Course 2
Access and signaling techniques used in classical telephone networks.

Zsolt Polgar
Communications Department
Faculty of Electronics and Telecommunications,
Technical University of Cluj-Napoca
Content of the course

- The analogue access. Basic characteristics;
- Classification of the signaling techniques;
- Access signaling;
 - “loop start” and “ground start” signaling;
 - FX (FXS/FXO) signaling;
- Trunk signaling;
 - Basic signaling diagram;
 - E&M signaling;
 - MFC-R2 signaling;
The analogue access

- The simplest access method in the telephone network;
 - it is characteristic to classical telephone networks POTS (Plain Old Telephone Service);
 - is used due to its simplicity in IDN network;

- Main characteristics of the analogue access:
 - frequency band: 300Hz – 3400Hz;
 - extended to 4kHz in digital networks;
 - two wire access and remote power supply from the exchange at -48V DC;
 - the telephone device works on four wire but the transmission to the exchange takes place on two wires;
 - the notion of four wires refers to two channels with opposite directions implemented on different physical channels (wires for example);
 - the local analogue switching takes place on two wires while the digital switching and long distance transmission (both analogue and digital) takes place on four wires.
The analogue access

- Analogue switching;
- Digital switching;
- There are necessary two 2 wire – 4 wire transition points ensured by a differential system called hybrid transformer (H);
The analogue access

- The roles of the hybrid transformers:
 - transfers the signals generated by the terminal on the unidirectional transmission path of the 4 wire circuit;
 - transfers the signals from the transmission paths of the 4 wire circuit on the 2 wire subscriber loops;
 - attenuate the signals passing from the reception path on the transmission path of the 4 wire circuit;
 - the differential system (or hybrid transformer) represents a bridge whose balance is ensured by the relation: \(Z_l = Z_b \) (or \(Z_E \)) (1), where \(Z_l \) is the line (subscriber loop) impedance, and \(Z_b \) (or \(Z_E \)) is the balance impedance;
 - condition (1) cannot be fulfilled in the whole frequency band and for all subscriber loop lengths;
 - it is not ensured a perfect balance and impedance mismatch appears;
 - a fraction of the signal received from the reception path of the 4 wire loop is sent back on the transmission path of the 4 wire loop as an echo signal.
The analogue access

- Characteristics of the hybrid transformer;
 - It is called also differential system;
 - It is characteristic also to systems/equipments where is necessary a separation of the transmission and the reception paths:
 - for ex. a radio equipment using the same antenna for transmissions and reception requires a differential system to separate the output of the transmitter amplifier from the input of the receiver amplifier;
 - Represents a 4 port circuit having the following ports:
 - bidirectional port (1 – 1’):
 - ensures the connection of the 2 wire line;
 - balancing port (2 – 2’):
 - connects the balance impedance;
 - unidirectional reception port (3 – 3’);
 - unidirectional transmission port (4 – 4’)
 - two unidirectional ports ensuring the connection of the 4 wire line (loop).
The analogue access

● Parameters of the hybrid transformer:
 ● Attenuation between ports (3 – 3’) - (4 – 4’):
 ● attenuation between the reception and transmission path of the 4 wire circuit;
 ▪ this attenuation has to be as large as possible;
 ▪ ideally it is an infinite attenuation and in real circuits has a value of 15 - 20dB – it is about the return loss of the hybrid transformer;
 ▪ by reciprocity the same attenuation has to be ensured between ports (1 – 1’) - (2 – 2’), but this attenuation is not very important.
 ● Attenuation between ports (1 – 1’) - (4 – 4’) and (3 – 3’) - (1 – 1’):
 ● attenuation between the reception path of the 4 wire circuit and the 2 wire circuit and the attenuation between the 2 wire circuit and the transmission path of the 4 wire circuit;
 ▪ these attenuations have to be as small as possible;
 ▪ usually they are 3dB in the case of transformers with symmetrical structure, due to equal splitting of received/transmitted power by a port to the adjacent ports;
 ▪ by reciprocity the attenuation between ports (2 – 2’) - (4 – 4’) is equal with attenuation between ports (1 – 1’) - (4 – 4’) and the attenuation between ports (3 – 3’) - (2 – 2’) is equal with attenuation between ports (3 – 3’) - (1 – 1’).
The analogue access

- Input / output impedances at ports (1 - 1’), (3 – 3’), (4 – 4’):
 - important from the point of view the impedance matching between the hybrid transformer and the circuits on 2 wire and 4 wire.

- Hybrid transformers from the subscriber interfaces:
 - Passive transformer with galvanic separation of circuits;
 - It is composed of two transformer with center taps.
 - It is symmetrical:
 - the symmetry depends on the symmetry of the component transformers.
The analogue access

- The electronic hybrid transformer;
 - The schematic of the electronic hybrid:
The analogue access

- Transformers T_{4r}, T_{4t} and T_2 ensure the galvanic separation of the hybrid from the 4 wire and 2 wire circuits;
 - ensure a symmetrical/differential character relatively to the connected circuits;

- The effective balancing bridge is composed of resistances R_1, R_2, impedance Z_b and impedance Z_{r-1};
 - Z_{r-1} is the impedance of the subscriber loop reflected in the primary winding of the transformer T_2, and is given by:
 \[Z_{r-1} = \left(\frac{n_1}{n_2} \right)^2 \cdot Z_l \]
 - Z_l is the impedance of the 2 wire subscriber loop;

- balance condition of the bridge:
 \[\frac{R_1}{R_1 + Z_b} = \frac{R_2}{R_2 + Z_{r-1}} \]
Signaling. General aspects

- The signaling in telephony refers to:
 - Call control signals;
 - Transmission techniques for control signals;
 - Call management algorithms;

- Purpose of the signaling:
 - Control of the set up, deployment and interruption of a telephone connection;

- There are several possible classifications:
 - According to the type of the controlled channel:
 - subscriber signaling;
 - used between the subscriber terminal and the local exchange.
 - trunk signaling;
 - used on the trunk lines between the exchanges of the public networks, between PBX and local exchanges and between PBX exchanges.
Signaling. General aspects

- According to the way the signaling is transmitted:
 - in-band signaling;
 - the signaling is transmitted in the same frequency band as the speech signal.
 - out-band signaling;
 - the signaling is transmitted outside the frequency band of the speech signal.
 - channel associated signaling;
 - each voice (data) channel has assigned a separate signaling channel.
 - common channel signaling;
 - the signaling assigned to all voice (data) channels or to a group of channels is realized on a common channel used specially for this operation.

- According to role performed:
 - network management signaling:
 - characteristic only to trunk signaling;
 - for example management of congestions in switches.
Signaling. General aspects

- alerting signaling;
 - refers usually to sending to the called terminal (telephone or trunk equipment) of a ringing signal;
 - this signal is applied to a line or a trunk.

- address signaling;
 - refers to the transmission of the information related to the called number on subscriber lines or on trunks;
 - performed by the terminal or by a switching equipment;
 - can be accomplished by sending impulses or DTMF tones or special data packets in digital networks (ISDN);
 - this information have to be sent in a public network across several links up to the final completion of the connection;
 - the address signaling on trunks is realized usually (in classical telephone networks) by using a MF (Multi-Frequency) type technique:
 - different to the DTMF technique used on the subscriber line (code 2 of 6);
 - this signaling has the format: KP + number +ST;
 - KP (Key Pulse) represents the beginning of the telephone number transmission;
 - ST (Start) represents the end of this transmission and the beginning of the call processing – see the following table.
Signaling. General aspects

- MF coding of the characters (digits) used in trunk address signaling:
 - the frequencies are expressed in Hz;

<table>
<thead>
<tr>
<th>Digit/symbol</th>
<th>Frequency 1</th>
<th>Frequency 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP</td>
<td>1100</td>
<td>1700</td>
</tr>
<tr>
<td>KP2</td>
<td>1300</td>
<td>1700</td>
</tr>
<tr>
<td>1</td>
<td>700</td>
<td>900</td>
</tr>
<tr>
<td>2</td>
<td>700</td>
<td>1100</td>
</tr>
<tr>
<td>3</td>
<td>900</td>
<td>1100</td>
</tr>
<tr>
<td>4</td>
<td>700</td>
<td>1300</td>
</tr>
<tr>
<td>5</td>
<td>900</td>
<td>1300</td>
</tr>
<tr>
<td>6</td>
<td>1100</td>
<td>1300</td>
</tr>
<tr>
<td>7</td>
<td>700</td>
<td>1500</td>
</tr>
<tr>
<td>8</td>
<td>900</td>
<td>1500</td>
</tr>
<tr>
<td>9</td>
<td>1100</td>
<td>1500</td>
</tr>
<tr>
<td>0</td>
<td>1300</td>
<td>1500</td>
</tr>
<tr>
<td>ST</td>
<td>1500</td>
<td>1700</td>
</tr>
</tbody>
</table>
Signaling. General aspects

- call supervision (supervisory) signaling;
 - detects the state or changes the condition of a line or trunk;
 - there are two possible supervised conditions: ON-HOOK (idle state) and OFF-HOOK (active state);
 - when a line/trunk goes OFF-HOOK, it is interpreted as a seizure by the system and the operating state of the considered line goes from idle to active;
 - brief changes in the on-hook/off-hook status of a line or a trunk (transition called *wink* or *hook flash*) are also part of the supervision signaling.
 - out-band signaling is used usually;
 - an important part of supervisory signaling is represented by the (subscriber) access signaling and station loop signaling of the exchange.
 - the access signaling refers to detection of the off-hook state of the calling (subscriber) terminal or equipment (ex. PBX);
 - the station loop signaling refers to the answer of the local exchange (or PBX), signaling related the acceptance or non-acceptance of the access in the network;
 - access accepted/granted: the dial tone is transmitted;
 - unaccepted/rejected access: the busy ton is transmitted.
Signaling. General aspects

- another important component of the supervisory signaling is the answer and disconnect supervision;
 - it is important for billing.

- call progress indicator signals are tightly related to supervisory signaling;
 - these signals refer to audible tones that indicate to the calling side the progress of the telephone call;
 - these tones are characterized by frequency (or groups of frequencies) and timing (cadence);
 - these tones are the following:
 - dial tone – the CO/PBX is ready to accept the digits of the number from the subscriber;
 - busy tone – the called terminal is busy;
 - reorder tone – the same as the busy tone, but the call is rejected due to congestion of local/transit exchanges or to unavailability of trunk circuits;
 - special information tones – faulty line or non existent number, a.s.o.;
 - ring-back tone – indicates to the calling terminal the establishment of the connection and the alerting of the called terminal.
Access signaling

- The access signaling;
 - Determines (announces) when a line is off-hook or on-hook;
 - there are two basic variants of this signaling, namely:
 - "loop start" type signaling;
 - "ground start" type signaling.
 - "loop start" signaling is characteristic to PSTN networks ("Public Switched Telephone Network");
 - when the phone is active a current loop is closed, loop composed of the phone, wires and the battery located in the exchange;
 - the current is detected by a current sensing circuit and the exchange responds with the dial tone;
 - the incoming call to the phone is signaled by a ringing signal repeated according to a given on/off pattern;
 - problems related to this type of signaling:
 - automatic answer machines could be blocked in off-hook state;
 - the exchange is not capable to interrupt the connection;
 - the line/trunk can be seized in the same time from both directions;
 - the dialing starts in the moment when a call is received;
Access signaling

- the “ground start” type signaling is used especially on the analogue trunk connections (PBX - CO);
 - when an equipment tries to access the network (to initiate a call) it connects the RING lead to the ground;
 - the exchange (accessed) detects the current through this lead and if it can accept the call connects the TIP lead to the ground;
 - the call initiating equipment senses the current through the TIP lead and starts the call;
 - the interruption of the connection can be realized by both parts involved in communication;
 - a dial tone can be provided to the calling part, but it is optional.
Access signaling

- "loop start" and "ground start" type access signaling;

PBX (Initiates the call)

Terminal

Ringing signal generator

Battery

Current detector

Terminal

Ringing signal generator

Battery

Current detector

Subscriber module

Trunk module

PBX (Initiates the call)
Access signaling

- **Foreign eXchange (FX) signaling;**
 - called also FXS/FXO signaling – Foreign eXchange Station (FXS) / Foreign eXchange Office (FXO);
 - it was developed for connecting PBX exchanges to local exchanges (Central Office);
 - an FXS type interface is also used for connecting a multiplexer to the CO;
 - the interface between the phone device and the CO is similar with the FX interface;
 - the FXS interface located in the CO ensures:
 - the supply voltage;
 - ringing signal generation;
 - off-hook detection;
 - call progress indicator signals.
 - the FXO interface located in PBX (or phone) ensures:
 - detection of dial tone;
 - ringing signal detection;
 - call progress signal detection.
Access signaling

- The principle of FXS/FXO signaling;
 - Connecting a phone to CO;
 - Connecting a PCM equipment to CO.

Central Office (CO) switch

- Phone goes Off Hook
- CO sends dial tone
- CO sends ringing signal
- Phone goes Off Hook

Call originating terminal; Loop Start signaling

Call receiving terminal; Loop Start signaling

FXS goes Off Hook

CO calls FXO

FXO goes Off Hook

Central Office (CO) switch

T1/E1 circuit

MUX PCM

FXS calls the terminal

The terminal goes Off Hook

FXS sends dial tone

Call receiving terminal; Loop Start signaling

Call originating terminal; Loop Start signaling

FXS

“FXO”
Access signaling

- Allocation of AB bits to signals associated to FXS/FXO signaling:

<table>
<thead>
<tr>
<th>Signal / direction</th>
<th>Forward (to FXO)</th>
<th>Backward (to FXS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDLE / ON HOOK</td>
<td>AB = 0 1</td>
<td>AB = 0 1</td>
</tr>
<tr>
<td>OFF HOOK</td>
<td></td>
<td>AB = 1 1</td>
</tr>
<tr>
<td>RINGING</td>
<td>AB = 0 0</td>
<td></td>
</tr>
<tr>
<td>RING GROUND</td>
<td></td>
<td>AB = 0 0 (only GS)</td>
</tr>
<tr>
<td>TIP CLOSED</td>
<td>AB = 0 1 (only GS)</td>
<td></td>
</tr>
<tr>
<td>FORWARD DISCONNECT</td>
<td>AB = 1 1 (only GS)</td>
<td></td>
</tr>
</tbody>
</table>

- GS: Ground Start;
Trunk signaling

- Signaling sequence associated to a telephone call in a classical telephone network involving a trunk connection;

![Diagram of trunk signaling process]

- Dial tone
- Number
- On-hook (seize)
- Off-hook
- Ring back signal
- Ringing signal
- Billing starts
- Connected call; voice path
- Ring back signal terminated
- Disconnect
- Billing ends
- Ringing terminated
- On-hook
Trunk signaling

- **E&M ("Ear and Mouth" sau "receive and transmit") signaling;**
 - signaling technique developed for trunk signaling between PBX and PSTN exchanges;
 - there were developed different signaling variants (types I - V);
 - this signaling technique is based on two signals, called M and E;
 - the M signal is generated by the trunk call initiating exchange;
 - the E signal is a response sent by the exchange located at the opposite end of the trunk;
 - the E&M signaling channel is separated from the voice channel of the trunk;
 - using these two signals are coded the states of the equipments located at the two ends of the trunk connection:
 - equipments which can be in the IDLE / ON HOOK state or in the BUSY (SEIZED) / OFF HOOK state;
 - using some impulses (activation – deactivation : „wink”) other information can be transmitted on these lines as well.
Trunk signaling

- E&M signaling basic schematics;
 - Sending of the called number on the trunk connection is realized using a MF type (coding) transmission on the voice path;
 - it is ensured a larger speed of the address signaling;

PBX-A

PBX-B

Signaling

Signaling

Communication voice path

48V

48V

E

M

E

M

Listen

Listen

Request

Request
Trunk signaling

- Types of E&M signaling:
 - **E&M immediate:**
 - The trunk call initiating equipment goes OFF HOOK and transmits immediately the called number;
 - After the reception of the number the trunk equipment on the opposite end goes OFF-HOOK during the entire duration of the call;
 - Both equipments can terminate the call by going in the ON-HOOK state;
 - There is the possibility that the called trunk equipment is not ready to receive the number;
 - **E&M wink:**
 - The terminal equipment responds to an OFF-HOOK state of the calling equipment with a short OFF-HOOK impulse (“wink”) in the moment when is ready to receive the called number;
 - The opening of the voice path and the starting of the billing process is achieved after the E signal goes OFF-HOOK.
Trunk signaling

- Signaling sequence corresponding to E&M wink:

 - **E&M wink-wink:**
 - the terminal equipment responds to an OFF-HOOK state of the calling equipment with a short impulse on signal E;
 - the call originating equipment sends the number in MF code on the voice path;
 - the receiving equipment sends another short impulse on signal E, signaling that it received all the digits.
Trunk signaling

- Allocation of AB(CD) bits to physical signals characteristic to E&M signaling:

<table>
<thead>
<tr>
<th>Direction</th>
<th>State</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission</td>
<td>Idle/On-Hook</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transmission</td>
<td>Seized/Off-Hook</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reception</td>
<td>Idle/On-Hook</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reception</td>
<td>Seized/Off-Hook</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- MFC-R2 signaling – „Multifrequency Compelled R2 Signaling System”, called also R2 signaling;
 - the R2 term refers to the region 2, considered to be Europe (USA was considered region 1);
 - it is called also inter-register signaling;
 - register – signaling equipment used to control the switching process – is the part dedicated to address signaling, switching control and (partially) control of the connection – for ex. billing control;
Trunk signaling

- it is dedicated especially to E1 type connections;
 - it is characterized by the fact that each command has an appropriate acknowledgement signal;
 - it is somewhat similar (as principle) with E&M signaling;
 - call supervisory signaling is realized based on digital signals transmitted with A B C D bits;
 - the address signaling is accomplished also by MF technique;
 - some of the control signals are also transmitted by MF technique;
- two distinct parts can be identified in the case of this signaling technique:
 - line signaling, used to seize or to release the trunk at both ends
 - it is accomplished based on A B C D digital signals;
 - inter-register signaling;
 - accomplished by the use of MF signals.
 - the allocation of the A B C D bits:
 - the A B bits are used for basic operations; codes the line (trunk) states;
 - the C D bits can be used for signaling associated to supplementary services such as call forwarding.