Demodularea semnalelor DPSK utilizând tehnica MAQ

- expresia semnalului DPSK recepționat poate fi exprimat prin (1), în care prin I'(t) și Q'(t) s-au notat semnalele modulatoare afectate de perturbațiile și distorsiunile canalului:

$$s_{rPSK} = I'(t) \cdot cos(\omega_p t) - Q'(t) \cdot sin(\omega_p t);$$
⁽¹⁾

- demodularea semnalelor DPSK poate fi realizată folosind demodularea QAM, adică utilizând două demodulatoare coerente BLD-PS, prezentată în Figura 1.

Figura 1 Schema bloc a demodulatorului DPSK realizat prin metoda QAM;

- Ecuațiile care descriu demodularea MAQ pentru semnalul DPSK sunt:

$$i_{x}(t) = \frac{r(t)A\cos(\omega_{t}t)}{K} =$$

$$= \frac{AI'(t)}{2K} \{\cos[\theta(t)] + \cos[2\omega_{t}t + \theta(t)]\} - \frac{AQ'(t)}{2K} \{\sin[-\theta(t)] + \sin[2\omega_{t}t + \theta(t)]\}$$

$$q_{x}(t) = \frac{r(t)(-A \cdot \sin(\omega_{t}t))}{K} =$$

$$= \frac{AI'(t)}{2K} \{\sin[-\theta(t)] - \sin[2\omega_{t}t + \theta(t)]\} + \frac{AQ'(t)}{2K} \{\cos[\theta(t)] - \cos[2\omega_{t}t + \theta(t)]\}$$
(2)
(3)

- prin suprimarea componentelor axate pe $2\omega_p$ de către filtrele TJ, semnalele de la ieșirile acestora au expresiile:

$$i(t) = \frac{A}{2K} \Big[I'(t) \cos(\theta(t)) + Q'(t) \sin(\theta(t)) \Big] \rightarrow \frac{A}{2K} \cdot I'(t) \, pt. \, \theta(t) \rightarrow 0; \tag{4}$$

$$q(t) = \frac{A}{2K} \Big[-I'(t) \sin(\theta(t)) + Q'(t) \cos(\theta(t)) \Big] \to -\frac{A}{2K} \cdot Q'(t) \, pt. \, \theta(t) \to 0; \tag{5}$$

- semnalul complex

$$s'(t) = \Gamma(t) + j \cdot Q'(t) \tag{6}$$

este semnalul *complex recepționat în banda de bază*. Ținând cont de (6) relațiile (4) și (5) pot fi puse în forma:

$$i(t) = \frac{A}{2K} \Big[I'(t) \cos \theta(t) + Q'(t) \sin \theta(t) \Big] = \operatorname{Re} \left\{ s'(t) \cdot \frac{A}{2K} \cdot \left[\cos(\theta(t)) - j \cdot \sin(\theta(t)) \right] \right\}$$
(7)

$$q(t) = \frac{A}{2K} \Big[-I'(t) \sin(\theta(t)) + Q'(t) \cos(\theta(t)) \Big] = \operatorname{Im} \left\{ s'(t) \cdot \frac{A}{2K} \cdot \left[\cos(\theta(t)) - j \cdot \sin(\theta(t)) \right] \right\}$$
(8)

pe baza (7) și (8) putem scrie ca semnalul complex recepționat este:

$$r(t) = i(t) + j \cdot q(t) = s'(t) \cdot \left[\cos(\theta(t)) - j \cdot \sin(\theta(t))\right] = s'(t) \cdot \frac{A}{2K} \cdot e^{-j\theta(t)}$$
(9)

-dacă purtătorul local este recuperat corect, adică $\theta(t) \rightarrow 0$ ecuația (9) devine:

$$r(t) = \left[A\cos\left(\Phi(t)\right) + n_{I}(t)\right] + j\left[A\sin\left(\Phi(t)\right) + n_{Q}(t)\right] = A \cdot e^{j\Phi(t)} + n_{I}(t) + j \cdot n_{Q}(t)$$
(10)

- demodularea furnizează semnalele modulatoare filtrate I'(t) și Q'(t) afectate de perturbațiile canalului.

- semnalele I'(t) și Q'(t) sunt sondate cu tactul de simbol recuperat, obținându-se nivelele modulatoare I_k ' și Q_k ' corespunzătoare celei de k-a perioadă de simbol; Forma complexă a semnalului sondat este:

$$r(t) = \left[A\cos\left(\Phi_{k}\right) + n_{lk}\right] + j\left[A\sin\left(\Phi_{k}\right) + n_{Qk}\right] = A \cdot e^{j\Phi_{k}} + n_{lk} + j \cdot n_{Qk}$$
(11)

- În cazul modulației APSK aceste semnale sunt introduse în blocurile de decizie, care livrează valorile estimate I_k^* și Q_k^* , ale nivelelor modulatoare; I_k^* și Q_k^* aparțin alfabetului sursei.

- nivelele decise I^*_k și Q^*_k trebuie să fie coordonatele fazorului din constelație cel mai apropiat de fazorul recepționat (care e cel mai probabil) și de aceea blocul de decizie va calcula distanțele euclidiene dintre fazorul recepționat și fazorii constelației și va păstra coordonatele fazorului care se află la distanța minimă de fazorul recepționat

- nivele decise sunt introduse în decodor (demapper) pentru extragerea multibitului corespunzător;

În cazul modulației DPSK există două posibilități de demodulare:

-decizie hard înainte de decodare diferențială – demodularea se realizează astfel

• Pe baza nivelelor sondate se determină faza semnalului pe perioada curentă de simbol:

$$\Phi_{k}' = \arctan\left(\frac{Q_{k}'}{I_{k}'}\right)$$
(12)

• Deoarece Φ'_k este afectat de zgomote și perturbații, și este diferit de simbolurile transmise receptorul trebuie să decidă care a fost semnalul transmis dacă a recepționat Φ'_k .

$$\Phi_k^* = \left\{ \Phi_m | m = \arg\min_{i=1\dots M} \left(|\Phi_i - \Phi_k'| \right), \Phi_i \in \mathcal{M} \right\}$$
(13)

• Având valorile de fază Φ_k^* decise, receptorul decide saltul de fază $\Delta \Phi_k^*$ recepționat

$$\Delta \Phi_k^* = \begin{cases} \Phi_k^* - \Phi_{k-1}^* & \text{pentru DPSK} \\ \Phi_k^* & \text{pentru APSK} \end{cases}$$
(14)

- decodificarea biților sau demaparea, în urma căreia se obține cuvântul binar estimat; această operație poate fi realizată și tabelar.
- conversia din paralel în serie (CPS), obținându-se astfel datele recepționate în formatul dorit de modulul receptor.

Figura 2 Demodulator DPSK în banda de bază dacă decizia este înainte de decodare diferențială - decodare diferențială realizată înainte de decizie

• Pe baza nivelelor sondate se determină faza semnalului pe perioada curentă de simbol:

$$\Phi_{k}' = \arctan\left(\frac{Q_{k}'}{I_{k}'}\right)$$
(15)

• Se calculează diferența de fază față de faza semnalului citit pe perioada k-1:

$$\Delta \Phi_k' = \Phi_k' - \Phi_{k-1}' \tag{16}$$

• deoarece $\Delta \Phi_k$ ' poate fi afectat de zgomote și perturbații, este utilizat un bloc de decizie care determină ceea mai apropiată valoare permisă a saltului de fază:

$$\Delta \Phi_k^* = \left\{ \Delta \Phi_m | \ m = \arg \min_{i=1\dots M} \left(|\Delta \Phi_i - \Delta \Phi_k'| \right), \Delta \Phi_i \in \mathcal{M} \right\}$$
(17)

• pe baza saltului de fază decis se realizează de-maparea biților informaționali.

Figura 3 Demodulator DPSK în banda de bază dacă decizia este după decodare diferențială - cea de a doua metodă este mult mai puțin sensibilă la eroarea de recuperare a purtătorului local deoarece:

- presupunând că purtătorul local este recuperat cu o eroare $\theta(t) = 2\pi \cdot \Delta f \cdot t + \varphi$ pe baza relațiilor (9),(10) și (11) avem:

$$\Phi_{k-1}' = \Phi_{k-1} + \theta((k-1) \cdot T_s) + n_{k-1}$$

$$\Phi_k' = \Phi_k + \theta(k \cdot T_s) + n_k$$
(18)

iar ecuația (16) devine:

$$\Delta \Phi_{k}' = \Phi_{k} - \Phi_{k-1} + 2\pi \cdot \Delta f \cdot T_{s} + n_{k} - n_{k-1} =$$

$$= \Delta \Phi_{k} + 2\pi \cdot \frac{\Delta f}{f_{s}} + n_{k} - n_{k-1}$$
(19)

- Dacă diferența de frecvență are valoare mică raportată la f_s al doilea termen din (19) devine neglijabil.

Recuperarea și sincronizarea purtătorului local

Metoda ridicării la puterea M considerînd semnalul recepționat

$$s_{rPSK}(t) = A \cdot cos(\omega_{p}t + \Phi_{k}) + z(t) =$$

$$= A \cdot cos(\omega_{p}t + \frac{2\pi}{M} \cdot N_{k}) + z(t)$$
(20)

ținând cont că

$$\left(\cos(x)\right)^{M} = \frac{1}{2^{M}} \binom{M}{M/2} + \frac{2}{2^{M}} \sum_{k=0}^{\frac{M}{2}-1} \binom{M}{k} \cos\left(\left(M-2k\right)x\right)$$
(21)

semnalul recepționat $S_{rPSK}(t)$ ridicat la puterea M, obținem un termen care are faza instantanee de M ori mai mare decât faza instantanee a semnalului recepționat; faza instantanee a acestui termen va fi:

$$\left(M\left(\omega_{p}t + \frac{2\pi}{M} \cdot N_{k}\right)\right)_{\text{modulo }2\pi} = \left(M\omega_{p}t + 2\pi N_{k}\right)_{\text{modulo }2\pi} = M\omega_{p}t$$
(22)

așa cum arată relația (22), dacă semnalul modulat ridicat la puterea M conține o componentă spectrală la frecvența de Mf_p care nu este modulată în fază. Eliminând celelalte componente spectrale (k > 0 în ecuația (21)) obținem un semnal de referință cu frecvență de M ori mai mare decât frecvența purtătorului recepționat, acest semnal poate fi utilizat ca și referința de fază pentru un circuit PLL. Schema bloc a circuitului de recuperare a purtătorului cu metoda ridicării la putera M este prezentată în Figura 4 .

Metoda DDCR

- pentru recuperarea purtătorului local, în locul variantei clasice de circuit PLL care determină eroarea de fază în funcție de un semnal exterior de referință și de semnalul generat local, este folosită o altă metodă de determinare a erorii de fază, dată de relația:

$$e_{k}(t) = I_{k} \cdot Q_{k}^{*} + Q_{k}^{'} I_{k}^{*} = \frac{A}{2K} \Big[Q_{k}^{*2} + I_{k}^{*2} \Big] \sin(\theta(t)) = \frac{A}{2K} \sin(\theta(t))$$
(23)

- relația (23) poate fi dedusă folosind (4),(5); prin I'_k , Q'_k s-au notat semnalele de la ieșirea blocului de sondare, iar prin I^*_k , Q^*_k , cele de la ieșirea circuitului de decizie. Metoda utilizează nivele decise și de aceea se numește "Decision Directed Carrier Recovery – DDCR".

Figura 5 Schema bloc a receptorului DPSK cu metoda QAM

- schema bloc a circuitului care funcționează pe acest principiu este prezentată în Figura 5 și arată că bucla PLL se închide prin demodulator și blocul de decizie.

- pentru valori ale defazajului, $\theta(t) \in [-\pi/2, \pi/2]$, datorită legii de variație a funcției sinus, tensiunea de eroare nu mai este direct proporțională cu valoarea defazajului, doar semnul acesteia rămânând același cu semnul defazajului.

- de aceea, folosirea unei bucle PLL cu comandă proporțională a fazei pentru sinfazarea purtătorului local introduce erori deoarece, la defazaje mari, tensiunea de eroare nu mai este proporțională cu valoarea defazajului. - dacă valoarea defazajului inițial aparține intervalelor $(-\pi, -\pi/2)$ sau $(+\pi/2, +\pi)$, atunci circuitul PLL va modifica faza purtătorului local astfel încât să minimizeze tensiunea de eroare, ceea ce va conduce la apariția unui defazaj constant de -/+ π .

- deoarece unele circuite PLL introduc un defazaj de $\pi/2$ între semnalul local sinfazat și cel recepționat (de referință), rezultă că, în general, purtătorul poate fi sincronizat cu un defazaj de k $\cdot\pi/2$, care, pentru k $\neq 0$, nu poate fi eliminat de către circuitul de recuperare a purtătorului. Acest defazaj este denumit "nedeterminare de k $\cdot\pi/2$ ".

- datorită faptului că defazajul de $k \cdot \pi/2$ este constant pe durata unei transmisii, el este eliminat de către operațiile de precodare-decodare diferențială utilizate pentru a obține modulația diferențială de fază.

- în esență, sincronizarea purtătorului local se realizează în două etape:

• extragerea semnalului de referință de fază, "recuperare", care în Figura 5. este realizată de blocul de calcul al tensiunii de eroare de fază și filtrul TJ;

• sincronizarea unui semnal generat local (sau a două semnale în cuadratură), sincronizarea propriu-zisă, care în Figura 5. este reprezentată prin oscilatorul comandat în tensiune, VCO. De fapt această operație poate fi realizată prin circuitul PLL digital descris în cursul de BB, dacă se dorește comanda fazei cu pas constant în funcție de semnul tensiunii de eroare, sau cu un VCO analogic, dacă se dorește comanda proporțională a fazei. - cu toate performanțele sale bune, acest circuit de recuperare a purtătoarei presupune o sincronizare corectă a tactului de simbol, pentru citirea corectă a valorilor I_k['] și Q_k['] și necesită valori ale SNR medii sau mari pentru o probabilitate redusă de eronare a nivelelor decise I_k*, Q_k*.

- dacă tactul de simbol nu e corect recuperat (și sincronizat) \rightarrow valorile I_k^* și Q_k^* pot fi eronate \rightarrow o tensiune de eroare greșită, dată de (23) \rightarrow o demodulare incorectă (datorită sincronizării incorecte a purtătorului local) \rightarrow recuperarea tactului de simbol este afectată; deci receptorul intră într-un "cerc vicios", având atât purtătorul local cât și tactul de simbol sincronizate eronat.

- această metodă de recuperare a purtătorului local poate fi utilizată doar dacă *metoda folosită pentru* recuperarea tactului de simbol nu depinde de calitatea recuperării purtătorului.

Recuperarea și sincronizarea tactului de simbol

- metode de recuperare a tactului de simbol vor fi studiate la cursul de A+PSK.

Performațe de eroare ale modulației PSK

- determinarea probabilității de eroare a modulației PSK se face doar în funcție de zgomotul din canal; efectele celorlalte distorsiuni sunt considerate nule, presupunându-se că sunt compensate de către circuitele de egalizare.

- calculul este efectuat în următoarele ipoteze:

1) zgomotul este gaussian, cu densitatea spectrală de putere N_0 și dispersia σ , iar puterea sa la intrarea demodulatorului este egală cu σ^2 ; lărgimea de bandă a zgomotului este egală cu banda utilă a semnalului modulat;

2) Caracteristica globală de filtrare este de tip RC, fiind repartizată în mod egal între emisie și recepție. Deci ISI se presupune nulă în momentele de sondare, dacă vom considera că și tactul de simbol e corect recuperat.

3) Numărul de simboluri din alfabetul de intrare a canalului (salturi de fază) este M, acestea fiind echidistante și echiprobabile, iar valorile simbolurilor sunt independente unul față de altul.

- semnalul de zgomot se consideră a fi un vector Z care se sumează vectorial cu vectorul *semnal emis*, S, generând vectorul *semnal recepționat* R, vezi Figura 6.

Figura 6 Compunerea semnalului recepționat

- pentru ca decizia demodulatorului să fie corectă este necesar ca vectorul R să rămână în interiorul zonei limitate de unghiurile $\varphi = ((2k-1)\pi/M$ și $\varphi = (2k+1)\pi/M)$ ale cercului de rază unitară.

- toate probabilitățile de eroare de simbol se calculează folosind "funcția complementară a erorii"–erfc(x), definită de (24);

- descompunerea în serie Taylor a acestei funcții este dată tot în (24); pentru valori mari ale argumentului reținerea primului termen asigură o precizie acceptabilă a aproximării.

$$erc(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-u^2} du = \frac{e^{-x^2}}{t\sqrt{\pi}} \left(1 - \frac{1}{2x^2} + \frac{3}{4x^4} - \cdots \right)$$
(24)

 folosind funcția erfc se definește funcția Q(t), vezi (25), care este folosită pentru exprimarea mai compactă atât a probabilității de eroare de simbol, cât și a celei de bit.

$$Q(x) = \frac{1}{2} \operatorname{erc}\left(\frac{x}{\sqrt{2}}\right) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{u^{2}}{2}} du = \frac{e^{-\frac{x^{2}}{2}}}{x\sqrt{2\pi}} \left(1 - \frac{1}{x^{2}} + \frac{3}{x^{4}} - \cdots\right)$$
(25)

funcția $Q\left(\frac{A}{\sigma}\right)$ arată probabilitatea ca nivelul semnalului de zgomot să fie mai mare ca A dacă dispersia zgomotului este σ .

- raportul semnal/zgomot ρ la intrarea în receptor este reprezentat de (26) pentru purtătoare cosinusoidală; în (26) A reprezintă amplitudinea semnalului iar σ dispersia zgomotului.

$$\rho = \frac{P_s}{P_z} = \frac{A^2}{2\sigma^2} = \left(\frac{A}{\sqrt{2}\cdot\sigma}\right)^2 \tag{26}$$

- cu SNR se notează valoarea lui ρ în reprezentare logaritmică, în dB.

- banda de frecvență a zgomotului se consideră a fi egală cu lărgimea de bandă a filtrului RC, adică LB = $f_s(1+\alpha)$. Puterea zgomotului de bandă îngustă (P_N) (ținând cont că transmisia este afectată de un zgomot alb) este:

$$P_N = N_0 \cdot LB \tag{27}$$

- se poate arăta [Haykin] că zgomotul cu bandă îngustă poate fi scris ca un semnal modulat QAM:

$$n(t) = n_I(t)\cos(2\pi f_c t) - n_Q(t)\sin(2\pi f_c t)$$
⁽²⁸⁾

- $n_I(t)$ și $n_Q(t)$ sunt semnale aleatoare cu distribuție Gaussiană, și dispersia σ filtrate trece jos, cu componente spectrale nenule până la LB/2, iar densitatea de putere a acestor este N₀.

Probabilitatea de eroare de simbol a 2-PSK

-Semnalul 2-PSK (BPSK) poate fi considerat un semnal ASK a cărui semnal PAM (banda de bază a semnalului ASK) are două nivele $\pm A$ afectat de un semnal de zgomot cu dispersia σ

- Probabilitatea de eroare de simbol p_{e2} , în funcție de A și de σ , prin expresia (29); curba p_{e2} vs. SNR este prezentată în Figura 7:

$$p_{e2}(\rho) = Q\left(\frac{A}{\sigma}\right) = Q\left(\sqrt{2 \cdot \rho}\right) \tag{29}$$

- rețineți că SNR necesar modulației 2-PSKpentru a asigura $p_e = 1.10^{-5}$ este egal cu 9.5 dB

Probabilitatea de eroare de simbol a 4-PSK

- pentru 4-PSK zonele de decizie corectă a cercului unitate sunt mărginite de unghiurile $(2k+1)\pi/4$.

- 4 –PSK poate fi considerat ca două modulații 2-PSK cu amplitudine $A\frac{\sqrt{2}}{2}$ astfel cu prophabilitate de eroare de $Q(\sqrt{\rho})$ - pe baza ecuației (29)

Deci propbabilitatea ca decizia pe una dinte cele două axe să fie **corectă** este $1 - Q(\sqrt{\rho})$, iar probabiliatea ca ambele coordonate să fie decise corect (decizia să fie corectă) este $[1 - Q(\sqrt{\rho})] \cdot [1 - Q(\sqrt{\rho})] = [1 - Q(\sqrt{\rho})]^2$

- pentru calcularea probabilității de eroare trebuie să scădem din unitate probabilitatea să avem o decizie corectă, astfel probabilitatea de eroare de simbol a modulației 4-PSK, pe4, este:

$$p_{e4}(\rho) = 1 - \left[1 - Q(\sqrt{\rho})\right]^2 = 2Q(\sqrt{\rho}) - Q^2(\sqrt{\rho}) \approx 2Q(\sqrt{\rho})$$
(30)

- folosind dezvoltarea binomială p_{e4} poate fi aproximată prin $2Q(\sqrt{\rho})$, deoarece termenul $Q^2(\sqrt{\rho})$ este

neglijabil pentru SNR > 6 dB. Curba pe vs. SNR a lui 4-PSK este și ea reprezentată în Figura 7

- valoarea SNR necesară lui 4-PSK pentru a asigura aceeași p_e este cu 3 dB mai mare ca și SNR-ul necesar modulației 2PSK, și se datorează scăderii d_E minime dintre fazori învecinați de la d_{min2} = 2A, pentru 2-PSK, la d_{min4} = $\sqrt{2}$ ·A, pentru 4-PSK; A fiind amplitudinea semnalului modulat (raza constelației).

Figura 7 Probabilitatea de eroare pe simbol (pe) si de bit (BER) vs. SNR

Probabilitatea de eroare de simbol a M-PSK

- dacă numărul de defazaje este M = 2ⁿ, n numărul de biți/simbol, defazajele sunt $\Phi = k2\pi/M$; rezultă că zona deciziei corecte a unui vector e mărginită de unghiurile ((2k-1) π/M , (2k+1) π/M), vezi Figura 6.

- p_e este exprimată în funcție de ρ de către (31); p_{e-8} vs. SNR a modulației 8-PSK e arătată în Figura 6.

$$p_{eM}(\rho) = \approx 2Q\left(\sqrt{2\rho\sin^2\left(\frac{\pi}{M}\right)}\right)$$
 (31)

- cu cât M e mai mare, cu atât e mai mare valoarea SNR necesară pentru a asigura o probabilitate de eroare dată; aceasta se datorează scăderii distanței minime dintre fazorii constelației. Creșterile SNR necesare unor constelații PSK, la dublarea lui M, pentru a asigura o probabilitatea e eroare de simbol specificată, sunt date în tabelul 1. Valoarea SNR₀ necesară modulației 2-PSK pentru a asigura valoarea p_e dorită, se calculează cu (29).

Constelație	2-PSK	4-PSK	8-PSK	16-PSK	32-PSK
SNR [dB]	SNR ₀	SNR ₀ +3	SNR ₀ +8.3	SNR ₀ +14.2	SNR ₀ +20.2
Δ SNR [dB]	-	3	5.3	5.9	6

Tabelul 1. Valorile SNR necesare constelațiilor PSK pentru a asigura o pe dată

- ca o regulă aproximativă, pentru M > 8, SNR necesar pentru a asigura o p_e dată crește cu 6 dB, la dublarea constelației, față de constelația inițială.

Probabilitatea de eroare de bit a modulației PSK

- calcul probabilității de eroare de bit, BER, trebuie să ia în considerare două aspecte:
- fiecare simbol "transportă" $n = \log_2(M)$ biți;
- datorită mapării Gray, cele mai probabile erori, când un simbol este eronat într-unul din vecinii săi, produc
 eronarea unui singur bit. Deoarece erorile de simbol care produc mai mult de un bit eronat au probabilități
 reduse, cel puțin la valori medii și mari ale SNR, putem spune că, la aceste SNR-uri, BER e mai mică de p
 ori decât probabilitatea de eroare de simbol, pe.
- astfel, BER a 2-PSK,..., M-PSK pot fi aproximate prin:

$$BER_M \approx \frac{p_{eM}}{\log_2 M} \tag{32}$$

- constelațiile B2 și B4 asigură aceleași pe și BER ca si omologele lor A2 și A4.

Probabilitățile de eroare de simbol și de bit ale modulației DPSK

- demodularea DPSK cu blocul de decizie înainte de decodare diferențială *va avea o p_e dublă, față de APSK cu același N;* dacă se eronează faza unui simbol, aceasta devine referință de fază pentru următoarea perioadă de simbol și, datorită scăderii fazelor, saltul de fază al perioadei următoare este și el eronat; astfel, defazajele corespunzătoare la două prioade de simbol consecutive sunt eronate, ducând la o p_e dublă față de cea a APSK.

$$p_{eM-DPSK} \cong 2 \cdot p_{eM-PSK} \tag{33}$$

- probabilitatea de eroare de bit a DPSK se calculează similar cu cea a APSK, vezi (32), utilizând probabilitatea de eroare de simbol.

Concluzii

- DPSK cu M \leq 8, asigură o eficiență spectrală bună de până la β_w = 0.5 Hz/bit/s,

- o foarte bună imunitate la zgomot și salturi de amplitudine, în special pentru M = 2 sau M = 4.

- APSK este foarte sensibilă la deviațiile de frecvență.

- DPSK cu $M \ge 16$ necesită valori ridicate ale SNR pentru a asigura probabilități mici ale erorii de simbol, datorită scăderii semnificative a distanțelor euclidiene minime ale constelațiilor.

- pentru transmisii de date cu n > 3, DPSK este înlocuită cu modulația combinată de amplitudine și fază A+PSK (a nu se confunda cu AbsolutePSK),

Variante ale modulației QPSK

- din cele arătate în cursul de DPSK și mai sus, rezultă că faza absolută a semnalelor (D)QPSK prezintă variații de fază de 180°.

- filtrarea acestor semnale cu o caracteristică (R)RC introduce o modulație de amplitudine, vezi cursul de DPSK. Amplitudinea semnalului modulat și filtrat A(t) prezintă minime ale căror valori depind de saltul de fază $\Delta \Phi_k$:

$$A_{\min}(t) = A \left| \cos \frac{\Delta \Phi_k}{2} \right|;$$

$$A = \sqrt{I_k^2 + Q_k^2};$$
(34)

- pentru $\Delta \Phi_k = 180^\circ$ amplitudinea va avea pentru scurt timp valoarea nulă, iar într-o jumătate de perioadă de simbol va face excursia de amplitudine maxim posibilă, de la 0 la A.

- dar în transmisiile radio care utilizează amplificatoare RF neliniare, caracteristicile AM-AM și AM-PM, ale acestor amplificatoare produc "împrăștierea" spectrului de frecvențe ale semnalului modulat.

- aceasta are ca efect refacerea lobilor spectrali laterali, exteriori benzii de frecvență permise, care au fost filtrați înainte de amplificarea RF, fenomen numit "refacere spectrală - spectral regrowth". În plus, mai apare și distorsionarea componentelor spectrale din banda utilă.

- de aceea se recomandă utilizarea semnalelor DPSK sau QPSK numai pe canale ce utilizează amplificatoare liniare.

- pentru canalele de radio și/sau satelit, amplificatoarele liniare de radiofrecvență nu sunt eficiente în putere și de aceea se folosesc amplificatoare în clasă C, care sunt mai eficiente în putere, dar nu prezintă o caracteristică de amplificare liniară.

- pentru aceste canale au fost elaborate variante ale QPSK care să aibă lobi laterali cât mai mici posibil și să prezinte variații reduse ale anvelopei semnalului filtrat.

- aceste cerințe pot fi satisfăcute dacă faza absolută a semnalului modulat nu va prezenta salturi de 180° pe o perioadă de simbol, și astfel amplitudinea semnalului modulat nu va varia între 0 și A într-o perioadă de simbol T.

- un alt parametru important al unui semnal modulat, care influențează comportarea semnalului la trecerea prin amplificatoare RF neliniare, este PAPR, raportul între puterea de vârf și puterea medie ("Peak-to-Average Power Ratio") pe perioada unui simbol.

- pentru ca fenomenul de refacere spectrală să fie cât mai redus trebuie ca acest raport să fie cât mai apropiat de 1 (0 dB).

- cele mai folosite variante ale modulației QPSK care satisfac aceste cerințe sunt modulația QPSK deplasată (Offset QPSK – OQPSK) și modulația π /4-QPSK.

Offset QPSK – OQPSK

- pentru a evita salturile de fază de 180°, de la un simbol la altul, ce apar la modulația QPSK, în cazul modulației OQPSK ("Offset QPSK") valorile semnalelor modulatoare I_k și Q_k nu se modifică în același moment de timp, la începutul perioadei de simbol.

- momentele de schimbare ale valorilor semnalelor modulatoare sunt decalate unul față de altul cu o jumătate de perioadă de simbol, așa cum se arată în Figura 8.

- aceasta face ca salturile de 180° ale fazei absolute să fie realizate în doi pași, așa cum este exemplificat în figura 8 pentru saltul de la faza absolută 45° la faza absolută 225°

- în prima jumătate a perioadei de simbol se emite fazorul de coordonate $\left(-\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$, ceea ce produce un salt

TM curs 9

de fază de 90°;

- în a doua jumătate a perioadei de simbol se emite fazorul de coordonate $\left(-\frac{\sqrt{2}}{2}; -\frac{\sqrt{2}}{2}\right)$, ceea ce produce un al doilor selt de fază de 90%

doilea salt de fază de 90°;

- deoarece nu mai are loc un salt de fază de 180°, amplitudinea semnalului filtrat nu mai atinge valoarea zero, iar variația amplitudinii pe o perioadă de simbol scade semnificativ. Parametrul PAPR scade semnificativ față de cel asigurat de modulația QPSK.

Figura 8 OQPSK, varițiile în timp a semnalelor lk și Qk, respectiv traiectoria de fază pentru saltul de la la faza absolută 45° la faza absolută 225°

- schema bloc a modulatorului OQPSK este identică cu cea a modulatorului QPSK, cu diferența că nivele I_k și Q_k sunt livrate circuitelor de înmulțire în ritmul unor semnale de tact de simbol inversate unul față de celălalt.
- demodularea se poate realiza similar cu cea a semnalelor QPSK, dar semnale de sondare sunt decalate cu 180°, prin inversarea tactului de sondare pe ramura în cuadratură.

- sondarea la momente diferite de simbol poate complica procedura de recuperarea a tactului de simbol
- banda de frecvenţă ocupată de semnalul OQPSK este aceeaşi cu cea a semnalului QPSK, iar forma spectrului de frecvenţe este similară, *dar amplitudinile lobilor laterali scad semnificativ*. Aceasta face ca în cazul refacerii spectrale datorate amplificatorului RF, amplitudinile lobilor laterali exteriori benzii utile să fie mult mai mici.
- acest fapt constituie singurul avantaj al modulației OQPSK, avantaj ce o face atractivă pentru transmisiile pe canalele radio care utilizează amplificatoare neliniare de putere.

Modulaţia π/4-QPSK

- o altă metodă de evitare a salturilor de 180° ale fazei absolute într-o perioadă de simbol, constă în utilizarea celor patru salturi de fază de tipul (2k + 1)·45° posibile, în mod similar cu constelația B4, vezi cursul de PSK.
- faza absolută a semnalului purtător va trece, în fiecare perioadă de simbol, de pe constelația A4 pe constelația B4 sau invers, așa cum se arată în Figura 11.

- fazorul curent nu mai trece prin zero, ceea ce face ca amplitudinea să nu atingă valoarea nulă în nici un moment. Traiectoriile de fază posibile sunt prezentate în Figura 12.

Figura 13 Semnalul modulat cu QPSK și OQPSK și π /4-QPSK

- salturile de fază de acest tip se pot implementa cu modulator QAM de fază absolută, prin utilizarea alternativă, în fiecare perioadă de simbol, a tabelelor de corespondență dibit-fazor ale constelațiilor A4 și B4;

- spectrul de frecvențe al π /4-QPSK este similar cu cele ale QPSK și OQPSK, dar amplitudinile lobilor laterali sunt mai mici decât cele ale lobilor QPSK și mai mari decât cele ale lobilor OQPSK. Lărgimea de bandă a lobului principal este egală cu cea semnalului QPSK.

- valoarea PAPR al π /4-QPSK, scade la 3,2 dB față de 4 dB pentru QPSK.

Probabilitatea de eroare a modulației QPSK

- probabilitatea de eroare de simbol a OQPSK are aceleași valori ca și cea a 4-PSK.

- modulația $\pi/4$ -QPSK are aproximativ aceeași probabilitate de eroare de simbol ca și modulația QPSK. *Aplicații ale modulației QPSK*

- QPSK este una din modulațiile cele mai utilizate în transmisiunile digitale, datorită imunității sale ridicate la zgomot și distorsiuni.

- în modemurile destinate canalelor de satelit și radio care include amplificatoare RF neliniare, QPSK este adesea înlocuită de variantele sale OQPSK sau $\pi/4$ -QPSK.

Considerații privitoare la definirea raportului semnal-zgomot

- probabilitatea de eroare este exprimată în funcție de raportul semnal/zgomot la intrarea în demodulator.

- în acest raport, puterea zgomotului este calculată prin înmulțirea densității spectrale de putere a zgomotului, constanta N_0 [dBm/kHz], pentru zgomotul gaussian cu lărgimea de bandă a filtrului de intrare.

- considerând cele două lărgimi de bandă folosite de obicei pentru semnalele filtrate RC, puterea zgomotului poate fi exprimată de (36), care utilizează și dispersia σ a zgomotului.

$$LB_{Zg} = f_s \left(1 + \alpha \right) \tag{35}$$

$$P_z = \sigma^2 = N_0 \cdot f_S(1+\alpha) \tag{36}$$

- aceste expresii ale puterii zgomotului și ale SNR depind de lărgimea de bandă a semnalului modulat.

- pentru a elimina această dependență, raportul semnal/zgomot poate fi exprimat prin raportul între energia/bit și densitatea spectrală de putere a zgomotului, notat prin E_b/N_0 . Relația dintre cele două rapoarte este dedusă în (37). Cu E_s și E_b s-au notat energiile medii per simbol și per bit, ale semnalului modulat; A este amplitudinea purtătorului, iar p numărul de biți/simbol.

$$\rho = \frac{P_s}{P_z} = \frac{A^2}{2 \cdot \sigma^2} = \frac{P_s \cdot T_s}{\sigma^2 \cdot T_s} = \frac{E_s}{N_0(1+\alpha)} = \frac{n \cdot E_b}{N_0(1+\alpha)}; \rightleftharpoons$$

$$SNR[dB] = \frac{E_b}{N_0}[dB] + 10 lg \frac{n}{(1+\alpha)}[dB]$$
(37)

- în (37), ρ reprezintă raportul semnal/zgomot în valori liniare, iar SNR, raportul semnal/zgomot în valori logaritmice, adică în dB.