

COURSE 6 RAILWAY COMMUNICATION SYSTEMS

Ş.L. DR. ING. ZSUZSANNA ŞUTA

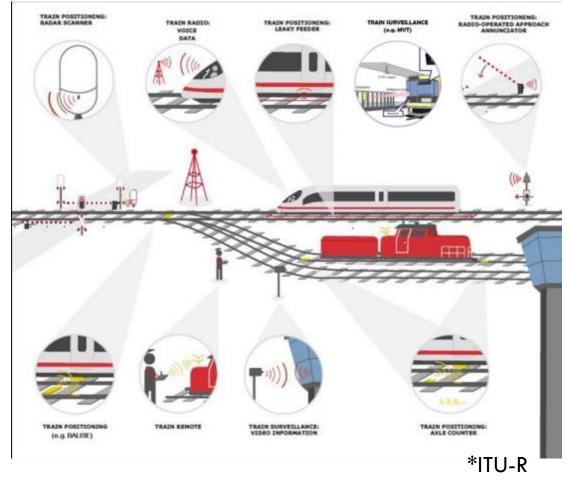
COMMUNICATIONS DEPARTMENT

CONTENT

TETRA

- GSM-R
- LTE-R
- □ FRMCS

INTRODUCTION


- Standardization organizations for railway communications are ETSI and ITU-R
- The ITU-R M.2418-0 report describes the main communication systems between trains and infrastructure (RSTT – Systems between Train and Trackside)
 - The system enhance traffic control, passenger safety and operational security
 - The system architecture includes the radio access unit (antennas, base stations), on-board train equipment, other infrastructure elements
- □ The main applications are:
 - Radio in the train used for signaling and traffic management
 - Provides data and voice communications
 - Train control

INTRODUCTION

- Maintenance
- Emergency situations
- Train information
 - Information in stations and trains for passengers
- Train localization
- Balises
- $_{\odot}\,$ Leaky cable
- o Radar
- Remote control
- Surveillance

INTRODUCTION

□ The technologies used for RSTT are:

- o In-train radio
 - Analogue radio
 - Digital radio digital conventional, based on TETRA (Europa) and B-TrunC (China)
 - GSM-R, LTE-R
 - LCX (Leaky Coaxial Cable)
- Remote control and surveillance
 - Analogue and digital radio
 - GSM-R, LTE-R
 - B-TrunC and mm wave (Japonia)

TETRA

- TETRA (Terrestrial Trunked Radio) is an ETSI standard developed for governmental agencies, emergency services, railway transportation and military applications
- TETRA terminals can communicate in DMO (Direct Mode Operation) or TMO (Trunked Mode Operation) and can act as relays
- TETRA advantages
 - High coverage range
 - Supports both voice and data communications
 - Provides almost constant performance regardless of the speed of the terminals (up to 500km/h)
 - It is used for subways and high-speed trains in many countries
 - Ensures terminal authentication and data encryption

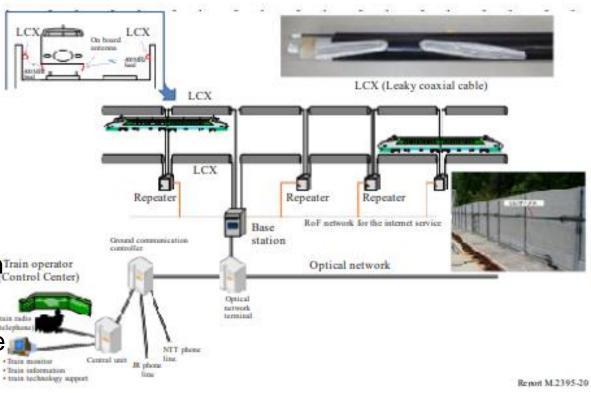
TETRA – RADIO INTERFACE

Radio interface

- π/4-DQPSK modulation with symbol rate 18000Baud is used, with 2 bits/symbol, meaning 36000 bps
- TETRA uses TDMA with 4 interleaved channels/user
 - The channel separation is 25 kHz
- The voice signal is sampled with 8 kHz frequency and encoded using ACELP (Algebraic Code-Excited Linear Prediction)
- The frequencies allocated for TETRA varies in different countries
 - > 350 370 / 380 400 MHz
 - > 410 430 / 450 470 MHz
 - > 870 876 / 915 921 MHz

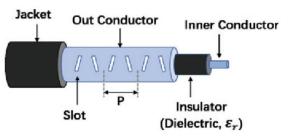
TETRA – FRAME STRUCTURE

- One TETRA hyper-frame includes 60 multiframes
- One TETRA multi-frame has 1.02s duration and is formed of 18 frames
 - 17 frames are used for data
 - 1 frame is for control information
- $_{\odot}\,$ One frame is composed of 4 TDMA slots
- One slot has 255 data symbols


1	2	3	4	5						60
	1	multific	rme = 1	8 TDM	A fram	es (=	1.02 s)			
	1	2	3	4	5				18	
		1 TDN	A frame	e = 4 ti	meslots	1-56	.67 ms)	co	ntrol fra	me
			1	2	3	4]			

LCX

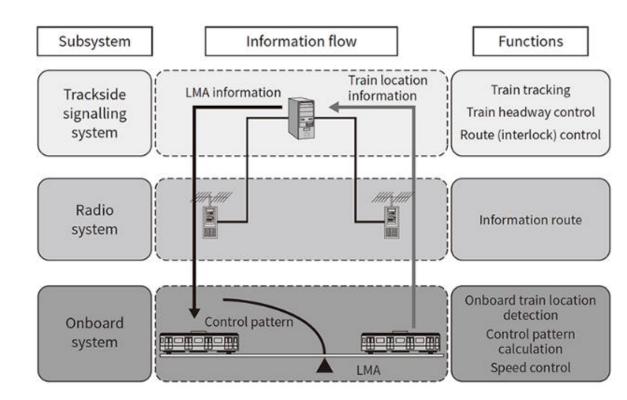
- LCX (Leaky Coaxial Cable) is used in areas with weak radio coverage, e.g. tunnels
- LCX lines are installed along the train tracks and the base stations are connected to these lines
 - The distance between base stations is 1.3km
- Through cables and the antennas on the train Control Center (4 antennas) communications between the base stations and mobile stations are possible



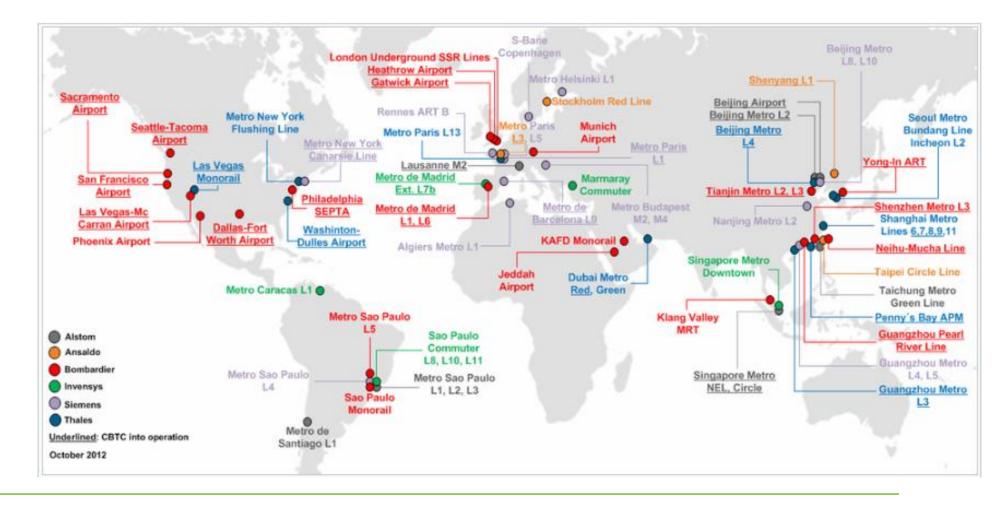
□ LCX was developed in 1967

- The coaxial cables have slots which allow the propagation of radio waves outside the cable
 - $_{\odot}$ The information is transmitted in the 400 MHz frequency band between the slots and antennas
 - The throughput is 384 kbps
 - The bandwidth is 288 kHz
- LCX is used for Shinkansen trains in Japan, but also for metro lines

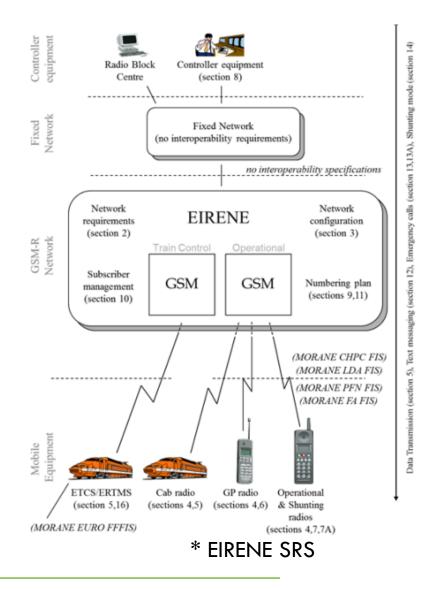
TRAIN CONTROL SYSTEMS


Worldwide multiple systems are used for train control

- JRTC Japan Radio Train Control System in Japan combined with LCX
- ERTMS European Rail Traffic Management System in Europe
- CBTC Communication Based Train Control
 - Defined in IEEE 1474
 - Information about the speed, direction, location are continuously transmitted to the access points next to the tracks
 - The information is obtained from data balises, tachometers, Doppler radar, GPS
 - The traffic control center computes the maximum speed and distance allowed for the train (LMA Limit Movement Authority)
 - CBCT is based on WiFi access points with overlapping coverage ranges
 - The access points are interconnected by cables


- CBCT defines 4 levels of automation:
 - o GoA1 manual
 - GoA2 semi-automated, partial human intervention is necessary
 - GoA3 human assistant is necessary
 - GoA4 complete automation

CBCT



ERTMS

- ERTMS (European Rail Traffic Management System) is a European project for railway network interoperability which defines the railway signaling standard
 - EIRENE European Integrated Railway radio
 Enhanced NEtwork
- ERTMS is composed of 3 major parts:
 - GSM-R (Global System for Mobiles Railway)
 - ETCS (European Train Control System)
 - ETML (European Traffic Management Layer)

GSM-R is identical with GSM system, but it offers dedicated functionalities for railway communications:

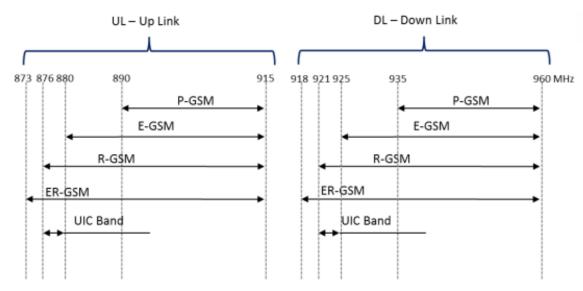
- VGCS (Voice Group Call Service)
 - Facilitates group calls between trains and base stations, or between controllers and maintenance teams from stations and allows a great number of users to participate in a call
 - Users of VGCS: talker, listener and dispatcher.
 - Talker can become listener by releasing the PTT (Push-To-Talk) key, listener becomes talker by
 pressing the key
 - VGCS has higher spectral efficiency than GSM conference calls
- VBS (Voice Brodcast Service) broadcast messages are sent to a group of trains by the controller or by another train in the same area
 - The main difference compared to VGCS is that only the call initiator can speak, all other participants are listeners

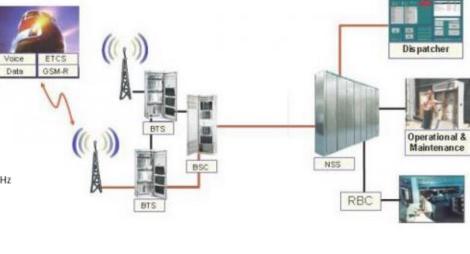
CTITS - Course 6

- eMLPP (Multi-Level Enhanced Precedence and Pre-Emption) defines user priority
 - A and B: Highest priority levels (not used by GSM-R networks)
 - 0: Highest priority levels for ASCI (Advance Speech Call Items) and normal calls (mainly used for REC – Railway Emergency Calls)
 - 1: Lower priority than level 0
 - 2: Lower priority than level 1
 - 3: Lower priority than level 2
 - 4: Lowest priority level (default priority, assigned to Point-to-Point calls)
- Shunting mode offers information for the group of persons involved in shunting operations
 - A Link Assurance Signal (LAS) is provided to give reassurance to the driver that the radio link is working
 - The LAS signal is an intermittent audio tone at 820±5Hz frequency, with 1-10s duration and 5-10s silence

- Functional addressing: a train can be addressed by a number identifying the function for which the train is used
 - Many railway staff need to be addressed by functional rather than personal numbers
 - The initiator of the call only has to know the train number
 - A translation facility is provided to allow calls to functional numbers to be forwarded to the most appropriate personal number at that time
 - A follow-me service is implemented using GSM Unstructured Supplementary Service Data (USSD) to allow users to establish and terminate the forwarding of calls from a functional number to their personal number
 - For communication the USSD messages manage the following types of functional numbers: Train number, Engine number, Coach number, Shunting team number, Maintenance team number

- Location dependent addressing
 - Train drivers need to be able to contact controllers and other staff at the push of a single button
 - As the train moves through different areas, controllers are liable to change. It is necessary to provide a means of addressing calls from a train to certain functions based on the location of the train
 - Location depending addressing can be provided by:
 - Cell based routing
 - Using location from external sources
 - Depending on the radio cell in which the call initiator is located the call is routed to a specific fixed-line number given

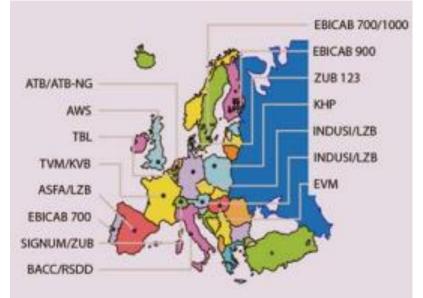




GSM-R is implemented using base stations installed along the railway tracks

 The distance between 2 base stations is 7-15 km in Europa and 3-5 km in China

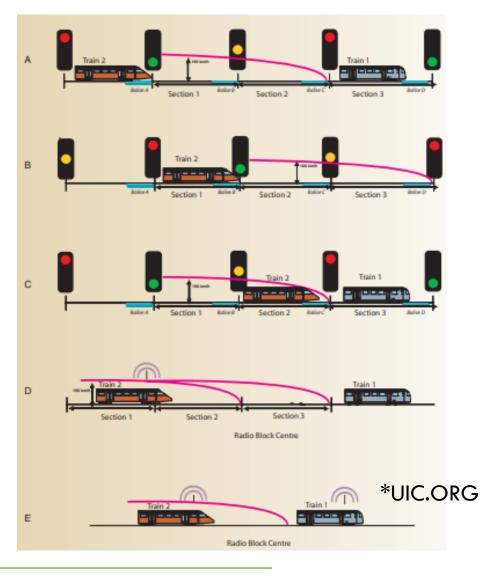
GSM-R limitations:


- Interference with public networks
- Capacity: the 4MHz bandwidth can support 19 channels with 200kHz frequency, which is sufficient for voice communications but not for continuous data transmissions
- Capability: de maximum throughput is 9.6 kbps, and delays can be up to 400ms, this delay is too high for real-time applications
- $_{\odot}\,$ It is foreseen that it will be phased out in 2030

ETCS

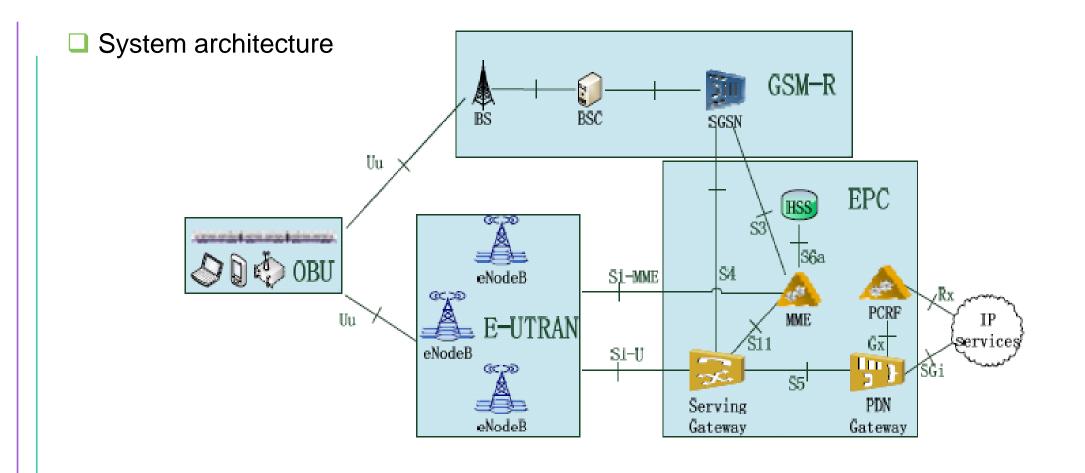
- ETCS is a unitary railway signaling system which aims to replace the different standards used at EU level
- ETCS (European Train Control System) allows trackside equipment to send information to the trains
 - The trains can compute the maximum allowed speed based on the received information
 - The information is sent by standardized beacons, called euro-balises
 - This corresponds to ETCS level 1

*UIC.ORG

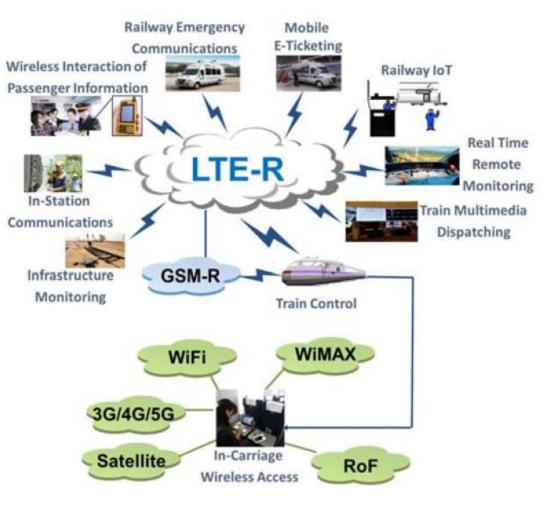


ETCS

ETCS defined 3 levels:


- Level 1: GSM-R is only used for voice communications (A, B, C)
- Level 2: GSM-R is also used for sending movement authorizations, the positions of the trains are sent by the trackside equipment
- Level 3: The trains are capable to send their own positions (E)

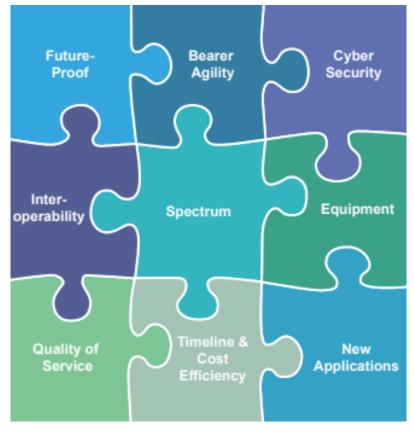
LTE-R



Services

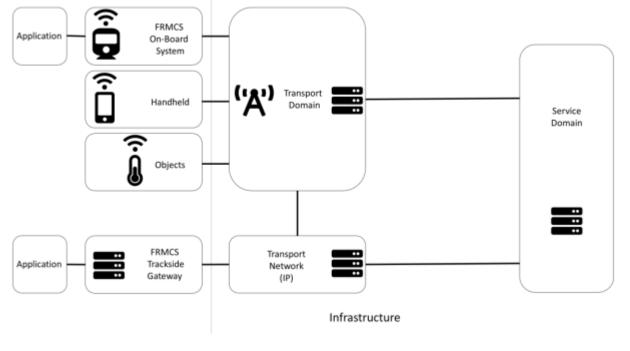
- Real-time control information with delays less than 50 ms
- Real-time video monitoring of the infrastructure
- o Multimedia dispatch
- Emergency communications
- Railway IoT: real-time train and cargo tracking
- Passenger services

GSM-R VS LTE-R


	GSM-R	LTE-R		
Uplink frequency	870-880 MHz	450, 800 MHz, 1.4 GHz		
Downlink frequency	921-925 MHz	1.8 GHz		
Bandwidth	0.2 MHz	1.4 – 20 MHz		
Modulation	GMSK	QPSK/16-QAM		
Cell radius	8 km	4-12 km		
Maximum mobility	500 km/h	500 km/h		
MIMO	No	Only 2x2		
Data transmissions	Needs voice call	Packet switching		
Handover	Hard	Soft		
Downlink/uplink throughput	172 kbps	50/10 Mbps		
Max. spectral efficiency	0.33 bps/Hz	2.55 bps/Hz		

FRMCS

- FRMCS (Future Railway Mobile Communication System) is the system which is planned to replace GSM-R
 - In Europe, the LTE-R implementation most probably will be skipped and FRMCS designed for 5G will be implemented instead
 - $_{\odot}\,$ The first tests in real systems are taking place 2023
 - FRMCS will be introduced around 2025
- FRMCS allows ETCS level 3 and ATO (Automatic Train Operation) meaning automation level GoA4
 - A communication system with delays <= 10ms, minimum uplink throughput of 6-7 Mbps and high reliability network is necessary



FRMCS – ARCHITECTURE

Major functional blocks of the FRMCS architecture (*FRMCS SRS)

- The On-Board System provides communication services via capabilities of the Transport Domain to and from onboard applications / entities
- The Trackside Gateway provides access to communication and supplementary services supported by the FRMCS System to and from trackside applications
- The Transport Domain comprises one or more FRMCS Transport Domains and zero or more Non-FRMCS Transport Domain
- The Service Domain includes a MCX infrastructure, including a SIP Core

- FRMCS is architected to achieve maximum flexibility by separating the railway functions from the network and radio bearer
- FRMCS can use standard mobile radio technologies such as LTE, 5G or even satellites, but 5G is preferred
- Frequency bands
 - 3GPP 5G NR technology for the paired frequency bands [EC Decision 2021/1730] of:
 - 874.4-880.0 MHz, uplink
 - 919.4-925.0 MHz, downlink
 - 3GPP 5G NR technology for the unpaired frequency band [EC Decision 2021/1730] of:
 - 1900-1910 MHz

Existing backbones which link with various access domains (cable, optical fiber, different generations of wireless technologies) will connect to 5G

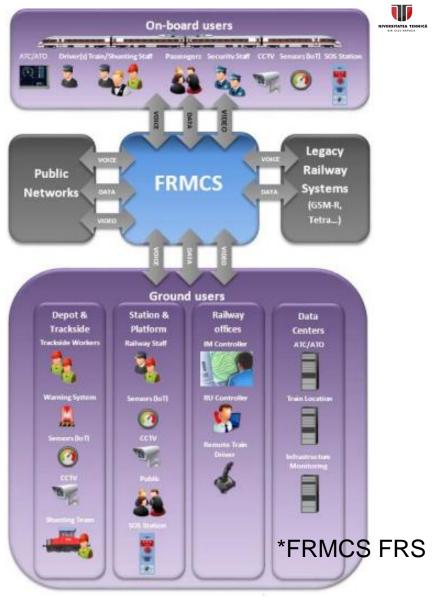
• The backbone has to meet the 5G transport challenges

Dynamic 5G transport slicing

- 5G brings allows networking slicing that enables a shared wireless network to offer multiple services while meeting stringent QoS requirements such as bandwidth and deterministic delay for each rail application
- A 5G network slice is a virtual network partition that contains dedicated resources to support a specified set of services, applications or users with different QoS or security levels
 - For example, ATO requires stringent latency for train control while CCTV is very delay tolerant

- Creating a 5G slice requires orchestrating the provisioning of a slice in the RAN, core and transport domains and seamlessly interconnecting them
 - The automated orchestration can be done by an end-to-end network slice orchestrator

- Cross-layer IP/optical network management
 - 5G capacity triggers bandwidth-intensive applications, the backbone must run on an extensive optical transport layer, using DWDM (Dense Wavelength-Division Multiplexing) technology
- Time synchronization
 - 5G requires time-of-day synchronization for TDD base stations and advanced cellular capabilities such as coordinated multiple point transmission and reception


Cloud interconnect

- 5G has a cloud-native architecture
- The 5G core slice can be hosted in a data center or at the edge cloud
- This requires the backbone network to seamlessly interwork with the data center switch fabric and edge cloud.

- According to Nokia FRMCS will be used for the following areas:
 - Automated train operation
 - Increase the operational and energy efficiency, train density and punctuality by supporting ATO
 - Precise positioning for obstacle detection, remote control and automation
 - Critical video support for driverless trains (ATO levels 3 and 4)
 - Future ETCS including train integrity
 - Shunting automation

• Passenger information systems

- Improve the passenger experience and provide better individual mobility assistance by enhancing passenger information systems
 - Smart connectivity of different transportation modes through a passenger app
 - Enhanced real-time information on train status and seating availability
 - Connectivity for wireless displays
 - Video announcement on passenger devices
- Smart rail maintenance
 - Streamline operations, improve safety and replace soiled solutions by automating maintenance of rolling stocks, track and trackside asset
 - Augmented reality-enabled and predictive maintenance
 - Automated rail flaw detection
 - Remote-controlled drones for supervision

- Smart station
 - Modernize station operations by using digital communications to improve safety, streamline passenger handling and save energy
 - CCTV, emergency management, incident response, automated monitoring to ensure safe on- and off-boarding of passengers
 - IoT-based control of station facilities: bins, vending machines, elevators, lighting, ventilation
 - Smart power distribution and traction control systems
- Management support systems
 - Make business processes more efficient, increase automation and enable continuous optimization
 - Unified management of main control systems
 - Real-time information on passenger and traffic flows
 - Automated processing for ticketing
 - Use of digital twins to enable dynamic simulation of train operations and infrastructure

Smart infrastructure

- Increase efficiency and safety by supporting use cases that help digitalize the complete rail infrastructure
 - Connected railroad crossings and automated alerts
 - Automated hazard detection
 - Real-time management of passenger and traffic flows
 - Flawless perception of vehicles and trackside through multi-modal sensing (cameras, radar, LIDAR)