

COURSE 5 AERONAUTICAL COMMUNICATION SYSTEMS

Ş.L. DR. ING. ZSUZSANNA ŞUTA

COMMUNICATIONS DEPARTMENT

CONTENT

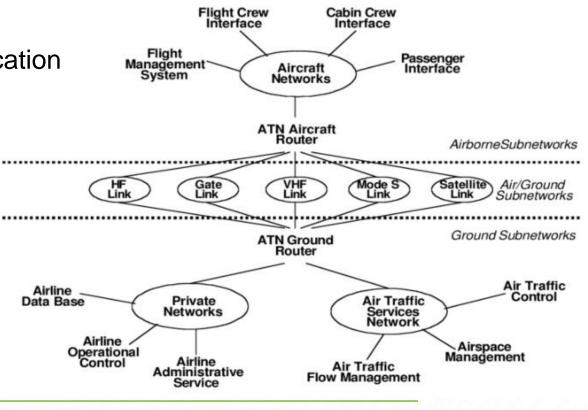
Introduction

Radio navigation

Communication systems

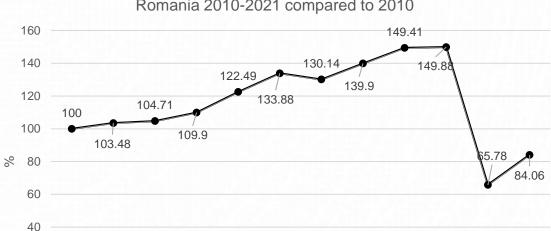
Collision monitoring and avoidance systems

Usage of the radio spectrum



INTRODUCTION

- Aeronautical communication systems are specified by ICAO (International Civil Aviation Organization) Annex 10
 Flight Crew Cabin Crew
- There are standards used for communication
 - Airplane ground
 - Airplane airplane
- Communication types specified:
 - o Voice
 - o Data



20

0

2010 2011 2012 2013 2014

- Air traffic controllers are becoming more and more overloaded
 - The volume of ROMATSA services increased by 50% during 2010-2019
 - The latest report is from 2021, but according to other sources in 2023 the 2019 level is already exceeded
 - An increasing trend is expected as plane tickets become more and more affordable
 - Communication systems can significantly reduce the load on air traffic controllers and pilots

2016

Year

2015

The evolution of aerian navigation services performed in Romania 2010-2021 compared to 2010

2017

2019

*Based on ROMATSA data

2018

2020

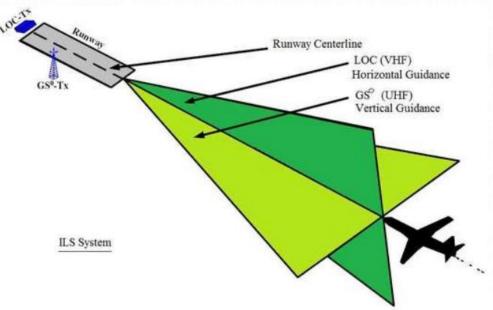
RADIO NAVIGATION

□ The most important radio navigation systems used are the following:

- ILS Instrumented Landing System
- MLS Microwave Landing System

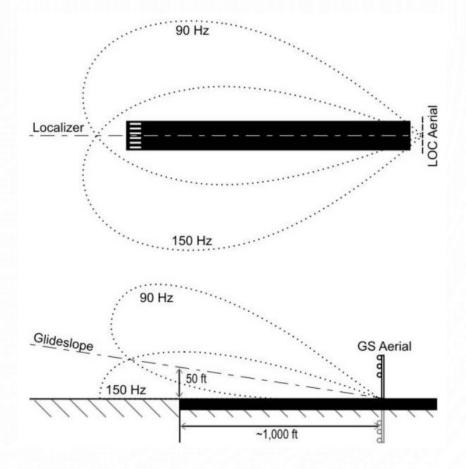
No longer in use

- GNSS Global Navigation Satellite System
- VOR VHF Omnidirectional Radio Range
- NDB Non-directional Radio Beacon
- DME Distance Measuring Equipment
 - It is co-located with ILS or VOR
- En-route VHF marker beacon



RADIO NAVIGATION – ILS

- The ILS provides guidance to the aircraft horizontally and vertically during landing
- There are 3 categories of ILS depending on the decision altitude (DH Decision Height) and visibility conditions (RVR – Runway Visual Range)
 - Cat I: DH > 60m, RVR > 550m
 - Cat II: 60m > DH > 30m, RVR > 200m (CLJ)
 - In 2023 a contract was signed for Cat. III ILS for CLJ
 - Cat III is divided in 3 subcategories:
 - Cat IIIa: 30m > DH, RVR > 200m
 - Cat IIIb: 15m > DH, 200m > RVR > 50m
 - Cat IIIc: without DH and RVR limitations

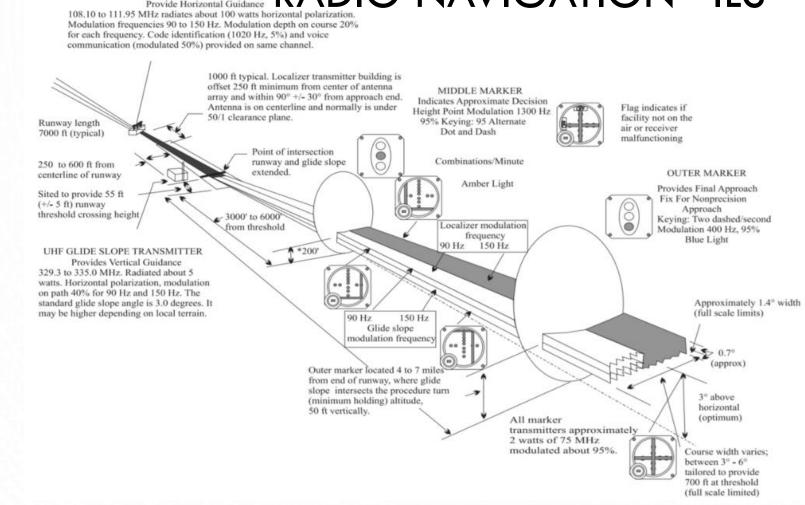


RADIO NAVIGATION – ILS

□ ILS is composed of:

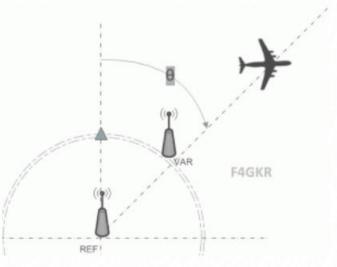
- VHF localization equipment (LOC localizer)
 - Provides alignment with the runway
 - It is positioned at the end of the runway
 - Transmits 2 intersecting radio beacons: one beacon to right of the runway, one to the left
 - It operates in the 108-111.975 MHz band
 - These are AM modulated signals with a frequency of 90/150 Hz
 - The coverage must be up to 46.3km

RADIO NAVIGATION – ILS


- UHF landing slope equipment (GS -Glideslope)
 - It transmits 2 intersecting radio beacons: one above, one below the required vertical profile
 - The frequency band is 328.6-335.4 MHz
 - The signals are AM modulated with the frequency 90/150 Hz
 - The landing angle must be <= 3°</p>
 - The coverage must be at least 18.5km
- Verification equipment

	Localizer	Glide path	Localizer	Glide path
	(MHz)	(MHz)	(MHz)	(MHz)
	108.1	334.7	110.1	334.4
	108.15	334.55	110.15	334.25
	108.3	334.1	110.3	335.0
	108.35	333.95	110.35	334.85
al	108.5	329.9	110.5	329.6
	108.55	329.75	110.55	329.45
	108.7	330.5	110.7	330.2
	108.75	330.35	110.75	330.05
	108.9	329.3	110.9	330.8
	108.95	329.15	110.95	330.65
	109.1	331.4	111.1	331.7
	109.15	331.25	111.15	331.55
	109.3	332.0	111.3	332.3
	109.35	331.85	111.35	332.15
	109.5	332.6	111.5	332.9
	109.55	332.45	111.55	332.75
	109.7	333.2	111.7	333.5
	109.75	333.05	111.75	333.35
	109.9	333.8	111.9	331.1
	109.95	333.65	111.95	330.95

VHF LOCALIZER RADIO NAVIGATION-ILS


CTITS - Course 5

RADIO NAVIGATION – VOR

- Allows the determination of the position of the airplane by receiving radio signals emitted by a fixed terrestrial network of VOR stations
 - VOR Very high frequency Omni-directional Range
- It operates in the 108-117.95 MHz frequency band with 50 kHz channel separation
- The VOR station broadcasts 2 signals
 - Primary omnidirectional signal
 - 9960 Hz constant amplitude subcarrier FM modulated at 30 Hz
 - Variable phase secondary unidirectional signal
 - AM modulated signal at 30 Hz

RADIO NAVIGATION – VOR

- The phase difference between the two signals determines the angle between the airplane and the VOR station
 - Based on the angle of the airplane to VOR stations, the position of the airplane can be determined
 - The accuracy is 90m
- There are 3000 VOR stations worldwide
 - Also, at Cluj-Napoca
- □ VOR provides higher accuracy than NDB (Non-Directional Beacon)
- VOR will be replaced by GNSS
 - It will be maintained as a backup system

- GNSS provides position and time information for the aircraft
- The GNSS navigation service consists of one or more elements
 - GPS Global Positionioning System
 - Sends SPS (Standard Positioning Service) signals
 - A maximum error of 17m horizontally and 37m vertically in location is allowed
 - A maximum error of 40ns is allowed for time information
 - It covers the surface of the Earth up to an altitude of 3000 km
 - The carrier frequency for SPS is 1575.42 MHz, SPS is BPSK modulated, and CDMA is used
 - Transmitted data includes transmission time, satellite position, satellite integrity, satellite clock correction, effects of propagation delays, UTC time, and so on.

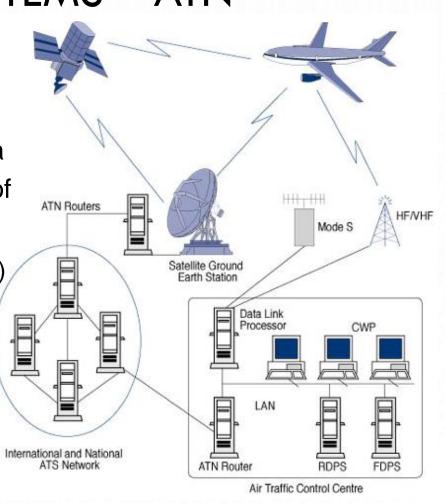
- GLONASS Global Navigation Satellite System
- ABAS Aircraft Based Augmentation System
 - Integrates GNSS information with on-board information
- SBAS Satellite Based Augmentation System
 - Extends the constellation of basic satellites to increase the accuracy, integrity, continuity and availability of GNSS services
- GBAS Ground Based Augmentation System
 - Provides support for landing, takeoff, ground operations, etc.
- GRAS Ground Based Regional Augmentation System
- The aircraft's GNSS receiver

	-				1		1			
	Subfr	ame 1	Subfr	ame 2	Subfra	ame 3	Subfr	ame 4	Sub	rame 5
Structure of GPS L1 C/A navigation messages					1					
	CW 1	CW 2	CW 3	CW 4	CW 5	CW 6	CW 7	CW 8	CW 9	CW 10
$_{\odot}$ A frame consists of 1500 bits and has 5 subframe	S	I								
				24 Inform	ation Bits	6 Parit	ty Bits			
 Each subframe is formed of 10 code words 						-	URA	Acc	uracy	-
 1 code word for telemetry data (TLM) 							0	2	m	
- 4 have device a serie would (10)(1)							1		3 m	
1 handover code word (HOW)							2	4	m	
8 data code words							3		7 m	
							4		m	
A code word has 24 bits of information and 6 parity	bits						5		3 m	
A dede werd had 2 i bite er mermation and o party	ono						0		m m	
• The first subframe contains information about the	clock	integ	rity o	f the	satell	ite	8		m	
	01001	integ	jing o		outon		9		8 m	
 GPS week number; URA (User Range Accuracy) 							10		6 m	
(11	512	2 m	
 Satellite integrity (0 = all navigation data is valid) 							12	1 02	24 m	
							13		48 m	
Issue of data, clock; estimated group delay; clock c	correct	ion pa	arame	ters			14	_	96 m	
							15	Do n	ot use	
							and the second	100 C 100 C 100	101000	- 96 H

CTITS - Course 5

Frame

- Subframes 2 and 3 contain satellite data
- Subframes 4 and 5 contain support information
 - Special messages
 - Ionospheric data and UTC
 - Satellite configurations
 - The orbits of the other satellites, etc.


M ₀	Mean anomaly at reference time
Δn	Mean motion difference from computed value
e	Eccentricity
\sqrt{A}	Square root of the semi-major axis
OMEGA ₀	Longitude of ascending node of orbit plane at weekly epoch
i ₀	Inclination angle at reference time
ω	Argument of perigee
OMEGADOT	Rate of right ascension
iDOT	Rate of inclination angle
Cuc	Amplitude of the cosine harmonic correction term to the argument of latitude
C_{us}	Amplitude of the sine harmonic correction term to the argument of latitude
Cre	Amplitude of the cosine harmonic correction term to the orbit radius
C _{rs}	Amplitude of the sine harmonic correction term to the orbit radius
Cic	Amplitude of the cosine harmonic correction term to the angle of inclination
Cis	Amplitude of the sine harmonic correction term to the angle of inclination
t _{oe}	Reference time, ephemeris
IODE	Issue of data, ephemeris

DATA COMMUNICATION SYSTEMS – ATN

- ATN Aeronautical Telecommunications Network: is an international network that allows the interoperability of ground/ground, air/ground and data subnets providing data communication services and supports the following types of traffic:
 - Air traffic communication services (ATS Air Traffic Services)
 - Air traffic communication services between ATS units
 - Operational control communications (AOC Aeronautical Operation Control Communications)
 - Administrative communications (AAC Aeronautical Administrative Communications)

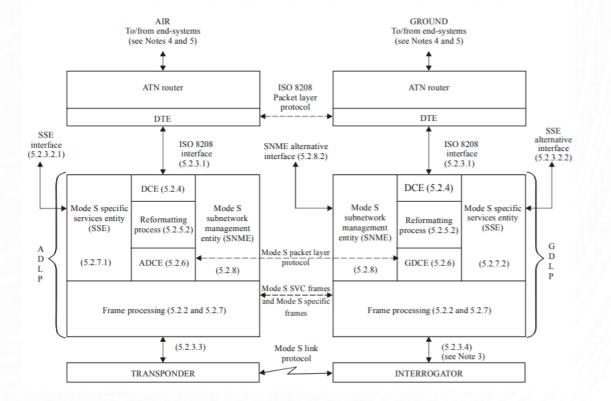
DATA COMMUNICATION SYSTEMS – ATN

- ATN transmits messages based on priorities
- ATN must support:
 - CPDLC (Controller-Pilot Data Link Communications)
 - Communication between the pilot and the controller usually takes place via voice messages
 - All pilots use the same frequency to communicate with a specific controller congestion in the channel
 - CPDLC allows the transmission of request/information messages
 - The pilot can ask for permission/information and can respond to messages
 - The controller can send information about flight altitude, side deviations, change of route, flight speeds, assignment of radio frequencies, etc.
 - CPDLC is implemented by 2 systems:
 - FANS-1/A which is used for overseas communications, is based on ACARS and uses satellite communications provided by the Inmarsat Data-2 (Classic Aero) service



DATA COMMUNICATION SYSTEMS – ATN

- ICAO Doc 9705 ATN/CPDLC system that uses VDL Mode 2 networks
- FIS (Flight Information Service)
 - Includes information on conflicting traffic, meteorological information, airport information, information on possible flight hazards
 - It is a form of air traffic service which is available to any aircraft within a FIR (Flight Information Region)
- AIDC (ATS Interfacility Data Communications)
 - Used for information exchange between ATS units
 - AIDC messages are mainly used for transferring control
 - The messages include information about aircraft identification origin/destination, flight altitude, flight speed, speed restriction, possible deviations from route due to weather conditions
- ATSMHS (ATS Message Handling Services)



DATA COMMUNICATION SYSTEMS – MODE S

- It is an important technology for air traffic management, used by:
 - SSR (Secondary Surveillance Radar)
 - TCAS (Traffic Alert and Collision Avoidance System)
 - ADS-B (Automatic Dependent Surveillance Broadcast)
- In the case of SSR, the transponder in the aircraft is periodically interrogated by ground radars

DATA COMMUNICATION SYSTEMS – MODE S

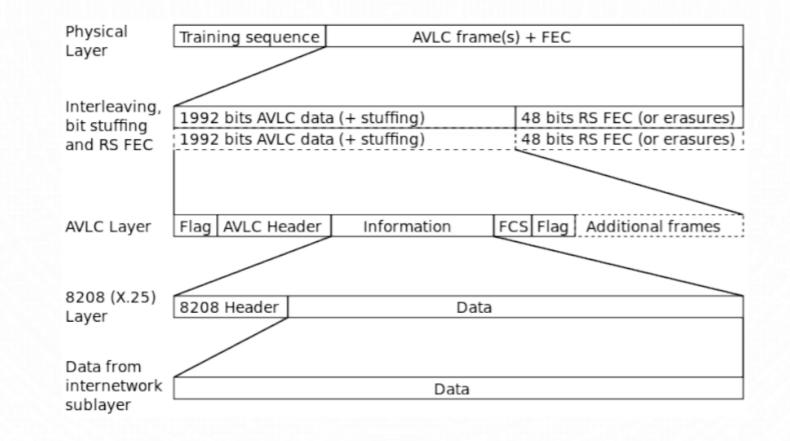
- The query signals have a frequency of 1030 MHz
- The transponder response signals have the frequency of 1090 MHz
- Queries are dedicated to a specific aircraft, the unique 24-bit address of the aircraft is used
- □ There are 3 types of query/response:
 - Supervision: position update
 - Comm-A/Comm-B: 56 bits of data
 - Comm-C/Comm-D: up to 1280 bits
- Message structure:
 - The first 5 bits represent the query type
 - The last 24 bits represent the plane address and parity

DATA COMMUNICATION SYSTEMS – VDL

- □ VDL VHF Air-Ground Data Link is used for communication between aircraft and ground
- There are 3 VDL modes:
 - Mode 2: data communications with CPDLC support
 - Mode 3: voice and data communications
 - Mode 4: also allows plane-plane communications

Mode 2

- Physical layer
 - The frequency band is 117.975-137 MHz with 25 kHz channel spacing
 - Common channel signaling at 136.975 MHz is used
 - TDD is used


DATA COMMUNICATION SYSTEMS – VDL

- VDL uses D8PSK modulation
- The bit rate is 31500 bps
- Reed-Solomon codes are used for error correction
- MAC layer:
 - The access technique is CSMA (Carrier Sense Multiple Access)
- Frame structure
 - The data is grouped in 8208-type (ISO/IEC 8208) frames and an 8208-type header is added
 - The 8208-type frame is inserted into an AVLC (Aviation VHF Link Control) frame and the AVLC header and FCS (Frame Check Sequence) sequence are added
 - Several AVLC frames are interleaved, and the RS FEC code is applied
 - The obtained frames are inserted after the training sequence

DATA COMMUNICATION SYSTEMS – VDL

DATA COMMUNICATION SYSTEMS – ACARS

- ACARS Aircraft Communications and Reporting System is a system for transmitting short messages between aircrafts and ground stations
- ACARS message types:
 - Air traffic control messages
 - Operational control messages
 - Administrative messages
- MSK (Minimum Shift Keying) modulation is used for ACARS messages
- □ The data link can be VHF, HF or satellite

Word

Letter

VOICE COMMUNICATION SYSTEMS - VHF

Dual sideband AM signals are used for voice communications	A	Alfa
Use the frequency band 117.975-137 MHz, with 8.33, 25, 50 or 100 kHz channel separation	B C D E F	Bravo Charlie Delta Echo Foxtrot
The maximum frequency in the spectrum of the voice signal is 3-4 kHz	G H I J	Golf Hotel India Juliett
The communication is standardized	L M	Lima Mike
 For example, MAYDAY is used in critical situations, and PAN PAN in emergency situations 	N O P Q R	November Oscar Papa Quebec Romeo
	S T U	Sierra Tango Uniform Victor
	W X Y	Whiskey X-ray Yankee
 For example, MAYDAY is used in critical situations, and PAN PAN in 	N O P Q R S T U V W X	Kilo Lima Mike Nover Oscar Papa Queb Rome Sierri Tango Unifo Victor Whisl X-ray

SELCAL SYSTEM

It is a radio system with selective calling that alerts the crew about communication messages intended for them

- Each aircraft has an associated SELCAL code
- The ground station transforms the 4-letter SELCAL code into 4 specific audio tones
- The tones are broadcasted
- Each SELCAL receiver decodes the message and checks if it contains its own SELCAL code
- If yes, the crew is alerted by an audible/visual signal that they will receive an audio message

	A	312.6 Hz	Ε	473.2 Hz	J	716.1 Hz	Ρ	1083.9 Hz
e	В	346.7 Hz	F	524.8 Hz	K	794.3 Hz	Q	1202.3 Hz
	С	384.6 Hz	G	582.1 Hz	L	881.0 Hz	R	1333.5 Hz
	D	426.6 Hz	Η	645.7 Hz	М	977.2 Hz	s	1479.1 Hz

EMERGENCY LOCALIZATION SYSTEM

ELT (Emergency Locator Transmitter) can operate at 121.5 MHz or 406 MHz

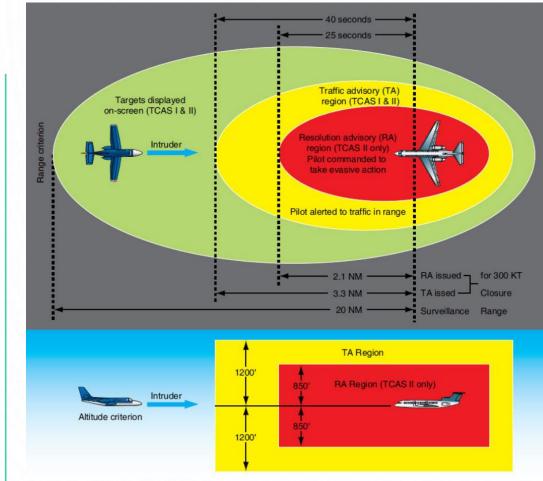
- Modern ELTs use radio beacons at 406 MHz
- Messages are sent periodically at 50s
- These are received by transponders on COSPAS-SARSAT (Space System for Search of Vessels in Distress – Search and Rescue Satellite-Aided Tracking) satellites
- $_{\odot}\,$ The location is detected with a precision of 2-5 km
- ELT also transmits the identity of the aircraft, including the 24-bit address of the aircraft
- ELT activates automatically in the event of an impact

SUPERVISION SYSTEMS – ACAS

ACAS – Airborne Collision Avoidance System

- Allows the identification of surrounding aircrafts via the SSR transponder and provides their position to facilitate visual identification
- ACAS must have the following functionalities:
 - Surveillance
 - TA (Traffic Advisory) generation
 - Hazard detection
 - RA (Resolution Advisory) generation
 - Coordination
 - Communication with ground stations
- An implementation of ACAS is the TCAS (Traffic Collision Avoidance System)

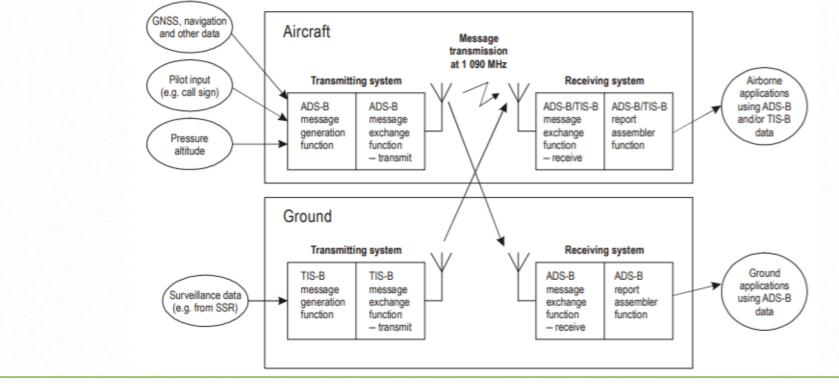
CTITS - Course 5


SUPERVISION SYSTEMS – TCAS

- The transponder interrogates SSR at 1030 MHz and receives a response from surrounding aircrafts at 1090 MHz
 - The planes also appear on a display
 - If a plane is closer than 3.3 NM (1 Nautical Mile = 1.852 km) a TA will be issued that will warn the pilot of a nearby aircraft and help visually identify the aircraft
 - If the airplane approaches more than 2.1 NM, an RA will be emitted, which will indicate the actions necessary to avoid the collision (e.g., climb, climb)
 - The other aircraft will receive RA in reverse (e.g., descend, descend)
 - The pilot must follow the RA instructions even if they contradict the instructions received from the air traffic controller and inform the controller of the RA
 - RA refers only to vertical avoidance maneuvers

SUPERVISION SYSTEMS – TCAS

ТА	Traffic; traffic.	Intruder near both horizontally and vertically.	Attempt visual contact, and be prepared to manoeuvre if an RA occurs.
RA	Climb; climb.	Intruder will pass below	Begin climbing at 1500–2000 ft/min
RA	Descend. Descend.	Intruder will pass above.	Begin descending at 1500–2000 ft/min
RA	Increase climb.	Intruder will pass just below	Climb at 2500 – 3000 ft/min.
RA	Increase descent.	Intruder will pass just above.	Descend at 2500 – 3000 ft/min.
RA	Reduce climb.	Intruder is probably well below.	Climb at a slower rate.
RA	Reduce descent.	Intruder is probably well above.	Descend at a slower rate.
RA	Climb; climb now.	Intruder that was passing above, will now pass below.	Change from a descent to a climb.
RA	Descend; descend now.	Intruder that was passing below, will now pass above.	Change from a climb to a descent.
RA	Maintain vertical speed; maintain.	Intruder will be avoided if vertical rate is maintained.	Maintain current vertical rate.
RA	Level off, level off.	Intruder considerably away, or weakening of initial RA.	Begin to level off.
RA	Monitor vertical speed.	Intruder ahead in level flight, above or below.	Remain in level flight.
RA	Crossing.	Passing through the intruder's level. Usually added to any other RA.	Proceed according to the associated RA.
сс	Clear of conflict.	Intruder is no longer a threat.	Return promptly to previous ATC clearance

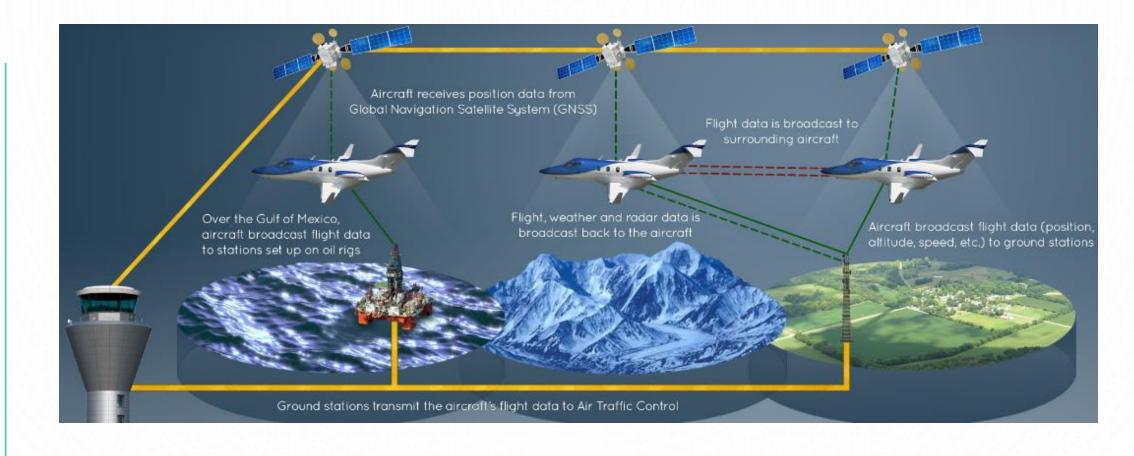


SUPERVISION SYSTEMS – EXTENDED SQUITTER

Used for transmitting and receiving ADS-B/TIS-B (Automatic Dependent Surveillance Broadcast/Traffic Information Service Broadcast) messages

SUPERVISION SYSTEMS – ADS-B

ADS-B makes aircraft visible to both controllers and other aircrafts and consists of two services:


- o ADS-B Out
 - Each aircraft periodically sends information about identification, position, altitude, speed
- o ADS-B In
 - Used to receive TIS-B/FIS-B/ADS-B messages
- □ The system is based on 2 components:
 - Satellite navigation source GPS or other GNSS receivers
 - Data link
 - Usually provided by a Mode S transponder

SUPERVISION SYSTEMS – ADS-B

SUPERVISION SYSTEMS – ADS-B

□ ADS-B message structure

o 112 bits

- DF: Downlink format
- Bits 6-8: additional identifier
- ICAO 24: aircraft address
- Data 56
- PI 24: parity, interrogator ID

1	+	+	+	+	-++
	DF 5	** 3	ICAO 24	DATA 56	PI 24
	+	+	+	+	-++

Type Code	Content
1 - 4	Aircraft identification
5 - 8	Surface position
9 - 18	Airborne position (w/ Baro Altitude)
19	Airborne velocities
20 - 22	Airborne position (w/ GNSS Height)
23 - 27	Reserved
28	Aircraft status
29	Target state and status information
31	Aircraft operation status

ALLOCATION OF FREQUENCY BANDS

- Frequencies used in emergencies
 - 2182 kHz is the international emergency frequency for maritime and aeronautical radiocommunications
 - 4125 kHz can be used for communication with maritime stations in emergency situations
 - 3023 and 5680 kHz are used to coordinate rescue operations
 - 406, 121.5 and 243 MHz are used for emergency location beacons
- Frequencies below 30 MHz
 - The 2.8-22 MHz band is used for the aeronautical mobile service

ALLOCATION OF FREQUENCY BANDS

Band 117.975-137 MHz with a minimum separation of 8.33 kHz

- It is used for national and international aeronautical mobile service, with exceptions:
 - 121.5 MHz emergency frequency
 - 121.55-121.9917 MHz ground communication frequency
 - 123.1 MHz auxiliary emergency frequency
 - 123.45 MHz air-to-air communications
 - 136.975 MHz common signaling channel for VDL Mode 2
- Band 108-117.975 MHz
 - Is used for ILS, VOR, GNSS GBAS without overlaps
- Band 960-1215 MHz
 - is used for DME (Distance Measuring Equipment)

EUROPEAN AVIATION NETWORK

- EAN is a hybrid network built by Inmarsat, Deutsche Telekom and Nokia
- It is used for WiFi in the plane and consists of a ground-assisted LTE network with satellite connection
 - The LTE network is dedicated, the aircraft receivers are modified to compensate for the Doppler effect
 - Airlines using EAN: British Airways, Lufthansa, Vueling, etc.

CONCLUSIONS

Telecommunication functions are processed by different equipment:

- Communications: VHF or satellite unit
- Supervision: Mode S transponder and GNSS data link
- Navigation: GPS and ILS
- Aviation accidents involving communication systems:
 - 2014 Malaysia Airlines Flight 370: the last messages were received through Classic Aero, after the disappearance from the radar there were 7 handshake procedures (one per hour)
 - 2002 Ueberlingen mid air collision: one of the planes followed the TCAS, the other did not
 - o 1990 Alitalia Flight 404: different ILS indications at the pilot and co pilot
 - 1977 Tenerife airport collision: misunderstanding by repeating the word "takeoff" in different contexts, without effective take off permission

CTITS - Course 5