a multiresolution analysis and a continuous wavelet transform, starting from
the existing planar constructions. Thus, the wavelets on M inherit all the properties of the
corresponding planar wavelets.

Keywords: continuous wavelet transform (CWT), discrete wavelet transform (DWT), wavelet
transform on manifolds, equal area projection.

1 Introduction

Real life signals often live on 2D curved manifolds, such as a sphere (geosciences), a paraboloid
(optics), a two-sheeted hyperboloid (cosmology, optics) or a cone. In order to design approximation
and analysis techniques on such surfaces, an efficient way is to exploit methods existent on domains
of the plane R2. Such an approach requires an appropriate projection from the manifold onto R2.
In a previous paper, we have explored this method systematically [3]. In particular, for the
manifolds mentioned above, we have described the vertical and the stereographic projections.
While these projections have nice properties, they suffer from one major drawback, namely, they
do not preserve areas. As a consequence, lifting the DWT via the inverse projections results in
severe distortions at large distances (e.g. close to the North Pole in the case of the sphere).

In Section 2 we present a simple method of constructing a projection which preserves the area.
It applies to all 2D surfaces of revolution obtained by rotating a piecewise smooth plane curve
around a line in its plane, such that one end point of the curve is the only point of intersection with
the line and each plane perpendicular to the line intersects the curve at most once. In the sequel,
we denote by M such a surface. For the construction of a multiresolution analysis of L2(M)
and a CWT on M we also need to suppose that the curve that generates the surface has infinite
length. Examples are the surfaces mentioned above. Applied to the sphere, our projection is in
fact Lambert’s azimuthal projection, which has a nice geometrical interpretation. However, the
present method for constructing a CWT and DWT does not apply to the sphere. But a similar
approach may be designed in the case when the generating curve has finite length (thus including
the case of the sphere), based on a mapping from a square onto a disc, followed by a lifting to the
sphere by inverse Lambert projection [10].
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In this paper, we shall consider the case of a general surface of revolution, then particularize to
the paraboloid, the upper sheet of the two-sheeted hyperboloid and the positive part of the cone,
all axisymmetric. These three manifolds are the ones that are the most useful for applications. In
optics, data on such manifolds are essential for the treatment of omnidirectional images via the
catadioptric procedure, for instance in robotic vision. That last topic is particularly relevant for
engineering purposes, because of the many applications in navigation, surveillance, visualization.
In the catadioptric image processing, a sensor overlooks a mirror, whose shape may be spherical,
hyperbolic or parabolic. However, instead of projecting the data from that mirror onto a plane,
an interesting alternative consist in processing them directly on the mirror, and thus wavelets on
such manifolds are needed [5]. Among the three shapes, the parabolic one is the most common
(think of the headlights of a car).

Before proceeding, it is worth comparing our approach to the (scarce) existing literature.
For the case of the hyperboloid H, a CWT has been designed by Bogdanova et al. [4], using
the group-theoretical approach translated from the corresponding (dual) case of the sphere and
projection from H onto the tangent cone. In particular, the method starts from the SO0(2,1)
invariant metric on M and exploits the harmonic analysis on M provided by the Fourier-Helgason
transform. However, the resulting CWT has not been discretized and no DWT is known. As
for the paraboloid P, there is no global isometry group, so that the group-theoretical method
is not directly applicable. A tentative has been put forward by Honnouvo [7], but it is not
really conclusive (and it is again limited to the continuous transform). Further comments on this
approach may be found in [2].

In all these methods, the measure onM and the projection onto R2 are determined by geometry
(group theory). However, the measure is not dilation invariant and the projection does not preserve
areas, which forces one to introduce correction factors. In the method presented here, on the
contrary, we start by calculating a projection M → R2 that does preserve area and is bijective.
As a consequence, it induces a unitary map between L2(M) and L2(R2). Inverting the latter,
we can then lift all operations from the plane to M, in particular, producing unitary operators
on L2(M) that implement translations, rotations and dilations in the plane. In this way, the
representation of the similitude group of the plane, that underlines the 2D plane CWT, is lifted to
M as well. Thus we have all the necessary ingredients for constructing a multiresolution analysis
and a DWT on M (Section 3), that does not show distortions, because of the area preserving
property. In the same way, we design a CWT on M (Section 4), with no need to use explicitly
a given measure. In fact, all calculations are performed in the plane, not on M, exploiting
the unitarity of the map that links the corresponding L2 spaces. This in a sense reverses the
perspective and makes the method both simpler and more efficient.

2 Equal area projections from some surfaces of revolution onto
OXY

In this section we present the construction of the projection preserving areas. Then we will give
the expression of the projection and its inverse in the cases of the paraboloid, the upper sheet of
two-sheeted hyperboloid and the positive part of the cone, since these cases are the most useful
in practice.
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2.1 Construction of the projection

Consider the surface of revolution

M :


x = ρ cos t,
y = ρ sin t,
z = φ(ρ), t ∈ [0, 2π), ρ ∈ I = [0, b) or [0,∞).

obtained by rotating the planar curve of equation z = φ(x) around Oz. We suppose that φ ≥ 0,
φ is piecewise smooth and increasing on I.

Our goal is to construct a bijection p from M to a subset of the plane XOY which preserves
the areas. More precisely, for every portion S of M we must have A(S) = A(p(S)), where A(S)
denotes the area of S.

The intersection of M with the plane z = z0, z0 ∈ φ(I), z0 ̸= 0, will be a circle of radius
ρ0 = φ−1(z0). In particular, if we consider the portion M0 situated under the plane z = z0,

M0 :

{
z = φ(

√
x2 + y2),

z ≤ z0,

then we must have A(M0) = A(p(M0)). In fact, we calculate A(M0) and determine the ra-
dius R0 of the circle with area equal to A(M0). Next, the projection M ′ = p(M) of a point
M(x, y, φ(

√
x2 + y2)) ∈ M, x, y ̸= 0, will be defined as follows (see Figure 1):

1. Consider N(x, y, 0) the vertical projection of M ;

2. Take M ′ on the half line ON , such that OM ′ = R0.

In this way, the area of p(M0) will be πR
2
0, which is exactly A(M0).

So, let us calculate A(M0). We have

A(M0) =

∫∫
M0

dS =

∫ 2π

0
dt

∫ φ−1(z0)

0

√
EG− F 2 dρ,

with

E = (x′t)
2 + (y′t)

2 + (z′t)
2 = ρ2,

F = x′tx
′
ρ + y′ty

′
ρ + z′tz

′
ρ = 0,

G = (x′ρ)
2 + (y′ρ)

2 + (z′ρ)
2 = 1 + (φ′(ρ))2.

Next we have, with the notation ρ0 = φ−1(z0),

A(M0) =

∫ 2π

0
dt

∫ ρ0

0
ρ
√

1 + (φ′(ρ))2 dρ = πh(ρ0),

where h : I → h(I) ⊆ [0,∞) satisfies the equality

h′(ρ) = 2ρ
√

1 + (φ′(ρ))2. (1)

It is immediate that the function h is increasing and continuous, therefore bijective. The radius
R0 of the disc p(M0) is

R0 =
√
h(ρ0).
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Figure 1: The projection M ′ of a point M ∈ M.

If we denote by (X,Y ) the coordinates of M ′ ̸= O, then one can easily deduce that

X = R cos t =
x

ρ

√
h(ρ), (2)

Y = R sin t =
y

ρ

√
h(ρ) · . (3)

In the case when ρ = 0 we take p(0, 0, f(0)) = (0, 0).
In order to determine the inverse, we first observe that X2 + Y 2 = h(ρ), whence

ρ = h−1(X2 + Y 2).

Then, the inverse p−1 can be written as

x =
X√

X2 + Y 2
h−1(X2 + Y 2), (4)

y =
Y√

X2 + Y 2
h−1(X2 + Y 2), (5)

z = φ(h−1(X2 + Y 2)). (6)

Finally, we have to prove that our projection p preserves the areas. Indeed,

E = (x′X)2 + (y′X)2 + (z′X)2 = Y 2A2(X,Y ) +X2B(X,Y )

F = x′Xx
′
Y + y′Xy

′
Y + z′Xz

′
Y = XY (B(X,Y )−A2(X,Y ))

G = (x′Y )
2 + (y′Y )

2 + (z′Y )
2 = X2A2(X,Y ) + Y 2B(X,Y ),

with

A(X,Y ) =
h−1(X2 + Y 2)

X2 + Y 2
=

ρ

h(ρ)
,

B(X,Y ) =
(
1 + (φ′(h−1(X2 + Y 2)))2

)(
(h−1)′(X2 + Y 2)

)2
=

(
1 + φ′(ρ)

)(
(h−1)′(h(ρ))

)2
=

1

4ρ2(1 + (φ′(ρ))2)
.
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The last equality was obtained from the relation

(h−1)′(h(ρ)) · h′(ρ) = 1,

obtained from (1) and by differentiating the equality h−1(h(ρ)) = ρ.
Then, a straightforward calculation gives that EG − F 2 = 1, so that indeed our projection p

preserves the area. In the case when the curve defined by the function φ has infinite length, the
area preserving property allows us to construct on M a uniform grid simply by lifting a uniform
grid on the plane via p−1. Thus we obtain the essential ingredient for defining a multiresolution
analysis on M, as will be done in Section 3.3.

2.2 Equal area projection from the paraboloid a2z = x2 + y2 onto XOY

Consider the paraboloid P : z = (x2 + y2)/a2. We use the following parametrization of P0 :

P0 :


x = aρ cos t
y = aρ sin t
z = ρ2

, t ∈ [0, 2π), ρ ∈ [0,
√
z0 ].

We have

A(P0) =

∫ 2π

0
dt

∫ √
z0

0
aρ

√
4ρ2 + a2 dρ = 2π · a

12
(a2 + 4ρ2)3/2

∣∣∣ρ=√
z0

ρ=0

=
aπ

6

(
(4z0 + a2)3/2 − a2

)
,

and therefore the radius R0 of the disc p(P0) is

R0 =

√
a · (4z0 + a2)3/2 − a2

6
.

For the projection p we deduce the formulas

X = R cos t =

√
(4z + a2)3/2 − a2

6a
· x√

z
, (7)

Y = R sin t =

√
(4z + a2)3/2 − a2

6a
· y√

z
. (8)

For the origin O we take p(O) = O, that is p(0, 0, 0) = (0, 0).
The coordinates (x, y, z) of M = p−1(M′), where M ′ =M ′(X,Y ), are

x =
a2/3

2
X

√
(6X2 + 6Y 2 + a3)2/3 − a8/3

X2 + Y 2
, (9)

y =
a2/3

2
Y

√
(6X2 + 6Y 2 + a3)2/3 − a8/3

X2 + Y 2
, (10)

z =
(6X2 + 6Y 2 + a3)2/3 − a8/3

4a2/3
. (11)

An example of uniform grid on P is given in Figure 2.
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Figure 2: A uniform grid on the paraboloid P : z = x2 + y2, formed by applying the projection
p−1 given in (9)-(11) to the planar grid G = {x = −35+5i, i = 0, 1, . . . , 14}∪{y = −35+5j, j =
0, 1, . . . , 14}.

2.3 Equal area projection from the hyperboloid z =
√
1 + (x2 + y2)/a2 onto XOY

We consider the (upper sheet) of the hyperboloid, H : z =
√

1 + (x2 + y2)/a2, with a > 0, and
we try to perform the same steps as before. The intersection of H with the plane z = z0, z0 > 1,
is a circle of radius r0 =

√
z20 − 1. We calculate again the area of

H0 :

{
z =

√
1 + x2+y2

a2
,

z ≤ z0.

We use the parametric equations

H0 :


x = aρ cos t
y = aρ sin t

z =
√
ρ2 + 1

, t ∈ [0, 2π), ρ ∈ [0, r0 ].

We obtain, after simple calculations,

EG− F 2 = a2ρ2
(a2 + 1)ρ2 + a2

ρ2 + 1

and further

A(H0) = 2π

∫ r0

0
aρ

√
(a2 + 1)ρ2 + a2

ρ2 + 1
dρ =

π

2
f(r0) =

π

2
g(z0),

where f : (0,∞) → R, g : (1,∞) → R,

f(r) =
2√

a2 + 1
log

(√
(1 + a2)(1 + r2)−

√
a2 + (1 + a2)r2

)
+ 2

√
(1 + r2)(1 + (1 + a2)r2) +

2√
a2 + 1

log(a+
√
a2 + 1)− 2a,
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g(z) =
2√

1 + a2
log(z

√
1 + a2 −

√
(1 + a2)z2 − 1)

+ 2z
√

(1 + a2)z2 − 1 +
2√

a2 + 1
log(a+

√
1 + a2)− 2a.

In conclusion, the radius of the disc p(H0) is

R0 =

√
g(z0)

2
.

Again, if we denote by (X,Y ) the coordinates ofM ′ = p(M), forM(x, y, z) ∈ H,M ̸= (0, 0, 1),
then one can easily deduce that

X = R cos t =

√
g(z)

2
· x

a
√
z2 − 1

, (12)

Y = R sin t =

√
g(z)

2
· y

a
√
z2 − 1

. (13)

The projection of (0, 0, 1) is taken (0, 0).
Unfortunately, in the case of the hyperboloid, an explicit expression for the inverse p−1 cannot

be determined as for the paraboloid. Indeed, we have

X2 + Y 2 =
g(z)

2
,

and since we cannot have an explicit expression of g−1, we cannot obtain z as an explicit function
of X2 + Y 2. However, we can solve numerically the nonlinear equation g(z) = b, for fixed b > 0,
by applying the Newton-Raphson method or the secant method, since g ∈ C2[1,∞) and both g′

and g′′ have constant sign.
The coordinates (x, y, z) of M = p−1(M′), M ′(X,Y ) ̸= (0, 0), are

x = aX

√(
g−1(2X2 + 2Y 2)

)2 − 1

X2 + Y 2
, (14)

y = aY

√(
g−1(2X2 + 2Y 2)

)2 − 1

X2 + Y 2
, (15)

z = g−1(2X2 + 2Y 2). (16)

An example of uniform grid on H is given in Figure 3.

2.4 Equal area projection from the conical surface z =
√
(x2 + y2)/a2 onto XOY

Consider the cone C of equation z =
√

(x2 + y2)/a2, with a > 0, and for the portion C0 with
z < z0 we use the parametric equations

C0 :


x = aρ cos t
y = aρ sin t
z = ρ

, t ∈ [0, 2π), ρ ∈ [0, z0 ].

For the radius of the disc p(C0) we obtain

R0 = a1/2(a2 + 1)1/4z0,
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Figure 3: A uniform grid on the hyperboloid H : z =
√

1 + x2 + y2, formed by applying the
projection p−1 given in (14)-(16) to the planar grid G = {x = −5 + 5i/7, i = 0, 1, . . . , 14} ∪ {y =
−35 + 5j/7, j = 0, 1, . . . , 14}.

and for the projection p and its inverse we obtain, respectively

X = R cos t = a1/2(a2 + 1)1/4z · x
az

= x a−1/2(a2 + 1)1/4,

Y = R sin t = a1/2(a2 + 1)1/4z · y
az

= y a−1/2(a2 + 1)1/4

and

x = a1/2(a2 + 1)−1/4X (17)

y = a1/2(a2 + 1)−1/4Y (18)

z = a−1/2(a2 + 1)−1/4
√
X2 + Y 2. (19)

An example of uniform grid on C is given in Figure 4.

3 Multiresolution analysis of L2(M)

3.1 Functions in L2(M)

We will restrict ourselves to the case when the generating curve φ has infinite length. Let M be
the surface of revolution considered before, given by the parametric equations

ξ = ξ(X,Y ) = (x(X,Y ), y(X,Y ), z(X,Y )), (X,Y ) ∈ R2,

where the expressions of x, y, z are given in (9)-(11) for the paraboloid, (14)-(16) for the hyper-
boloid and (17)-(19) for the cone. We also consider the projection p : M → R2 described in
Section 2. This projection is obviously bijective and its inverse is p−1 : R2 → M,

p−1(X,Y ) = ξ(X,Y ) = (x(X,Y ), y(X,Y ), z(X,Y )).
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Figure 4: A uniform grid on the cone C : z =
√
x2 + y2, formed by applying the projection p−1

given in (17)-(19) to the planar grid G = {x = −5+5i/7, i = 0, 1, . . . , 14}∪{y = −35+5j/7, j =
0, 1, . . . , 14}.

We have seen in Section 2 that p preserves the area, so that the area element dω(ξ) of M equals
the element area dXdY = dx of R2. Therefore, for all f̃ , g̃ ∈ L2(M) we have

⟨f̃ , g̃⟩L2(M) =

∫
M
f̃(ξ)g̃(ξ)dω(ξ)

=

∫
p(M)

f̃(p−1(X,Y ))g̃(p−1(X,Y )) dXdY

= ⟨f̃ ◦ p−1, g̃ ◦ p−1⟩L2(R2) (20)

and similarly, for all f, g ∈ L2(R2) we have

⟨f, g⟩L2(R2) = ⟨f ◦ p, g ◦ p⟩L2(M). (21)

Consider now the map Π : L2(M) → L2(R2), induced by the projection p, defined by

(Πf̃)(X,Y ) = f̃(p−1(X,Y )), for all f̃ ∈ L2(M).

Its inverse Π−1 : L2(R2) → L2(M) is

(Π−1f)(ξ) = f(p(ξ)), for all f ∈ L2(R2).

From equalities (20) and (21) it follows that Π is a unitary map, that is,

⟨Πf̃ ,Π g̃⟩L2(R2) = ⟨f̃ , g̃⟩L2(M),

⟨Π−1f,Π−1g⟩L2(M) = ⟨f, g⟩L2(R2).

Equality (21) is the key equality of this paper. It allows us to establish the following results,
whose proof is immediate:
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Proposition 1 Let J be a countable set and let {fk}k∈J ⊆ L2(R2). For each k ∈ J we define
f̃k ∈ L2(M) as f̃k = fk ◦ p. Then we have:

1. If {fk}k∈J is an orthonormal basis of L2(R2), then {f̃k}k∈J is an orthonormal basis of
L2(M);

2. If {fk}k∈J is a Riesz basis of L2(R2) with Riesz constants A,B, then {f̃k}k∈J is a Riesz
basis of L2(M) with the same Riesz constants;

3. If {fk}k∈J is a frame of L2(R2) with frame bounds A,B, then {f̃k}k∈J is a frame of L2(M)
with the same frame bounds.

3.2 Multiresolution analysis (MRA) and wavelet bases of L2(R2)

In order to fix our notations, we will briefly review in this section the standard construction of
2-D orthonormal wavelet bases in the flat case, starting from a multiresolution analysis (MRA)
[8].

Let D be a 2× 2 regular matrix with the properties

(a) DZ2 ⊂ Z2, which is equivalent to the fact that D has integer entries,

(b) λ ∈ σ(D) =⇒ |λ| > 1, that is, all eigenvalues of D have modulus greater than 1.

A multiresolution analysis of L2(R2) associated to D is an increasing sequence of closed subspaces
Vj ⊂ L2(R2) with

∩
j∈ZVj = {0} and

∪
j∈ZVj = L2(R2), and satisfying the following conditions:

(1) f ∈ Vj ⇐⇒ f(D ·) ∈ Vj+1,

(2) There exists a function Φ ∈ L2(R2) such that the set {Φ(· − k), k ∈ Z2} is an orthonormal
basis of V0.

As a consequence, {Φj,k := |detD|j/2Φ(Dj · −k), k ∈ Z2} is an orthonormal basis for Vj .
For each j ∈ Z, let us define the space Wj as the orthogonal complement of Vj into Vj+1,

i.e., Vj+1 = Vj ⊕Wj . The two-dimensional wavelets are those functions which span W0. One
can prove (see [9]) that there exist q = |detD| − 1 wavelets 1Ψ,2Ψ, . . . ,q Ψ ∈ V1 that generate an
orthonormal basis of W0. Therefore, {λΨj,k := |detD|j/2 · λΨ(Dj · −k), λ = 1, . . . , q, k ∈ Z2} is
an orthonormal basis ofWj for each j, and {λΨj,k, λ = 1, . . . , q, k ∈ Z2, j ∈ Z} is an orthonormal
basis of L2(R2).

A particular case is that of tensor product wavelets, corresponding to the dilation matrix
D = diag [2, 2] and a 1-D MRA with scaling function and mother wavelet ϕ, ψ. In this case, q = 3
and one gets the 2-D scaling function Φ(x, y) = ϕ(x)ϕ(y) and the three wavelets

hΨ(x, y) = ϕ(x)ψ(y), vΨ(x, y) = ψ(x)ϕ(y), dΨ(x, y) = ψ(x)ψ(y).

If the one-dimensional functions ϕ and ψ have compact support, then obviously so have Φ and
λΨ. This is the case of the well-known Daubechies wavelets.

3.3 Multiresolution analysis and orthonormal wavelet bases of L2(M)

The construction of multiresolution analysis and wavelet bases in L2(M) is based on the equality
(21). To every function f ∈ L2(R2), one can associate the function fM ∈ L2(M) as

fM = f ◦ p. (22)
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In particular, if the functions {fj,k}j,k are orthogonal, so are

fMj,k = fj,k ◦ p, for j ∈ Z, k ∈ Z2. (23)

Then, taking f = Φ and f = Ψ, we obtain the functions on M

ΦM
j,k = Φj,k ◦ p, λΨM

j,k =λ Ψj,k ◦ p. (24)

For j ∈ Z, we define the spaces Vj as

Vj = {f ◦ p, f ∈ Vj}. (25)

Using (21) and the unitarity of the map Π, it is immediate that Vj is a closed subspace of L2(M),
thus a Hilbert space. Moreover, these spaces have the following properties:

(1) Vj ⊂ Vj+1 for j ∈ Z,

(2)
∩

j∈Z Vj = {0} and
∪

j∈Z Vj = L2(M),

(3) The set {ΦM
0,k, k ∈ Z2} is an orthonormal basis for V0.

We will say that a sequence of subspaces of L2(M) with the properties above constitutes a
multiresolution analysis of L2(M).

Once the multiresolution analysis is determined, we construct the wavelet spaces Wj in the
usual manner. Let Wj denote the orthogonal complement of the coarse space Vj in the fine space
Vj+1, so that

Vj+1 = Vj ⊕Wj .

One can easily prove that, for each j ∈ Z, {λΨM
j,k, k ∈ Z2, λ = 1, . . . , q} is an orthogonal basis for

Wj and therefore {λΨM
j,k, j ∈ Z, k ∈ Z2, λ = 1, . . . , q} is an orthonormal basis for

⊕
j∈ZWj =

L2(M).

The conclusion of the analysis may be summarized as follows:

· If Φ has compact support in R2, then ΦM
j,k has compact support on M (indeed diam supp

ΦM
j,k → 0 as j → ∞).

· An orthonormal/Riesz 2-D wavelet basis leads to an orthonormal/Riesz basis of wavelets
on M.

· Smooth 2-D wavelets lead to smooth wavelets on M, if the curve that generates the surface
is smooth.

· In particular, plane tensor product Daubechies wavelets lead to locally supported and or-
thonormal wavelets on M, and so do plane tensor product Haar wavelets.

· The decomposition and reconstruction matrices needed in the case of M are the same as in
the plane 2-D case, so that the latter can be used (with existing toolboxes).
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4 Continuous wavelet transform on M
The construction of the CWT on M follows naturally from the CWT in the 2D case. So let us
remind the 2D CWT [1].

In order to describe the motions in R2, one uses the following unitary operators in the space
L2(R2) :

(a) translation: (Tbs)(x) = s(x− b), b ∈ R2;

(b) dilation: (Das)(x) = a−1s(a−1x), a > 0;

(c) rotation: (Rθs)(x) = s(r−θ(x)), θ ∈ [0, 2π),

where s ∈ L2(R2) and rθ is the rotation matrix

rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Combining the three operators, we define the unitary operator

U(b, a, θ) = TbDaRθ,

which acts on a given function s as

[U(b, a, θ)s](x) = sb,a,θ(x) = a−1s(a−1r−θ(x− b)).

Their analogues on M will be defined as follows: We define the following unitary operators in the
space L2(M) :

(a) translation: (Tbs̃)(η) := Tb(s̃ ◦ p−1)(p(η)) = (s̃ ◦ p−1)(p(η)− b), b ∈ R2;

(b) dilation: (Das̃)(η) := Da(s̃ ◦ p−1)(p(η)) = a−1(s̃ ◦ p−1)(a−1p(η)), a > 0;

(c) rotation: (Rθs̃)(η) := Rθ(s̃ ◦ p−1)(p(η)) = (s̃ ◦ p−1)(r̃−θ(p(η))) = s̃(r̃−θ(η)), θ ∈ [0, 2π),

where s̃ ∈ L2(M), η ∈ M and r̃θ is the rotation matrix around Oz

r̃θ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

Their combination gives rise to the operator U(b, a, θ) = TbDaRθ, which can be written as

[U(b, a, θ)s̃](η) = a−1(s̃ ◦ p−1)(a−1rθ(p(η)− b)).

These operators on L2(M) are also unitary, as follows from the unitarity of the map Π.
A wavelet Ψ on R2 is defined as a function in L2(R2) satisfying the admissibility condition

CΨ := (2π)2
∫
R2

|Ψ̂(y)|2

|y|2
dy <∞,

where the Fourier transform Ψ̂ of Ψ is defined as

Ψ̂(y) =
1

2π

∫
R2

eix·yΨ(x)dx.

12



The question now is how to define a Fourier transform on L2(M) and an admissible wavelet in
L2(M). The natural way to define the Fourier transform of a signal s̃ ∈ L2(M) is the following:

̂̃s(η) := ˜̂s ◦ p−1(p(η)) (26)

=
1

2π

∫
R2

e−ip(η)·x(s̃ ◦ p−1)(x)dx

=
1

2π

∫
M
e−ip(η)·p(ξ)s̃(ξ)dω(ξ).

The last equality was obtained by writing x = p(ξ), with ξ ∈ M, and by taking into account the
equality dx = dω(ξ), proved in Section 2.

Further, for the constant CΨ we obtain

CΨ = (2π)2
∫
R2

|Ψ̂(y)|2

|y|2
dy =

∫
M

|(Ψ̂ ◦ p)(ξ)|2

|p(ξ)|2
dω(ξ)

=

∫
M

|(Ψ̂ ◦ p)(ξ)|2

l2(ξ)
dω(ξ).

In the first equality we put y = p(ξ) and in the second we used the definition (26) for s̃◦p−1 =

Ψ. By l(ξ) we have denoted the length of the curve Õξ = p−1(OM ′) ⊂ M, OM ′ being the segment
with endpoints O and M ′ = p(ξ).

Thus, we can define a wavelet ΨM in L2(M) either by ΨM = Ψ ◦ p, with Ψ a wavelet in
L2(R2), or, equivalently, if it satisfies the admissibility condition

CΨM = CΨ =

∫
M

|(Ψ̂ ◦ p)(ξ)|2

l2(ξ)
dω(ξ) <∞.

We can now proceed to the definition of CWT for functions in L2(M). In the 2D case, one
defines

Ψb,a,θ = U(b, a, θ)Ψ, with (b, a, θ) ∈ G,
G = {(b, a, θ), b ∈ R2, a > 0, θ ∈ [0, 2π)},

and one can prove (see [1], p. 35) that the set

span{Ψb,a,θ, (b, a, θ) ∈ G}

is dense in L2(R2). Then, the CWT of a signal s ∈ L2(R2) with respect to the wavelet Ψ is defined
as

(WΨs)(b, a, θ) := ⟨Ψb,a,θ, s⟩L2(R2).

For a wavelet ΨM, we will define, for (b, a, θ) ∈ G, the functions

ΨM
b,a,θ := U(b, a, θ)ΨM.

These functions will also satisfy the admissibility condition, so that they are also wavelets. More-
over, simple calculations show that the set

span{ΨM
b,a,θ, (b, a, θ) ∈ G}

is dense in L2(M).
Finally, we can give the definition of CWT on M.
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Definition 2 Given a wavelet ΨM and a signal s̃ ∈ L2(M), the continuous wavelet transform of
s̃ with respect to the wavelet ΨM is defined as

(WΨM s̃)(b, a, θ ) := ⟨ΨM
b,a,θ, s̃ ⟩L2(M).

This CWT can also be written as

(WΨM s̃ )(b, a, θ ) = ⟨ΨM
b,a,θ, s̃ ⟩L2(M)

= ⟨U(b, a, θ )ΨM, s̃ ⟩L2(M)

= ⟨U(b, a, θ )(ΨM ◦ p−1, s̃ ◦ p−1 ⟩L2(R2)

= ⟨Ψb,a,θ, s ⟩L2(R2)

= (WΨs)(b, a, θ).

By performing a composition with p on the right in the reconstruction formula for the 2D
case, the following reconstruction formula holds in L2(M):

s̃(η) = C−1
ΨM

∫∫∫
J
ΨM

b,a,θ(η)(WΨM s̃ )(b, a, θ) db
da

a3
dθ.

Finally, let us mention that any discretization of the 2D CWT can be moved onto M, pre-
serving the stability properties.

Conclusion

The approach presented in this paper allows us to move any construction of wavelets defined on
R2 to a surface of revolution M, which is piecewise smooth and has infinite area. Although the
equal area projection p that we have described in Section 2 has no nice geometrical interpretation
as the Lambert azimuthal projection, this is not important for implementations, as long as we
have explicit formulas for p. Moreover, through this approach, the numerical behavior of planar
2D wavelets is inherited by the wavelets on M. This implies, in particular, that both CWT and
DWT on M have the same properties as the usual, planar ones. For this reason, we consider
that there is no need to present particular examples. Finally we note that the definition of the
continuous Fourier transform on M given in formula (26) can be used for defining a much simpler
discrete Fourier transform than the one in [6].
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