
FECTCP for High Packet Error
Rate Wireless Channels

Anghel Botos, ∗
Email: Anghel.Botos@com.utcluj.ro

Zsolt Polgar∗
Email: Zsolt.Polgar@com.utcluj.ro

∗Faculty of Electronics, Telecommunication
and Information Technology

Technical University of Cluj Napoca
400020 Cluj-Napoca, Romania

Vasile Bota∗
Email: Vasile.Bota@com.utcluj.ro

Abstract—Current Internet protocols like TCP have been
designed to work well on channels with low channel error rates.
Wireless channels on the other hand exhibit high loss rates when
compared to wired channels. Under these conditions, current
TCP implementations mistake packet losses due to channel errors
as being caused by congestion and as a result they unnecessarily
reduce the sending rate leading to a performance degradation.
For channels with high packet error rates, a discrimination
mechanism between channel loss and congestion loss is needed,
in order to make TCP perform better over such links.

This paper presents an approach for the implementation
of a TCP-like transport protocol1 by using rateless erasure
correcting codes for the error handling mechanism. Based on
the distribution of packet losses on the channel, the classical
congestion control mechanism of TCP is modified, as to better
differentiate between packet loss caused by the wireless link and
packet loss caused by congestion.

I. INTRODUCTION

Over the Internet, the physical channel is perceived at the
higher layers as a packet erasure channel, due to the fact that
packets with errors are usually not delivered to the higher
layers. Most protocols used nowadays over the Internet have
been designed to operate on wired channels which exhibit
low loss rates. Wireless channels on the other hand exhibit
significantly higher packet loss rates.

TCP provides reliability over the packet erasure channel
by using acknowledgements and retransmission of unacknowl-
edged packets. It also uses a flow control mechanism in order
to detect congestion and adjust its sending rate accordingly.
This mechanism makes almost no distinction between losses
arising from congestion or losses arising from errors on the
physical channel, treating all losses as congestion. For low
packet loss rates, this mechanism offers sufficiently good
performances, proof for this being the success of TCP. Using
this approach on channels with high loss rates leads to a
degradation of the performance of TCP. Analytical throughput
models for TCP and practical studies have shown this conclu-
sion to be true [1] [2].

Approaches to this problem are varied in the literature.
Some rely on “splitting” the TCP connection by using proxies
in order to isolate the lossy link [3] [4], while others rely on

1i.e. reliable, connection-oriented and having end-to-end flow control

the use of the ECN feature of IP [5]. The drawback of the first
approach is that it requires special entities in the network to
act as proxies, which may not be freely available, while the
second requires ECN to be supported in all network entities
through which the connection passes.

Since the physical channel is seen at the higher layers
as a packet erasure channel, this opens the possibility of
using erasure correcting codes to ensure the reliability at
the transport layer. Rateless erasure codes [6] [7] [8] [9] or
network coding techniques used for source coding [10] are an
appealing choice for this task.

This paper presents a simple approach for the implementa-
tion of a TCP-like transport protocol with good performance
on high loss rate links. No additional network entities, like
proxies, are needed, and ECN functionality is also not required
for its operation. Reliability is ensured using erasure correcting
codes while the congestion control uses the distribution of
losses on the physical link to discriminate between loss due
to errors or congestion.

II. PROTOCOL OPERATION

A. Connection Establishment and Teardown

Connection establishment and teardown is performed sim-
ilarly as in TCP using a three-way handshake. Additional
parameters needed for the description of the codes used by
a specific connection are exchanged by the two ends during
the connection establishment phase.

B. Reliability and Error Handling

The segments sent by this protocol through the network
are encoded symbols obtained from the output of a rateless
encoder like the ones presented in [6] [7] [8] [9] applied to
the original data. Since any such encoded symbol is equally
valuable in the recovery of the initial data, this protocol has
no need for retransmissions and associated buffers and timers.
Whenever the source is able to send a new segment into
the network, it will obtain a new encoded symbol from the
encoder and send it into the network. Each segment is uniquely
numbered2, this ID allowing the decoder at the destination to

2Similar to the sequence numbers in TCP



generate the equation which yielded the received symbol. The
transmission ends when the destination has received enough
encoded symbols to allow for the decoding of the original
data. The rateless property of the employed codes ensures an
efficient data transfer over a wide range of packet loss rates
while at the same time allowing a complete independence
of the congestion and flow control from the error handling
mechanism of the protocol. Due to the use of forward error
correcting codes, the protocol in question will be called
FECTCP.

C. Loss Distribution

In order to be able to discriminate between losses caused
by errors on the physical link and losses caused by congestion
in the core network it is useful to investigate the distribution
of losses produced by a physical channel.

Most transmissions experience errors in bursts or clusters,
which invalidates the use of the Poisson error model. To
characterize this clustering effect, various models for channels
with memory have been developed, among them the Neyman
Type A distribution [11]. One can view this distribution as
a compound Poisson model in which error clusters have a
Poisson distribution and errors within a cluster also have a
Poisson distribution. This distribution is applicable to physical
channels with few error generating mechanism like wired
channels, wireless channels affected by slow fading or wireless
channels affected by relatively constant interference from other
users.

Distribution of distance between packet losses

C
D

F

0

0.2

0.4

0.6

0.8

1

Distance between packet losses

0 5 10 15 20

PER=31.5%

PER=26.2%

PER=20.3%

PER=14.1%

PER=7.29%

PER=5.89%

Fig. 1. Distribution of distance between packet losses

The resulting CDF of the distance between two consecutive
packet losses is presented in Fig. 1, the packet length being
1500 bytes. From this CDF it is visible that consecutive packet
losses occur with a probability that is roughly equal to the
average packet loss rate of the link. This observation will be
used further on when designing the flow control mechanism
of the protocol.

D. Congestion and Flow Control

For each segment that is sent into the network, the protocol
stores its time-stamp. When the ACK for that specific segment

arrives back at the sender, the protocol will compute the round-
trip time for the segment. Using this sample of the round-
trip time, the protocol will update the mean RTT and the
RTT variance. Then, the smoothed round-trip time (sRTT )
is updated according to the following equation:

sRTTnew = α · sRTTold + (1− α)RTTnew (1)

for some α ∈ (0, 1), a protocol parameter and RTTnew

the updated average RTT . The protocol also maintains a
variable, cwnd, the congestion window size, which denotes
the maximum number of segments which may be in transit
at a given moment. The segments sent into the network and
belonging to a given congestion window are evenly spaced
in time. This is ensured by the way the protocol schedules
segment transmissions. The value of cwnd has no upper
bound, as a result there is no limit for the maximum throughput
achievable by the protocol even on large delay networks.

The drop-tail queuing policy in routers drops all incoming
packets from all flows when the queue is full, thus leading
to consecutive packet losses in all flows for the duration of
congestion. RED and its variants drop incoming packets with
a given probability if the queue size is above a minimum
threshold, and then perform like drop-tail once the queue
size is above a maximum threshold. This queue management
policy, together with the high packet loss rate on the access
link, significantly increases the probability of consecutive
packet losses to occur within a given flow. This fact can be
used as a discriminator between congestion and packet losses
caused by errors on the access link.

The flow control used for this protocol is borrowed from
TCP, i.e. the slow-start and congestion avoidance algorithm,
with some modifications. The idea is to silently ignore singular
packet losses, since they are easily attributable to errors on the
channel for the high loss rates that we targeted, and to reduce
the sending data rate only when consecutive packet losses are
encountered in the flow. This is achieved by using cumulative
ACKs, i.e. each ACK acknowledges all previous segments
sent into the network3 and also cancels their timeout timers,
and by using a time interval for the timers that is slightly
longer than one RTT . The amount by which this interval is
longer than an RTT is computed in such a way as to allow
even the ACK for the next segment to arrive back to the sender
before the timer expires. Therefore the duration of the timer
is given by:

∆TTO = (1 + β)(sRTT + σRTT ) (2)

where σRTT is the variance of the RTT , and β ∈ R+ is given
by:

β =
1

cwnd
(3)

This way singular packet losses in the flow are ignored
while consecutive packet losses will trigger a reduction of

3This does not represent an issue for the reliability of the data transfer since
the segments are encoded symbols from the output of a rateless encoder



the sender’s data rate. For drop-tail queues and RED queues
having the size above the maximum threshold this will have
no impact on the correct identification of congestion. For
low packet error rates on the wireless link, together with
RED queues having the size between the minimum and the
maximum threshold packets dropped by the routers will not
always necessarily trigger a reduction of the sending data rate.

III. IMPLEMENTATION AND SCENARIO

The protocol described in Section II was implemented using
the ns2 network simulator. This protocol implementation was
used to evaluate its performance compared to other “flavors”
of TCP.

The scenario used for performance evaluation is presented
in Fig. 2 using one or several WLAN clients performing data
transfers using the proposed protocol or various “flavors” of
TCP. The WLAN used in the simulations was set at 1Mbps,
results for other data rates being similar to the ones presented
in Section IV.

WLAN
Clients

Router /AP Router
Server

WLAN

WAN

Fig. 2. Scenario used for performance evaluation

Performance was evaluated in terms of average throughput
as seen at the application layer4 and fairness evaluations with
respect to other flows like TCP or UDP have also been
performed.

IV. RESULTS

A. Performance Depending on Segment Loss Rate

The file sizes used for the transfers was chosen to be large
enough to allow all protocols to reach the steady-state. File
sizes ranged from several MB to tens of MB. Link rates for the
links going from the server to the wireless access point have
been set to values that allow all simulated flows to be present
without the occurrence of congestion. Simulated segment loss
rates ranged from 0.1% to 25%.

Two cases were considered here. The first one shows the
behavior of TCP and FECTCP depending, as much as possible,
only on the segment loss rate, and not on the end-to-end delay
of the connection. Therefore, a low value of the end-to-end
delay was chosen, in this case 20ms. Fig. 3 presents the results
of these simulations.

Simulations have also been performed using more realistic
values for the end-to-end delay of the connection. Results for
simulations using a 100ms end-to-end delay of the connection

4i.e. the time needed to complete a data transfer of a given size.

Average throughput

A
v
e
r
a
g
e
 t

h
r
o
u
g
h
p
u
t
 [

k
B

p
s
]

0

20

40

60

80

100

120

140

Segment loss rate [%]

0 5 10 15 20 25

TCP Reno

TCP Vegas+SACK

TCP SACK

FECTCP

Fig. 3. Average throughput performance for end-to-end delay = 20ms

are presented in Fig. 4. A performance penalty on TCP is
visible due to the increased end-to-end delay, but the general
behavior depending on the segment loss rate is still the same.

Average throughput
A
v
e
r
a
g
e
 t

h
r
o
u
g
h
p
u
t
 [

k
B

p
s
]

0

20

40

60

80

100

120

140

Segment loss rate [%]
0 5 10 15 20 25

TCP Reno

TCP Vegas+SACK

TCP SACK

FECTCP

Fig. 4. Average throughput performance for end-to-end delay = 100ms

FECTCP also suffers a small performance penalty due to
the increased end-to-end delay, but it still performs better than
TCP for high segment loss rates.

Both Fig. 3 and Fig. 4 show that FECTCP can outperform
TCP in terms of average throughput for high segment loss rates
caused by errors on the physical channel. For low segment
loss rates on the other hand (below 5%), it is obvious that
TCP outperforms FECTCP. This behavior is easily explained
by the fact that the underlying rateless encoding used on the
original data requires a certain overhead. This means that the
destination needs to receive a number of encoded segments
that is slightly larger than the number of original segments. In
the simulations a rateless code with an average overhead of
5% was used.

Good performances are obtained in the interval 5% - 25%
where consecutive packet losses occur with a low probability
due to errors on the channel as was presented in 1. For very
large packet loss rates (¿ 25%) the performance of FECTCP
starts to decrease as well because the probability of occurrence
for consecutive packet losses due to channel errors increases.



B. Fairness Evaluation and Behavior in the Presence of
Congestion

The purpose of this section was to evaluate whether the
proposed protocol behaves correctly when faced with conges-
tion on the network, and also to evaluate whether it fairly
shares network resources with other competing flows. Several
transmissions using FECTCP, TCP and UDP were started
on the WLAN clients. The evolution of the instantaneous
throughput of all flows was studied.

Fig. 5 presents the evolution of the instantaneous data rate
of a TCP flow and a FECTCP flow sharing the same wireless
link. The TCP flow starts later than the FECTCP flow. From
the figure it is visible that the FECTCP flow allows the TCP
connection to have its share of network bandwidth, both of
them being able to transfer data at a reasonable data rate.

Instantaneous data rate evolution

D
a
t
a
 r

a
t
e
 [

k
B

p
s
]

0

20

40

60

80

100

Time [s]

0 50 100 150

TCP

FECTCP

Fig. 5. Evolution of instantaneous data rate of TCP and FECTCP using the
same link

Fig. 6 shows the evolution of the instantaneous data rate
for a UDP flow and a FECTCP flow using the same wireless
link. The UDP flow is a CBR one with a data rate of 20kBps.
From the figure one can conclude that FECTCP reduces its
data rate when faced with the presence of a UDP flow just as
it is expected to do.

Instantaneous data rate evolution

D
a
t
a
 r

a
t
e
 [

k
B

p
s
]

0

20

40

60

80

100

Time [s]

0 10 20 30 40 50 60 70

FECTCP

UDP

Fig. 6. Evolution of instantaneous data rate of UDP and FECTCP using the
same link

Several other simulations have been performed in order
to evaluate whether FECTCP behaves in a network friendly

manner5. All of our simulations show that this protocol
behaves in a network friendly manner by fulfilling the above
requirements.

V. CONCLUSIONS AND FUTURE WORK

The paper presented a TCP-like protocol using a conges-
tion control mechanism which takes into account the packet
loss distribution on the physical channel. Furthermore, data
transfer reliability was ensured by the use of rateless erasure
correcting codes, thus eliminating the need for retransmissions
and making the implementation simpler. The results obtained
through this study show that this protocol can obtain better
performance, in terms of average throughput, than TCP on
channels with high packet loss rate. Unfortunately this is
not a “one size fits all” solution since it performs poorer
than regular TCP for low packet loss rates due to the code
overhead. Additional evaluation of the protocol also showed
that it correctly reduces its sending rate in the presence of
congestion and that it fairly shares network bandwidth with
other flows using the same physical links. The advantage of
the proposed solution lies in the fact that no additional entities,
like proxies, and no support for ECN from the network are
needed, all flow control operations being performed only in
the hosts located at the two ends of the connection.

ACKNOWLEDGMENT

This work was partially funded by the European Union
within the FP7-ICT-2007-1-216041-4WARD project.

REFERENCES

[1] S. Fortin-Parisi and B. Sericola, “A Markov model of TCP throughput,
goodput and slow start,” Performance Evaluation, vol. 58, no. 2-3, pp.
89 – 108, 2004.

[2] N. Parvez, A. Mahanti, and C. Williamson, “An Analytic Throughput
Model for TCP NewReno,” Networking, IEEE/ACM Transactions on,
vol. PP, no. 99, p. 1, November 2009.

[3] A. Bakre and B. R. Badrinath, “I-TCP: indirect TCP for mobile
hosts,” Distributed Computing Systems, 1995., Proceedings of the 15th
International Conference on, pp. 136–143, 1995.

[4] S. Kopparty, S. V. Krishnamurthy, M. Faloutsos, and S. K. Tripathi,
“Split TCP for mobile ad hoc networks,” Global Telecommunications
Conference, 2002. GLOBECOM ’02. IEEE, vol. 1, pp. 138–142 vol.1,
2002.

[5] R. Krishnan, J. P. Sterbenz, W. M. Eddy, C. Partridge, and M. Allman,
“Explicit transport error notification (ETEN) for error-prone wireless
and satellite networks,” Computer Networks, vol. 46, no. 3, pp. 343 –
362, 2004.

[6] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” SIGCOMM
Comput. Commun. Rev., vol. 28, no. 4, pp. 56–67, October 1998.

[7] M. Luby, “LT codes,” Foundations of Computer Science, 2002. Proceed-
ings. The 43rd Annual IEEE Symposium on, pp. 271–280, 2002.

[8] A. Shokrollahi, “Raptor codes,” Information Theory, IEEE Transactions
on, vol. 52, no. 6, pp. 2551–2567, 2006.

[9] P. Maymounkov and D. Mazieres, “Rateless Codes and Big Downloads,”
in In IPTPS’03, 2003.

[10] R. W. Yeung, S.-Y. R. Li, N. Cai, and Z. Zhang, “Network coding theory:
single sources,” Commun. Inf. Theory, vol. 2, no. 4, pp. 241–329, 2005.

[11] D. R. Smith, Digital Transmission Systems, 3rd ed. Springer, 2004.

5i.e. whether it allows other TCP flows to have a fair share of the existing
network bandwidth and whether it yields part of its used bandwidth in favor
of UDP when such flows are present


