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ABSTRACT
Current Internet protocols like TCP have been designed to
work well on channels with low channel error rates. Wire-
less channels on the other hand exhibit high loss rates when
compared to wired channels. Under these conditions, cur-
rent TCP implementations mistake losses due to channel er-
rors as being caused by congestion and as a result the send-
ing rate is unnecessarily reduced leading to a degradation in
performance. As a result, a discrimination mechanism be-
tween channel loss and congestion loss is needed, in order
to make TCP perform better over high error rate links. Un-
fortunately, the implementation of such mechanisms is com-
plicated by the fact that the congestion control and the loss
handling mechanisms in TCP are strongly intertwined.

This paper presents an approach for the implementation
of a TCP-like transport protocol1 by using generic rateless
erasure correcting codes for the error handling mechanism,
thus decoupling it from the congestion control mechanism of
the protocol. The congestion control included in the protocol
is inspired from current TCP implementations, also contain-
ing a discrimination mechanism between channel loss and
congestion loss.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Net-
work Protocols—Protocol Architecture (OSI model);
C.2.5 [Computer-Communication Networks]: Lo-
cal and Wide-Area Networks—Internet

General Terms
Design, Performance
1i.e. reliable, connection-oriented and having end-to-end
flow control
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1. INTRODUCTION
Over the Internet, the physical channel is seen at the

higher layers as a packet erasure channel, due to the fact
that packets with errors are usually not delivered to the
higher layers. Most protocols used nowadays over the
Internet have been designed to operate under the low
loss rates specific to wired channels. Wireless channels
on the other hand exhibit significantly higher packet
loss rates.

The Transport Control Protocol (TCP)[8] provides re-
liability over the packet erasure channel by using ack-
nowledgements and retransmission of unacknowledged
packets. It also uses a flow control mechanism in or-
der to detect congestion and adjust its sending rate ac-
cordingly. This mechanism makes almost no distinction
between losses arising from congestion or losses arising
from errors on the physical channel, treating all losses
as congestion. For low packet loss rates, this mechanism
offers sufficiently good performances, proof for this be-
ing the success of TCP/IP. Switching over to channels
with higher loss rates and treating all packet losses as
congestion in the network will lead to a degradation of
the performance of TCP. Several analitycal throughput
models exist for TCP, and all lead to the conclusion
that TCP’s performance, in terms of achievable steady-
state throughput, degrades significantly in the presence
of high packet loss rates [3][7]. Various improvements to
TCP have been made with the purpose of distinguishing
between losses caused by congestion and losses originat-
ing from errors on the transmission channel [4][10]. Still,
even with these improvements, TCP does not perform
satisfactory on channels with high segment loss rates.

Since the physical channel is seen at the higher layers
as a packet erasure channel, this opens the possibility
of using modern erasure correcting codes to ensure the
reliability at the transport layer. The most appealing
codes for this task are rateless erasure codes like Dig-
ital Fountain Codes [2] or network coding techniques
used for source coding [11]. Current research regard-



ing a new architecture for the Internet is also favoring
the integration of coding techniques at various layers in
order to improve the performance and the efficiency of
the network[6][1].

This paper presents a proposal for the implemen-
tation of a TCP-like transport protocol (i.e. reliable,
connection-oriented and having end-to-end flow control),
that uses generic rateless erasure correcting codes for its
error handling mechanism. The purpose of the paper is
also to prove that such an approach can lead to a more
performant transfer than the regular TCP implementa-
tion on channels with high packet loss rates.

The paper is organized as follows: Section 2 presents
the general architecture of the protocol in question, Sec-
tion 3 presents some details regarding the implementa-
tion and the scenarios used for the simulations, Section
4 presents the results that were obtained from the simu-
lations and Section 5 presents the conclusions that were
drawn from this study.

2. THE PROPOSED PROTOCOL
The protocol proposed in this paper uses rateless era-

sure correcting codes, like Digital Fountain codes [2]
or network coding techniques used for source coding
[11], applied to the data that is going to be transferred
through the network. The segments sent through the
network are symbols from the output of such an en-
coder. This allows a complete independece between the
design of the congestion control mechanism and the er-
ror handling mechanism of the protocol. Due to the use
of forward error correcting codes the protocol in ques-
tion will be called FECTCP.

2.1 Rateless Erasure Codes
A general definition for rateless erasure codes is given

below:

Definition 1. A rateless erasure code is a code which
can produce an almost infinite set/flow of encoded
symbols from any finite set of K input symbols. The
decoder of such a code can recover all the K input sym-
bols from any (1+ε)K encoded symbols with arbitrarily
high probability as K grows, for some ε ∈ R+.

2.1.1 Encoding and Decoding
Let F = (GF (2m))n be the set of all m × n bit

length strings, for m,n ∈ N∗. The elements of this set
are n-dimensional vectors having their coordinates el-
ements from GF (2m). Let F = (F,⊕) be the finite
n-dimensional vector space over F induced by some
addition operator ⊕. The input symbols for the rate-
less erasure code and the code-words at the output of
the encoder are elements of F . Furthermore, choose
V = GF (2m) as the set of scalars and introduce some
multiplication operator, ⊗, such that G = (F , V,⊗)
forms a vector field over F .

The data that is to be encoded is partitioned into
K ∈ N∗ input symbols, denoted by xi ∈ F , i ∈ 1..K. If
the actual length of the data is not an integer K times
m × n bits, the data can be padded with “0” bits up
to the next integer value of K. Whenever the encoder
needs to produce an output symbol (encoded symbol)
yj it chooses K random elements from V , aji according
to some distribution. The encoded symbol will be:

yj =
K∑

i=1

ajixi (1)

where the addition and the multiplication operations
are the ones defined by the ⊕ and the ⊗ operators,
respectively.

The decoder at the receiver is in possession of J ≥
K ∈ N∗ encoded symbols and the random coefficients
aji that were used by the encoder when generating these
J output symbols2. As a result, the decoder can form
the following system of equations:

Y =


y1

y2

...
yJ

 =


a11 . . . a1K

a21 . . . a2K

...
. . .

...
aJ1 . . . aJK




x1

x2

...
xK

 = A×X

(2)
Recovering the K input symbols amounts to solving the
system of equations given in (2) using any algorithm
suitable for this task3. In order for (2) to be solvable,
the matrix A needs to be of full rank, i.e. K. The num-
ber of encoded symbols needed for successful recovery
of the input symbols is on average n = (1 + ε)K, where
ε denotes the average overhead of the code. The proba-
bility of successful recovery of all input symbols can be
made arbitrarily close to 1 for any given ε ∈ R+.

Due to the rateless property of these codes they are
extremely good candidates for offering efficient reliabil-
ity for a wide interval of loss rates.

2.2 Operation of the Proposed Protocol
The proposed protocol uses the slow-start and the

congestion avoidance algorithms with slight modifica-
tions. The protocol relies on a dynamic congestion win-
dow of size W c segments, which is also the sliding trans-
mission window, having the initial size of one segment.
All segments are uniquely numbered, in order to keep
the synchornization between the random number gener-
ators used in the encoders and decoders at both ends of
the connection. The segments sent through the network
are encoded symbols obtained from the output of some
rateless erasure code applied to the input data. As a
2Various methods can ensure this, e.g including this infor-
mation in packet headers, or synchronization of the random
number generators, etc.
3e.g. Gauss-Jordan elimination, upper triangularization
with backsubstitution, etc.



Figure 1: Inter segment distance

result, the terms segment and symbol will be used inter-
changeably throught the rest of the paper. Each time
a segment is sent, a timer for that segment is started.
The receiver responds to each received segment with an
acknowledgement (ACK ) for that particular segment.
When an ACK arrives at the sender, the transmission
window slides to the right to release as many new seg-
ments into the network as the ACK validates. ACK s
are cumulative, i.e. the ACK for segment n validates all
previous segments. If no ACK is received for a symbol
before its timer duration, ∆T0, expires, then a time-
out (TO) occurs. If a TO event occurs, then W th =
max([W c/2], 2) and W c = max([W c/2], 1), where W th

is the slow-start threshold. The slow-start threshold is
the size of the congestion window for which the protocol
switches from slow-start to congestion avoidance.

2.3 Congestion Control Mechanism
For each segment that is sent into the network, the

protocol stores its timestamp. When the ACK for that
specific segment arrives back at the sender, the proto-
col will compute the round-trip time for the segment.
Using this sample of the round-trip time, the proto-
col will update the mean RTT and the RTT variance.
Then, the smoothed round-trip time (sRTT ) is updated
according to the following equation:

sRTTnew = α · sRTTold + (1− α)RTT (3)

for some α ∈ (0, 1), a protocol parameter and RTT
the average RTT . The TO timer duration, denoted by
∆TTO is given by:

∆TTO = (1 + β)(sRTT + σRTT ) (4)

where σRTT is the variance of the mean RTT, and β ∈
R+ is another protocol parameter.

Segment losses caused by congestion exhibit strong
correlation, leading to consecutive segment losses. On
the other hand, losses caused by errors on the physical
channel are mostly random. The segments sent by the
protocol are considered to be evenly spaced in time as
shown in Figure 1. Setting the TO timer duration to a
value that is longer than one RTT, one “hides” singular
segment losses from the congestion control mechanism
since this choice allows enough time for the ACK of the
segment immediately following the lost segment to re-
turn to the sender, and thus cumulatively acknowledg-

Figure 2: Header structure for the proposed
protocol

ing the lost segment as well and cancelling its TO timer.
When congestion occurs, segments spanning a longer
time-interval will be lost, thus making a TO timer ex-
pire and as a result, the protocol will reduce its sending
rate to cope with the congestion. There is no need for
retransmissions here, since the segments sent into the
network are encoded symbols from the output of a rate-
less erasure code. The protocol will just send the next
encoded symbol produced by the encoder, whenever it
can send one segment. Once enough symbols have ar-
rived at the receiver, it will be able to recover the initial
data, and it will report this back to the sender.

3. IMPLEMENTATION AND SCENARIO
The presented protocol was implemented using the

OMNeT++ network simulation platform together with
the INETMANET model library. The header structure
for this protocol uses the TCP header as a model and
is presented in Figure 2. The header size is 20 bytes,
just as the one used by TCP. Some parts of the header
are not used, but this is a minimal implementation for
this protocol, a real-world implementation might need
some additional fields which will hopefully fit in the
remaining free space of the header. The meaning of
each of the fields within this header is explained in the
following.

Source Port and Destination Port.
These fields have the exact same meaning and use as

in TCP.

Segment/Symbol Number.
Uniquely identifies a symbol in the flow. The seg-

ments are numbered in a continous manner, starting
from some value4 and then wrapping around when the
maximum value is reached. Rateless erasure codes have
a random structure, each instantiation of such a code
resulting in a different structure5. The structure of the
code needs to be knwon at the decoder as well. Us-
ing this field to keep the random number generators
4Either a predetermined value, e.g. 0, or a random value.
5Although with the same average performances for a given
set of parameters



(RNGs) at the encoder and at the decoder in synchro-
nism, the decoder can reconstruct the same code code
strucutre as the encoder.

Acknowledgement Number.
This field reports acknowledgments from the receiver

back to the sender. The header structure allows for pig-
gybacking of ACK s onto data segments in the reverse
direction. Currently this is not yet implemented.

Transfer ID.
Since rateless erasure codes are best suited for encod-

ing large amounts of data, this protocol is designed for
the same purpose. When an application wants to send
some data it only needs to provide the protocol with a
“handle”6 to the data. The protocol regards this data
as one block and, based on its length it chooses the
appropriate parameters for the code that is going to
be used. This whole data block is encoded using some
rateless erasure code. After the whole block has been
successfully transferred, the protocol will report back
to the application allowing a new transfer. Several such
transfers can occur during the lifetime of a connection.
The Transfer ID field is used to distinguish between dif-
ferent such transfers and it is also used to perform the
initial synchronization of the RNGs during each block
transfer. The value of the Transfer ID is present in the
header of each segment belonging to that data block.

Flags.
The flags used in the header have the following mean-

ing:

• ACK, SYN, RST and FIN exactly as in TCP
during the connection establishment and teardown;

• BSYN and BACK are the flags signalling the
beginning of a new block of data, respectively the
successful recovery by the receiver of the current
data block. In case the BSYN segment is lost,
the receiver can infer the beginning of a new block
from the Transfer ID and the Symbol/Segment
Number fields. Once the receiver recovers the con-
tent, it will respond to any incoming data segments
with a segment containing the BACK flag until
the sender receives a BACK segment.

Block Length.
This field represents the length of the current data

block in bytes. This value is present in all segments
belonging to the current block. Being represented on
32 bits it allows the protocol to transfer up to 4GB as
one block, which is more than sufficient for practical
purposes.
6Either a file handle or a pointer to the memory area.

Figure 3: Network scenario using Neyman chan-
nel

3.1 Scenario
The scenario used for the comparative study between

TCP and FECTCP comprises the two hosts which trans-
fer the data, called Client and Server, and two routers
placed in between and is presented in Figure 3. The ac-
cess link from the Server to its router is Ethernet/802.3
100Mbps. The link between the two routers is a PPP
link having a fixed datarate of 1Mbps and introducing
a fixed delay during a simulation (thus modelling the
Internet cloud between the two routers). No explicit
delay jitter modelling is performed on this link, except
the delay variations which appear as a result of the en-
queueing and dequeueing operations in the routers. The
last hop, the link between the Client and its router, is a
generic CSMA link with a fixed datarate of 1Mbps with
no ARQ, which introduces errors on the packets that
traverse it. The scenario was chosen for its generality,
since this way it is not tied to a specific implementa-
tion of the access link of the client, but still allowing for
a sufficiently accurate modelling of the entire process.
The error channel uses a Neyman Type A distribution
for the errors introduced on the data flow [9].

The average overhead of the rateless erasure code in
the simulations was set to a conservative value of 5%.
Rateless erasure codes with average overhead lower than
this value are readily available, for example the Raptor
code described in [5] has an average overhead on the
order of 0.2%. The β parameter from (4) vas set to a
value of 0.3. A preliminary study, not included here,
showed that this value ensures good performance of the
protocol in terms of throughput, while also maintain-
ing friendliness to other flows sharing the same network
resources.

4. EXPERIMENTAL RESULTS
Simulations using the scenario presented in Figure

3 have been run for various values of the end-to-end
delay between the Client and the Server and for various
values of the segment loss rate. The block size used for
the transfers was 50MB, the results being similar for
different block sizes.

Performance depending on end-to-end delay.
The round-trip time range of 10-200ms was studied

since these values are typical for connections running



Figure 4: Transfer duration and throughput

through the Internet. Figure 4 presents the results for
two different values of the packet loss rate ploss.

As the end-to-end delay increases, TCP exhibits an
almost linear increase in the duration of the transfer
for both values of the ploss. The cause for this behavior
is the limited size of the congestion window for TCP.
TCP’s behavior for low end-to-end delays is also inter-
esting. For ploss ≈ 5% there is a portion on the graph
where TCP has almost constant average throughput. In
this case the throughput is limited by the loss rate on
the channel. As the end-to-end delay increases, the lim-
itation of the throughput due to the end-to-end delay
becomes predominant, leading to the aforementioned
increase in the duration of the transfer. This behavior
is somewhat present for ploss ≈ 0.5% as well, although
at first the transfer duration decreases as the end-to-end
delay increases, for low values of the end-to-end delay.
The results shows that FECTCP achieves an average
throughput that is not degraded by the increase of the
end-to-end delay. Although for small end-to-end delays
(in the range 1 - 20ms) the performance of the proto-
col is affected by the increase of the end-to-end delay,
it is important to bear in mind that end-to-end delays
of this magnitude are rarely seen in practice. Delays
usually introduced by the Internet are at least on the
order of 50ms. As a result, the situation most often en-
countered is the one where the average throughput does
not depend on these delays. Thus one can conlcude that
the proposed protocol can perform better than TCP for
high delay networks as well.

Performance depending on segment loss rate.
The range of loss-rates targeted for these simulations

was from 0.1% to 25%. Two cases were considered here.
The first one shows the behavior of TCP and FECTCP
depending, as much as possible, only on the segment
loss rate, and not on the end-to-end delay of the link.
Therefore, a low value of the end-to-end delay was cho-
sen, in this case 20ms. Figure 5 presents the results
of these simulations. The left graph from the figure

presents the evolution of the transfer duration and of
the average throughput at the application layer as a
function of the packet loss rate. The actual through-
put that is injected by the transport protocol into the
network is presented in the graph on the right. The
injected throughput, ρinj was obtained by adjusting
the average throughput at the application layer, ρav,
with the actual segment loss rate. For TCP we have
ρTCP

inj =
ρav

(1− ploss)
. For FECTCP an additional ad-

justment is needed in order to account for the code over-
head ε as well. Therefore ρFECTCP

inj =
ρav

(1− ploss)
(1+ε).

End-to-end delays as low as 20ms is not realistic.
Therefore, the performance of TCP and FECTCP de-
pending on segment loss rate using a real-life value for
the end-to-end delay was evaluated. Figure 6 presents
the results of these simulations.

These results show that FECTCP performs better
than TCP in terms of average throughput once the seg-
ment loss rate goes above a certain value (in our case
around 2%). For lower segment loss rates TCP per-
forms better, since the performance of TCP is not de-
graded, while FECTCP needs to account for the code
overhead as well. Once the segment loss rate increases,
the throughput of TCP will decrease, while FECTCP
will maintain its throughput almost the same, and as a
result it will be able to successfully transfer the needed
data through the network faster than TCP.

5. CONCLUSIONS
The paper proposes the idea of using modern era-

sure coding techniques, such as rateless erasure codes,
integrated into a transport protocol as a mean of im-
proving performance over high loss rate networks. The
performance of the proposed protocol, called FECTCP,
has been evaluated and compared to the performance of
TCP. The dependence of the average throughput as a
function of the end-to-end delay and of the packet loss
rate was studied. The results showed that FECTCP
can indeed perform better than TCP when confronted



Figure 5: Transfer duration and throughput depending on ploss for end-to-end delay = 20ms

Figure 6: Transfer duration and throughput depending on ploss for end-to-end delay = 50ms

with high paket loss rates and high end-to-end delays
on the link. For low packet loss rates (under 2%) and
low end-to-end delays TCP still performs better. These
results open up additional applications of cross-layering
techniques. An example would be to replace the cur-
rent transport layer with a “transport service”. Appli-
cations issue requests to this transport service stating
what kind of service they require, and based on informa-
tion from the lower layers (e.g. PHY, MAC, etc.), the
most suited protocol is chosen for the the data trans-
port.
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