

COURSE 1 LTE SYSTEM. RADIO INTERFACE AND SYSTEM ARCHITECTURE

CONF. DR. ING. ZSOLT POLGÁR

Ş.L. DR. ING. ZSUZSANNA ŞUTA

COMMUNICATIONS DEPARTMENT

CONTENT

- ■Evolution towards LTE
- General description
- LTE radio frame
- ☐ LTE physical channels
- ☐ LTE logical and transport channels
- □ SAE system architecture
- Handover in LTE

- □ LTE specifications are included in the IMT 2000 specifications family
- ☐ Universal Mobile Telecommunications System (UMTS/HSxPA) specifications impose high speed packet transfer:
 - Up to 14.4 Mbps in downlink and 5.76 Mbps in uplink first specifications
 - The specifications allow download at 28.8 Mbps or 43.2Mbps (Dual carrier)
 - The HSxPA system offer significant improvements compared to previous UMTS systems, but the performances are limited due to the previous versions compatibility requirements
 - Mobile broadband systems based on packet switching, like WiMAX 802.16e, imposed long term development strategies: Long Term Evolution – LTE of the UMTS system
 - Implementation of the LTE Evolved UMTS Terrestrial Radio (E-UTRA) system

- Long term objectives:
 - Peak data rate: 100 Mbps downlink & 50 Mbps uplink
 - Reduced delay: 10ms "round-trip delay"
 - Increased system capacity & coverage
 - Reduced operating costs
 - Support for multi-antenna transmissions
 - Support for efficient packet transfer
 - Flexible bandwidth allocation bandwidths up to 20 MHz
 - Possibility to integrate existing systems
- To achieve these objectives a new radio interface was necessary
- Requirements for the physical layer and a comparison with HSxPA are given in the following table:

Requirements	HSxPA	LTE E-UTRA
Peak data rate	14Mbps DL / 5.76Mbps UL	100Mbps DL / 50Mbps UL
Spectral efficiency	0.6-0.8 DL / 0.35 UL [bps/Hz/sector]	Improvement 3-4x DL / 2-3x UL
Throughput packet call	64kbps DL / 5kbps UL	Improvement 3-4x DL / 2-3x UL
Average user trhoughput	900kbps DL / 150kbps UL	Improvement 3-4x DL / 2-3x UL
Delay – user plane	50ms	5ms
Connection setup time	2s	50ms
Broadcast throughput	384kbps	Improvement 6-8x
Mobility	Up to 250km/h	Up to 350km/h
Multi-antenna support	No	Yes
Bandwidth	5MHz	Scalable up to 20MHz
Mobility Multi-antenna support	Up to 250km/h No	Up to 350km/h Yes

- ☐ Other objectives of E-UTRA include:
 - Support for TDD & FDD working modes
 - Reduced system and terminal complexity
 - Frequency domain/band similar to IEEE 802.16
 - Support for advanced multi-antenna techniques
 - Improved uplink transmissions
 - Reduced delays and support for VoIP
 - Possibility to co-work with legacy systems, like UMTS
 - Support for increased mobility maximum speed up to 350 km/h
 - Techniques for reduced power consumption of the mobile stations
 - Integration of unicast and broadcast transmissions

- The scheduling techniques are an essential difference between HSxPA and LTE systems
- LTE allows both in DL and UL FDS (Frequency Domain/Selective Scheduling) and TDS (Time Domain Scheduling)

HSxPA	LTE E-UTRA
2ms	1ms
QPSK, 16QAM DL; QPSK, BPSK UL	QPSK, 16QAM, 64QAM DL; QPSK, 16QAM UL
N=6 DL, N=8 UL asynchronous DL, synchronous UL; IR operations	asynchronous DL, synchronous UL; IR operations
Convolutional & turbo	Advanced coding techniques
TDS	TDS & FDS
	2ms QPSK, 16QAM DL; QPSK, BPSK UL N=6 DL, N=8 UL asynchronous DL, synchronous UL; IR operations Convolutional & turbo

- FDS can improve the system capacity compared to TDS; 20-30% improvement
- TDS can be used for high speeds, operations at the cell limits, reduced overhead services, control channels
- Multi-Antenna Subsystem (MAS) and MIMO
 - To ensure the required peak data rate multi-antenna techniques have to be used:
 - Spatial multiplexing multiplexing of several data flows toward a single mobile station
 - At least 2 or 4 transmission antennas are required; FDD duplexing is used
 - Multi-user MIMO
 - Different data flows from different users are transmitted using the same spatial resources; Spatial Division Multiple Access (SDMA) is used

- Open loop MIMO diversity
 - Shift diversity or space-time block codes can be used
- Closed-loop MIMO diversity
 - A feedback about the channel state information or information about the precoding performed is necessary at the destination
- Interference control:
 - To maximize the spectral efficiency the frequency reuse factor proposed is 1 both for UL & DL
 - The reuse factor with this value can cause severe interference for the mobile stations at the limit of the cells or in weak coverage areas
 - To control the interference the following are proposed:
 - Slow power control in uplink
 - Interference coordination/avoidance or interference mediation
 - Beam-forming techniques at the base station for uplink transmissions

- ☐ Flexible spectrum allocation:
 - Multiple band allocations with different
 - Paired or unpaired spectrum allocations

LTE band allocation and resource usage

- General protocol structure:
 - The radio interface between the user equipment (UE) and the network is formed of 3 layers:
 - Layers 1, 2 and 3

Layer 3

- TS 36.200 specifications describe layer 1 – physical layer
- TS 36.300 specifications describe layers 2 (MAC+RLC) and 3 Layer 2 (RRC)
- The circles identify the Service
 Access Points (SAP) between the
 layers
 Layer 1

Control / Measurements

CTITS - Course 1

2023-2024

- The physical layer offers transport channel for the MAC layer
 - The transport channel describes how the information is transmitted on the radio interface
- MAC offers logical channels for the Radio Link Control (RLC) sub-layer of layer 2
 - Logical channel is characterized by the information type transmitted
- The physical layer has to perform the following functions for data transmission:
 - Error detection on the transport channels and signaling of errors to higher layers
 - FEC coding/decoding of transport channels
 - H-ARQ with soft combining
 - Rate adaptation of the coded transport channel to the physical channel
 - Mapping of the coded transport channel into physical channels
 - Power adjustment of the physical channel
 - Physical channel modulation/demodulation
 - Frequency and time synchronization

- Radio characteristics measurements and transmission to higher layers
- MIMO multi-antenna processing
- Transmission diversity
- Beamforming
- RF processing
- Multiple access technique:
 - Is based on OFDM (Orthogonal Frequency Division Multiplexing) with cyclic prefix (CP) in DL and SC-FDMA (Single-Carrier Frequency Division Multiple Access) in UL
 - Allowed duplexing: FDD (Frequency Division Duplexing) and TDD (Time Division Duplexing)
 - Layer 1 allows the usage of multiple bandwidths: 1.4, 3, 5, 10, 15, 20MHz
 - The resource block is positioned on 12 sub-carriers with 15kHz separation or 24 sub-carriers with 7.5kHz separation and slot duration of 0.5ms

- Mobility and coverage related aspects:
 - Mobility is one of the most important objectives of LTE
 - The system is optimized for speeds between 0 and 15 km/h
 - High performance is ensured for speeds between 15 and 120 km/h
 - Service can be provided also for speeds between 120 and 350 km/h
 - Support for voice and real-time services is offered for the entire speed range at a quality level at least as of the UTRAN systems
 - The coverage range is up to 5 km in good throughput conditions and high spectral efficiency in mobility conditions
 - The coverage range can be extended up to 30 km
 - Mobility is still ensured; certain degradation of throughput and spectral efficiency is accepted
 - The coverage range can be extended up to 100 km
 - Supported, but significant performance degradation has to be accepted

Processing chain and LTE channels

PDCP – Packet Data Convergence

Protocol; RLC - Radio Link

Control; EPS - Evolved

Packet System

CTITS - Course 1

- □ DL resource block (RB) structure:
 - Resource element represents a basic frequencytime unit and is identified by an index pair (k, l)

$$k = 0,...,N_{RB}^{DL}N_{sc}^{RB}-1$$

 $i = 0,...,N_{symb}^{DL}-1$

- k frequency index; I time index
- The indexing is done in a resource grid which is applied to an antenna port
 - Grid duration is 1 T_{slot}

One downlink slot T_{slot}

CTITS - Course 1

- ☐ Both physical and virtual resource blocks are defined
 - $_{\odot}$ One physical resource block is defined by N_{symb}^{DL} consecutive OFDM symbols in time and N_{sc}^{RB} consecutive sub-carriers in frequency
 - One physical resource block corresponds to one slot period and to 180 kHz
 - The relation between the number of the RB and resource elements in one slot is $n_{\text{PRB}} = \frac{\kappa}{N_{\text{PRB}}}$

Configuration		$N_{ m sc}^{ m RB}$	$N_{ m symb}^{ m DL}$
Normal cyclic prefix	$\Delta f = 15 \text{ kHz}$	12	7
Extended cyclic prefix	$\Delta f = 15 \text{kHz}$		6
	$\Delta f = 7.5 \mathrm{kHz}$	24	3

- A virtual RB has the same dimension as a physical RB
- Two types of virtual resource blocks can be defined
 - Distributed virtaual resource blocks and localized virtual resource blocks

- Virtual RBs are mapped on physical RBs depending on the diversity order
 - For diversity order 2 one virtual RB is mapped on one physical RB
- UL resource block structure:
 - $_{\odot}$ The signal transmitted on each slot is described by a resource grid composed of N_{RB}^{UL}N_{sc}^{RB} sub-carriers and N_{symb}^{UL} SC-FDMA symbols
 - The value of N_{RB}^{UL} depends on the transmission bandwidth UL: $6 \le N_{RB}^{UL} \le 110$
 - The number of SC-FDMA symbols from one slot:

Configuration	$N_{ m sc}^{ m RB}$	$N_{ m symb}^{ m UL}$
Normal cyclic prefix	12	7
Extended cyclic prefix	12	6

• Relation between the number of RB and the resource element identified by the index (k, l): $n_{PRB} = \frac{\kappa}{N_{sc}^{RB}}$

Unused resource elements are set to zero

■ Resource blocks:

- $_{\odot}$ One resource block is defined by $N_{\text{symb}}^{\text{UL}}$ consecutive SC-FDMA symbols in time and $N_{\text{sc}}^{\text{RB}}$ consecutive sub-carriers in frequency
- The time duration is 1 slot and has a 180kHz bandwidth

One uplink slot T_{slot}

CTITS - Course 1

2023-2024

- Frame structure:
 - The basic time unit is: $T_s = 1/(15000*20148)$
 - \circ Transmissions both in DL and UL are organized in frames with a duration of: $T_f = 307200 \, ^*T_s = 10 \, \text{ms}$
 - 2 types of structures are defined:
 - Type 1 for FDD duplexing
 - Type 2 for TDD duplexing
- ☐ Type 1 frame structure:
 - Can be applied both to full duplex and half duplex FDD
 - \circ Each frame has the duration of $T_f = 10$ ms and is composed of 20 slots with duration $T_{slot} = 15369 T_s = 0.5$ ms
 - One subframe i is defined as 2 consecutive slots 2i and 2i+1;
 - In case of FDD 10 subframes are available for DL transmissions and 10 subframes are available for UL transmissions in each 10 ms time interval

- ☐ Type 2 frame structure:
 - Can be used in case of TDD
 - \circ Each frame is composed of two half-frames of duration: $T_f = 5$ ms
 - \circ Each half-frame consists of 8 slots of duration T_{slot} = 0.5ms and 3 special fields: DwPTS, GP and UpPTS
 - $_{\odot}$ The length of the fields DwPTS (Downlink Pilot Time Slot) and UpPTS (Uplink Pilot Time Slot) is configurable, but the total length of the 3 fields must be 30720*T_s = 1ms
 - Subframes 1 and 6 consist of DwPTS, GP (Guard Period) and UpPTS; the other i subframes are composed of two slots 2i and 2i+1

- Subframes 0 and 5 and DwPTS are reserved for DL transmissions
- The switching point can have periodicity of 5 ms or 10 ms
 - In case of 5ms periodicity, UpPTS and subframes 2 and 7 are reserved for UL transmissions
 - In case of 10ms periodicity, DwPTS exists in both half-frames, while GP and UpPTS only in the first half-frame

- DwPTS: is used for cell lookup; carries the primary synchronization signal
 - Includes control information and reference signals as other DL subframes
 - Can carry also actual data depending on the scheduling algorithm

UpTS: the usage is limited to carrying the sounding reference signals and to the random access

(RACH signals)

 GP: guard period which ensures the switching between DL and UL

- Uplink channel:
 - A physical channel corresponds to a set of resource elements that carry information from higher levels
 - The following physical channels are defined:
 - Physical Uplink Shared Channel, PUSCH
 - Physical Uplink Control Channel, PUCCH
 - Physical Random Access Channel, PRACH
- Physical uplink shared channel PUSCH
 - Baseband processing:
 - Randomization; modulation; precoding; mapping of complex symbols on resource elements;
 generating SC FDMA signals on each antenna port

- The modulation constellations used are:
 - QPSK, 16QAM, 64QAM
- Precoding (transformation precoding)
 - The block of complex symbols d(0),...,d(M_{symb}-1) is divided into M_{symb}/M_{sc}^{PUSCH} sets, each corresponding to a SC-FDMA symbol
 - The precoding is performed according to the rule:

$$z(lM_{sc}^{PUSCH} + k) = \sum_{i=0}^{M_{sc}^{PUSCH} - 1} d(lM_{sc}^{PUSCH} + i)e^{-j\frac{2\pi ik}{M_{sc}^{PUSCH}}}, k = 0, ..., M_{sc}^{PUSCH} - 1, l = 0, ..., \frac{M_{symb}}{M_{sc}^{PUSCH}} - 1$$

- The result is a block of complex modulating symbols z(0),...,z(M_{symb}-1)
- The variable M_{sc}^{PUSCH} is the number of subcarriers used for PUSCH transmission in a SC-FDMA symbol

- The variable M_{sc}^{PUSCH} is: $M_{sc}^{PUSCH} = N_{sc}^{RB*} 2^{\alpha 2*} 3^{\alpha 3*} 5^{\alpha 5} \le N_{sc}^{RB} N_{RB}^{UL}$, $\alpha i \ge 0$, i = 2,3,5
- Physical resource mapping involves:
 - Multiplying by an amplitude scaling factor
 - Mapping of complex modulating symbols on the resource block allocated to PUSCH transmission
 - Mapping involves the computation of indexes (k, l) of resource units
 - The I index starts from the first slot in the sub-frame
 - The k index is given by the relation: $k = k_0 + f_{hop}(),...,k_0 + f_{hop}() + M_{sc}^{PUSCH} 1$
 - k₀ represents the first index in the assigned block, f_{hop}() represents the frequency hopping scheme
- ☐ Physical uplink control channel PUCCH
 - The PUCCH channel carries control information in UL: ACK, band request; scheduling request, channel quality indicator, precoding matrix;
 - It is not transmitted simultaneously with PUSCH
 - For the type 2 frame structure, PUCCH is not transmitted in the UpPTS field

CTITS - Course 1

2023-2024

No. bits / subframe

20

N/A

LTE PHYSICAL CHANNELS - UL

PUCCH

Format

0

Modulation

BPSK

QPSK

QPSK

N/A

scheme

- PUCCH supports multiple formats as shown in the following table
- The transmission of control symbols involves a series of processing:
 - Multiplication by a cyclically shifted sequence
 - Different shifts apply to different SC-FDMA control symbols in a slot
 - A spreading is applied using orthogonal sequences
 - Amplitude scaling is applied
 - Mapping on resource elements with frequency hopping
- ☐ Reference signals:
 - Used to estimate/measure the radio channel

- Two types of reference signals are defined in UL:
 - Demodulation reference signal
 - They are associated with the transmission of PUSCH and PUCCH channels
 - Sounding reference signal
 - They are not associated to the transmission of PUSCH and PUCCH channels
 - They are necessary because the transmission takes place only on a limited set of subcarriers, but it is necessary to estimate the channel in the entire frequency band for the allocation of resources
- The same set of basic sequences (Zadoff-Chu signals) is used for the demodulation and measurement signals
 - The reference signals are obtained by cyclically shifting a base sequence
- Orthogonality of reference signals is obtained by frequency multiplexing on distinct sets of subcarriers
- o The length of the sequence is equal to a multiple of the no. of subcarriers in the resource block

- The reference signals are multiplexed over time with the data on the subcarriers assigned to the UE
 - The power level of the reference signal is different from that of the data symbols transmitted on other SC-FDMA symbols PAPR must be minimized on each SC-FDMA symbol
- Control information can also be multiplexed with data
- The PUCCH channel is used until there is no PUSCH allocated for the UE
- SC-FDMA baseband signal generation
 - Applies to all UL channels except the PRACH random access channel
 - The continuous signal in time in the SC-FDMA symbol period with index I is:

$$s_l(t) = \sum_{k=-\left|N_{RB}^{UL}N_{SC}^{RB}/2\right|}^{\left[N_{RB}^{UL}N_{SC}^{RB}/2\right]-1} a_{k^{(-)},l} e^{j2\pi(k+\frac{1}{2})\Delta f(t-N_{CP,l}T_S)}, 0 \le t < \left(N_{CP,l}+N\right)T_S, N = 2048, \Delta f = 15kHz, k^{(-)} = k + \left\lfloor N_{RB}^{UL}N_{SC}^{RB}/2\right\rfloor$$

a_{k,l} is the complex symbol in the resource element (k,l), N_{CP}= 160, l=0 and 144, l=1 – 6: normal cyclic prefix;
 = 512: extended cyclic prefix

- □ Physical random-access channel **PRACH**
 - The random-access preamble consists of a cyclic prefix of T_{CP} duration and a portion of a sequence of T_{SFO} duration:
 - T_{CP} is between 0 and 21000 basic units T_s
 - T_{SEQ} is between 4096 and 49000 basic units T_s
 - The format is controlled by the upper layers
 - It is used to perform the initial synchronization in UL
 - The transmission on this channel is requested by MAC and takes place on certain time frequency resources:
 - In the frequency domain, the band corresponding to 6 resource blocks is used
 - In the case of type 1 frame, there is at most one PRACH resource per subframe
 - In the case of type 2 frame, there may be several PRACH resources per subframe
 - Random preamble sequences are obtained from Zadoff-Chu sequences obtained from one or more basic sequences, there are 64 sequences available in each cell

- Physical downlink channel:
 - A physical DL channel corresponds to a set of resource elements that carry information generated by the upper layers in the DL
 - The following physical downlink channels are defined:
 - Physical Downlink Shared Channel, PDSCH
 - Physical Broadcast Channel, PBCH
 - Physical Multicast Channel, PMCH
 - Physical Control Format Indicator Channel, PCFICH
 - Physical Downlink Control Channel, PDCCH
 - Physical Hybrid ARQ Indicator Channel, PHICH

- ☐ The processing performed on the downlink physical channels:
 - Randomization of the encoded bits in each code word transmitted on the physical channel
 - Modulation of randomized bits to generate complex modulated symbols
 - Mapping complex modulated signals into one or more transmission levels
 - Precoding of complex modulated signals in each level for transmission on antenna ports
 - Mapping complex modulated symbols for each antenna port to resource elements
 - Generating the complex OFDM signal in the time domain for each antenna port

- Randomization: bits of code words transmitted in a subframe are randomized according to an imposed rule
 - Two code words can be transmitted in a single subframe
- Modulation schemes:
 - PDSCH: QPSK, 16QAM, 64QAM; PMCH: QPSK, 16QAM, 64QAM
- Mapping on transmission levels
 - Required for the implementation of multi-antenna techniques
 - There may be 1, 2 or 4 transmission levels
 - Spatial multiplexing or diversity techniques can be used
- Precoding: implements multi-antenna techniques and is used in conjunction with mapping techniques
- Mapping on resource elements
 - Mapping on resource elements, not used for other purposes, on the antenna port is done by increasing the index k and then the index I starting with the first slot in the subframe

- □ Physical downlink shared channel PDSCH:
 - If no user-specific reference signals are transmitted, antenna port 0,1,2 and 3 are used
 - o If user-specific reference signals are transmitted, the antenna port used is 5
- Physical multicast channel PMCH:
 - It is characterized by several restrictions:
 - No diversity schemes are used
 - There are certain limitations on symbols and subframes where PMCH can be transmitted
- □ Physical broadcast channel PBCH:
 - A cell-specific randomization sequence is used
 - QPSK modulation is used, and multi-antenna techniques can be used
 - Mapping on resource elements is performed according to an imposed rule

- ☐ Physical control format indicator channel **PCFICH**:
 - Carries information about the number of OFDM symbols (1,2 or 3) used to transmit the PDCCH channel in a subframe
 - Randomization is performed with a cell-specific sequence
 - Modulation used: QPSK
 - Multi-antenna techniques can be used; the same antenna ports must be used as for PBCH
 - Mapping on resource elements must consider multi-antenna techniques
- Physical downlink control channel PDCCH:
 - Carries scheduling information and other control information
 - A physical control channel is transmitted using an aggregation of one or more control channel elements (CCE)

- A CCE corresponds to a set of resource elements
- Multiple PDCCHs can be transmitted in a subframe, and there are several PDCCH formats
- Procedures for randomizing and multiplexing multiple channels in a subframe are defined
- Modulation used: QPSK
- Separate mapping procedures are defined
- Physical hybrid ARQ indicator channel PHICH:
 - Carries ACK/NAK H-ARQ;
 - Multiple PHICHs mapped to the same set of resource elements form a PHICH group
 - The modulation used can be any of the defined ones
 - Level and resource mapping are described separately
 - Exact details can be found in the 3GPP, Release 8 standards

- ☐ Reference signals:
 - Three types of reference signals are defined:
 - Cell-specific signals associated with non-MBSFN (Multi-Media Broadcast over a Single Frequency Network) transmissions
 - MBSFN reference signals associated with MBSFN transmissions
 - UE specific reference signals
 - There is only one reference signal transmitted on the antenna port
- Cell-specific reference signals:
 - They are transmitted in all DL subframes in cells that support non-MBSFN transmissions
 - MBSFN: is a possible method for Multimedia Broadcast Multicast Service implementation
 - In case of subframes used for MBSFN, only the first two OFDM symbols in a subframe can be used to transmit cell-specific reference signals
 - They are transmitted on one or more antenna ports

Sequence generation method:

- Generation of the two-dimensional reference sequence $r_{m,n}(n_s)$ depends on the cyclic prefix; n_s represents the slot number in the radio frame
- In the case of normal cyclic prefix, the two-dimensional reference sequence is obtained as the symbol-by-symbol product of two other two-dimensional sequences $_{rm,n}(n_s) = r_{m,n}^{OS} r_{m,n}^{PRS}(n_s)$
- r_{m,n} OS is a two-dimensional orthogonal sequence; m and n define the sequence: n=0, 1; m=0, 1, ...,
 219; there are 3 orthogonal sequences
- r_{m,n} PRS(n_s) represents a two-dimensional pseudorandom sequence; there are 168 pseudorandom sequences
- There is one-to-one mapping between the three identities within the cell-level cell identity group and the three orthogonal sequences
- In the case of extended cyclic prefix $r_{m,n}(n_s)$ is generated form a two-dimensional pseudorandom sequence $r_{m,n}^{PRS}(n_s)$, there are 504 pseudorandom sequences
- There is a one-to-one mapping between the identity of the cell and the pseudorandom sequences

- MBSFN reference signals:
 - MBSFN reference signals are transmitted only in the subframes allocated to MBFSN transmission and only on the antenna port 4
- UE specific reference signals:
 - They are supported by the PDSCH transmission on antenna port 5 and are selected by the upper layers
- Synchronization signals:
 - There are 504 unique cell identities at the physical level
 - These identities are grouped into 168 groups of three unique identities
 - Each cell identity at the physical level belongs to a single group
 - The group is identified by $N_{ID}^{(1)}$ and takes values between 0 and 167; the element in the group is identified by $N_{ID}^{(2)}$ and takes values between 0 and 2: $N_{ID}^{cell} = 3N_{ID}^{(1)} + N_{ID}^{(2)}$
 - The summation is modulo three

- Primary synchronization signal:
 - It is used to detect slot timing and identity within a group
 - It is generated from Zadoff-Chu sequences in the frequency domain
 - Mapping on resource elements depends on the frame structure
 - The antenna port to transmit this sequence is not specified
 - For the type 1 frame structure, the synchronization sequence is transmitted only in slots 0 and 10
 - For the type 2 frame structure, the primary synchronization signal is transmitted in the first symbol of the DwPTS field

- Secondary synchronization signal
 - It is used for:
 - Performing frame synchronization
 - Group identity determination
 - Cyclic prefix length determination
 - Duplexing mode identification
 - Represents a sequence of length 62, obtained from the interleaving of two binary sequences of length 31
 - The concatenated sequence is scrambled using a sequence that depends on the binary synchronization signal
 - It is transmitted on slots 0 and 10 in type 1 frames, and in slots 2 and 12 in type 2 frames

42

LTE PHYSICAL CHANNELS - DL

- Baseband OFDM signal generation:
 - Continuous signal in time on the antenna port p and in the symbol I:

$$s_{l}^{p}(t) = \sum_{k=-\left[N_{RB}^{UL}N_{SC}^{RB}/2\right]}^{-1} a_{k^{(-)},l}^{p} e^{j2\pi k\Delta f(t-N_{CP,l}T_{S})} + \sum_{k=1}^{\left[N_{RB}^{UL}N_{SC}^{RB}/2\right]} a_{k^{(+)},l}^{p} e^{j2\pi k\Delta f(t-N_{CP,l}T_{S})},$$

$$0 \le t < \left(N_{CP,l} + N\right)T_{S}, k^{(-)} = k + \left\lfloor \frac{N_{RB}^{UL}N_{SC}^{RB}}{2} \right\rfloor, k^{(+)} = k + \left\lfloor \frac{N_{RB}^{UL}N_{SC}^{RB}}{2} \right\rfloor - 1$$

- Variable N is 2048 for 15kHz subcarrier separation and 4096 for 7.5kHz subcarrier separation
- The OFDM symbols in a slot must be transmitted in ascending order of I

Configuration		Cyclic prefix length
Normal cyclic prefix	$\Delta f = 15 \text{ kHz}$	160 pt. $l = 0$ 144 pt. $l = 1, 2,, 6$
Ext. cyclic prefix	$\Delta f = 15 \mathrm{kHz}$	512 pt. $l = 0,1,,5$
	$\Delta f = 7.5 \text{kHz}$	1024 pt. $l = 0,1,2$

LTE LOGICAL AND TRANSPORT CHANNELS

- Transport channels:
 - To reduce the complexity of LTE protocol stack, the number of transport channels was reduced
 - Dedicated data channels are no longer defined, shared channels are used
 - The DL transport channels are the following:
 - Broadcast Channel (BCH)
 - Downlink Shared Channel (DL-SCH)
 - Paging Channel (PCH)
 - Multicast Channel (MCH)
 - The UL transport channels are the following:
 - Uplink Shared Channel (UL-SCH)
 - Random Access Channel (RACH)

LTE LOGICAL AND TRANSPORT CHANNELS

- Logical channels:
 - Logical channels can be classified into control and traffic channels
 - The control channels are the following:
 - Broadcast Control Channel (BCCH)
 - Paging Control Channel (PCCH)
 - Common Control Channel (CCCH)
 - Multicast Control Channel (MCCH)
 - Dedicated Control Channel (DCCH)
 - The traffic channels are the following:
 - Dedicated Traffic Channel (DTCH)
 - Multicast Traffic Channel (MTCH)

LTE LOGICAL AND TRANSPORT CHANNELS

- ☐ The relation between LTE and SAE:
 - LTE implementation requires a high-performance core network
 - Implementing LTE without SAE is theoretically possible but does not make sense
 - The definition of LTE and SAE specifications was synchronized over time
- SAE: "System Architecture Evolution"
 - Defined by 3GPP for wireless systems
 - It is compatible with current 3GPP network implementations
 - Simplified architecture to ensure high throughput, low delays and QoS
 - Handover and interconnection with other 3GPP access technologies (UMTS, HSPA and HSPA+)
 - Ensures easy introduction of a new service

- Terminology:
 - EPC = Evolved Packet Core
 - EPS = Evolved Packet System
 - Includes EPC, LTE and terminals
- □ LTE is a packet-switched access network
 - No circuit switching is used at all
 - It is optimized for IP-based services, including telephony services
 - Handover procedures to circuit-based networks are specified
 - The core packet network is transparent to the IMS module (practically incorporates IMS)
 - IP Multimedia Subsystem (IMS): the architecture module which provides multimedia IP services
 - Supports multiple 3GPP radio access technologies (GERAN, UTRAN)
 - Also incorporates non-3GPP access (e.g. WiMAX, WLAN)

- ☐ In the LTE system most of the RNC functionalities are moved to eNodeB
 - UMTS RNC is no longer defined
 - eNodeB is directly connected to the Evolved Packet Core (EPC)

- ☐ The LTE system ensures simplified mobility management
 - The MME/UPE modules are defined:
 - "Mobility Management Entity" (MME)
 - The tasks of this module include:
 - Mobile identification,
 Identification of mobility states
 - "User Plane Entity" (UPE)
 - The tasks of this module include:
 - Paging initiation
 - Setting bearer IP parameters

CTITS - Course 1

2023-2024

- Distribution of EPS functionalities:
 - Enhanced Node B (eNB) performs the following functions:
 - Radio Resource Management
 - Radio Bearer Control
 - Radio Admission Control
 - Connection Mobility Control
 - Scheduling dynamic allocation of resources to UE both in the DL and the UL
 - IP header compression and user data stream encryption
 - Selection of an MME at UE connection.
 - Routing data from the user plane to the SAE gateway
 - Carrying out measurements and reporting measurements for mobility and scheduling

- The MME performs the following functions:
 - Distribution of paging messages to eNBs
 - Security control
 - Mobility control in Idle state
 - Control of SAE bearer
 - Encryption and protection of NAS signaling integrity
 - NAS: "Non-Access Stratum"; NAS signaling ends in MME and is responsible for generating and allocating temporary identifiers to the UE
- SAE Gateway performs the following functions:
 - Termination for U plane packets (user plane)
 - U plane switching to support UE mobility

HANDOVER IN LTE

- □ The intra-LTE handover process in the LTE /SAE architecture:
 - Two phases can be identified: Radio
 Handover and Path Update

HANDOVER IN LTE

- ☐ The handover process (intra-LTE HO) is controlled by the network
 - The decision is made by the eNodeB (source eNB)
 - There are two phases:
 - New eNB preparation phase for data transfer describing the communication process before the HO command
 - The core network is not involved in the preparation phase
 - Also in this phase, the data from the user plane is transferred between the source eNB and the new eNB
 - This approach is known as: "Make before brake approach"
 - Switching the path to aGW (MME & UPE)
 - Switching is done after establishing a new connection between the UE and the final eNB
 - No buffering to aGW

HANDOVER IN LTE

- Performance:
 - Short interruptions of the orde of 30 ms
 - The same HO procedure can be used both for real-time services (delay sensitive) and non-real-time services (not sensitive to delays)
 - Lossless soft handover
- HO process diagram and the signals involved

